October 1987 Revised May 2002 MM74C85 4-Bit Magnitude Comparator

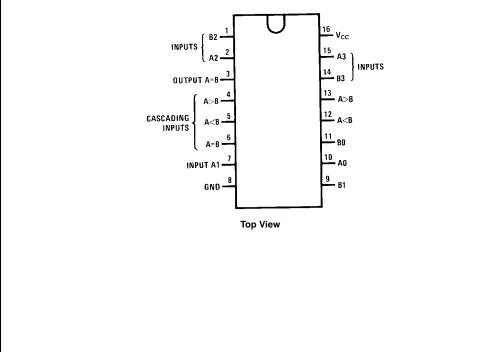
FAIRCHILD

SEMICONDUCTOR

MM74C85 4-Bit Magnitude Comparator

General Description

The MM74C85 is a four-bit magnitude comparator which will perform comparison of straight binary or BCD codes. The circuit consists of eight comparing inputs (A0, A1, A2, A3, B0, B1, B2, B3), three cascading inputs (A > B, A < B and A = B), and three outputs (A > B, A < B and A = B). This device compares two four-bit words (A and B) and determines whether they are "greater than," "lees than," or "equal to" each other by a high level on the appropriate output. For words greater than four-bits, units can be cascaded by connecting the outputs (A > B, A < B, and A = B) of the least significant stage to the cascade inputs (A > B, A < B and A = B) of the next-significant stage. In addition the least significant stage must have a high level voltage (V_{IN(1)}) applied to the A = B inputs.

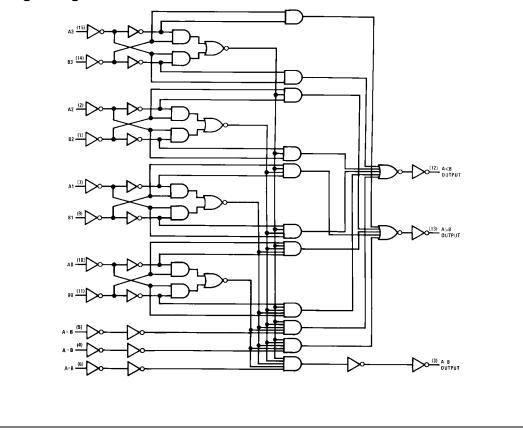

Features

- Wide supply voltage range: 3.0V to 15V
- Guaranteed noise margin: 1.0V
- High noise immunity: 0.4 V_{CC} (typ.)
- Low power: TTL compatibility: fan out of 2 driving 74L
- Expandable to 'N' stages
- Applicable to binary or BCD
- Low power pinout: 74L85

Ordering Code:

Order Number	Package Number	Package Description
MM74C85N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram


www.fairchildsemi.com

MM74C85

Truth Table

Comparing Inputs				Cascading Inputs			Outputs		
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	$\mathbf{A} = \mathbf{B}$	A > B	A < B	A = B
A3 > B3	Х	Х	Х	Х	Х	Х	Н	L	L
A3 < B3	Х	Х	Х	Х	Х	Х	L	н	L
A3 = B3	A2 > B2	Х	Х	Х	Х	Х	н	L	L
A3 = B3	A2 < B2	Х	Х	Х	Х	Х	L	н	L
A3 = B3	A2 = B2	A1 > B1	Х	Х	Х	Х	н	L	L
A3 = B3	A2 = B2	A1 < B1	Х	Х	Х	Х	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Х	Х	Х	н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	Х	Х	Х	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	L	L	н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	н	L	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	н	L	L	н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	н	н	L	н	н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	L	н	н	L	н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	н	н	н	н	н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	н	L	н	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	L	L	L	L

Logic Diagram

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	–0.3V to V _{CC} + 0.3V
Operating Temperature Range	$-55^{\circ}C$ to $+125^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3.0V to 15V

V_{CC} Lead Temperature (Soldering, 10 seconds) MM74C85

18V

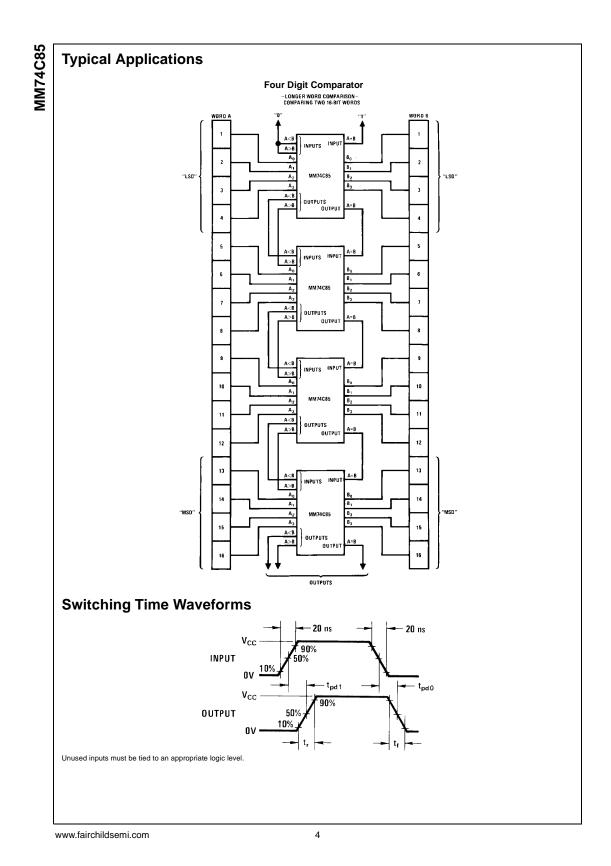
260°C

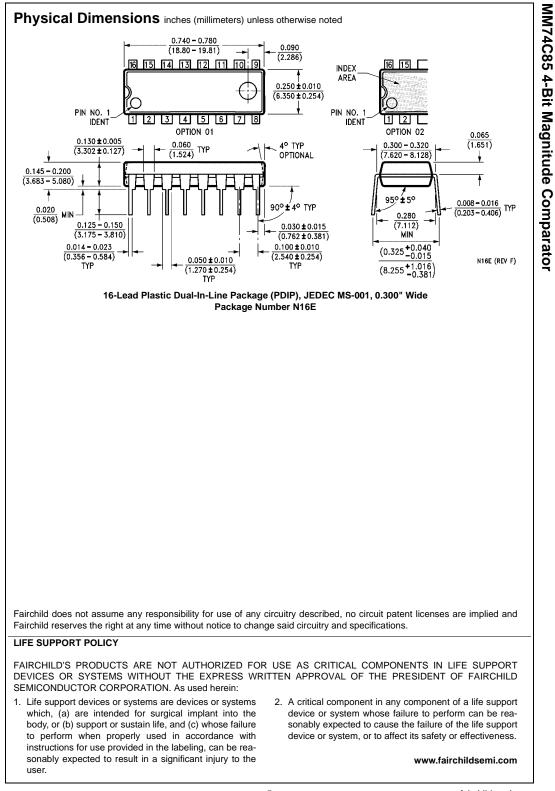
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS					•
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0V$	3.5			V
		$V_{CC} = 10V$	8.0			v
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$			1.5	V
		$V_{CC} = 10V$			2.0	v
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V$, $I_{O} = -10 \ \mu A$	4.5			V
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = +10 \ \mu A$			0.5	V
		$V_{CC} = 10V, I_{O} = +10 \ \mu A$			1.0	
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μA
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μA
I _{CC}	Supply Current	$V_{CC} = 15V$		0.05	300	μΑ
CMOS/LPT	TL INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75 V$, $I_O = -360 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = 360 \ \mu A$			0.4	V
OUTPUT D	RIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)	•			
ISOURCE	Output Source Current	$V_{CC} = 5.0V, V_{OUT} = 0V$	-1.75	-3.3		mA
	(P-Channel)	$T_A = 25^{\circ}C$	-1.75			
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V$	-8.0	-15		mA
	(P-Channel)	$T_A = 25^{\circ}C$	-0.0			IIIA
I _{SINK}	Output Sink Current	$V_{CC} = 5.0V, V_{OUT} = V_{CC}$	1.75	3.6		mA
	(N-Channel)	$T_A = 25^{\circ}C$	1./0			
I _{SINK}	Output Sink Current	$V_{CC} = 10V$, $V_{OUT} = V_{CC}$	8.0	16		mA
	(N-Channel)	$T_A = 25^{\circ}C$	8.0			

AC Electrical Characteristics (Note 2)


Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{pd}	Propagation Delay from any A	$V_{CC} = 50V$		250	600		
	or B Data Input to any Data Output	$V_{CC} = 10V$		100	300	ns	
t _{pd}	Propagation Delay Time from	$V_{CC} = 50V$		200	500		
	any Cascade Input to any Output	$V_{CC} = 10V$		100	250	ns	
CIN	Input Capacitance	Any Input		5.0		pF	
C _{PD}	Power Dissipation Capacitance	Per Package (Note 4)		45		pF	


Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note, AN-90.

www.fairchildsemi.com

www.fairchildsemi.com