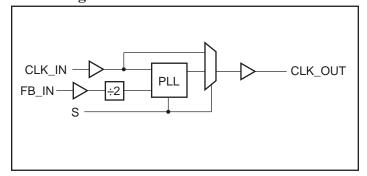


PI6C2402

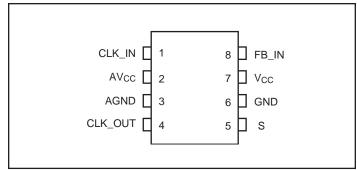
Phase-Locked Loop Clock Driver

Features

- · Clock doubler
- High-Performance Phase-Locked-Loop Clock Distribution for Networking, ATM, 100 MHz and 134 MHz Registered DIMM Synchronous DRAM modules for server, workstation, and PC applications
- Zero Input-to-Output delay
- Cycle-to-Cycle jitter $\leq \pm 150$ ps max.
- On-chip series damping resistor at clock output drivers for low noise and EMI reduction
- Operates at 3.3V V_{CC}
- Packaging (Pb-free & Green available):
 - 8-pin SOIC Package (W)


Description

The PI6C2402 features a low-skew, low-jitter, Phase-Locked Loop (PLL) clock driver. By connecting the feedback CLK_OUT output to the feedback FB_IN input, the propagation delay from the CLK_IN input to any clock output will be nearly zero. The PI6C2402 provides 2X CLK_IN on CLK_OUT output.


Applications

If the system designer needs more than 16 outputs with the features just described, using two or more zero-delay buffers such as the PI6C2509, and the PI6C2510, are likely to be impractical. The device-to-device skew introduced can significantly reduce the performance. Pericom recommends the use of a zero-delay buffer and an eighteen output non-zero-delay buffer. As shown in Figure 1, this combination produces a zero-delay buffer with all the signal characteristics of the original zero-delay buffer, but with as many outputs as the non-zero-delay buffer part. For example, when combined with an eighteen output non-zero delay buffer, a system designer can create a seventeen-output zero-delay buffer.

Block Diagram

Pin Configuration

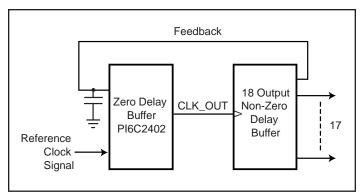


Figure 1. Zero-Delay Buffering Diagram

Control Input

S	Outputs Source	PLL Shutdown
HIGH	PLL	Disabled
LOW	CLK_IN	Enabled

08-0298 1 PS8418I 11/13/08

Pin Functions

Name	Number	Type	Description	
CLK_IN	1	I	Reference Clock inptu, CLK_IN allows spread spectrum clock input	
AV _{CC}	2	Power	Analog Power	
AGND	3	Ground	Analog Ground	
CLK_OUT	4	О	Clock Output. The output provides low-skew copies of CLK_IN and has an embedded series-damping resistor.	
S	5	I	Control Input S. S is used to bypass the PLL for test purposes. When S is strapped to ground, PLL is bypassed and CLK_IN is buffered directly to the device outputs	
GND	6	Ground	Ground	
V_{CC}	7	Power	Power Supply	
FB_IN	8	I	Feedback input. FB_IN provides the feedback signal to the internal PLL.	

Absolute Maximum Ratings(1) (Over operating free-air temperature range)

Symbol	Test Conditions		Max.	Units	
$V_{\rm I}$	Input voltage range	-0.5	$V_{CC} + 0.5$		
V_{O}	Output voltage range	-0.5	$V_{CC} + 0.5$	V	
VI_DC	DC input voltage	-0.5	5.0		
IO_DC	DC output current		100	mA	
Power	Maximum power dissipation at TA = 55°C in still air		1.0	W	
T _{STG}	Storage temperature	-65	150	°C	

Note:

Recommended Operating Conditions

Symbol	Test Conditions	Temperature	Min.	Max.	Units	
V	Cumply Voltage	Commercial	3.0	3.6		
V_{CC}	Supply Voltage	Industrial	3.135	3.465		
V _{IH}	High Level input voltage		2.0		V	
V_{IL}	Low Level input voltage			0.8		
VI	Input voltage		0	V _{CC}		
T _A	Operating free-air temperature	Commercial	0	70	90	
		Industrial	-40	85	°C	

^{1.} Stress beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Electrical Characteristics

(Over recommended operating free-air temperature range)

Symbol	Test Conditions	Temperature	Condition	Min.	Тур.	Max.	Units
I _{CC}	$V_{\rm I} = {\rm GND; IO} = 0^{(1)}$	Commercial	3.6V			10	
		Industrial	3.465V			10	μА
C_{I}	$V_I = V_{CC} \text{ or GND}$ 3.3V		3.3V		4		"E
Co	$V_0 = V_{CC}$ or GND		3.3V		6	6 pF	
Love	V _{OUT} = 2.4V					-12	
I _{OH}	$V_{OUT} = 2.0V$					-18	mA
	$V_{OUT} = 0.8V$			18			IIIA
IOL	$V_{OUT} = 0.55V$			12			

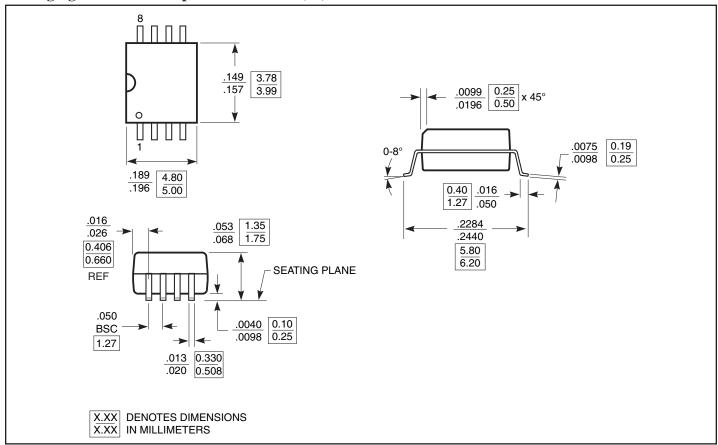
Note:

1. Continuous Output Current

AC Specifications Timing Requirements

(Over recommended ranges of supply voltage and operating free-air temperature, $C_L = 25 pF$)

Symbol	Parameters	Test Conditions	Min.	Тур.	Max.	Units	
E	Clock Frequency	Commercial	25		134	MHz	
F _{OUT}		Industrial	25		100		
D _{CYI}	Input clock duty cycle		40		60	%	
	Stabilization time after power up				1	ms	
t _p	Phase error without jitter ⁽¹⁾	CLK_IN↑ at 100 MHz and 66 MHz	-150		150	na	
tj	Jitter, cycle-to-cycle	At 100 MHz	-150		150	ps	
	Duty Cycle	$At \le 100 \text{ MHz}$	45		55	%	
		At > 100 MHz	35		65	70	
t _r	Rise-time 0.4V to 2.0V		·	1.0			
t_{f}	Fall-time 2.0V to 0.4V			1.1		ns	


Note:

1. This switching parameter is guaranteed by design.

08-0298 3 PS8418I 11/13/08

Packaging Mechanical: 8-pin Plastic SOIC (W)

Ordering Information^(1,2,3)

Ordering Code	Package Code	Package Description
PI6C2402WE	W	Pb-free & Green, 8-pin, 150-mil SOIC

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free & Green
- 3. X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com