

PRODUCT SPECIFICATION

Part Number	SIM8075	Rev	A	Date	08/12/25
Product Description	Nano SIM Card Connector, Push-Push Type, SMT, 6Pin, 1.20mm Profile			Page	1
Doc Number	SIM8075	Prepared	KY	Checked	CC

PRODUCT SPECIFICATION

Part Number	SIM8075		Rev	A		Date	08/12/25
Product Description	Nano SIM Card Connector, Push-Push Type, SMT, 6Pin, 1.20mm Profile				Page	2	
Doc Number	SIM8075	Prepared	KY	Checked	CC	Approved	YR

1.0 SCOPE

This specification covers performance, tests and quality requirements for the Nano SIM Card Connector SIM 8075 (Push-Push Type, 6 Pin, SMT, 1.20mm Profile).

2.0 PRODUCT NAME AND PART NUMBER

Nano SIM Card Connector, 6 Pin, Push-Push Type: SIM8075.

3.0 PRODUCT SHAPE, DIMENSIONS AND MATERIAL

Please refer to drawing.

4.0 RATINGS

Current rating 0.5A

Voltage rating 30V AC/DC

Operating Temperature Range -40°C to +75°C

Storage Temperature -20°C to +60°C

Storage Humidity..... Relative Humidity: ≤75%

5.0 TEST AND MEASUREMENT CONDITIONS

Product is designed to meet electrical, mechanical and environmental performance requirements specified in Paragraph 6.0. All tests are performed at ambient environmental conditions unless otherwise specified.

6.0 PERFORMANCE

Item	Test Condition	Requirement
Examination of Product	Visual, dimensional and functional inspection as per quality plan.	Product shall meet requirements of product drawing and specification.

PRODUCT SPECIFICATION

Part Number	SIM8075		Rev	A	Date	08/12/25
Product Description	Nano SIM Card Connector, Push-Push Type, SMT, 6Pin, 1.20mm Profile				Page	3
Doc Number	SIM8075	Prepared	KY	Checked	CC	Approved

6.1 Electrical Performance

Item	Test Condition	Requirement
Contact Resistance	Measure and record contact resistance of mated connector using test current of 10mA max and 20 mV open circuit voltage in accordance with EIA-364-23.	100 mΩ max initial 100 mΩ max after test
Insulation Resistance	Measure by applying test potential between the adjacent contacts, and between the contacts and ground in the mated connector. In accordance with EIA-364-21.	1000 MΩ minimum @500V DC for 1 minute
Dielectric Strength	Measure by applying test potential between the adjacent contacts, and between the contacts and ground in the mated connector. In accordance with EIA-364-20.	Connector must withstand test potential of 500 V AC for 1 minute. Current leakage must be 1.0 mA Max.

6.2 Mechanical Performance

Item	Test Condition	Requirement
Durability	Push in and push out for 5000 cycles with Nano SIM card at the speed rate of 500+/-50 cycles per hour. In accordance with EIA-364-09.	Contact Resistance: 100 mΩ max. And insertion/extraction force must meet the association specification after testing.
Vibration	No electrical discontinuity greater than 1 μs shall occur. Contact resistance:100 mΩ max.	Vibration conditions, for a period of 2 hours in each of 3 mutually perpendicular axes, with passing DC 1mA during the test, Amplitude: 1.52mm P-P or 19.6m/s ² (2G) Frequency: 10-55-10 Hz In accordance with EIA-364-28
Mechanical Shock	Mate card and subjected to the following shock conditions. 3 mutually perpendicular axis, passing DC 1mA current during the test. (Total of 18 shocks) Test pulse: Half sine peak value: 490m/s ² (50G) duration : 11ms In accordance with EIA-364-27.	No electrical discontinuity greater than 1 μs shall occur. No damage to product.

PRODUCT SPECIFICATION

Part Number	SIM8075		Rev	A	Date	08/12/25
Product Description	Nano SIM Card Connector, Push-Push Type, SMT, 6Pin, 1.20mm Profile				Page	4
Doc Number	SIM8075	Prepared	KY	Checked	CC	Approved

6.3 Environmental Performance and Others

Item	Test Condition	Requirement
Thermal Shock	The card shall be mated and exposed to the following condition for 25 cycles. 1 cycle a) -40±3 for 30 minutes b) +85±2 for 30 minutes transit time shall be within 3 minutes Recovery time 1~2 hours. In accordance with EIA-364-32	No damage, Contact Resistance (Low Level) (Final) 100 mΩ max
Humidity Test	The card shall be mated and exposed to the condition of +60±2 @ 90~95% humidity for 96 hours Recovery time 1~2 hours. In accordance with EIA-364-31.	No damage, Contact Resistance (Low Level) (Final) 100 mΩ max. Dielectric Strength should be OK, Insulation Resistance should be 100 MΩ min.
Salt Spray	5±1% salt concentration 48±4 hours 35±2°C MIL-STD-202, Method 101 Condition B.	No rusty cracks found. Contact Resistance (Low Level) (Final) 100 mΩ max
Temperature Life (High)	Subject product to 85±2°C for 96 hours continuously. MIL-STD-202, Method 108.	Contact resistance: 100 mΩ max.
Temperature Rise	Mate card and measure the temperature rise of contact, when rated current is passed. In accordance with EIA-364-70 Method 1.	30°C Max
Solderability	Dip solder tails into molten solder, held at a temperature of 250±5°C up to 0.5mm from the tip of the tails for 3±0.5 seconds.	Contact solder pad has a min. 95% solder coverage
Resistance to Hand Soldering Heat	Soldering iron method Soldering Time: 5 sec. Solder Temperature: 370-400°C 0.5mm from terminal tip	No damage
Resistance to Reflow Soldering Heat.	Mount connector, place in reflow oven and expose to the temperature profile shown in Fig 1.0	No evidence of physical damage or abnormalities adversely affecting performance.

PRODUCT SPECIFICATION

Part Number	SIM8075		Rev	A	Date	08/12/25
Product Description	Nano SIM Card Connector, Push-Push Type, SMT, 6Pin, 1.20mm Profile		Page		5	
Doc Number	SIM8075	Prepared	KY	Checked	CC	Approved

6.4 REFLOW SOLDERING PROFILE

Pb-free reflow profile requirements

Parameter	Reference	Specification
Average temperature gradient in preheating		2.5°C/s
Soak time	tsoak	2-3 minutes
Time above 217°C	t1	60 s
Time above 230°C	t2	50 s
Time above 250°C	t3	5 s
Peak temperature in reflow	Tpeak	255°C (-0/+5°C)
Temperature gradient in cooling		Max -5°C/s

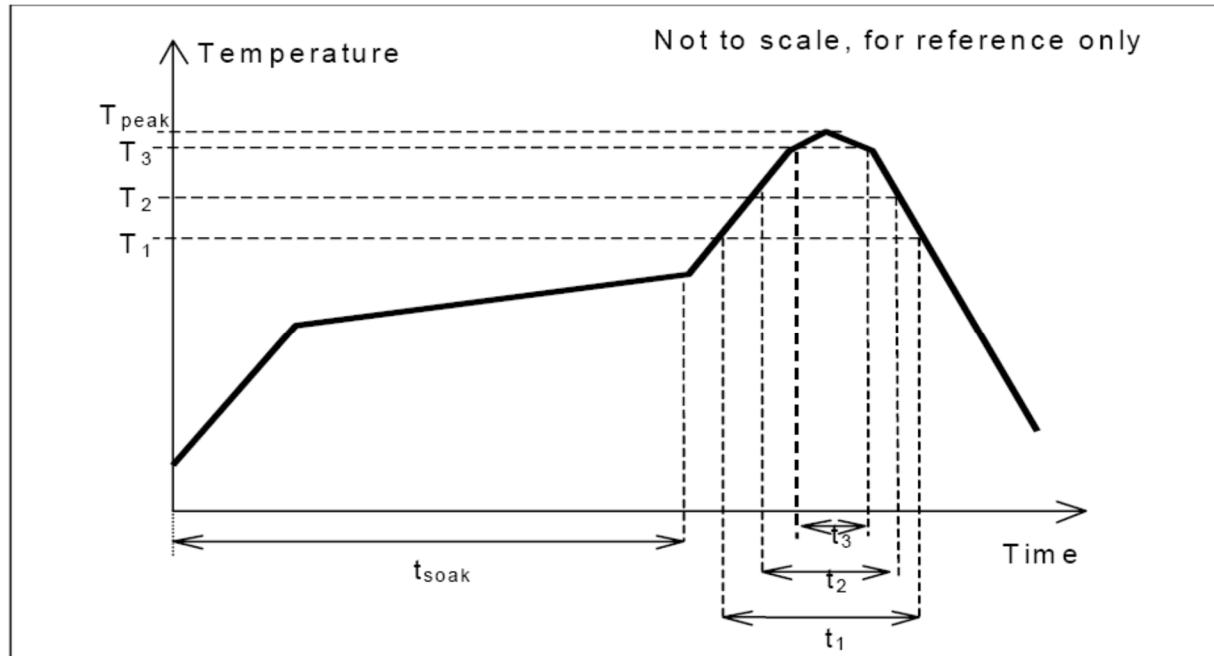


Fig 1.0 - This profile is the minimum requirement for evaluating soldering heat resistance of components. Heat transfer method used for reflow soldering is hot air convection. The actual air temperatures used to achieve the specified profile is higher and largely dependent on the reflow equipment.

PRODUCT SPECIFICATION

Part Number	SIM8075			Rev	A		Date	08/12/25
Product Description	Nano SIM Card Connector, Push-Push Type, SMT, 6Pin, 1.20mm Profile					Page	6	
Doc Number	SIM8075		Prepared	KY	Checked	CC	Approved	YR

7.0 PRODUCT QUALIFICATION AND TEST SEQUENCE

Test Item	Group									
	A	B	C	D	E	F	G	H	I	J
Examination of Product	1,7	1,3	1,6	1,5	1,8	1,3	1,3	1,3	1,5	1,5
Contact Resistance	2,6		2,5	2,4	2,6				2,4	2,4
Insulation Resistance	3				3,7					
Dielectric Withstanding Voltage	4				4					
Durability	5									
Temperature Rise		2								
Vibration			3							
Shock			4							
Thermal Shock				3						
Humidity					5					
Solderability						2				
Resistance to hand Soldering Heat							2			
Resistance to reflow Soldering Heat								2		
Salt Spray									3	
High Temperature										3

PRODUCT SPECIFICATION

Part Number	SIM8075	Rev	A	Date	08/12/25
Product Description	Nano SIM Card Connector, Push-Push Type, SMT, 6Pin, 1.20mm Profile			Page	7
Doc Number	SIM8075	Prepared	KY	Checked	CC

Revision details:

Revision	Information	Page	Release Date
0.1	First draft for review	-	05/11/2025
A	First Release	-	08/12/2025