

MOSFET - Power, Single N-Channel, STD Gate, TCPAK1012 80 V, 0.64 mΩ, 767 A

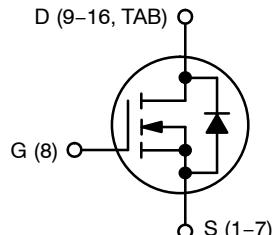
NVBYST0D6N08X

Features

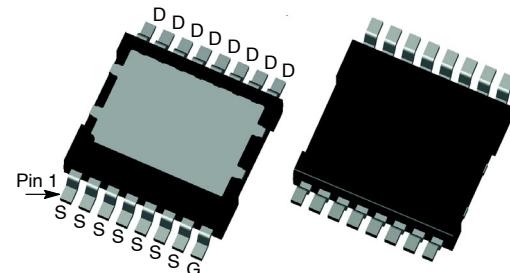
- Low Q_{RR} , Soft Recovery Body Diode
- Low $R_{DS(on)}$ to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Synchronous Rectification (SR) in DC-DC and AC-DC
- Primary Switch in Isolated DC-DC Converter
- Motor Drives
- Automotive 48V System

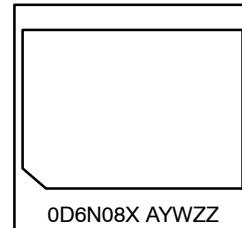

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	80	V
Gate-to-Source Voltage	V_{GS}	± 20	V
Continuous Drain Current	$T_C = 25^\circ\text{C}$	I_D	A
	$T_C = 100^\circ\text{C}$	542	
Power Dissipation	$T_C = 25^\circ\text{C}$	P_D	W
Pulsed Drain Current	$T_C = 25^\circ\text{C}$ $t_p = 100\ \mu\text{s}$	I_{DM}	A
Operating Junction and Storage Temperature Range	T_J, T_{stg}	-55 to +175	$^\circ\text{C}$
Continuous Source-Drain Current (Body Diode)	I_S	1259	A
Single Pulse Avalanche Energy ($I_{PK} = 177\text{ A}$)	E_{AS}	1566	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 seconds)	T_L	260	$^\circ\text{C}$


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using a 1 in², 1 oz. Cu pad
2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
3. E_{AS} is based on started $T_J = 25^\circ\text{C}$, rated $I_{AS}, V_{DD} = 64\text{ V}$, $V_{GS} = 10\text{ V}$, 100% avalanche tested.

$V_{(BR)DSS}$	$R_{DS(ON)}\text{ MAX}$	$I_D\text{ MAX}$
80 V	0.64 mΩ @ 10 V	767 A



N-CHANNEL MOSFET

TCPAK1012
(TopCool)
CASE 762AA

MARKING DIAGRAM

0D6N08X AYWZZ

0D6N08X = Specific Device Code

A = Assembly Location

Y = Year

W = Work Week

ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NVBYST0D6N08XTXG	TCPAK1012	1500 / Tape & Reel

[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, [BRD8011/D](#).

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Top)	$R_{\theta JC}$	0.20	$^{\circ}\text{C}/\text{W}$
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	38	
Thermal Characterization Parameter, Junction-to-Source Lead (Pin 1-7)*	Ψ_{JL}	4.1	
Thermal Characterization Parameter, Junction-to-Drain Lead (Pin 9-16)*	Ψ_{JL}	3.2	

* Low thermal conductivity test boards compliant with JEDEC Standard 51-3 for leaded surface-mount packages. 1s0p PCB board with a 1 in² copper plane, tested under natural convection conditions.

ELECTRICAL CHARACTERISTICS (T_J = 25 °C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
-----------	--------	-----------------	-----	-----	-----	------

OFF CHARACTERISTICS

Drain-to-Source Breakdown Voltage	$V_{(\text{BR})\text{DSS}}$	$V_{\text{GS}} = 0 \text{ V}, I_{\text{D}} = 1 \text{ mA}, T_{\text{J}} = 25 \text{ }^{\circ}\text{C}$	80	–	–	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\Delta V_{(\text{BR})\text{DSS}}/\Delta T_{\text{J}}$	$I_{\text{D}} = 1 \text{ mA}, \text{Referenced to } 25 \text{ }^{\circ}\text{C}$	–	29	–	$\text{mV}/^{\circ}\text{C}$
Zero Gate Voltage Drain Current	I_{DSS}	$V_{\text{DS}} = 80 \text{ V}, T_{\text{J}} = 25 \text{ }^{\circ}\text{C}$	–	–	2.0	μA
		$V_{\text{DS}} = 80 \text{ V}, T_{\text{J}} = 125 \text{ }^{\circ}\text{C}$	–	–	250	
Gate-to-Source Leakage Current	I_{GSS}	$V_{\text{GS}} = 20 \text{ V}, V_{\text{DS}} = 0 \text{ V}$	–	–	100	nA

ON CHARACTERISTICS

Drain-to-Source On Resistance	$R_{\text{DS}(\text{on})}$	$V_{\text{GS}} = 10 \text{ V}, I_{\text{D}} = 80 \text{ A}, T_{\text{J}} = 25 \text{ }^{\circ}\text{C}$	–	0.56	0.64	$\text{m}\Omega$
Gate Threshold Voltage	$V_{\text{GS}(\text{TH})}$	$V_{\text{GS}} = V_{\text{DS}}, I_{\text{D}} = 895 \mu\text{A}, T_{\text{J}} = 25 \text{ }^{\circ}\text{C}$	2.4	–	3.6	V
Gate Threshold Voltage Temperature Coefficient	$\Delta V_{\text{GS}(\text{TH})}/\Delta T_{\text{J}}$	$V_{\text{GS}} = V_{\text{DS}}, I_{\text{D}} = 895 \mu\text{A}$	–	–7	–	$\text{mV}/^{\circ}\text{C}$
Forward Transconductance	g_{FS}	$V_{\text{DS}} = 5 \text{ V}, I_{\text{D}} = 80 \text{ A}$	–	200	–	S

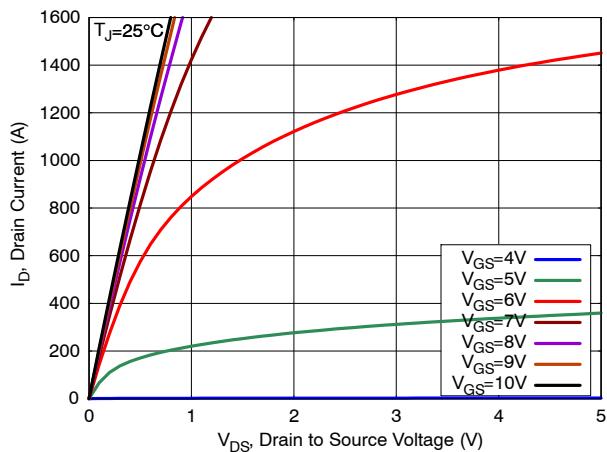
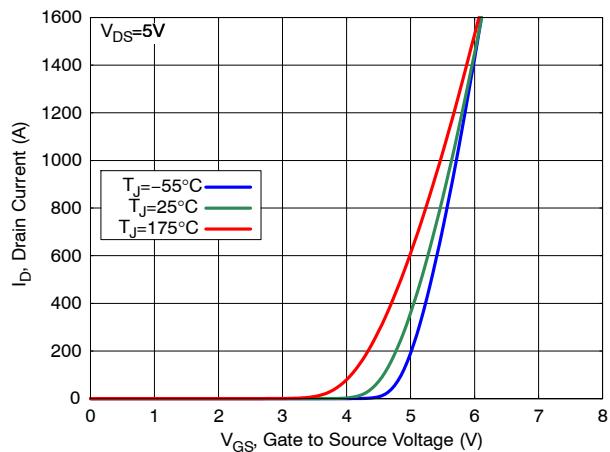
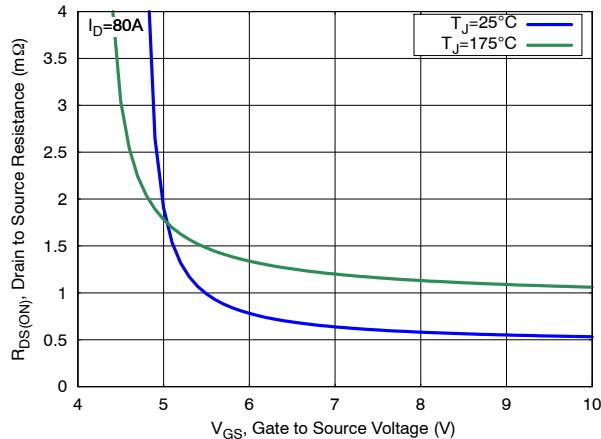
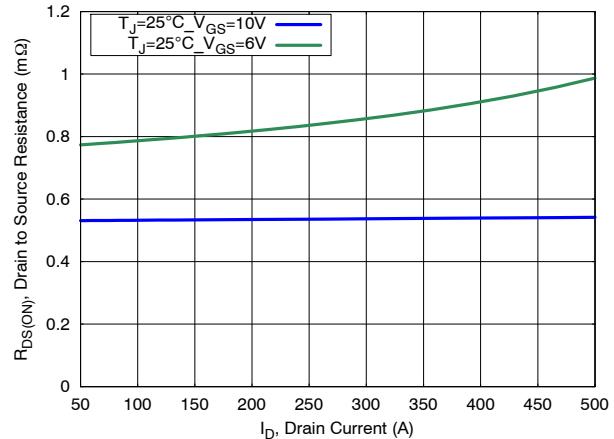
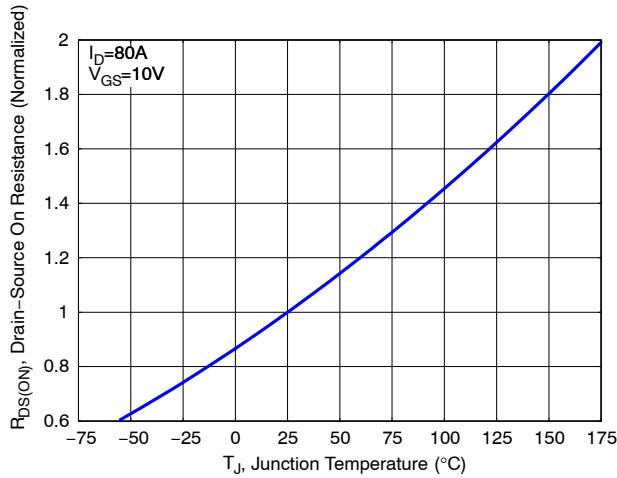
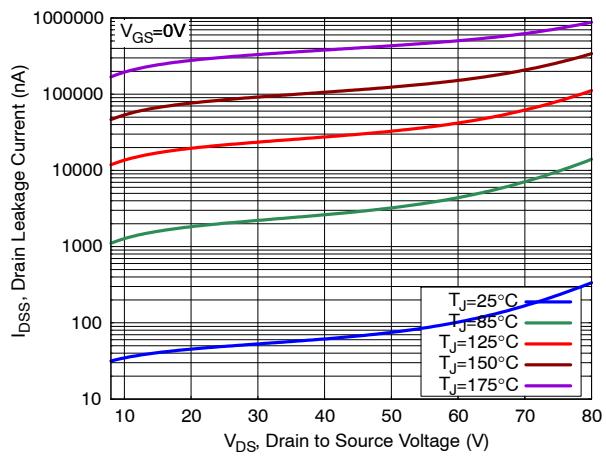
CHARGES, CAPACITANCES & GATE RESISTANCE

Input Capacitance	C_{ISS}	$V_{\text{DS}} = 40 \text{ V}, V_{\text{GS}} = 0 \text{ V}, f = 1 \text{ MHz}$	–	16419	–	pF
Output Capacitance	C_{OSS}		–	4654	–	
Reverse Transfer Capacitance	C_{RSS}		–	69	–	
Output Charge	Q_{OSS}		–	333	–	nC
Total Gate Charge	$Q_{\text{G}(\text{TOT})}$	$V_{\text{DD}} = 40 \text{ V}, I_{\text{D}} = 80 \text{ A}, V_{\text{GS}} = 10 \text{ V}$	–	228	–	
Threshold Gate Charge	$Q_{\text{G}(\text{TH})}$		–	50	–	
Gate-to-Source Charge	Q_{GS}		–	73	–	
Gate-to-Drain Charge	Q_{GD}		–	35	–	
Gate Plateau Voltage	V_{GP}		–	4.5	–	
Gate Resistance	R_{G}		–	0.79	–	Ω

SWITCHING CHARACTERISTICS

Turn-On Delay Time	$t_{\text{d}(\text{ON})}$	Resistive Load, $V_{\text{GS}} = 0/10 \text{ V}, V_{\text{DD}} = 64 \text{ V}, I_{\text{D}} = 80 \text{ A}, R_{\text{G}} = 2.5 \Omega$	–	55	–	ns
Rise Time	t_{r}		–	60	–	
Turn-Off Delay Time	$t_{\text{d}(\text{OFF})}$		–	106	–	
Fall Time	t_{f}		–	26	–	

SOURCE-TO-DRAIN DIODE CHARACTERISTICS







Forward Diode Voltage	V_{SD}	$I_{\text{S}} = 80 \text{ A}, V_{\text{GS}} = 0 \text{ V}, T_{\text{J}} = 25 \text{ }^{\circ}\text{C}$	–	0.78	1.2	V
		$I_{\text{S}} = 80 \text{ A}, V_{\text{GS}} = 0 \text{ V}, T_{\text{J}} = 125 \text{ }^{\circ}\text{C}$	–	0.61	–	

NVBYST0D6N08X

ELECTRICAL CHARACTERISTICS (T_J = 25 °C unless otherwise specified) (continued)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
SOURCE-TO-DRAIN DIODE CHARACTERISTICS						
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, I _S = 80 A, dI/dt = 1000 A/μs, V _{DD} = 64 V	–	63	–	ns
Charge Time	t _a		–	31	–	
Discharge Time	t _b		–	32	–	
Reverse Recovery Charge	Q _{RR}		–	777	–	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance vs. Gate Voltage

Figure 4. On-Resistance vs. Drain Current

Figure 5. Normalized ON Resistance vs. Junction Temperature

Figure 6. Drain Leakage Current vs. Drain Voltage

TYPICAL CHARACTERISTICS

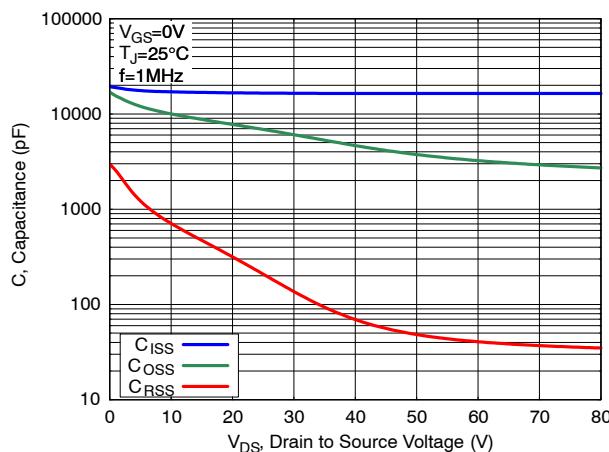


Figure 7. Capacitance Characteristics

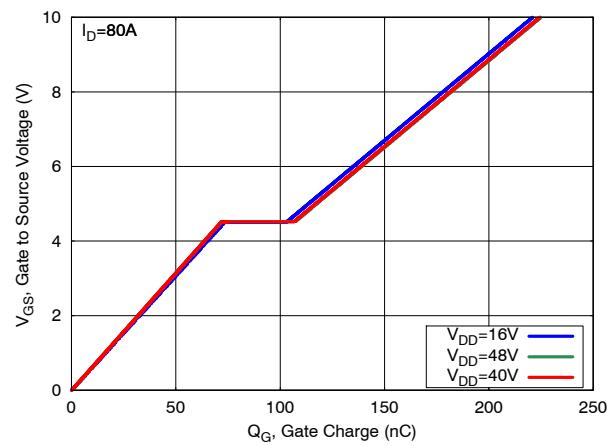


Figure 8. Gate Charge Characteristics

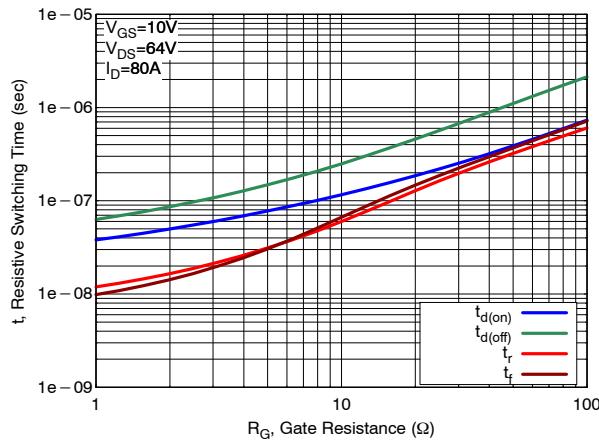


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

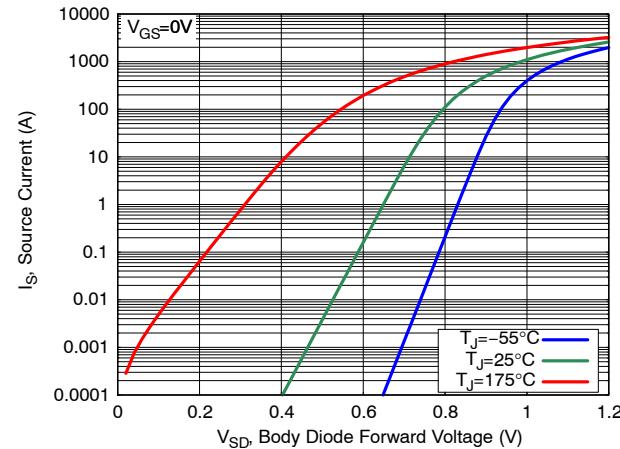


Figure 10. Diode Forward Characteristics

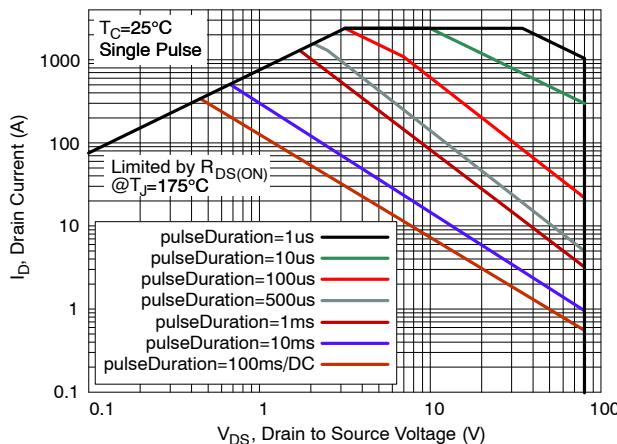


Figure 11. Safe Operating Area (SOA)

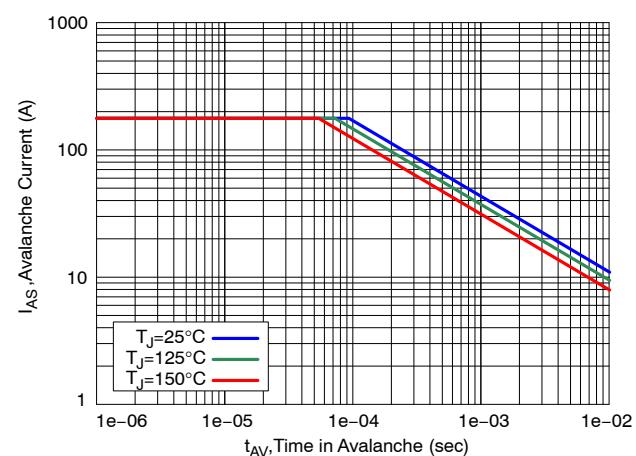


Figure 12. Avalanche Current vs. Pulse Time (UIS)

TYPICAL CHARACTERISTICS

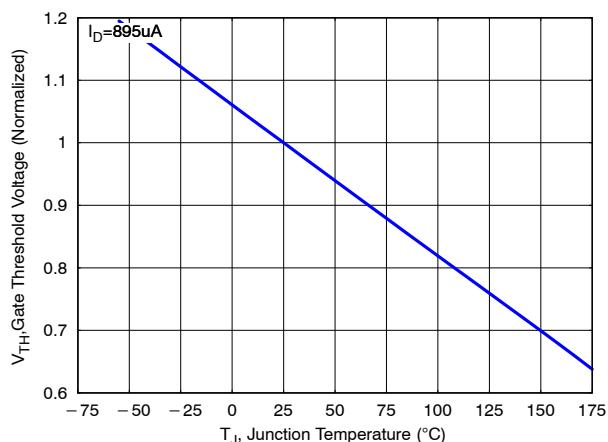


Figure 13. Gate Threshold Voltage vs Junction Temperature

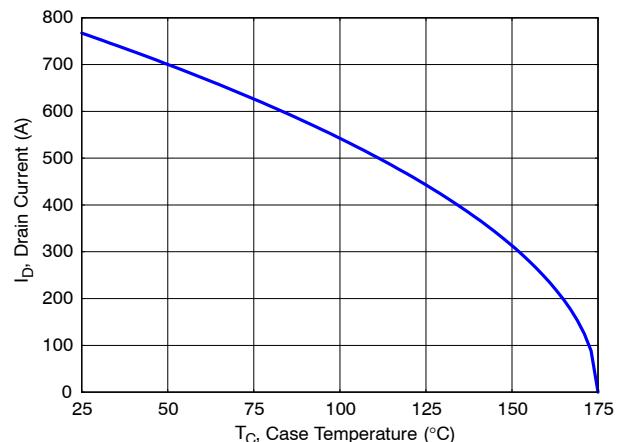
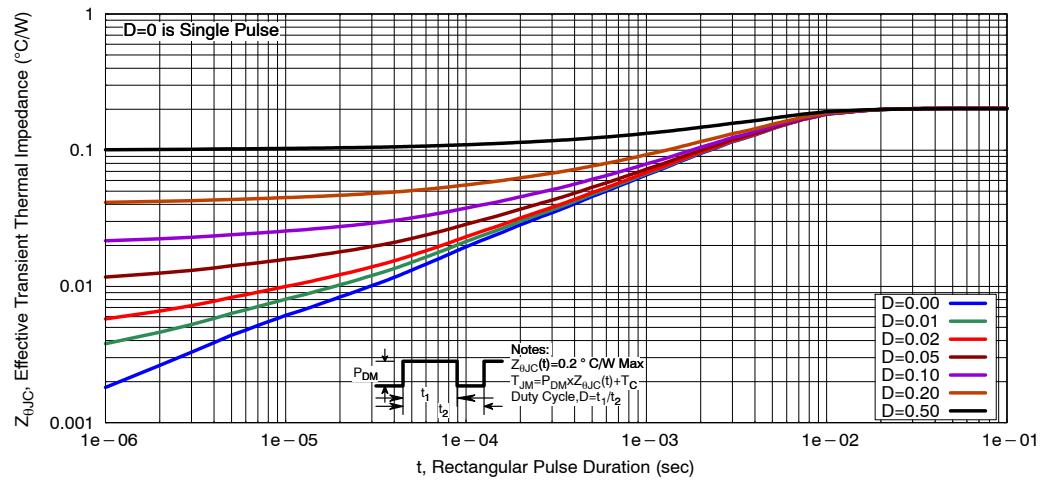
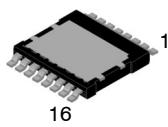


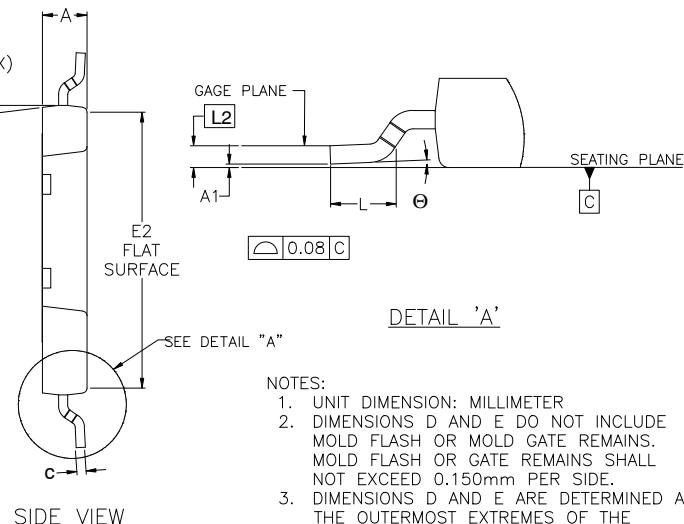
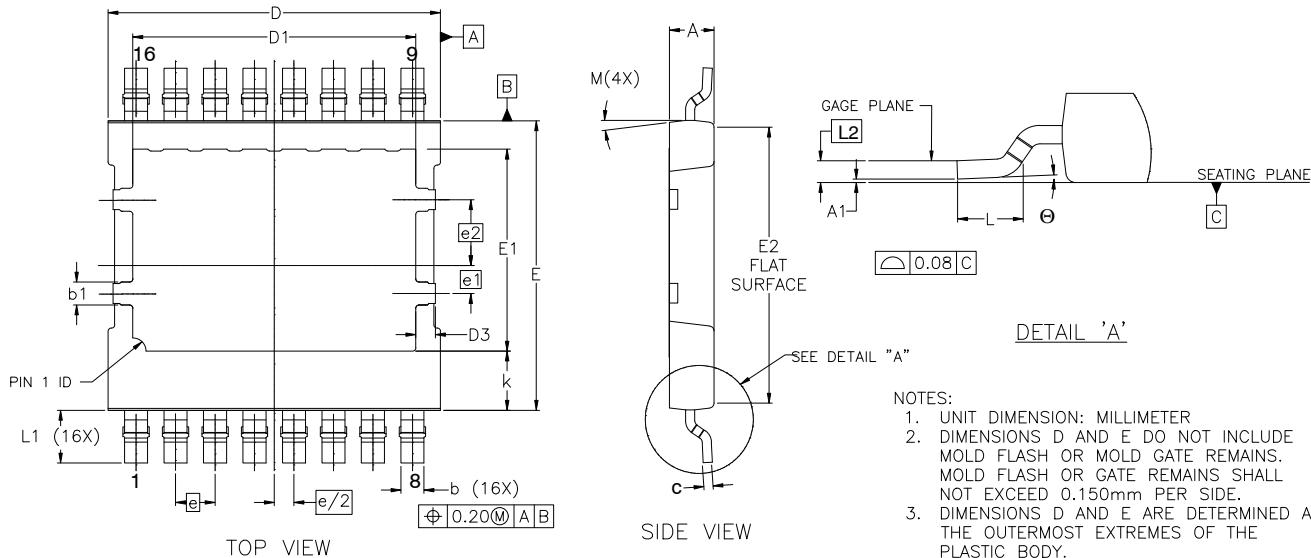
Figure 14. Maximum Current vs. Case Temperature




Figure 15. Transient Thermal Response

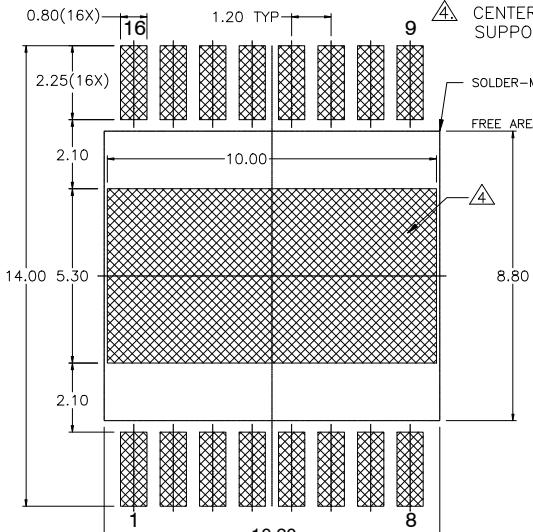
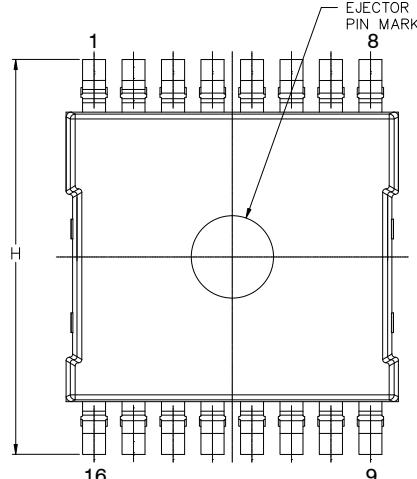
NVBYST0D6N08X

REVISION HISTORY

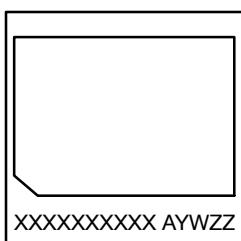


Revision	Description of Changes	Date
P0	Initial Revision	3/27/2024
P1	Complete redo from all new provided FIT source files	5/22/2025
0	Added Thermal Characteristic parameters. Update switching time curve. Added Vth coefficient curve.	8/21/2025

PACKAGE DIMENSIONS

TCPAK16 8.80x10.10, 1.20P (TCPAK1012)
CASE 762AA
ISSUE E



DATE 23 MAY 2025

NOTES:


1. UNIT DIMENSION: MILLIMETER
2. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR MOLD GATE REMAINS. MOLD FLASH OR GATE REMAINS SHALL NOT EXCEED 0.150mm PER SIDE.
3. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

⚠ CENTER PAD IS FOR PKG MECHANICAL SUPPORT ONLY. NO SOLDERING REQUIRED.

MILLIMETERS			
DIM	MIN	NOM	MAX
A	1.30	1.35	1.40
A1	0.00	0.05	0.10
b	0.67	0.72	0.77
b1	0.65	0.70	0.75
c	0.21	0.26	0.31
D	10.00	10.10	10.20
D1	8.50	8.60	8.70
D3	0.55	0.60	0.75
E	8.70	8.80	8.90
E1	6.04	6.14	6.24
E2	---	---	8.70
e	1.20	BSC	
e/2	0.60	BSC	
e1	0.85	BSC	
e2	2.00	BSC	
k	1.70	1.80	1.90
H	11.80	12.00	12.20
L	0.80	1.00	1.20
L1	1.40	1.60	1.80
L2	0.30	BSC	
Θ	-	2.5°	5°

**GENERIC
MARKING DIAGRAM***

XXXX = Specific Device Code
 A = Assembly Location
 Y = Year
 W = Work Week
 ZZ = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking.
 Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales