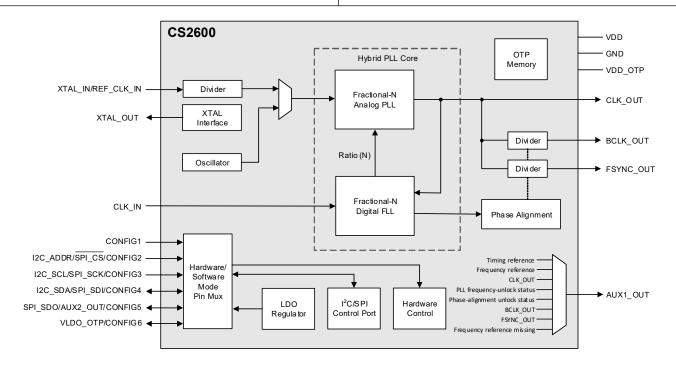


Fractional-N Clock Synthesizer and Multiplier


Features

- Clock frequency synthesizer incorporating delta-sigma fractional-N analog PLL
 - Generates low-jitter 6–75 MHz clock (CLK_OUT) from 8–75 MHz timing reference (REF_CLK_IN)
- Fractional clock multiplier and jitter reduction using hybrid analog/digital PLL
 - Generates low-jitter 6–75 MHz clock (CLK_OUT), synchronized to a 150 Hz–30 MHz low-quality or intermittent frequency reference (CLK_IN)
- · Flexible timing reference source
 - External clock, external crystal, or built-in oscillator
- · High resolution PLL ratio (1 PPM)
- 18 ps_{RMS} period jitter (external timing reference),
 18 ps_{RMS} period jitter (oscillator reference)
- · Glitchless clock output generated from intermittent input
- BCLK and FSYNC outputs (derived from CLK_OUT) for digital audio applications
 - Phase alignment with CLK_IN frequency reference

- Automatic rate control (ARC) for digital audio applications
 - Seamless transitions through changes in CLK_IN frequency reference
- Customer-programmable startup configuration, using integrated one-time programmable (OTP) memory
- · Hardware and software control modes
 - I²C/SPI control port
 - Hardware control with no host processor required
- · Configurable auxiliary clock/status output
- · Minimal board space required
 - No external analog loop-filter components
- Single-supply operation at 1.8 V or 3.3 V

Applications

- · Automotive audio systems
- · Digital audio systems
- · Network and USB audio interfaces
- IoT sensor and transducer systems
- · Embedded systems

General Description

The CS2600 is a system-clocking device incorporating a programmable phase-locked loop (PLL). The hybrid analog/ digital PLL architecture comprises a delta-sigma fractional-N analog PLL and a digital frequency-locked loop (FLL). The CS2600 enables frequency synthesis and clock generation from a stable timing reference clock. The device can generate low-jitter clocks from a noisy clock reference at frequencies as low as 150 Hz. An internal oscillator can provide the timing reference clock, enabling a reduction in external component requirements. The CS2600 can be configured using a control interface supporting I²C and SPI modes of operation. The device can also be configured in Hardware Control Mode using pull-up/pull-down resistors, reducing system software overhead.

The CS2600 supports BCLK and FSYNC outputs, derived from the PLL output signal. All of the clock outputs can be phase-aligned with the clock input source. The automatic rate control (ARC) function detects the clock input frequency and configures the PLL ratio for the required output. The ARC supports seamless transitions through changes in the reference frequency; the BCLK and FSYNC outputs are automatically adjusted to maintain the applicable ratios.

The CS2600 provides a built-in OTP memory to configure the default operating settings, loaded at boot-up. The OTP memory is optimized and managed to support multiple programming cycles.

The CS2600 can be powered from a single 1.8 V or 3.3 V supply. The device combines high performance with low power consumption.

The CS2600 is available in commercial-grade 16-pin QFN package for operation from –40°C to +85°C. The device is also available in the AEC-Q100-qualified grade-2 package for operation from –40°C to +105°C. See Section 12 for ordering information.

Table of Contents

1 Pin Assignments and Descriptions	
1.1 QFN Pin Assignments (Top View, Through Package)	4
1.2 Pin Descriptions	4
2 Typical Connections	o
3 Characteristics and Specifications	
Table 3-1. Recommended Operating Conditions	8
Table 3-2. Absolute Maximum Ratings	8
Table 3-3. DC Electrical Characteristics	8
Table 3-4. AC Electrical Characteristics	10
Table 3-6. Switching Specifications—SPI Control Port	11
Table 3-6. Switching Specifications—SPI Control Port 4 Functional Description	12
4.1 Device Architecture	
4.2 Timing Reference Configuration	13
4.3 Hybrid PLL Configuration	14
4.4 Frequency Reference Configuration	16
4.5 Output Configuration	19
4.6 Auxiliary Output	24
4.7 I ² C/SPI Control Port	26
4.8 One-Time Programmable (OTP) Memory	32
4.10 Device ID	33
5 Applications	37
5.1 Crystal Component Selection	
5.2 Phase Alignment Configuration	37
6 Register Quick Reference	40
6.1 CONFIG	
6.2 KEYS	41
6.3 OTP IF	41
6.4 OTP CTRL	43
6.5 OTP_STS	43
7 Register Descriptions	
7.1 CONFIG	44
7.2 KEYS	52
7.3 OTP_IF	52
7.5 OTP STS	62
8 Performance Plots	64
8.1 Jitter Performance	
8.2 Phase Noise	66
9 Thermal Characteristics	67
10 Package Dimensions	
11 Package Marking	
12 Ordering Information	
13 References	
14 Revision History	

1 Pin Assignments and Descriptions

These sections show pin assignments and describe pin functions.

1.1 QFN Pin Assignments (Top View, Through Package)

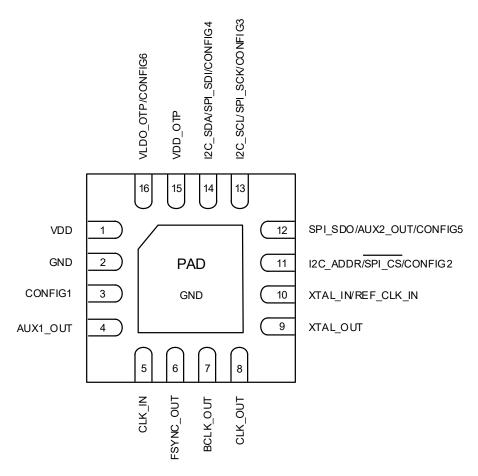


Figure 1-1. QFN 16-Pin Diagram (Top View, Through-Package)

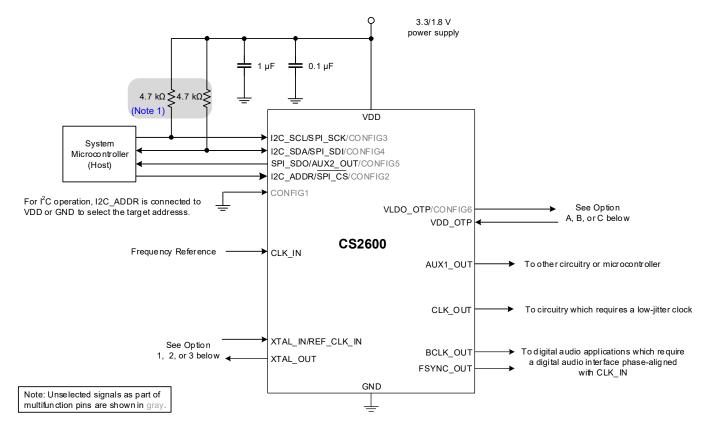
1.2 Pin Descriptions

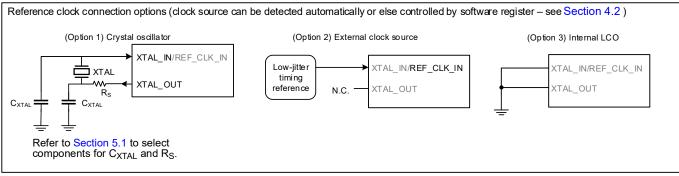
Table 1-1. Pin Descriptions

Pin Name	Pin#	Power Supply	I/O	Description
VDD	1	_	_	Power Supply. 3.3 V/1.8 V supply for the digital and analog blocks.
GND	2, PAD	_	_	Ground and Pad. The paddle must be connected to ground plane directly underneath the CS2600.
CONFIG1	3	VDD	I	Hardware Configuration 1. Hardware Control Mode configuration connection. Connect to GND for Software Control Mode.
AUX1_OUT	4	VDD	0	Auxiliary Output. Configurable clock output or status output.
CLK_IN	5	VDD	I	Clock Input. Frequency reference input for the digital FLL.
FSYNC_OUT	6	VDD	0	FSYNC Output. PLL frame sync clock output (CLK_OUT derived), which can be phase-aligned with CLK_IN.
BCLK_OUT	7	VDD	0	BCLK Output. PLL bit clock output (CLK_OUT derived), which can be phase-aligned with CLK_IN.
CLK_OUT	8	VDD	0	Clock Output. PLL clock output.

Table 1-1. Pin Descriptions (Cont.)

Pin Name	Pin#	Power Supply	I/O	Description
XTAL_OUT	9	VDD	0	Crystal Connection. Output for an external crystal.
				Connect to GND for internal oscillator reference clock.
XTAL_IN/REF_CLK_IN	10	VDD	ı	Crystal Connection. Input for an external crystal.
				Reference Clock. External low-jitter timing reference clock input.
				Connect to GND for internal oscillator reference clock.
I2C_ADDR/SPI_CS/CONFIG2	11	VDD	ı	I2C Control-Port Address. Chip address input for the I2C interface.
				SPI Control-Port Chip Select. Active-low chip select input for the SPI interface.
				Hardware Configuration 2. Hardware Control Mode configuration connection.
SPI_SDO/AUX2_OUT/CONFIG5	12	VDD	I/O	SPI Control-Port Serial Data Out. SPI data output.
				Auxiliary Output 2. Configurable status output.
				Hardware Configuration 5. Hardware Control Mode configuration connection.
I2C_SCL/SPI_SCK/CONFIG3	13	VDD	ı	I2C Control-Port Clock. Clock input for the I2C interface.
				SPI Control-Port Clock. Clock input for the SPI interface.
				Hardware Configuration 3. Hardware Control Mode configuration connection.
I2C_SDA/SPI_SDI/CONFIG4	14	VDD	I/O	I2C Control-Port Data. Data input/output for the I2C interface.
				SPI Control-Port Serial Data In. SPI data input.
				Hardware Configuration 4. Hardware Control Mode configuration connection.
VDD_OTP	15	_	_	OTP Programming Supply (Input). If VDD = 1.8 V, an external programming supply is required when writing to the OTP memory. This supply can be generated internally if VDD = 3.3 V.
VLDO_OTP/CONFIG6	16	VDD	I/O	OTP Programming Supply (Output). OTP programming regulator output (VDD = 3.3 V).
				Hardware Configuration 6. Hardware Control Mode configuration connection.


1.3 Electrostatic Discharge (ESD) Protection Circuitry



ESD-sensitive device. The CS2600 is manufactured on a CMOS process. Therefore, it is generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken while handling and storing this device. This device is qualified to current JEDEC ESD standards.

2 Typical Connections

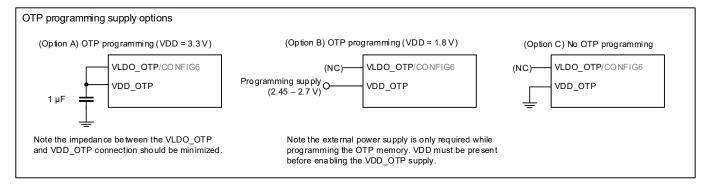
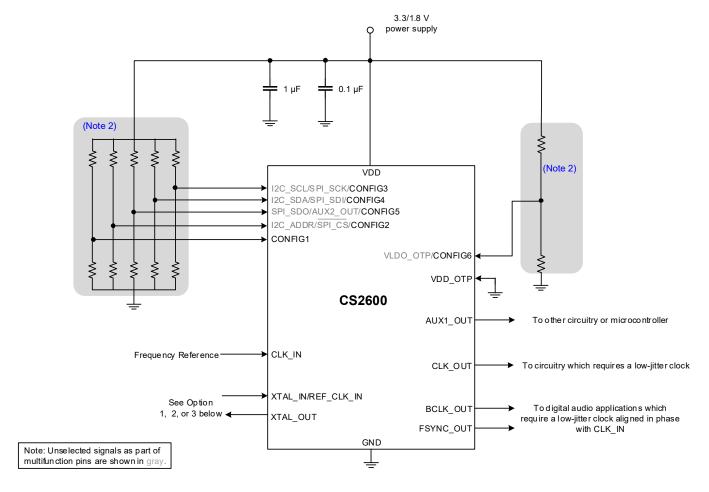



Figure 2-1. Typical Connection Diagram—Software Control Mode

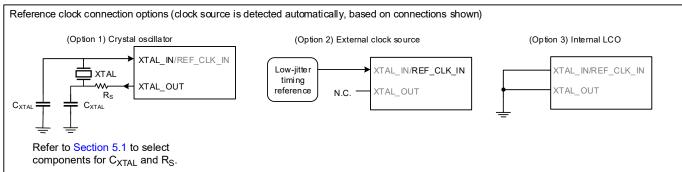


Figure 2-2. Typical Connection Diagram—Hardware Control Mode

Notes referenced in the typical connection diagrams:

- 1. The pull-up resistors are required only for I²C operation. The diagram shows 4.7 k Ω pull-up, but higher impedance can be supported depending on clock speed and bus capacitance.
- 2. Each hardware pin is configured using a pull-up to VDD or pull-down to GND, supporting up to eight configuration options per pin. See Section 4.9 for further detail.

3 Characteristics and Specifications

Table 3-1. Recommended Operating Conditions

Test Conditions (unless specified otherwise): Ground = GND = 0 V; voltages are with respect to ground.

Parameters		Symbol	Min	Тур	Max	Units
DC power supply	Nominal 3.3 V	VDD	3.1	3.3	3.5	V
	Nominal 1.8 V		1.71	1.8	1.89	V
OTP programming supply 1,2		VDD_OTP	2.45	_	2.7	V
Supply ramp up/down (all supplies)		t _{PWR_UD}	0.01	_	10	ms
Ambient temperature	Commercial Grade	T _A	-40	_	85	°C
	AEC-Q100 Grade 2		-40	_	105	°C

^{1.} The OTP programming supply can be generated by an internal LDO, or else powered externally. To use the internal LDO, the VDD_OTP pin must be connected to VLDO_OTP. If VDD < 3.1 V, the OTP programming supply must be powered externally. If OTP programming is not required, VDD_OTP should be connected to GND.

Table 3-2. Absolute Maximum Ratings

Test Conditions (unless specified otherwise): Ground = GND = 0 V; voltages are with respect to ground.

Parameters	Symbol	Min	Max	Units
DC power supply	VDD	-0.3	4.32	V
OTP programming supply	VDD_OTP	-0.3	2.75	V
External voltage applied to digital input/output	V _{INDI}	-0.3	VDD + 0.3	V
Input current	I _{in}	_	±10	mA
Ambient temperature	T _A	– 55	125	°C
Storage temperature	T _{STG}	- 65	150	°C

Table 3-3. DC Electrical Characteristics

Test Conditions (unless specified otherwise): T_A = 25°C; timing reference = 12 MHz (external clock or crystal).

Parameters	Symbol	Min	Тур	Max	Units
Power supply current—unloaded ¹	I_{VDD}	_	4	_	mA
OTP programming supply current	I _{VDD_OTP}	_		25	mA
Input leakage current (per pin)	I _{IN}	_	_	±10	μA
Input capacitance (per pin)	I _C	_		5	pF
High-level input voltage	V_{IH}	0.70 × VDD		_	V
Low-level input voltage	V _{IL}	_	_	0.30 × VDD	V
High-level output voltage	V _{OH}	0.90 × VDD	_	_	V
Low-level output voltage	V _{OL}	_	_	0.10 × VDD	V
VDD power-on reset (POR) threshold VDD rising	V _{POR}	1.40	_	1.59	V
VDD falling		1.38		1.55	V
VDD power-on reset duration ²	t _{POR}	100		_	ms

^{1.}To calculate the additional current consumption due to loading (per output pin), multiply clock output frequency by load capacitance (C_L) and power supply voltage (VDD).

^{2.}VDD must be present before enabling the VDD_OTP supply. VDD_OTP supply must be removed before powering down VDD.

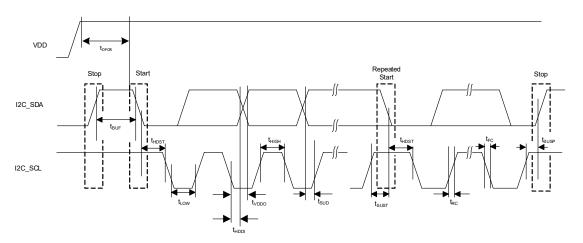
^{2.}To trigger a power-on reset, VDD must be held below the reset threshold for longer than this duration. Note that VDD interruption shorter than this duration may result in incorrect device behavior.

Table 3-4. AC Electrical Characteristics

Test Conditions (unless specified otherwise): $T_A = -40^{\circ}\text{C}$ to 85°C (commercial grade); $T_A = -40^{\circ}\text{C}$ to 105°C (AEC-Q100 grade-2); Load capacitance (C_L) = 15 pF.

REF_CLK_IN_DIV=10 REF_CLK_IN_DIV=10 REF_CLK_IN_DIV=10 REF_CLK_IN_DIV=01 REF_CLK_IN_DIV=00 REF_CLK_IN_DIV=00 REF_CLK_IN_DIV=00 REF_CLK_IN_DIV=00 REF_CLK_IN_DIV=10 REF_CLK_IN_DIV=10 REF_CLK_IN_DIV=10 REF_CLK_IN_DIV=10 REF_CLK_IN_DIV=00 REF	Parameters		Symbol	Min	Тур	Max	Units
REF_CLK_IN_DIV = 00	Crystal frequency		f _{XTAL}		_		
$ \begin{array}{c} \text{Crystal interface transconductance } (T_A = 25^{\circ}\text{C}) & \text{VDD} = 3.3 \text{ V} \\ \text{NDD} = 1.8 \text{ V} \\ \text{DD} = 1.8 \text{ V} \\ \text{DECK} \text{N} \\ \text{DECK} \text{DD} \text{DD} \\ \text{DECK} \text{DD} \text{DD} \\ \text{DECK} \text{DD} \text{DD} \\ \text{DD} \text{DD} \text{DD} \\ \text{DD} \text{DD} \text{DD} \text{DD} \\ \text{DD} \text{DD} \text{DD} \text{DD} \\ \text{DD} \text$					_		
Note				32	_	50	
Reference clock input frequency $\frac{REF_{CLK_IN_DIV} = 01}{REF_{CLK_IN_DIV} = 01}$ $\frac{REF_{CLK_IN_DIV} = 01}{REF_{CLK_IN_DIV_DIV_DIV_DIV_DIV_DIV_DIV_DIV_DIV_DIV$	Crystal interface transconductance (T _A = 25°C)		_	_		_	
REF_CLK_IN_DIV = 01 REF_CLK_IN_DIV = 00				_			
REF_CLK_IN_DIV = 00 32	Reference clock input frequency		fREF_CLK_IN	-	_		
Reference clock input duty cycle							
Clock input frequency	Reference clock input duty cycle	TKET_OEK_IN_DIV = 00	Deer out in	_		_	
Clock input pulse width $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
CLK_OUT frequency range		form m < form out / 96 [1]					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Clock input pulse width	fork in > feverity / 96 [1]	PWCLK_IN		_	_	
BCLK frequency range $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CLK OUT frequency range	ICLK_IN ISTSCER / OOT I	fork out	-		75	
FSYNC frequency range				fork out / 48			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, , , ,				_		MHz
Clock output rise time $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		measured at VDD / 2			50		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10% to 90% of VDD	~ -	_	1.8	_	ns
Internal oscillator reference	Clock output fall time	90% to 10% of VDD		_	1.8	_	ns
Internal oscillator reference — 18 25 ps _{RMS}	CLK OUT period jitter 3,4	external timing reference	t _{IIT}	_	18	25	ps _{RMS}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		internal oscillator reference	J	_	18	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	_	21	70	ps _{RMS}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_			ps _{RMS}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	_			ps _{RMS}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		150 Hz ≤ f _{CLK_IN} < 600 Hz	t _{LC}	_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6			_			_
CLK_OUT frequency resolution 3.8 high resolution high multiplication				_		_	
high multiplication — 244 — ppm Oscillator frequency at 25°C — 11.76 12.0 12.24 MHz Oscillator frequency thermal sensitivity at 25°C — — 90 — ppm/°C Oscillator frequency stability (relative to 25°C) —40 to 85°C — —1.0 — 0.8 % —40 to 105°C —1.3 — 0.8 % Phase alignment error CLK_IN to FSYNC — ±0.5 — UI 9 Clock output skew CLK_OUT, BCLK, and FSYNC — — ±0.5 ns Clock output frequency deviation CLK_IN stopped, holdover enabled — — 0.1 %				_			
Oscillator frequency at 25°C — 11.76 12.0 12.24 MHz Oscillator frequency thermal sensitivity at 25°C — — 90 — ppm/°C Oscillator frequency stability (relative to 25°C) —40 to 85°C — —1.0 — 0.8 % —40 to 105°C —1.3 — 0.8 % Phase alignment error CLK_IN to FSYNC — ±0.5 — UI 9 Clock output skew CLK_OUT, BCLK, and FSYNC — — ±0.5 ns Clock output frequency deviation CLK_IN stopped, holdover enabled — — 0.1 %	CLK_OUT frequency resolution 3,8		_	_	-	_	
Oscillator frequency thermal sensitivity at 25°C — 90 — ppm/°C Oscillator frequency stability (relative to 25°C) —40 to 85°C — 1.0 — 0.8 % —40 to 105°C — 1.3 — 0.8 % Phase alignment error CLK_IN to FSYNC — ±0.5 — UI 9 Clock output skew CLK_OUT, BCLK, and FSYNC — ±0.5 ns Clock output frequency deviation CLK_IN stopped, holdover enabled — 0.1 %	Oscillator fraguency			11 76		12.24	
Oscillator frequency stability (relative to 25°C) -40 to 85°C -40 to 105°C - 1.0 -1.0 -0.8 % 0.8 % Phase alignment error CLK_IN to FSYNC ±0.5 - UI 9 Clock output skew CLK_OUT, BCLK, and FSYNC ±0.5 ns Clock output frequency deviation CLK_IN stopped, holdover enabled 0.1 %	· · ·		_	11.70		12.24	
—40 to 105°C —1.3 — 0.8 % Phase alignment error CLK_IN to FSYNC — ±0.5 — UI 9 Clock output skew CLK_OUT, BCLK, and FSYNC — — ±0.5 ns Clock output frequency deviation CLK_IN stopped, holdover enabled — — 0.1 %			_	_	90	_	
Phase alignment error CLK_IN to FSYNC — ±0.5 — UI 9 Clock output skew CLK_OUT, BCLK, and FSYNC — — ±0.5 ns Clock output frequency deviation CLK_IN stopped, holdover enabled — — 0.1 %	Oscillator frequency stability (relative to 25°C)		_		_		
Clock output skew CLK_OUT, BCLK, and FSYNC — — ±0.5 ns Clock output frequency deviation CLK_IN stopped, holdover enabled — — 0.1 %	Phase alignment error		_	_		_	
Clock output frequency deviation CLK_IN stopped, holdover enabled — — — 0.1 %				_		±0.5	
	•		_	_	_		
		• • •		_		20	

- 1. The internal timing reference clock (SYSCLK) is derived from REF_CLK_IN (see Section 4.2).
- 2.UI (unit interval) corresponds to $t_{\mbox{\scriptsize SYSCLK}}$ or 1 / $f_{\mbox{\scriptsize SYSCLK}}.$
- 3.REF_CLK_IN is a 12 MHz timing reference clock, with phase noise 20 dB lower than the output clock noise. The clock output frequency (f_{CLK_OUT}) is 24.576 MHz.
- 4. Sample size is 10000.
- 5. Using 3rd order 100 Hz–40 kHz bandpass filter as defined in AES-12id-2020 Section 3.4.2.
- 6. Using 3rd order 100 Hz high pass filter as defined in AES-12id-2020 Section 3.4.1.
- 7.UI (unit interval) corresponds to t_{CLK_IN} or 1 / f_{CLK_IN} .
- 8. The frequency accuracy of the PLL clock output is directly proportional to the accuracy of the clock input.
- 9.UI (unit interval) corresponds to t_{CLK} _{OUT} or 1 / f_{CLK} _{OUT}.
- 10. The time to first locked clock output, assuming OTP configuration for $f_{CLK\ IN}$ = 48 kHz.


Table 3-5. Switching Specifications—I²C Control Port

Test conditions (unless specified otherwise): Ground = GND = 0 V; voltages are with respect to ground; input timings are measured at V_{IL} and V_{IH} thresholds, output timings are measured at V_{OL} and V_{OH} thresholds; $T_A = 25^{\circ}C$.

Parameters 1,2		Symbol	Min	Max	Units
SCL clock frequency		f _{SCL}	_	1000	kHz
Clock low time		t _{LOW}	500	_	ns
Clock high time		t _{HIGH}	260	_	ns
Start condition hold time (before first pulse clock)		t _{HDST}	260	_	ns
Setup time for repeated start		tsust	260	_	ns
Rise time of SCL and SDA	$f_{SCL} \le 100 \text{ kHz}$ 100 kHz $< f_{SCL} \le 400 \text{ kHz}$	t _{RC}	600 180	1000 300	ns ns
	400 kHz < f _{SCL} ≤ 1000 kHz		72	120	ns
Fall time SCL and SDA	$f_{SCL} \le 100 \text{ kHz}$ $100 \text{ kHz} < f_{SCL} \le 400 \text{ kHz}$ $400 \text{ kHz} < f_{SCL} \le 1000 \text{ kHz}$	t _{FC}	6.5 6.5 6.5	300 300 120	ns ns ns
Rise time variation between SDA and SCL		_	_	1.67	Х
Fall time variation between SDA and SCL	$f_{SCL} \le 100 \text{ kHz}$ $100 \text{ kHz} < f_{SCL} \le 400 \text{ kHz}$ $400 \text{ kHz} < f_{SCL} \le 1000 \text{ kHz}$	_	_ _ _	100 100 75	ns ns ns
Setup time for stop condition	332	t _{SUSP}	260	_	ns
SDA setup time to SCL rising		t _{SUD}	50	_	ns
SDA input hold time from SCL falling		t _{HDDI}	0	_	ns
Output data valid (Data/ACK)	$f_{SCL} \le 100 \text{ kHz}$ 100 kHz < $f_{SCL} \le 400 \text{ kHz}$ 400 kHz < $f_{SCL} \le 1000 \text{ kHz}$	t _{VDDO}	_ _ _	3450 900 450	ns ns ns
Bus free time between transmissions		t _{BUF}	500	_	ns
SDA bus capacitance		C _B	_	400	pF
SCL/SDA pull-up resistance		R_P	500	_	Ω
Pulse width of spikes to be suppressed		t _{ps}	0	50	ns
Start-up time from power-up/software reset to con	trol port ready ³	t _{DPOR}		5	ms

^{1.} The I²C control port uses a 16-bit register address and 16-bit data words.

2.I2C control-port timing.

3. Time from power-up measured from when VDD is within the recommended operating conditions (see Table 3-1).

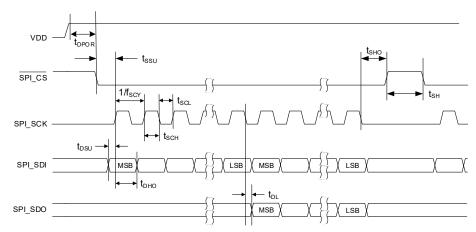


Table 3-6. Switching Specifications—SPI Control Port

Test conditions (unless specified otherwise): Ground = GND = 0 V; voltages are with respect to ground; input timings are measured at V_{IL} and V_{IH} thresholds, output timings are measured at V_{OL} and V_{OH} thresholds; $T_A = 25^{\circ}C$.

	Parameters 1,2	Symbol	Min	Max	Units
SCK clock frequency	Access to OTP registers (0x2300–0x232F) Access to all other registers	f _{SCL}		4.5 17.5	MHz MHz
CS falling edge to SCK risi	ing edge	t _{SSU}	5	_	ns
SCK falling edge to CS risi	ing edge	t _{SHO}	0.5	_	ns
SCK pulse width low		t _{SCL}	18.5	_	ns
SCK pulse width high		t _{SCH}	18.5	_	ns
SDI to SCK rising setup tin	ne	t _{DSU}	5	_	ns
SDI to SCK hold time		t _{DHO}	2.5	_	ns
SCK falling edge to SDO transition		t _{DL}	0	15	ns
CS rising edge to SDO output high-Z		_	0	20	ns
Bus free time between active CS		t _{SH}	110	_	ns
Delay from supply voltage	stable to control port ready 3	t _{DPOR}	_	5	ms

^{1.} The SPI control port uses a 15-bit register address and 16-bit data words.

3. The supply voltage is considered stable when VDD is within the recommended operating conditions (see Table 3-1).

^{2.}SPI control-port timing.

4 Functional Description

4.1 Device Architecture

The CS2600 is a highly versatile clock generator. It combines an analog PLL and digital FLL to provide high-resolution clock multiplier and clock synthesizer capability. The delta-sigma architecture enables low-jitter clock generation across a wide range of fractional operating ratios; it also supports fast transitions between different ratios and output frequencies. Configurable bandwidth of the digital FLL enables optimized behavior under dynamic operating conditions.

The analog PLL generates the main clock output (CLK_OUT), using the timing reference as its input. The timing reference is a stable low-jitter clock source, derived from the REF_CLK_IN input, external crystal, or the internal oscillator. The timing reference is used to ensure the time and phase stability of the PLL output. The PLL frequency ratio determines the multiplier ratio between the timing-reference input and the clock output.

The digital FLL provides input to the analog PLL to configure the frequency ratio. The digital FLL uses the frequency reference (CLK_IN) as its input and generates the PLL frequency ratio as a control signal to the analog PLL. The capability of the digital FLL is enhanced by its configurable bandwidth; a wide bandwidth is used to achieve lock in a short time, while a narrow bandwidth is used to provide optimal jitter performance.

The CS2600 can be configured in Multiplier Mode or Synthesizer Mode.

- In Multiplier Mode, the user-selected ratio is an input to the digital FLL and defines the CLK_OUT:CLK_IN frequency ratio. The FLL monitors the input and output clocks and controls the analog PLL frequency ratio to achieve the required CLK_OUT frequency. The frequency ratio is dynamically controlled to maintain the required output ratio.
- In Synthesizer Mode, the user-selected ratio is an input to the analog PLL and defines the CLK_OUT:REF_CLK_IN frequency ratio (or CLK_OUT:oscillator frequency ratio). The analog PLL frequency ratio is configured directly by the respective control fields. The output clock is generated from the timing reference alone, with no other clock input required. Note that the digital FLL is not used in Synthesizer Mode.

The hybrid analog/digital PLL is illustrated in Fig. 4-1. In Multiplier Mode, the user-defined ratio is defined by the *M_Ratio* parameter. In Synthesizer Mode, the user-defined ratio is defined by the *S_Ratio* parameter.

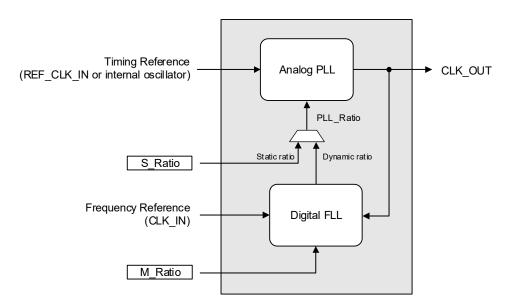


Figure 4-1. Hybrid Analog/Digital PLL

4.2 Timing Reference Configuration

The low-jitter timing reference is provided either by an external source (clock input or crystal), or by the internal oscillator. By default, the timing reference is selected automatically depending on the external pin connections, as shown Section 2. It is recommended to use SYSCLK SRC to select the internal or external source, as shown in Fig. 4-2.

The frequency range for the external timing reference is described in Table 3-4. Note that the supported frequency range differs depending on the applicable source.

The internal timing reference, SYSCLK, is derived from the selected timing source. A programmable divider is provided for the external timing reference; the divider must be configured using REF_CLK_IN_DIV to bring the reference frequency within the valid SYSCLK range of 8–18.75 MHz.

The timing reference configuration is shown in Fig. 4-2.

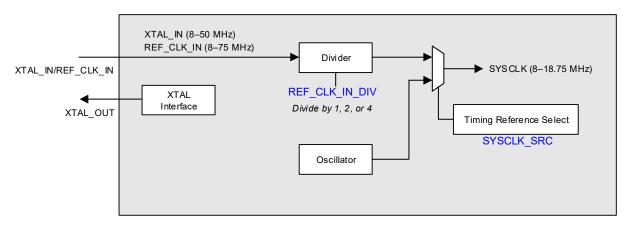


Figure 4-2. Timing Reference Configuration

Note that, in Synthesizer Mode, the PLL ratio defines the CLK_OUT:REF_CLK_IN frequency ratio (or CLK_OUT:oscillator frequency ratio, if the oscillator is selected as the timing reference). The timing-reference divider has no effect on this, and does not need to be considered when calculating the desired frequency ratio.

4.2.1 REF_CLK_IN Detection and Indication

The REF_CLK_IN signal is monitored to confirm the timing reference is present.

The REF_CLK_IN presence is indicated using ERR_STS3. This bit is a latching bit—it is set when REF_CLK_IN is not present, and remains set until a 1 is written to the bit. Note the bit cannot be cleared if REF_CLK_IN is not present.

4.2.2 Crystal Oscillator

The crystal oscillator uses an external crystal to generate the timing reference. Load capacitors are connected to the crystal as shown in Fig. 4-3. A series resistor (R_S) may also be required to configure the drive level for the selected crystal.

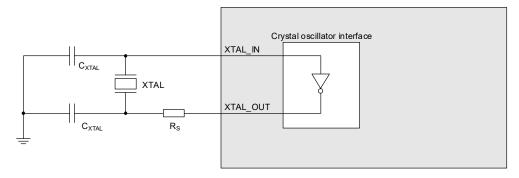


Figure 4-3. Crystal Oscillator Connection

Guidance on selecting a suitable crystal and associated components is provided in Section 5.1. The suitability of the external crystal is calculated as a function of the operating voltage (VDD) and the transconductance of the crystal interface, as defined in Table 3-4.

4.3 Hybrid PLL Configuration

The PLL is enabled and configured as described in the following sections.

4.3.1 **Enable and Lock Status**

The PLL is enabled by setting PLL EN1 and PLL EN2 (both bits must be set in order to enable the PLL). Note there are no sequencing requirements—the bits may be set or cleared in any order.

The device should be fully configured by writing to the applicable control registers before enabling the PLL. When changing the configuration, it is recommended to disable the PLL before updating the register fields; this ensures there is no unexpected transient behavior. See Section 4.7.3 for further details of configuration restrictions.

The PLL lock status is dependent on the clock inputs and the device configuration. Changes in the clock inputs or to the configuration registers can cause the PLL to lose lock. If the PLL loses lock, the quality of the clock outputs cannot be assured.

The PLL lock status is indicated using F UNLOCK. This bit is set if the PLL is not frequency locked (including if the PLL is disabled). The lock status can be indicated on an auxiliary output pin as described in Section 4.6. The lock status can be used to automatically disable the clock outputs—see Section 4.5.4 for further details.

The PLL lock status is also indicated using F UNLOCK STICKY. This is a latching bit—it is set when F UNLOCK is set, and remains set until a 1 is written to the bit. Note the bit cannot be cleared if F UNLOCK is set.

4.3.2 **Ratio Configuration**

The PLL is configured using a ratio that determines the output frequency as a function of either the timing reference, REF CLK_IN, (in Synthesizer Mode) or the frequency reference, CLK_IN, (in Multiplier Mode).

• In Synthesizer Mode, the output frequency is defined by the following equation:

$$f_{CLK OUT} = f_{REF CLK IN} \times PLL Ratio$$

For example, to generate a 24.576 MHz output from a 12 MHz timing reference, a ratio of 2.048 is required.

In Multiplier Mode, the output frequency is defined by the following equation:

$$f_{CLK OUT} = f_{CLK IN} \times PLL Ratio$$

For example, to generate a 24.576 MHz output from a 48 kHz frequency reference, a ratio of 512 is required.

The PLL ratio is a 32-bit value, configured using the RATIOn fields. A maximum of four different ratios can be configured, allowing the device to switch easily between different use cases. The applicable ratio is selected using S_RATIO_SEL (in Synthesizer Mode) or M RATIO SEL (in Multiplier Mode).

In Multiplier Mode, the PLL ratio can be defined in high-resolution (12.20) or high-multiplication (20.12) format; the format is selected using RATIO CFG. In Synthesizer Mode, the high-resolution (12.20) format is used.

- In high-resolution (12.20) format, the 12 MSBs represent the integer portion of the ratio, and the remaining 20 bits represent the fractional portion. This format supports a maximum multiplication factor of ~4096, with a resolution of 0.954 ppm.
- In high-multiplication (20.12) format, the 20 MSBs represent the integer portion of the ratio, and the remaining 12 bits represent the fractional portion. This format supports a maximum multiplication factor of ~1,048,576, with a resolution of 244 ppm.

Note: If the desired ratio is less than 4096, the 12.20 format is recommended, to ensure the accuracy of the PLL output.

The PLL ratio is also configured using RATIO_MOD, allowing additional multiplication/division factors to be applied to the RATIOn selection.

The ratio modifier can be used to simplify the selection of related frequency ratios, while using the same RATIOn value. It can also be used to support high multiplication ratios in 12.20 format (multiplying by 2, 4, or 8) or to enable greater precision in 20.12 format (dividing by 2, 4, 8, or 16).

Note that, regardless of the ratio format and the ratio modifier, the PLL ratio cannot exceed a multiplication factor of 1,048, 576 or a resolution of 0.954 PPM. If the configured parameters exceed these limits, the effective multiplication or resolution is truncated.

If the selected PLL ratio is invalid, the output clocks are disabled. Normal operation resumes when a valid ratio is detected (either due to register configuration or a change in CLK IN frequency).

An invalid ratio is indicated using ERR STS6. This bit is a latching bit—it is set when an invalid configuration is detected and remains set until a 1 is written to the bit. Note the bit cannot be cleared if the configuration is invalid.

The ratio configuration is illustrated in Fig. 4-4.

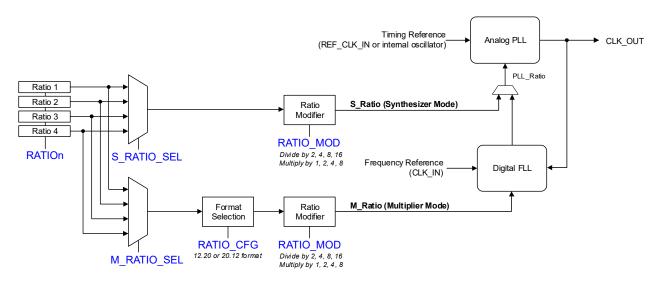


Figure 4-4. PLL Ratio Configuration

Notes: In Synthesizer Mode, the selected S Ratio defines the CLK OUT:REF CLK IN frequency ratio (or CLK OUT:oscillator frequency ratio, if the oscillator is selected as the timing reference). The timing-reference divider (see Section 4.2) has no effect on this, and does not need to be considered when calculating the desired frequency ratio.

In Multiplier Mode, if automatic rate control (ARC) is enabled, the frequency ratio is configured automatically depending on the selected CLK OUT frequency and the detected CLK IN frequency. The RATIO n and RATIO MOD fields are not used if ARC is enabled. See Section 4.4.4 for details of the ARC function.

4.3.3 Mode Selection

The hybrid PLL architecture supports Multiplier Mode and Synthesizer Mode functions. The CS2600 can also be configured in Smart Multiplier Mode, with the ability to switch automatically between modes.

- In Multiplier Mode, the CLK_IN signal provides the frequency reference. The user-selected ratio defines the CLK_ OUT:CLK IN frequency ratio. The PLL is dynamically controlled to maintain the required output ratio.
- In Synthesizer Mode, the REF CLK IN signal provides the input reference. The user-selected ratio defines the CLK_OUT:REF_CLK_IN frequency ratio. The PLL is controlled using a static ratio derived from the respective control fields.
- In Smart Multiplier Mode, the CS2600 selects Multiplier Mode or Synthesizer Mode depending on the status of the CLK IN frequency reference. The adaptive behavior can be used to accommodate periods where the frequency reference is unstable or not present.

The hybrid-PLL operating modes are illustrated in Fig. 4-5 and Fig. 4-6.

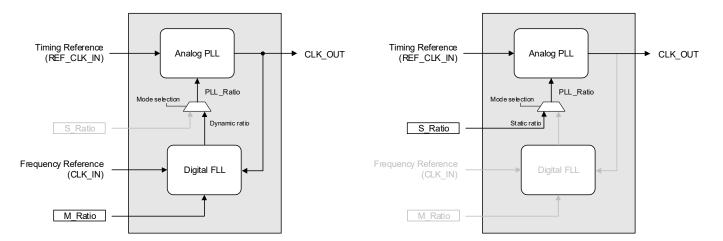


Figure 4-5. Multiplier Mode

Figure 4-6. Synthesizer Mode

To select Synthesizer Mode or Multiplier Mode, the S_RATIO_SEL and M_RATIO_SEL fields must both be set to the same value. Under this condition, the operating mode is selected using PLL_MODE_SEL.

Smart Multiplier Mode is selected if S_RATIO_SEL and M_RATIO_SEL are set to different values. Under this condition, the operating mode is configured automatically.

In Smart Multiplier Mode, the device normally operates in Multiplier Mode. Synthesizer Mode may be used during PLL start-up, if CLK_IN is not present; the behavior is selectable using the ratio configuration fields.

- If the ratio selected by S_RATIO_SEL is zero, Synthesizer Mode is not valid. In this case, the clock output starts when a valid reference is present at CLK_IN; there is no clock output until CLK_IN is present. When CLK_IN is present, Multiplier Mode is enabled and is used thereafter, including if CLK_IN is subsequently interrupted.
- If the ratio selected by S_RATIO_SEL is nonzero, Synthesizer Mode is selected during PLL start-up, if CLK_IN is not present. When CLK_IN is present, the CS2600 makes a glitchless transition to Multiplier Mode and remains in this mode thereafter, including if CLK_IN is subsequently interrupted.

See Section 4.4 for further details of the CS2600 behavior when the CLK IN input is missing or unstable.

4.4 Frequency Reference Configuration

The frequency reference (CLK_IN) is an input to the digital FLL, which is used to generate the dynamic ratio for the analog PLL. The digital FLL monitors the input and output clocks and controls the analog PLL frequency ratio to achieve the required CLK_OUT frequency. The hybrid PLL/FLL architecture allows the low-jitter timing reference to be used to generate the clock output, while using a separate clock (CLK_IN) as a frequency reference. The frequency range for CLK_IN is defined in Table 3-4.

The CS2600 is tolerant of intermittent or unstable characteristics on the CLK_IN frequency reference. The behavior of the device is configurable as described in the following sections.

4.4.1 CLK IN Detection and Indication

The CLK IN signal is monitored to confirm the frequency reference is present and stable.

The CLK_IN presence is indicated using ERR_STS1. This bit is a latching bit—it is set when CLK_IN is not present, and remains set until a 1 is written to the bit. Note the bit cannot be cleared if CLK_IN is not present.

The CLK_IN stability is indicated using ERR_STS2. This bit is a latching bit—it is set when CLK_IN is unstable or not present, and remains set until a 1 is written to the bit. Note the bit cannot be cleared if CLK_IN is unstable or not present.

The CLK_IN status can be indicated on an auxiliary output pin as described in Section 4.6.

4.4.2 Holdover Mode

The CLK_IN signal is monitored to confirm the frequency reference is present and stable. The holdover function enables a valid clock output to be maintained under conditions where the reference is missing or unstable. The holdover function is enabled automatically in Smart Multiplier Mode. See Section 4.3.3 to select Smart Multiplier Mode.

Notes: If Smart Multiplier Mode is selected, Synthesizer Mode may be used during PLL start-up, if CLK_IN is not present. The holdover function is not supported until a valid CLK_IN has been detected and the CS2600 automatically transitions to Multiplier Mode.

In Multiplier Mode (Smart Multiplier Mode not selected), the PLL remains unlocked indefinitely while CLK_IN is interrupted. When CLK_IN resumes, the PLL locks to CLK_IN and the valid CLK_OUT signal is restored.

If CLK_IN is missing or unstable, the CS2600 freezes the dynamic PLL ratio at its current setting. The PLL remains locked and the CLK_OUT signal continues without any glitch or interruption.

When a valid CLK_IN is detected, the PLL resynchronizes to the frequency reference. If the frequency reference aligns with the previous CLK_IN frequency, the PLL remains locked and maintains a glitchless output.

4.4.3 Digital FLL Bandwidth

The bandwidth of the digital FLL can be configured to suit different operating conditions. The FLL bandwidth determines the extent to which any jitter on the CLK_IN signal is attenuated or is passed through to the output clocks. In some applications, it is desirable to reject all jitter as far as possible; in other applications, it may be preferable to preserve the low-frequency variations in the reference clock while attenuating jitter at higher frequencies.

The FLL bandwidth is configured using FLL_BW and FLL_BW_MOD. The FLL_BW field selects a value 1–128 Hz; the FLL_BW_MOD selects multiplication factor of ×1 or ×16. The combination of two fields allows bandwidth selections in the range 1–2048 Hz.

Notes: If the internal oscillator is used as the timing reference (see Section 4.2), or Smart Multiplier Mode is selected (see Section 4.3.3), the FLL bandwidth selection must be 16 Hz or greater.

The CS2600 automatically limits the FLL bandwidth to ensure optimal performance; the bandwidth is limited to a maximum of $f_{CLK\ IN}$ / 23.4 (rounded down to the nearest valid bandwidth selection).

The FLL bandwidth scales with the SYSCLK frequency; the nominal values selected using FLL_BW and FLL_BW_MOD are valid for 12 MHz SYSCLK.

A narrow bandwidth is typically recommended in applications where the CLK_OUT signal provides a new clock domain from which all other system clocks are derived. In these circumstances, the system benefits from maximum jitter rejection, as illustrated in Fig. 4-7.

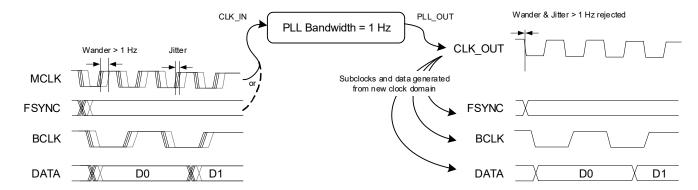


Figure 4-7. Narrow Bandwidth Application

A wide bandwidth is typically recommended in applications where some of the system clocks are referenced to CLK_OUT, while others are derived from CLK_IN. In these circumstances, it may be necessary to preserve some of the input reference variation in the clock output, in order to maintain phase alignment.

The FLL bandwidth should be set to the lowest setting that does not cause system-timing errors between the CLK_IN and CLK_OUT domains. The wide bandwidth use case is illustrated in Fig. 4-8.

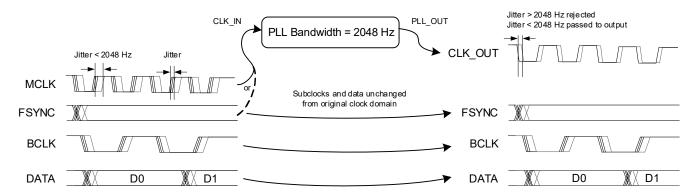


Figure 4-8. Wide Bandwidth Application

4.4.4 Automatic Rate Control (ARC)

The CS2600 supports an automatic rate control (ARC) function which detects the CLK_IN reference frequency and configures the PLL multiplier ratio for the required PLL output frequency. Auto-detection is supported across a range of sample-rate frequencies typically used in digital audio systems.

The ARC supports seamless transitions through changes in the reference frequency. The BCLK and FSYNC outputs (see Section 4.5.2) are controlled automatically to accommodate changes in CLK_IN frequency.

Note: Automatic rate control is supported in Multiplier Mode only (see Section 4.3.3). If Synthesizer Mode is selected, ARC should be disabled at all times. If Smart Multiplier Mode is selected, and the ratio selected by S_RATIO_SEL is nonzero, ARC should be disabled at all times.

Automatic rate control is enabled using ARC_EN. If ARC is enabled, the CS2600 automatically detects the CLK_IN reference as one of the valid input frequencies. The PLL output frequency is configured using ARC_MCLK; the PLL output (MCLK) frequency follows the same base frequency as the input reference, as described in Table 4-1.

CLK_IN Frequency	ARC_MCLK	PLL Output Frequency
32 kHz, 48 kHz,	00	12.288 MHz
96 kHz, or 192 kHz	01	24.576 MHz
	10	49.152 MHz
	11	_
44.1 kHz, 88.2 kHz,	00	11.2896 MHz
or 176.4 kHz	01	22.5792 MHz
	10	45.1584 MHz
	11	_

Table 4-1. ARC Configuration

The ARC automatically adjusts for changing CLK_IN reference frequencies. The input reference can be stopped and then restarted at the new frequency, or the input reference can change frequency without interruption.

Detection of a new CLK_IN frequency takes a maximum of 24 stable CLK_IN periods. The PLL remains locked provided the CLK_IN frequency transition is an exact integer ratio (increasing or decreasing). The PLL output is stable to within 0.1% during these transitions. In the case of 32–48 kHz transitions, an exact 1.5 ratio transition is also supported without losing PLL lock. For example, the PLL remains locked for 48.2–96.4 kHz transitions, or 48.3–32.2 kHz transitions; seamless operation is not assured for 48.2–96.0 kHz transitions, or 48.0–44.1 kHz transitions.

Note that, if the CLK_IN reference changes frequency without interruption, the new frequency must be established within five CLK_IN periods to ensure stable operation. If the input reference is stopped when changing frequency, the CS2600 must be configured in Smart Multiplier Mode (see Section 4.3.3) to ensure uninterrupted PLL operation.

If ARC is enabled, the FSYNC output is automatically configured to align with the CLK_IN reference frequency. The duty cycle is configured using FSYNC DUTY CYCLE.

If ARC is enabled, the BCLK output is configured using ARC_BCLK_DIV. The frequency can be configured as a ratio of the PLL output (MCLK) or else as a multiple of the FSYNC rate.

Note: BCLK output is only supported for valid divisions of the MCLK frequency (valid divisions of the MCLK frequency are defined by the BCLK_DIV field options). If the ratio calculated by the ARC is not supported, the output clocks are disabled. Normal operation resumes when a valid configuration is detected (due to register write or change in CLK_IN frequency).

An invalid configuration is indicated using ERR_STS6. This bit is a latching bit—it is set when an invalid configuration is detected and remains set until a 1 is written to the bit. Note the bit cannot be cleared if the configuration is invalid.

The CS2600 provides a glitchless transition following a change in CLK_IN frequency; the FSYNC and BCLK outputs are reconfigured seamlessly at the end of a FSYNC period.

4.5 Output Configuration

The CS2600 provides three clock outputs. The main output from the PLL is provided on the CLK_OUT pin. Two additional clock signals, BCLK_OUT and FSYNC_OUT, are derived from the main PLL output and are intended to support digital-audio applications.

The clock outputs are illustrated in Fig. 4-9.

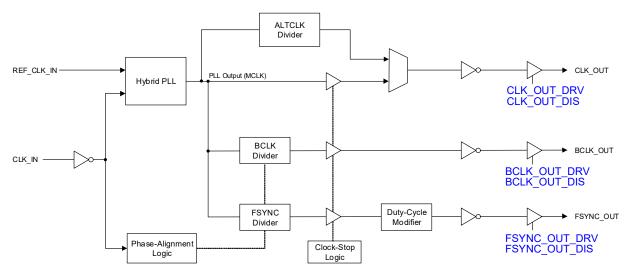


Figure 4-9. Clock Outputs

Each clock output can be enabled independently using the respective control field CLK_OUT_DIS, BCLK_OUT_DIS, or FSYNC OUT DIS. If an output is disabled, the respective driver is configured in a high-impedance (Hi-Z) state.

The drive strength for the clock outputs is configurable using the respective control field CLK_OUT_DRV, BCLK_OUT_DRV, or FSYNC_OUT_DRV.

4.5.1 CLK_OUT Configuration

The ALTCLK generator is an automatic divider that can be used to generate a fixed CLK_OUT frequency from a range of related PLL frequencies.

The CLK_OUT signal can be derived either directly from the PLL or else from the ALTCLK generator. The clock source is selected using CLK_OUT_SEL.

The polarity of the CLK_OUT signal can be inverted using CLK_OUT_INV. The inversion applies regardless of the CLK_OUT source, as shown in Fig. 4-10.

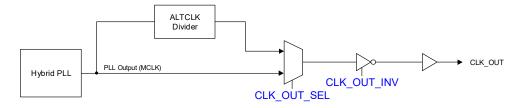


Figure 4-10. CLK OUT Selection

If ALTCLK is selected as the clock source, the CLK_OUT frequency is generated as described in Table 4-2. Note that the PLL must be configured for one of the supported frequencies, using the applicable ratio in Multiplier or Synthesizer mode.

PLL Frequency	CLK_OUT_SEL	CLK_OUT Frequency
Any	00	= PLL output
5.6448 MHz, 11.2896 MHz,	01	352.8 kHz
22.5792 MHz, or 45.1584 MHz	10	1.882 MHz
	11	2.053 MHz
6.144 MHz, 12.288 MHz,	01	384 kHz
24.576 MHz, or 49.152 MHz	10	2.048 MHz
	11	2.234 MHz

Table 4-2. CLK_OUT Frequency Select

Notes:

- If CLK_OUT_SEL = 11, the PLL frequencies 5.6448 / 6.144 MHz are not supported
- If CLK_OUT_SEL = 11, the PLL frequencies 11.2896 / 12.288 MHz result in 45% output duty cycle

The ALTCLK generator is supported in Synthesizer Mode and Multiplier Mode. If the Holdover function is enabled (see Section 4.4.2) the PLL output is maintained under conditions where the reference is missing or unstable. Note that the clock-stop logic (see Section 4.5.4) does not affect the ALTCLK output.

4.5.2 BCLK and FSYNC Configuration

The CS2600 supports BCLK and FSYNC outputs, intended for use in digital-audio applications. These clock outputs are derived from the main PLL output (MCLK) using configurable dividers.

Note: The BCLK and FSYNC outputs are derived from the PLL output, regardless of whether ALTCLK is selected as the CLK OUT source (see Section 4.5.1).

The BCLK and FSYNC outputs are shown in Fig. 4-11.

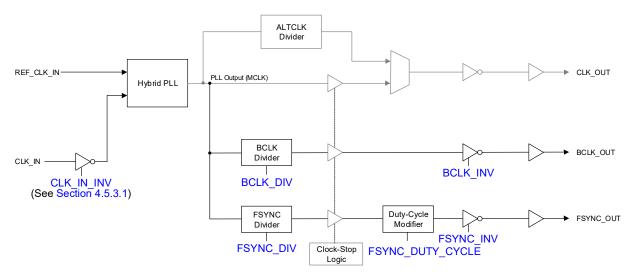


Figure 4-11. BCLK and FSYNC Outputs

The FSYNC frequency is configured using FSYNC_DIV. The frequency is defined as a ratio of the PLL output (MCLK). The duty cycle is configured using FSYNC_DUTY_CYCLE.

The BCLK frequency is configured using BCLK_DIV. Note that, for digital-audio applications, the BCLK frequency must be a valid integer multiple of the FSYNC frequency.

Note: If automatic rate control (ARC) is enabled, the BCLK frequency is configured using ARC_BCLK_DIV, and the FSYNC frequency is automatically aligned to the CLK_IN frequency reference. The BCLK_DIV and FSYNC_DIV fields are not used if ARC is enabled. See Section 4.4.4 for details of the ARC function.

The polarity of the BCLK and FSYNC outputs can be inverted using BCLK_INV and FSYNC_INV respectively. The polarity inversion can be used to support different digital-audio interface formats.

The recommended configuration for different digital-audio formats is defined in Table 4-3.

Table 4-3. Clock Configuration for Digital Audio Formats

Digital Audio Format	BCLK_INV	FSYNC_INV	FSYNC_DUTY_CYCLE
I2S	1 (inverted)	1 (inverted)	000 (50% duty cycle)
Left-Justified/Right-Justified	1 (inverted)	0 (not inverted)	000 (50% duty cycle)
TDM	1 (inverted)	0 (not inverted)	As required ¹

^{1.} Note the FSYNC duty cycle must be configured less than or equal to 50%.

Typical clock signals for different digital-audio formats are illustrated in Fig. 4-12 through Fig. 4-14.

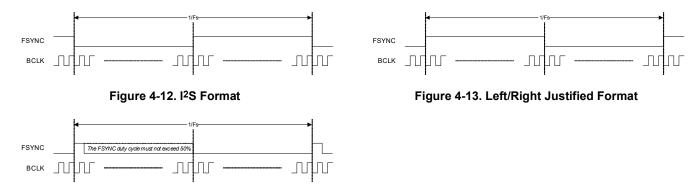


Figure 4-14. TDM Format

4.5.3 Phase Alignment

The phase-alignment function can be used to ensure the BCLK and FSYNC outputs are phase-aligned to the CLK_IN frequency reference. The function can be triggered manually using a control-register write, or automatically based on a configurable phase-offset threshold.

Phase alignment is enabled using PHASE_ALIGNMENT_EN. If this bit is set, the CS2600 monitors the phase offset between the FSYNC output and CLK_IN reference. For correct operation, the CLK_IN frequency must be less than 1 MHz, and the FSYNC frequency must be equal to, or an integer multiple of, CLK_IN frequency.

Phase alignment supports automatic or manual triggering; the applicable behavior is selected using PHASE_ALIGNMENT_MODE.

- If manual trigger is selected, the phase-alignment process is triggered by writing 1 to PHASE_ALIGNMENT_TRIG.
- If automatic trigger is selected, the phase-alignment process is triggered whenever the detected phase offset between CLK_IN and FSYNC exceeds the threshold configured using PHASE_ALIGNMENT_THR.
 An optional phase-stability monitor can also be used to gate the automatic phase-alignment process. If PHASE_ALIGNMENT_STB_EN is set, the phase stability is analyzed, and the phase alignment is only implemented if the phase offset is stable. Enabling the phase-stability monitor allows a lower phase-alignment threshold to be configured without erroneous trigger conditions.

Note that phase alignment is only supported if the PLL is frequency locked. If the trigger condition (manual or automatic) is detected and the PLL is not locked, the trigger is queued until frequency lock is achieved—phase alignment is applied after the PLL frequency-unlock indicator (F UNLOCK) is cleared.

If a valid trigger condition is detected, the phase of the FSYNC and BCLK outputs is adjusted in order to restore the phase alignment. The phase is adjusted by extending the FSYNC clock period by a fixed amount, and maintaining this extended period until the phase offset is corrected. The maximum permitted extension of the FSYNC clock period is selected using PHASE ALIGNMENT SPEED; this controls how quickly the phase adjustment is implemented.

Note that, once the phase-alignment process has started, it runs to completion based on the initial phase-offset measurement, regardless of any subsequent changes in the CLK_IN phase. If the phase offset on completion exceeds the automatic-trigger threshold, or a new manual trigger is applied, the process starts again.

Additional guidance on configuring the phase-alignment function is provided in Section 5.2.

The phase-alignment process is illustrated in Fig. 4-15.

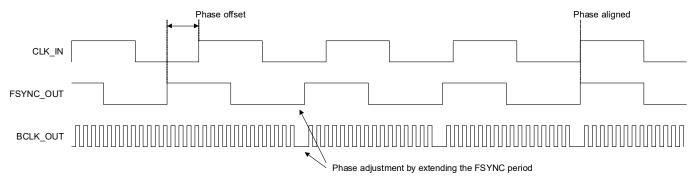


Figure 4-15. Phase Alignment

4.5.3.1 CLK_IN Phase Selection

Phase alignment ensures the start of an FSYNC period aligns with a transition of the CLK_IN signal. (Note that not every FSYNC period aligns with a CLK_IN transition—this depends upon the ratio of the two frequencies.)

The FSYNC period starts on a rising edge (FSYNC_INV = 0) or falling edge (FSYNC_INV = 1). The FSYNC period is aligned to a rising or falling CLK IN transition as follows:

- If CLK IN INV = 0, the FSYNC period aligns with a rising CLK IN edge.
- If CLK IN INV = 1, the FSYNC period aligns with a falling CLK IN edge.

Note that, for each of the typical digital-audio formats described in Table 4-3, the CLK_IN_INV bit should be set to the same value as FSYNC_INV.

4.5.3.2 Phase Alignment Indication

The phase-alignment status is indicated using P_UNLOCK. This bit is set if the phase offset between FSYNC and CLK_IN exceeds the automatic-trigger threshold (including if the PLL is disabled or is not frequency locked). The bit is also set if the phase alignment is in progress (i.e., triggered but not yet complete). The phase-alignment status can be indicated on an auxiliary output pin as described in Section 4.6. The status can be used to automatically disable the clock outputs—see Section 4.5.4 for further details.

The phase-alignment status is also indicated using P_UNLOCK_STICKY. This is a latching bit—it is set when P_UNLOCK is set, and remains set until a 1 is written to the bit. Note the bit cannot be cleared if P_UNLOCK is set.

4.5.4 Clock-Stop Logic

The clock output signals are valid if the PLL is enabled and locked. The clock signals are not valid if the PLL is not locked. If phase alignment is important for the target application, the clock signals may be considered invalid if the phase offset exceeds the required tolerance.

To avoid spurious clock generation, the OUT_GATE bit can be used to stop the outputs whenever the PLL is not locked. If OUT_GATE = 0, the clock outputs are stopped automatically if they are not valid. The OUT_GATE_TYPE field selects the logic condition used to determine whether the outputs are valid.

- If OUT_GATE_TYPE = 10, the clock outputs are gated by the analog-PLL lock status. The outputs are enabled if the analog PLL is locked to the timing reference.
- If OUT_GATE_TYPE = 00, the clock outputs are gated by the PLL frequency-lock status (F_UNLOCK). The outputs are enabled if the hybrid PLL (analog PLL and digital FLL) is frequency locked.
 - Note that, if the FLL is not used (e.g., in Synthesizer Mode), the outputs are gated by the analog-PLL lock status.
- If OUT_GATE_TYPE = 01, the clock outputs are gated by the PLL phase-alignment status (P_UNLOCK). The
 outputs are enabled if the hybrid PLL is frequency locked and phase aligned with the frequency reference.
 Note that, if phase alignment is disabled, the outputs are gated by the frequency-lock status.

If the clock outputs are stopped as a result of the PLL lock or phase-alignment status, the CS2600 controls the signals to ensure there are no partial clock periods—the outputs are stopped at the end of a complete FSYNC period.

Notes: By default, the FSYNC period starts on a rising edge of the FSYNC signal. If FSYNC is inverted (FSYNC_INV = 1), the FSYNC period starts on a falling edge of FSYNC.

If the BCLK rate is a non-integer division of the FSYNC rate, the outputs are stopped at the end of a complete FSYNC frame that coincides with a BCLK edge.

The stopped clocks are Logic 0 if non-inverted, or Logic 1 if inverted. See Section 4.5.1 and Section 4.5.2 to invert the respective clock outputs.

The CS2600 maintains the timing of the FSYNC periods while the clocks are stopped. The timing is referenced to the CLK_IN signal prior to the clock-stop condition occurring. When the applicable conditions (see OUT_GATE_TYPE) allow the clocks to be enabled, the clocks resume at the start of the next FSYNC period.

The clock-stop timing is illustrated in Fig. 4-16. In the example shown FSYNC is noninverted, BCLK is inverted.

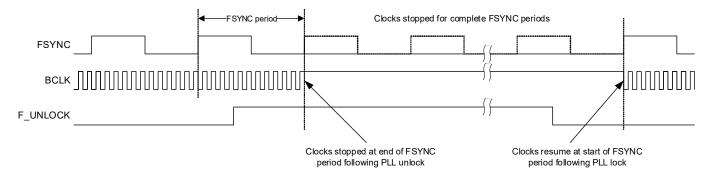


Figure 4-16. Clock-Stop Timing

If the PLL is disabled, the clock outputs are stopped immediately; the stopped CLK_OUT, FSYNC_OUT, and BCLK_OUT signals can be either Logic 0 or Logic 1. Note that the clock outputs are initialized during PLL enable (Logic 0 if non-inverted, or Logic 1 if inverted), prior to starting the clock output; the timing is controlled to ensure there are no partial clock periods.

The clock-output logic is described in Table 4-4. The CLK_OUT, FSYNC_OUT, and BCLK_OUT clocks are configured using the respective control fields.

x_OUT_DIS	PLL Enable	OUT_GATE	OUT_GATE_ TYPE	F_UNLOCK	P_UNLOCK	APLL unlock Status	x_OUT_INV	x_OUT pin
1	_	_	_	_	_	_	_	Hi-Z
0	Disabled	_	_	_	_	_	_	0 or 1
	Enabled	0	00	0	_	_	_	Clock output
				1	_	_	0	0
							1	1
			01	_	0	_	_	Clock output
				_	1	_	0	0
							1	1
			10	_	_	Locked	_	Clock output
				_	_	Unlocked	0	0
							1	1
		1	_	_	_	_	_	Clock output

Table 4-4. Clock Output Logic—CLK_OUT, FSYNC_OUT, BCLK_OUT

Notes:

- · If the clocks are stopped due to PLL frequency/phase unlock, the clocks are stopped at the end of the FSYNC period.
- The CLK_OUT signal is not affected by the clock-stop logic if ALTCLK is selected as the clock source.

4.6 Auxiliary Output

The CS2600 supports two auxiliary outputs with selectable functionality. The AUX1_OUT pin can be configured as a clock or status output using AUX1_OUT_SEL. The supported functions for the AUX1 output are:

- Timing reference clock (REF CLK IN or internal oscillator)
- Frequency reference clock (CLK_IN)
- Output clock (CLK_OUT)
- PLL frequency-lock status (asserted if PLL is not frequency locked)
- Phase-alignment status (asserted if phase alignment is not locked)
- BCLK
- FSYNC
- Frequency reference (CLK IN) status (asserted if CLK IN is not present)

The second auxiliary output is supported on the SPI_SDO/AUX2_OUT/CONFIG5 pin. The AUX2_OUT function is enabled and configured using AUX2_OUT_SEL. The supported functions for the AUX2 output are:

- PLL frequency-lock status (asserted if PLL is not frequency locked)
- · Phase-alignment status (asserted if phase alignment is not locked)
- · Frequency reference (CLK IN) status (asserted if CLK IN is not present)

Note: If the AUX2_OUT function is enabled, the SPI_SDO function is not supported. In this configuration, the SPI interface supports write operations only.

A glitchless transition is provided if the auxiliary output is switched between the timing reference and CLK_OUT, ensuring there are no partial clock periods in the output signal. The glitchless transition is illustrated in Fig. 4-17.

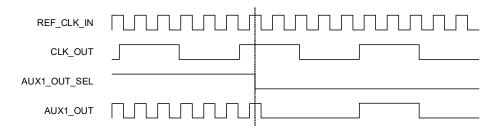


Figure 4-17. Glitchless Transition between Clock Signals

If an auxiliary output is configured as an unlock or clock-missing status, the respective output driver can be configured as either CMOS (active high) or open drain (active low). The output drivers are configured using AUX_OUT_CFG.

Note: If the auxiliary output is configured as a clock output, the output driver is CMOS in all cases.

The AUX1 output driver can be enabled using AUX1_OUT_DIS. If the AUX1 output is disabled, the driver is configured in a high-impedance (Hi-Z) state. The AUX1 drive strength is configurable using AUX1_OUT_DRV.

Note: The AUX1_OUT_DIS field must not be updated at the same time as AUX1_OUT_SEL (at the same register address). To update both fields, a separate control-interface transaction must be scheduled for each bit.

The auxiliary outputs are illustrated in Fig. 4-18.

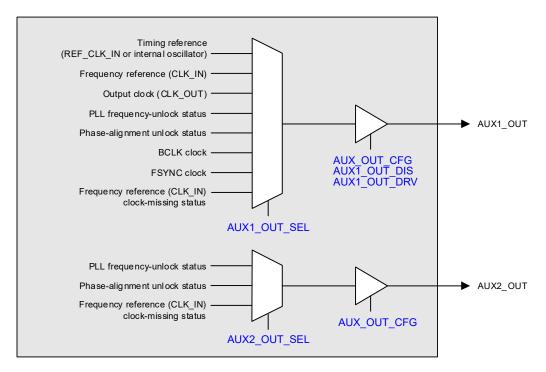


Figure 4-18. Auxiliary Output Configuration

4.7 I2C/SPI Control Port

The CS2600 incorporates a control port, supporting I²C or SPI modes of operation. In Software Control Mode, the CS2600 is configured by writing to control registers using the control port.

The control port is configured in I²C mode or SPI mode using the I²C ADDR/ SPI CS pin.

- I²C mode is selected by connecting the I²C_ADDR/ SPI_CS pin to VDD or GND using a pull-up or pull-down resistor. The pin connection is used to select the target address on the I²C bus.
- SPI mode is selected by a high-to-low transition on the I2C ADDR/SPI CS pin after power-on.

4.7.1 I²C Interface

The I²C control port is supported using the I²C_SCL and I²C_SDA pins.

The CS2600 is a target device on the I²C bus—SCL is a clock input, SDA is a bidirectional data pin. To allow arbitration of multiple targets (and/or multiple controllers) on the same interface, the CS2600 transmits Logic 1 by tristating the SDA pin, rather than pulling it high. An external pull-up resistor is required to pull the SDA line high so that the Logic 1 can be recognized by the controller.

In order to allow many devices to share a single two-wire control bus, every device on the bus has a unique 8-bit target address (this is not the same as the address of each register in the register map). Note that the LSB of the target address is the read/write bit; this bit is set to Logic 1 for read and Logic 0 for write.

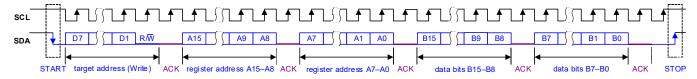
The I²C target address is configured using the I²C ADDR/SPI_CS pin as described in Table 4-5.

I2C_ADDR Pin (Connection	I ² C Address
Pull-up to VDD	0 Ω	0x5E (write), 0x5F (read)
	4.7 kΩ	0x5C (write), 0x5D (read)
	22 kΩ	0x5A (write), 0x5B (read)
	100 kΩ	0x58 (write), 0x59 (read)
Pull-down to GND	100 kΩ	0x56 (write), 0x57 (read)
	22 kΩ	0x54 (write), 0x55 (read)
	4.7 kΩ	0x52 (write), 0x53 (read)
	0 Ω	0x50 (write), 0x51 (read)

Table 4-5. I²C Target Address Selection

The host device indicates the start of data transfer with a high-to-low transition on SDA while SCL remains high. This indicates that a device address and subsequent address/data bytes follow. The CS2600 responds to the start condition and shifts in the next eight bits on SDA (8-bit target address, including read/write bit, MSB first). If the target address received matches the target address of The CS2600, it responds by pulling SDA low on the next clock pulse (ACK). If the target address is not recognized, the CS2600 returns to the idle condition and waits for a new start condition.

If the target address matches the target address of the CS2600, the data transfer continues. The controller indicates the end of data transfer with a low-to-high transition on SDA while SCL remains high. After receiving a complete address and data sequence, the CS2600 returns to the idle state and waits for another start condition. If a start or stop condition is detected out of sequence at any point during data transfer (i.e., SDA changes while SCL is high), the device returns to the idle condition.


The I²C interface uses a 16-bit register address and 16-bit data words. The register address must be aligned to a 16-bit word boundary (i.e., the LSB must be 0). Note that the full I²C message protocol also includes a target address, a read/write bit, and other signaling bits (see Fig. 4-19 and Fig. 4-20).

The CS2600 supports the following read and write operations:

- Single write
- · Single read
- · Multiple write
- Multiple read

Continuous (multiple) read and write modes allow register operations to be scheduled faster than is possible with single register operations. In these modes, the CS2600 automatically increments the register address after each data word. Successive data words can be input/output every two data bytes.

The I²C protocol for a single, 16-bit register write operation is shown in Fig. 4-19.

Note: The SDA pin is used as input for the control register address and data; SDA is pulled low by the receiving device to provide the acknowledge (ACK) response

Figure 4-19. Control Interface I²C Register Write

The I²C protocol for a single, 16-bit register read operation is shown in Fig. 4-20.

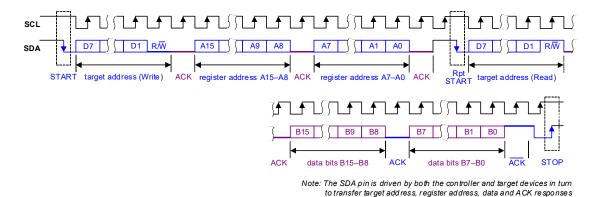


Figure 4-20. Control Interface I²C Register Read

The control interface also supports other register operations; the interface protocol for these operations is shown in Fig. 4-21 through Fig. 4-24. The terminology used in the following figures is detailed in Table 4-6.

Table 4-6. Control Interface (I²C) Terminology

Terminology	Description
S	Start condition
Sr	Repeated start
A	Acknowledge (SDA low)
Ā	No Acknowledge (SDA high)
Р	Stop condition
R/W	Read/not Write: 0 = Write, 1 = Read
[White field]	Data flow from bus controller to CS2600
[Gray field]	Data from CS2600 to bus controller

Fig. 4-21 shows a single register write to a specified address.

Figure 4-21. Single-Register Write to Specified Address

Fig. 4-22 shows a single register read from a specified address.

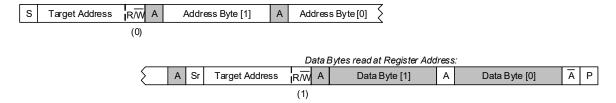


Figure 4-22. Single-Register Read from Specified Address

Fig. 4-23 shows a multiple register write to a specified address.

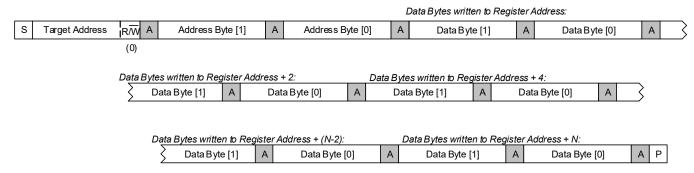


Figure 4-23. Multiple-Register Write to Specified Address

Fig. 4-24 shows a multiple register read from a specified address.

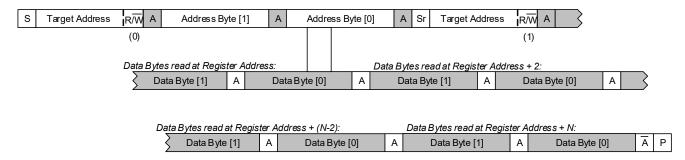


Figure 4-24. Multiple-Register Read from Specified Address

4.7.2 SPI Interface

The SPI interface is supported using the SPI CS, SPI SCK, SPI SDI, and SPI SDO pins.

The SPI CS pin provides the chip-select input (active low). Data is clocked in/out on the rising edge of SPI SCK.

The SDI (data-input) pin supports the following behavior:

- In write operations (R/W = 0), the SDI pin input is driven by the controlling device.
- In read operations (R/W = 1), the SDI pin is ignored following receipt of the valid register address.

The SDO (data-output) pin supports the following behavior:

- If $\overline{\text{CS}}$ is asserted (Logic 0), the SDO output is actively driven when outputting data and is high impedance at other times. If $\overline{\text{CS}}$ is not asserted, the SDO output is high impedance.
- The high-impedance state of the SDO output allows the pin to be shared with other peripheral devices.
- The output (SDO) data bit is available to the host device at the rising edge of SCK. See Table 3-6 for timing information.

The SPI interface uses a 15-bit register address and 16-bit data words. Note that the full SPI message protocol also includes a read/write bit and a 16-bit padding phase (see Fig. 4-25 and Fig. 4-26).

Continuous read and write modes enable multiple register operations to be scheduled faster than is possible with single register operations. In these modes, the CS2600 automatically increments the register address at the end of each data word, for as long as \overline{CS} is held low and SCK is toggled. Successive data words can be input/output every 16 clock cycles.

Fig. 4-25 shows a single register write to a specified address.

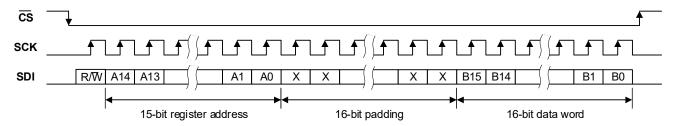


Figure 4-25. Control Interface SPI Register Write

Fig. 4-26 shows a single register read from a specified address.

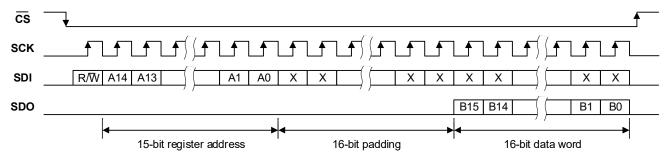


Figure 4-26. Control Interface SPI Register Read

4.7.3 Device Configuration

The device should be fully configured before enabling the PLL. When changing any register settings, it is recommended to disable the PLL, update the registers, then enable the PLL; this ensures there is no unintended behavior.

See Section 4.3.1 to enable and disable the PLL. Specific restrictions and exceptions on updating register fields are described in Section 4.7.3.2.

4.7.3.1 Freezable Fields

The register map supports a number of freezable fields, as listed in Table 4-7. If FREEZE_EN is set, these fields are frozen to their current values regardless of any register writes. If a new value is written, the value is buffered and does not become effective until FREEZE_EN is cleared. When FREEZE_EN is cleared, all of the frozen fields become active simultaneously.

Note: The FREEZE_EN bit should not be updated in the same write transaction as the freezable fields PLL_MODE_SEL or M_RATIO_SEL at the same register address. Separate write transactions should be used to ensure the correct sequencing of the freeze function.

Address	Fields
0x0002	CLK_OUT_DIS, AUX1_OUT_DIS, S_RATIO_SEL, RATIO_MOD
0x0004	PLL_MODE_SEL, M_RATIO_SEL
0x0100	FSYNC_OUT_DIS, BCLK_OUT_DIS
0x0102	AUX1_OUT_SEL

Table 4-7. Freezable Fields

4.7.3.2 Field Update Restrictions

The fields listed in Table 4-8 can be configured at any time, and do not result in any partial clock period in the outputs.

Table 4-8. Register Fields with No Write Restrictions

Address	Fields
0x0002	CLK_OUT_DIS, AUX1_OUT_DIS 1, PLL_EN1
0x0004	PLL_EN2, FREEZE_EN
0x0100	FSYNC_OUT_DIS, BCLK_OUT_DIS
0x0102	AUX1_OUT_SEL
0x0114	F_UNLOCK_STICKY, P_UNLOCK_STICKY
0x0116	ERR_STS1-ERR_STS8
0x0120	OTP_LDO_EN, OTP_LDO_DISCH_EN, OTP_VDD_EN
0x1104	USER_KEY
0x2340-0x236E	OTP_IMG_WR_BYTE1-OTP_IMG_WR_BYTE48
0x2400	OTP_PROG_EN

Note the AUX1_OUT_DIS field must not be updated at the same time as AUX1_OUT_SEL.
 See Section 4.6.

The fields listed in Table 4-9 can be configured at any time, but may cause the PLL to lose lock temporarily.

Table 4-9. Register Fields with Restrictions

Address	Fields
0x0002	S_RATIO_SEL 1, RATIO_MOD
0x0004	PLL_MODE_SEL, M_RATIO_SEL 1
0x0006-0x0008	RATIO1_1, RATIO1_2
0x000A-0x000C	RATIO2_1, RATIO2_2
0x000E-0x0010	RATIO3_1, RATIO3_2
0x0012-0x0014	RATIO4_1, RATIO4_2
0x0016	REF_CLK_IN_DIV, RATIO_CFG

^{1.} The S_RATIO_SEL and M_RATIO_SEL fields can be configured at any time, provided the respective field values differ from each other before the update and after the update. In all other cases, the PLL should be disabled before writing to either of these fields.

Note that, for all other control fields (not listed in Table 4-8 or Table 4-9), the PLL should be disabled before reconfiguring; failure to do so may result in unintended behavior, and may require a software reset to restart the device.

4.7.4 Software Reset

A software reset is triggered by writing 0x5A to the SW_RST field. A software reset causes all of the CS2600 control registers to be reset to their default states.

4.7.5 Power-On Reset

The power-on reset (POR) sequence is scheduled on initial power-up, and following any interruption to the VDD supply. The POR causes all of the CS2600 control registers to be reset to their default states.

4.8 One-Time Programmable (OTP) Memory

The CS2600 incorporates a customer-programmable OTP memory which can be used to automatically configure the device after power-up. The OTP memory enables the device to be factory programmed for a specific target application, removing the need for a host system to configure the device.

The OTP memory is programmed using the I²C or SPI interface. The CS2600 supports two different OTP programming methods, for production and prototyping respectively. A device may be programmed using either method, but not both.

- Production programming ensures data integrity using an error correction code (ECC) algorithm.
- · Prototype programming provides greater flexibility to reprogram the device during product development.

Note that the OTP memory contents have no effect if the CS2600 is used in Hardware Control Mode.

4.8.1 OTP Programming Supply

An OTP programming supply (VDD_OTP) is required when writing to the OTP memory. The programming supply may be provided internally or externally, depending on the system supply (VDD).

- If the VDD supply is 3.3 V, the programming supply can be provided using an internal LDO regulator; in this case, the output of the regulator, VLDO_OTP, should be connected to VDD_OTP.
- If the VDD supply is 1.8 V, the programming supply must be provided externally.

The external connections for the OTP programming supply are shown in Fig. 2-1.

Note: VDD must be present before enabling the VDD_OTP pin. The external VDD_OTP supply must be removed before powering down VDD.

4.8.2 Production Programming

Production programming is implemented using an image that defines the required settings of all the configurable registers. The image is generated using SoundClear Studio (SCS).

The image includes an ID field (1–7) and an error correction code (ECC) field. The ECC supports 3-bit error detection and 2-bit error correction.

The programmed contents of the OTP memory are loaded during startup. If the OTP memory contains an uncorrectable error, the clock outputs are disabled and the device startup is aborted. An OTP error is indicated using ERR STS7.

The OTP memory can be programmed up to seven times. Each time the OTP memory is programmed, the previous images are automatically superseded.

4.8.3 Prototype Programming

Prototype programming is used to fine-tune the device settings for a specific application. The prototype programming configures selected fields only, with all other fields initializing to their respective default values.

Prototype programming is configured using SoundClear Studio (SCS). The programmed contents of the OTP memory are loaded during startup. Note there is no error checking when using the prototype programming option.

Iterative programming is supported, with modified values defined for specific fields. If a field is programmed multiple times in the OTP memory, the most recent programmed value is applied during startup.

The OTP memory can be programmed multiple times. The programming limit depends on which parameters are being configured. As an example, however, it is possible to program and modify the PLL ratio more than 25 times.

4.9 Hardware Control Mode

The CS2600 supports hardware and software control modes. In Hardware Control Mode, the device configuration is determined by external resistors connected to the hardware-control pins, CONFIG1—CONFIG6. The external resistors are connected to GND or VDD; different resistor values allow the CS2600 to detect eight configuration options per pin. Note that the external resistance must be within 5% of the specified value.

Hardware Control Mode is selected using an external resistor connected to CONFIG1. In Hardware Control Mode, the PLL is enabled in Synthesizer Mode or Multiplier Mode as specified in Table 4-11. Software Control Mode (I²C/SPI) is selected by connecting CONFIG1 to GND.

In Hardware Control Mode, the device configuration is latched during the power-up sequence and cannot be changed while the device is operational. To update the device configuration, the device must be power cycled in order to read new settings on the CONFIGx pins.

If an invalid hardware configuration is selected, the clock outputs are disabled. Normal operation resumes when a valid configuration is detected. Note that a valid configuration may depend on the external clocks (e.g., CLK_IN frequency).

The CONFIG pins provide control over a subset of the overall device functionality. For the remaining functions, the respective default settings are applied. A summary of the CONFIG pin functions is shown in Table 4-10.

CONFIG Pin	Description
CONFIG1	PLL Operating Mode and Timing Clock Reference
CONFIG2	Holdover Mode, PLL bandwidth, and AUX1 output
CONFIG3	Clock output
CONFIG4	BCLK frequency
CONFIG5	Automatic Rate Control and FSYNC frequency
CONFIG6	CLK_OUT frequency

Table 4-10. CONFIG Pin Summary

The CONFIG1 pin selects the PLL operating mode and the timing-reference clock frequency as shown in Table 4-11.

Pin Configu	ıration	Operating Mode	Timing Reference Frequency ¹
Pull-up to VDD	0 Ω		10 MHz
	4.7 kΩ	Synthonizor	25 MHz
	22 kΩ	Synthesizer	24.576 MHz
	100 kΩ		49.152 MHz
Pull-down to GND	100 kΩ		8–18 MHz
	22 kΩ	Multiplier	16–37.5 MHz
	4.7 kΩ		32–75 MHz
0 Ω		Software Contro	l Mode (I ² C/SPI)

Table 4-11. CONFIG1 Hardware Configuration

In Multiplier Mode, the remaining CONFIGx pin functions are described in Section 4.9.1.

In Synthesizer Mode, the remaining CONFIGx pin functions are described in Section 4.9.2.

^{1.} The timing reference can be REF_CLK_IN, external crystal oscillator (XTAL_IN), or the internal oscillator (LCO). In Hardware Mode, the internal oscillator is supported for Multiplier Mode only.

CLK OUT/2

CLK_OUT / 4

CLK OUT/8

CLK OUT / 16

512 × FSYNC

256 × FSYNC

128 × FSYNC

64 × FSYNC

4.9.1 Multiplier Mode

Pull-down to GND

100 kΩ

22 kΩ

4.7 kΩ

0Ω

The CONFIG2 pin selects Holdover Mode, PLL bandwidth, and the AUX1 OUT function as shown in Table 4-12.

Pin Configuration **Holdover Mode** PLL Bandwidth **AUX1 Output** Pull-up to VDD 0Ω Frequency Unlock Indicator 1 Hz 4.7 kΩ Phase Unlock Indicator Enabled 22 kΩ Frequency Unlock Indicator 128 Hz 100 kΩ Phase Unlock Indicator Pull-down to GND 100 kΩ Phase Unlock Indicator 1 Hz 22 kΩ Frequency Unlock Indicator Disabled 4.7 kΩ Phase Unlock Indicator 128 Hz 0Ω Frequency Unlock Indicator

Table 4-12. CONFIG2 Hardware Configuration—Multiplier Mode

The CONFIG3 pin selects the clock output configuration as shown in Table 4-13. The supported configurations are designed for target applications using I2S, LJ/RJ, or TDM serial data interfaces.

Pin Configuration		Phase Alignment	Target Application	Input/Output Configuration		
		Filase Aligilillelit	rarget Application	CLK_IN	BCLK_OUT	FSYNC_OUT 1
Pull-up to VDD	0 Ω		I ² S	Inverted	Inve	erted
	4.7 kΩ	Enabled	LJ/RJ		Inverted	Not Inverted
	22 kΩ	Ellabled	TDM-A ²			
	100 kΩ		TDM-B ²			
Pull-down to GND	100 kΩ		I ² S	Not Inverted	Inve	erted
	22 kΩ	Disabled	LJ/RJ			
	4.7 kΩ	Disabled	TDM-A ²		Inverted	Not Inverted
	0 Ω		TDM-B ²			

Table 4-13. CONFIG3 Hardware Configuration—Multiplier Mode

64 × FSYNC

The CONFIG4 pin selects the BCLK output frequency as shown in Table 4-14. Note the pin function is dependent on the target application (see CONFIG3 pin configuration in Table 4-13).

		BCLK Frequency			
Pin Configu	ıration	I2S	Left-Justified/ Right-Justified	TDM-A	TDM-B
Pull-up to VDD	0 Ω				
	4.7 kΩ		Inv	/alid	
	22 kΩ				
	100 kΩ			1024 × FSYNC	CLK OUT

Table 4-14. CONFIG4 Hardware Configuration—Multiplier Mode

Note: Selecting a BCLK frequency referenced to FSYNC can result in an invalid BCLK divider value (depending on the FSYNC and MCLK_OUT frequencies). Refer to the BCLK_DIV field for the supported BCLK divider ratios. If an invalid selection is made, the clock outputs are disabled; normal operation resumes when a valid configuration is detected.

64 × FSYNC

^{1.}In TDM applications, the FSYNC duty cycle corresponds to 1 BCLK period. In other formats, the FSYNC duty cycle is 50%.

^{2.} The TDM-A and TDM-B selections provide the same inverted/non-inverted behavior. The two options differ from each other in how the BCLK frequency is determined, as described in Table 4-14.

CLK OUT / 64

CLK_OUT / 32

CLK OUT / 16

The CONFIG5 pin selects the ARC function and the FSYNC output frequency as shown in Table 4-15.

Pin Configuration Automatic Rate Control (ARC) **FSYNC Frequency** Pull-up to VDD 0Ω Enabled CLK IN CLK OUT / 1024 4.7 kΩ 22 kΩ CLK OUT / 512 100 kΩ CLK_OUT / 256 CLK OUT / 128 Pull-down to GND 100 kΩ Disabled

Table 4-15. CONFIG5 Hardware Configuration—Multiplier Mode

The CONFIG6 pin selects the CLK_OUT frequency as shown in Table 4-16. Note the pin function is dependent on the ARC status (see CONFIG5 pin configuration in Table 4-15).

Table 4-16. CONFIG6 Hardware Configuration—Multiplier Mode

Pin Configu	ıration	CLK_OUT Frequency		
Pili Collingu	iration	ARC Disabled	ARC Enabled	
Pull-up to VDD	0 Ω	128 × CLK_IN	12.288 or 11.2896 MHz ¹	
	4.7 kΩ	256 × CLK_IN	24.576 or 22.5792 MHz ¹	
	22 kΩ	512 × CLK_IN	49.152 or 45.1584 MHz ¹	
	100 kΩ	768 × CLK_IN		
Pull-down to GND	100 kΩ	1024 × CLK_IN		
	22 kΩ	1536 × CLK_IN	Invalid	
	4.7 kΩ	3072 × CLK_IN		
	0 Ω	6144 × CLK_IN		

^{1.} The applicable frequency is the same base as CLK IN

22 kΩ

4.7 kΩ

0Ω

4.9.2 Synthesizer Mode

The CONFIG2 pin selects the AUX1_OUT function as shown in Table 4-17.

Table 4-17. CONFIG2 Hardware Configuration—Synthesizer Mode

Pin Configu	ıration	AUX1 Output
Pull-up to VDD	0 Ω	Frequency Unlock Indicator
	4.7 kΩ	
	22 kΩ	
	100 kΩ	Disabled
Pull-down to GND	100 kΩ	Disabled
	22 kΩ	
	4.7 kΩ	
	0 Ω	CLK_OUT

The CONFIG3 pin has no function in Synthesizer Mode; the pin should be connected to VDD or GND.

The CONFIG4 pin selects the BCLK output frequency as shown in Table 4-18.

Table 4-18. CONFIG4 Hardware Configuration—Synthesizer Mode

Pin Configuration		BCLK Frequency
Pull-up to VDD	0 Ω	CLK_OUT / 16
	4.7 kΩ	CLK_OUT / 8
	22 kΩ	CLK_OUT / 4
	100 kΩ	CLK_OUT / 2
Pull-down to GND	100 kΩ	CLK_OUT
	22 kΩ	
	4.7 kΩ	Invalid
	0 Ω	

The CONFIG5 pin selects the FSYNC output frequency as shown in Table 4-19.

Table 4-19. CONFIG5 Hardware Configuration—Synthesizer Mode

Pin Configuration		FSYNC Frequency
Pull-up to VDD	0 Ω	Invalid
	4.7 kΩ	CLK_OUT / 1024
	22 kΩ	CLK_OUT / 512
	100 kΩ	CLK_OUT / 256
Pull-down to GND	100 kΩ	CLK_OUT / 128
	22 kΩ	CLK_OUT / 64
	4.7 kΩ	CLK_OUT / 32
	0 Ω	CLK_OUT / 16

The CONFIG6 pin selects the CLK_OUT frequency as shown in Table 4-20.

Table 4-20. CONFIG6 Hardware Configuration—Synthesizer Mode

Pin Configuration		CLK_OUT Frequency
Pull-up to VDD	0 Ω	Invalid
	4.7 kΩ	IIIValid
	22 kΩ	11.2896 MHz
	100 kΩ	12.288 MHz
Pull-down to GND	100 kΩ	22.5792 MHz
	22 kΩ	24.576 MHz
İ	4.7 kΩ	45.1584 MHz
	0 Ω	49.152 MHz

4.10 Device ID

The device ID, and other associated data, can be read from the control fields listed in Table 4-21.

Table 4-21. Device ID

Label	Description
DEVID	Device ID
AREVID	All-layer device revision
MTLREVID	Metal-layer device revision

5 Applications

5.1 Crystal Component Selection

The crystal oscillator (see Section 4.2.2) uses an external crystal to generate the timing reference. Load capacitors are connected to the crystal as shown in Fig. 5-1. A series resistor (R_S) may also be required to configure the drive level for the selected crystal.

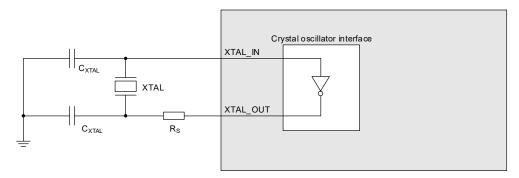


Figure 5-1. Crystal Oscillator Connection

The suitability of the selected crystal is determined by whether the gain margin and drive level are within the valid operating limits of the crystal. The gain margin and drive level can be calculated as a function of the transconductance of the crystal interface.

The transconductance of the crystal interface is dependent on the VDD operating voltage as described in Table 3-4.

The recommended sequence for crystal component selection is as follows:

- 1. **Crystal selection.** The CS2600 is compatible with a wide variety of crystal components, including the NX3225SA, NX2016A, ECX-33Q, and ECX-2236Q families.
- Capacitor selection. Capacitors should be selected according to the crystal manufacturer's specification for load capacitance (C_L). The recommended value for each C_{XTAL} capacitor is 2 × C_L.
- 3. **Series resistor.** In the first instance, assume the series resistor Rs is not required (0 Ω).
- 4. Gain margin calculation. The gain margin can be calculated from the transconductance of the crystal interface and the series resistor R_S, together with the crystal characteristics. If the gain margin is less than 5, a different crystal selection must be made (Step 1).

The gain margin is calculated as follows: Gain Margin =
$$\frac{\text{Transconductance}}{4\times\left(\text{ESR}+R_{\text{S}}\right)\times\left(2\pi\times f_{\text{XTAL}}\right)^{2}\times\left(C_{0}+C_{L}\right)^{2}}$$

where:

Transconductance = transconductance of the crystal interface (S)

ESR = equivalent series resistance (ESR) of the crystal (Ω)

 R_S = series resistance (Ω)

 f_{XTAI} = resonant frequency of the crystal (Hz)

C_I = load capacitance of the crystal (F)

 C_0 = shunt capacitance of the crystal (F)

5. Drive level calculation. The drive level can be calculated using the crystal characteristics and the operating voltage. The operating voltage (peak voltage across the crystal) can be determined using measurement or else by simulation. If the drive level exceeds the maximum level for the crystal, adjust the series resistor R_S to meet the required specification. Increasing R_S results in a lower voltage across the crystal and a decrease in drive level.

If the series resistor is adjusted, the gain margin must now be recalculated (Step 4). It is recommended to find the minimum series resistance that meets the required gain margin and drive level.

The drive level (W) is calculated as follows: Drive Level = $2 \times ESR \times (\pi \times f_{XTAL} \times V \times (C_L + C_0))^2$ where:

ESR = equivalent series resistance (ESR) of the crystal (Ω)

f_{XTAL} = resonant frequency of the crystal (Hz)

V = Peak voltage across the crystal (V)

C_I = load capacitance of the crystal (F)

C₀ = shunt capacitance of the crystal (F)

The sequence for crystal component selection is illustrated in Fig. 5-2.

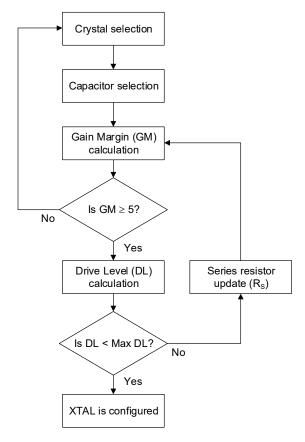


Figure 5-2. Crystal Oscillator Component Selection

5.2 Phase Alignment Configuration

The phase-alignment function (see Section 4.5.3) can be used to ensure the BCLK and FSYNC outputs are phase-aligned to the CLK_IN frequency reference. The function can be triggered manually using a control-register write, or automatically based on a configurable phase-offset threshold.

If automatic trigger is selected, the phase-alignment process is triggered whenever the detected phase offset between CLK IN and FSYNC exceeds the threshold configured using PHASE ALIGNMENT THR.

To avoid erroneous trigger conditions, the threshold must be set higher than the expected CLK_IN jitter. It is
recommended to configure the threshold lower than the maximum acceptable phase-offset error, and at least 10
times larger then the expected peak CLK_IN jitter.

If automatic trigger is selected, a phase-stability monitor can be used to gate the automatic phase-alignment process. If PHASE_ALIGNMENT_STB_EN is set, the phase stability is analyzed, and the phase alignment is only implemented if the phase offset is stable.

- The phase-stability monitor should only be enabled if the phase offset is expected to drift for some time before settling (e.g., when the CLK_IN frequency changes).
- If the phase is unstable and PHASE_ALIGNMENT_STB_EN is not set, the phase alignment may be triggered multiple times; the final offset error may be larger than the specified level (see Table 3-4) and below the threshold to retrigger the phase-alignment process.

If a valid trigger condition is detected, the phase of the FSYNC and BCLK outputs is adjusted in order to restore the phase alignment. The PHASE_ALIGNMENT_SPEED field controls how quickly the phase adjustment is implemented.

- If PHASE_ALIGNMENT_SPEED = 00, the FSYNC period is extended by 1 MCLK period until the phase offset is eliminated. For example, if the initial offset is 124 MCLKs, the phase-alignment process will take 124 FSYNC periods to complete.
 - In this configuration, the phase alignment is slowest, but jitter and frequency deviation is minimized.
- If PHASE_ALIGNMENT_SPEED = 01, the FSYNC period is extended by a maximum of 10 MCLK periods until the phase offset is eliminated. For example, if the initial offset is 124 MCLKs, the phase-alignment process will take 13 FSYNC periods to complete.
- If PHASE_ALIGNMENT_SPEED = 10, the FSYNC period is extended by a maximum of 50 MCLK periods until the
 phase offset is eliminated. For example, if the initial offset is 124 MCLKs, the phase-alignment process will take 3
 FSYNC periods to complete.
- If PHASE_ALIGNMENT_SPEED = 11, the FSYNC period is extended as much as is required to complete the phase alignment in a single FSYNC period.
 - In this configuration, the phase alignment is fastest, but the transient FSYNC/BCLK period error may be large (depending on the size of the phase offset).

The phase-alignment speed should be configured according to the application requirements. If the output clocks are being used while the alignment is in progress, the slow rate may be chosen for optimal jitter/frequency stability. If the output clocks are not used during the alignment, the fastest rate may be preferred.

The phase-alignment process is illustrated in Fig. 5-3.

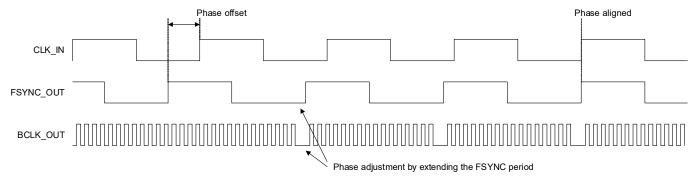


Figure 5-3. Phase Alignment

6 Register Quick Reference

This section gives an overview of the control port registers. Refer to the following bit definition tables for bit assignment information.

This register view is for the CS2600.

- A "—" represents a reserved field/access type.
- · The reserved field values must not be modified.
- The registers are 16 bits wide, and only word transactions are allowed.
- · Fields shown in orange are affected by the FREEZE bit.
- All visible fields are read/write except where indicated with the following shading:

Table 6-1. Block Base Addresses

Base Address	Block Name	Register Quick Reference	Register Description Reference
0x0000 0000	CONFIG	Section 6.1	Section 7.1
0x0000 1100	KEYS	Section 6.2	Section 7.2
0x0000 2000	OTP_IF	Section 6.3	Section 7.3
0x0000 2400	OTP_CTRL	Section 6.4	Section 7.4
0x0000 2480	OTP_STS	Section 6.5	Section 7.5

6.1 CONFIG

p. 44	L_CFG1 L_CFG2	0	RATIO_MOD 0	0	S_RAT 0	IO_SEL	_	_	PLL_EN1				_			AUX1	CLK
0x0000 0004 PLL.	L_CFG2	0	0	0	0											OUT_DIS	OUT_DIS
p. 44	L_CFG2		_		U	0	0	0	0	1	0	0	0	0	0	0	0
						FREEZE_ EN	-	-	PLL_EN2			_			M_RAT	IO_SEL	PLL_ MODE_ SEL
0x0000 0006 RAT		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	TIO1_1								RATI	01_1							
p. 45		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0008 RAT	TIO1_2								RATI	O1_2							
p. 45		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 000A RAT	.TIO2_1								RATI	02_1							
p. 45		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 000C RAT	TIO2_2								RATI	O2_2							
p. 45		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 000E RAT	.TIO3_1								RATI	O3_1							
p. 45		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0010 RAT	TIO3_2								RATI	O3_2							
p. 46		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0012 RAT	.TIO4_1								RATI	04_1							
p. 46		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0014 RAT	TIO4_2								RATI	O4_2							
p. 46		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0016 PLL	L_CFG3	_	OUT_GAT	E_TYPE	OUT_ GATE	RATIO_ CFG		-	_		AUX_ OUT_ CFG	_	REF_CL	K_IN_DIV	SYSCL	K_SRC	_
p. 46		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 001E PLL	L_CFG4				-	_				FLL_BW_ MOD		FLL_BW			-	-	
p. 47		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 0058	SW_RESET	·		•	-	_	•	•	•				SW_	RST			
p. 47		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0064	DRIVE_	_	FS	YNC_OUT_I	DRV	_	ВС	CLK_OUT_D	RV	_	AL	X1_OUT_D	RV	I —	С	LK_OUT_DF	٦V
p. 47	STRENGTH1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
0x0000 0100	OUTPUT_CFG1		BCL	K_DIV			FSYN	IC_DIV		BCLK_ INV	BCLK_ OUT_DIS	_	FSYN	NC_DUTY_C	YCLE	FSYNC_ INV	FSYNC_ OUT_DIS
p. 48		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0102	OUTPUT_CFG2	CLK_IN_ INV	-	_	AL	JX1_OUT_S	EL	AUX2_C	UT_SEL		-	_		CLK_OI	JT_SEL	CLK_ OUT_INV	_
p. 48		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0104	AUTOMATIC_					_					ARC_EN		ARC_B	CLK_DIV		ARC_	MCLK
p. 49	RATE_ CONTROL_ CFG1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0108	PHASE_ ALIGNMENT_ CFG1	PHASE_ ALIGNME NT_EN				_				PHASE_ ALIGNME NT_STB_ EN	PHASE_ ALIGNME NT_ MODE	PHASE_ ALIGNME NT_TRIG	PH/ ALIGNMEI	ASE_ NT_SPEED	PHASE	_ALIGNMEI	NT_THR
p. 49		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0110	DEVICE ID1								DE	VID							
p. 50	_	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0
0x0000 0112	DEVICE_ID2				_	_				1	ARE	VID			MTLF	REVID	
p. 50		0	0	0	0	0	0	0	0	x	Х	X	Х	x	Х	Х	Х
0x0000 0114	UNLOCK_ INDICATORS						-	_						P_ UNLŌCK _STICKY	P UNLŌCK	F_ UNLŌCK _STICKY	F_ UNLŌCK
p. 50		0	0	0	0	0	0	0	0	0	0	0	0	0	x	0	x
0x0000 0116	ERROR_STS				-	_				ERR_ STS8	ERR_ STS7	ERR_ STS6	ERR_ STS5	ERR_ STS4	ERR_ STS3	ERR_ STS2	ERR_ STS1
p. 51		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 0120	OTP_VDD_ CTRL						-	_						OTP_ VDD_EN	_	OTP_ LDO_ DISCH_ EN	OTP_ LDO_EN
p. 51		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.2 KEYS

Address	Register	15 8	7	6	5	4	3	2	1	0
0x0000 1104	USER_KEY_	_				USER	R_KEY			
p. 52	REG	0x00	0	0	0	0	0	0	0	0

6.3 OTP_IF

Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 2300	OTP_IMG_RD1				OTP_IMG_F	RD_BYTE2						•	OTP_IMG_I	RD_BYTE1		•	
p. 52		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2302	OTP_IMG_RD2				OTP_IMG_F	RD_BYTE4							OTP_IMG_I	RD_BYTE3			
p. 52		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2304	OTP_IMG_RD3				OTP_IMG_F	RD_BYTE6							OTP_IMG_I	RD_BYTE5			
p. 52		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2306	OTP_IMG_RD4				OTP_IMG_F	RD_BYTE8							OTP_IMG_I	RD_BYTE7			
p. 53		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2308	OTP_IMG_RD5				OTP_IMG_R	RD_BYTE10							OTP_IMG_I	RD_BYTE9			
p. 53		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 230A	OTP_IMG_RD6				OTP_IMG_R	RD_BYTE12							OTP_IMG_F	RD_BYTE11			
p. 53		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0.0000 2.021	Address	Register	15	14	13	12 11	1	0	9	8	7	6	5	4 3	2	1	0
Common	0x0000 230C	_				OTP_IMG_RD_BY	TE14							OTP_IMG_RD_BYTE1	3		
Decompose	p. 53		0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
Composition	0x0000 230E	OTP_IMG_RD8				OTP_IMG_RD_BY	TE16							OTP_IMG_RD_BYTE1	5		
Decono 2012 Page	p. 53		0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
Composition Part	0x0000 2310	OTP_IMG_RD9				OTP_IMG_RD_BY	TE18							OTP_IMG_RD_BYTE1	7		
D. 6. R. R. R. R. R. R. R.	p. 54		0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
P. 14 Control Contro	0x0000 2312					OTP_IMG_RD_BY	TE20							OTP_IMG_RD_BYTE1	9		
Decondo 2516 Pip Mid.	p. 54	KDIU	0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
P.	0x0000 2314					OTP_IMG_RD_BY	TE22							OTP_IMG_RD_BYTE2	1		
Deconsideration Deconsider	p. 54	NUTT	0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
P. P. M. C. C. C. C. C. C. C.	0x0000 2316					OTP_IMG_RD_BY	TE24							OTP_IMG_RD_BYTE2	3		
P	· ·		0	0	0)	0	0	0	0	0			0	0
P. 54																	
Decono	· ·		0	0	0)	0	0	0	0	0			0	0
Common Casin Companies C										_						_	
P. 15	· ·	OTD 1140	0	0	0)	0	0	0	0	0			0	0
COMBINION OF COM			•	•	•				•		0	0	•				0
P. 10	· ·	OTD IMO	0	0	0)	0	0	0	0	0			0	0
NOTING N			0	0	0			,	0	0	0	0	0			0	0
P. 56 P. 19 P.		OTD IMC		U						0	U	0	- 0			0	U
ONDIONIO 2322 P.P. IMIG_			0	0	0			1	0	0	0	0	0			0	0
P. S5 P.		OTP IMG	- 0		- 0			,	-	0	0	- 0	- 0				
ONCOING 2324 OTP_IMIG_RD_BYTE3			0	0	0			1	0	0	0	0	0			0	0
P. 56	-	OTP IMG								-	0						
ONCOLOGIZABLE OTP_IMG_RD_BYTEAU OTP_IMG_			0	0	0)	0	0	0	0	0			0	0
P. 56	·	OTP IMG						-		-			-			-	
P. 56	p. 56		0	0	0	0 0	()	0	0	0	0	0			0	0
Description	0x0000 2328					OTP_IMG_RD_BY	TE42							OTP_IMG_RD_BYTE4	1		
P. 56	p. 56	RD21	0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
Description	0x0000 232A					OTP_IMG_RD_BY	TE44							OTP_IMG_RD_BYTE4	3		
P. 56	p. 56	RD22	0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
Description	0x0000 232C					OTP_IMG_RD_BY	TE46							OTP_IMG_RD_BYTE4	5		
p. 57 RD24 0	p. 56	RD23	0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						OTP_IMG_RD_BY	TE48							OTP_IMG_RD_BYTE4	7		
p. 57 0 <td>p. 57</td> <td>KD24</td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>(</td> <td>)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	p. 57	KD24	0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
p. 57 0 <td>0x0000 2340</td> <td>OTP IMG WR1</td> <td></td> <td></td> <td></td> <td>OTP IMG WR BY</td> <td>/TF2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>OTP IMG WR BYTE</td> <td>1</td> <td></td> <td></td>	0x0000 2340	OTP IMG WR1				OTP IMG WR BY	/TF2							OTP IMG WR BYTE	1		
0x0000 2342 OTP_IMG_WR2 OTP_IMG_WR_BYTE4 OTP_IMG_WR_BYTE5 OTP_IMG_		011 _11110_111111	0	0	0)	0	0	0	0	0			0	0
OTP_IMG_WR3		OTP IMG WR2						-			-		•				
OTP_IMG_WR3			0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
Ox0000 2346 OTP_IMG_WR4 OTP_IMG_WR_BYTE8 OTP_IMG_WR_BYTE8 OTP_IMG_WR_BYTE9 OTP_IMG_WR_BYTE9 OTP_IMG_WR_BYTE9 OTP_IMG_WR_BYTE9 OTP_IMG_WR_BYTE9 OTP_IMG_WR_BYTE9 OTP_IMG_WR_BYTE9 OTP_IMG_WR_BYTE9 OTP_IMG_WR_BYTE9 OTP_IMG_WR_BYTE11 OTP_IMG_WR_BYTE15 OTP_IMG_WR_BYTE		OTP_IMG_WR3											•			-	
OTP_IMG_WR4			0	0	0)	0	0	0	0	0			0	0
Ox0000 2348		OTP_IMG_WR4				OTP_IMG_WR_BY	/TE8							OTP_IMG_WR_BYTE	7		
p. 58 0 <td>p. 57</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>(</td> <td>)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	p. 57		0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
0x0000 234A OTP_IMG_WR6 OTP_IMG_WR_BYTE12 OTP_IMG_WR_BYTE11 OTP_IMG_WR_BYTE11 OTP_IMG_WR_BYTE11 OTP_IMG_WR_BYTE11 OTP_IMG_WR_BYTE11 OTP_IMG_WR_BYTE13 OTP_IMG_WR_BYTE15 OTP_IMG_WR_BYTE15 OTP_IMG_WR_BYTE15 OTP_IMG_WR_BYTE15 OTP_IMG_WR_BYTE17 OTP_IMG_WR_BYTE17		OTP_IMG_WR5				OTP_IMG_WR_BY	TE10							OTP_IMG_WR_BYTE	9		
p. 58 0 <td>p. 58</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>(</td> <td>)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	p. 58		0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
0x0000 234C OTP_IMG_WR7 OTP_IMG_WR_BYTE14 OTP_IMG_WR_BYTE13 p. 58 0	0x0000 234A	OTP_IMG_WR6				OTP_IMG_WR_BY	TE12							OTP_IMG_WR_BYTE1	1		
p. 58 0 <td>p. 58</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td></td> <td>)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	p. 58		0	0	0	0 0)	0	0	0	0	0	0 0	0	0	0
0x0000 234E OTP_IMG_WR8 OTP_IMG_WR_BYTE16 OTP_IMG_WR_BYTE15 p. 58 0	0x0000 234C	OTP_IMG_WR7				OTP_IMG_WR_BY	TE14							OTP_IMG_WR_BYTE1	3		
p. 58 0 <td>p. 58</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>(</td> <td>)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	p. 58		0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
0x0000 2350 OTP_IMG_WR9 OTP_IMG_WR_BYTE18 OTP_IMG_WR_BYTE17	0x0000 234E	OTP_IMG_WR8				OTP_IMG_WR_BY	TE16							OTP_IMG_WR_BYTE1	5		
	p. 58		0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0
	0x0000 2350	OTP_IMG_WR9													7		
p. 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	p. 58		0	0	0	0 0	()	0	0	0	0	0	0 0	0	0	0

Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 2352	OTP_IMG_		-	-	OTP_IMG_V	VR_BYTE20		-	-		-	-	OTP_IMG_V	VR_BYTE19)	-	-
p. 59	WR10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2354	OTP_IMG_				OTP_IMG_V	WR_BYTE22							OTP_IMG_V	VR_BYTE21			
p. 59	WR11 _	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2356	OTP_IMG_				OTP_IMG_V	WR_BYTE24							OTP_IMG_V	VR_BYTE23	3		
p. 59	WR12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2358	OTP_IMG_				OTP_IMG_V	WR_BYTE26							OTP_IMG_V	VR_BYTE25	5		
p. 59	WR13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 235A					OTP_IMG_V	WR_BYTE28							OTP_IMG_V	VR_BYTE27	,		
p. 59	WR14 _	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 235C	OTP_IMG_				OTP_IMG_V	WR_BYTE30							OTP_IMG_V	VR_BYTE29)		
p. 60	WR15 _	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 235E	OTP_IMG_				OTP_IMG_V	WR_BYTE32							OTP_IMG_V	VR_BYTE3			
p. 60	WR16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2360	OTP_IMG_				OTP_IMG_V	WR_BYTE34							OTP_IMG_V	VR_BYTE33	3		
p. 60	WR17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2362	OTP_IMG_				OTP_IMG_V	NR_BYTE36							OTP_IMG_V	VR_BYTE35	5		
p. 60	WR18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2364	OTP_IMG_				OTP_IMG_V	WR_BYTE38							OTP_IMG_V	VR_BYTE37	7		
p. 60	WR19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2366	OTP_IMG_				OTP_IMG_V	WR_BYTE40							OTP_IMG_V	WR_BYTE39)		
p. 61	WR20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 2368					OTP_IMG_V	WR_BYTE42							OTP_IMG_V	WR_BYTE4			
p. 61	WR21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 236A	OTP_IMG_				OTP_IMG_V	NR_BYTE44							OTP_IMG_V	WR_BYTE43	3		
p. 61	WR22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 236C	OTP_IMG_				OTP_IMG_V	NR_BYTE46							OTP_IMG_V	WR_BYTE4	5		
p. 61	WR23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 236E	OTP_IMG_				OTP_IMG_V	WR_BYTE48							OTP_IMG_V	WR_BYTE47	7		
p. 61	WR24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.4 OTP_CTRL

Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 2400	OTP_ CONTROL1							_	_							OTP_ PROG_ EN	_
p. 62		0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0

6.5 OTP_STS

Address	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0000 24A8	OTP_STS2		_		•		OTP_I	MG_ID			•		_	_			
p. 62		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0×0000 2440	OTD CTC2							OTD IMC	ECC_STS								
0x0000 24AC	UIP_8183			_	_			OTP_IIVIG_	_ECC_515				_	_			
p. 62		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0000 24BC	OTP_STS6					_					0	TP_IMG_NL	JM		_		OTP_ MODE
p. 62		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Copyright © 2023–2025 Cirrus Logic, Inc. and Cirrus Logic International Semiconductor Ltd.

Address: 0x0000 0004

7 Register Descriptions

This section describes each of the control port registers.

This register view is for the CS2600.

- A "—" represents a reserved field/access type.
- The reserved field values must not be modified.
- The registers are 16 bits wide, and only word transactions are allowed.
- Fields shown in orange are affected by the FREEZE bit.
- All visible fields are read/write except where indicated with the following shading:

Read/write access	Read-only access	Write-only access	User key password access
-------------------	------------------	-------------------	--------------------------

7.1 CONFIG

7.1.1 PLL_CFG1

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RATIO_MOD	·	S_RAT	IO_SEL	_	_	PLL_EN1			_	_			AUX1_ OUT_DIS	CLK_OUT_ DIS
Default	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

Bits	Name		Description	
15:13	RATIO_MOD	Ratio modifier control. Adjusts the PLL	ratio by the selected multiplier/division factor.	
		000 = (Default) Multiply x1 001 = Multiply x2 010 = Multiply x4 011 = Multiply x8	100 = Divide /2 101 = Divide /4 110 = Divide /8 111 = Divide /16	
12:11	S_RATIO_SEL	Ratio selection in Synthesizer Mode.		
		00 = (Default) Ratio 1 01 = Ratio 2	10 = Ratio 3 11 = Ratio 4	
10:9	_	Reserved		
8	PLL_EN1	PLL enable. Note that PLL_EN2 must a 0 = (Default) Disabled 1 = Enabled	lso be set to enable the PLL.	
7:2	_	Reserved		
1	AUX1_OUT_DIS	AUX1_OUT disable. If disabled, the out 0 = (Default) Output enabled 1 = Output disabled (Hi-Z)	put driver is high-impedance (Hi-Z).	
0	CLK_OUT_DIS	CLK_OUT disable. If disabled, the outp 0 = (Default) Output enabled 1 = Output disabled (Hi-Z)	ut driver is high-impedance (Hi-Z).	

7.1.2 PLL CFG2

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-	_		FREEZE_ EN	_	_	PLL_EN2			_			M_RAT	IO_SEL	PLL_ MODE_ SEL
Default	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

Bits	Name	Description
15:12	_	Reserved
11	FREEZE_EN	Freeze register control. If enabled, the freezable fields hold their current values. Any updates to these fields are buffered until FREEZE_EN is cleared. 0 = (Default) Disabled 1 = Enabled
10:9	_	Reserved

Bits	Name	Description
8	PLL_EN2	PLL enable. Note that PLL_EN1 must also be set to enable the PLL.
		0 = (Default) Disabled 1 = Enabled
7:3	_	Reserved
2:1	M_RATIO_SEL	Ratio selection in Multiplier Mode.
		00 = (Default) Ratio 1
0	PLL_MODE_SEL	PLL mode control. Selects Multiplier Mode or Synthesizer Mode. Only valid if S_RATIO_SEL and M_RATIO_SEL are set to the same value.
		0 = (Default) Synthesizer Mode 1 = Multiplier Mode

7.1.3	R	ATIO1	_1										Addre	ss: 0x00	00 0006
RW	15	14	13	12	11	10	9	8 7	6	5	4	3	2	1	0
								RATIO1_1				•			
Default	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0
Bits		Name						De	scriptio	n					
15:0	I	RATIO1_	1	Ratio 1, b	oits [31:1	6].									

7.1.4	F	RATIO1	_2											Addre	ss: 0x00	8000 000
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								RAT	101_2							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dito		Nama							Dr	corintio	n					

Bits	Name	Description
15:0	RATIO1_2	Ratio 1, bits [15:0].

7.1.5	K.	A 1102	_1											Addres	s: uxuu	UU UUUA
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								RATI	02_1							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:0	RATIO2_1	Ratio 2, bits [31:16].

7.1.6	i R	ATIO2	_2											Addres	s: 0x00	00 000C
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					•			RATI	O2_2				•			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:0	RATIO2_2	Ratio 2, bits [15:0].

7.1.7	R	ATIO3	_1											Addres	s: 0x00	00 000E
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								RATI	O3_1							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																$\overline{}$

Bits	Name	Description
15:0	RATIO3_1	Ratio 3, bits [31:16].

7.1.8	R	ATIO3	_2											Addres	ss: 0x00	00 0010
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								RATI	O3_2							
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:0	RATIO3_2	Ratio 3, bits [15:0].

7.1.9 RATIO4_1 Address: 0x0000 0012

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RATIO4_1															
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:0	RATIO4_1	Ratio 4, bits [31:16].

7.1.10 RATIO4 2 Address: 0x0000 0014

RW	15	14	– 13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RATIO4_2															
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bits	Name	Description
Ī	15:0	RATIO4_2	Ratio 4, bits [15:0].

7.1.11 PLL_CFG3 Address: 0x0000 0016

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	OUT_GAT	TE_TYPE	OUT_ GATE	RATIO_ CFG		-	_		AUX_ OUT_CFG	_	REF_CLI	K_IN_DIV	SYSCL	K_SRC	_
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15		Reserved
14:13	OUT_GATE_TYPE	Output gate type. Selects the logic condition used to determine if the outputs are valid.
		00 = (Default) Frequency unlock (F_UNLOCK) 10 = Analog PLL unlock 11 = Reserved
12	OUT_GATE	Output gate control. Selects whether the clock outputs are stopped automatically if they are not valid.
		0 = (Default) Enabled 1 = Disabled
11	RATIO_CFG	Ratio format control. Selects format for the ratio selected by M_RATIO_SEL. Note this field has no effect in Synthesizer Mode.
		0 = (Default) High multiplication (20.12) 1 = High resolution (12.20)
10:7	_	Reserved
6	AUX_OUT_CFG	AUX1 and AUX2 driver configuration. Only valid for lock/status output signals; clock outputs are CMOS in all cases.
		0 = (Default) CMOS. Active high (Logic 1 indicates unlock or clock-missing status). 1 = Open Drain. Active low (Logic 0 indicates unlock or clock-missing status).
5	_	Reserved
4:3	REF_CLK_IN_DIV	REF_CLK_IN input divider.
		00 = (Default) Divide by 4 10 = Divide by 1 11 = Reserved
2:1	SYSCLK_SRC	Source selection for the PLL timing reference SYSCLK between REF_CLK_IN and the internal oscillator
		00 = (Default) Automatic selection10 = Internal oscillator01 = REF_CLK_IN11 = Reserved
0	_	Reserved

Address: 0x0000 001E

Address: 0x0000 0058

Address: 0x0000 0064

7.	.1	.1	2	PLL	. CFG4
----	----	----	---	-----	--------

RW	158	7	6	5	4	3	2	1	0
		FLL_BW_MOD		FLL_BW			-	_	
Default	0x00	1	0	0	0	0	0	0	0

Bits	Name	Description
15:8	_	Reserved
7	FLL_BW_MOD	FLL bandwidth multiplication factor. Modifies the bandwidth selected by FLL_BW. 0 = FLL_BW is multiplied by 1 1 = (Default) FLL_BW is multiplied by 16
6:4	FLL_BW	FLL bandwidth select. Note the FLL bandwidth is also determined by the multiplication factor, FLL_BW_MOD. 000 = (Default) 1 Hz 001 = 2 Hz 010 = 4 Hz 111 = 128 Hz
3:0	_	Reserved

7.1.13 SW_RESET

WO	158	7	6	5	4	3	2	1	0			
	_	SW_RST										
Default	0x00	0	0	0	0	0	0	0	0			

Bits	Name		Description								
15:8	_	Reserved	erved								
7:0	SW_RST	Software reset. Write 0x5A to execute a se	ftware reset. Write 0x5A to execute a software reset.								
		0x00 = (Default) No action 0x01–0x59 = Reserved	0x5A = Software reset 0x5B–0xFF = Reserved								

7.1.14 DRIVE_STRENGTH1

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	FSY	/NC_OUT_D	RV	_	ВС	LK_OUT_DI	RV	_	AL	JX1_OUT_DI	RV		С	LK_OUT_DR	V
Default	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0

Bits	Name		Description
15	_	Reserved	
14:12	FSYNC_OUT_DRV	FSYNC_OUT drive strength.	
		000 = 2 mA 001 = 4 mA	100 = (Default) 10 mA
			111 = 16 mA
11	_	Reserved	
10:8	BCLK_OUT_DRV	BCLK_OUT drive strength.	
		000 = 2 mA	100 = (Default) 10 mA
		001 = 4 mA 	111 = 16 mA
7	_	Reserved	
6:4	AUX1_OUT_DRV	AUX1_OUT drive strength.	
		000 = 2 mA	100 = (Default) 10 mA
		001 = 4 mA 	111 = 16 mA
3	_	Reserved	
2:0	CLK_OUT_DRV	CLK_OUT drive strength.	
		000 = 2 mA	100 = (Default) 10 mA
		001 = 4 mA 	111 = 16 mA

Address: 0x0000 0102

7.1.15 **OUTPUT_CFG1**

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		BCLK	_DIV			FSYNC_DIV BCLK_INV BCLK — FSYNC_DUTY_CYCLE						FSYNC_ INV	FSYNC_ OUT_DIS			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name		Description
15:12	BCLK_DIV	BCLK output divider. Note this field has	no effect if automatic rate control (ARC) is enabled.
		0x0 = (Default) Divide by 1 0x1 = Divide by 2 0x2 = Divide by 3 0x3 = Divide by 4 0x4 = Divide by 6 0x5 = Divide by 8	0x6 = Divide by 12 0x7 = Divide by 16 0x8 = Divide by 24 0x9 = Divide by 32 0xA = Divide by 48 0xB-0xF = Reserved
11:8	FSYNC_DIV	FSYNC output divider. Note this field has	s no effect if automatic rate control (ARC) is enabled.
		0x0 = (Default) Divide by 16 0x1 = Divide by 32 0x2 = Divide by 64 0x3 = Divide by 128 0x4 = Divide by 256 0x5 = Divide by 512 0x6 = Divide by 1024	0x7 = Divide by 192 0x8 = Divide by 384 0x9 = Divide by 768 0xA = Divide by 1536 0xB = Divide by 576 0xC = Divide by 1152 0xD-0xF = Reserved
7	BCLK_INV	BCLK polarity select. 0 = (Default) Normal 1 = Inverted	
6	BCLK_OUT_DIS	BCLK_OUT disable. If disabled, the outp	out driver is high-impedance (Hi-Z).
		0 = (Default) Output enabled 1 = Output disabled (Hi-Z)	
5	_	Reserved	
4:2	FSYNC_DUTY_ CYCLE	FSYNC output duty-cycle control. Note t 000 = (Default) 50% duty cycle 001 = 1 BCLK period 010 = 2 BCLK periods 011 = 4 BCLK periods	he FSYNC duty cycle must be configured less than or equal to 50%. 100 = 8 BCLK periods 101 = 16 BCLK periods 110 = 32 BCLK periods 111 = Reserved
1	FSYNC_INV	FSYNC polarity select. 0 = (Default) Normal 1 = Inverted	
0	FSYNC_OUT_DIS	FSYNC_OUT disable. If disabled, the out 0 = (Default) Output enabled 1 = Output disabled (Hi-Z)	ıtput driver is high-impedance (Hi-Z).

7.1.16 **OUTPUT_CFG2**

RW	15	14	 13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CLK_IN_ INV	_	-	AL	JX1_OUT_S	ΞL	AUX2_O	UT_SEL		_	-		CLK_OL	JT_SEL	CLK_OUT_ INV	_
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name		Description
15	CLK_IN_INV	CLK_IN polarity select.	
		0 = (Default) Normal 1 = Inverted	
14:13	_	Reserved	
12:10	AUX1_OUT_SEL	AUX1_OUT function select.	
		000 = (Default) REF_CLK_IN 001 = CLK_IN 010 = CLK_OUT 011 = Frequency unlock (F_UNLOCK)	100 = Phase unlock (P_UNLOCK) 101 = BCLK 110 = FSYNC 111 = CLK_IN (clock missing)
9:8	AUX2_OUT_SEL	AUX2_OUT function select.	
		00 = (Default) Disabled 01 = Frequency unlock (F_UNLOCK)	10 = Phase unlock (P_UNLOCK) 11 = CLK_IN (clock missing)
7:4	<u>-</u>	Reserved	

Address: 0x0000 0108

Bits	Name	Description						
3:2	CLK_OUT_SEL	LK_OUT function. Selects clock source for CLK_OUT.						
		00 = (Default) MCLK 10 = ALTCLK 1.882/2.048 MHz 11 = ALTCLK 2.053/2.234 MHz						
1	CLK_OUT_INV	CLK_OUT polarity select.						
		0 = (Default) Normal 1 = Inverted						
0	_	Reserved						

7.1.17 AUTOMATIC_RATE_CONTROL_CFG1

RW	158	7	6	5	4	3	2	1	0
	_	_	ARC_EN		ARC_BC	ARC_MCLK			
Default	0x00	0	0	0	0	0	0	0	0

Bits	Name	De	scription				
15:7	_	Reserved					
6	ARC_EN	Automatic rate control (ARC) enable. 0 = (Default) Disabled 1 = Enabled					
5:2	ARC_BCLK_DIV	BCLK output control in ARC mode. 0x0 = (Default) FSYNC x64 0x1 = FSYNC x128 0x2 = FSYNC x256 0x3 = FSYNC x512 0x4 = FSYNC x1024 0x5 = MCLK /1	0x6 = MCLK /2 0x7 = MCLK /4 0x8 = MCLK /8 0x9 = MCLK /16 0xA-0xF = Reserved				
1:0	ARC_MCLK	MCLK output control in ARC mode. Note the output frequency depends on whether the clock referentiable of 48 kHz or 44.1 kHz. 00 = (Default) 12.288/11.2896 MHz 01 = 24.576/22.5792 MHz 10 = 49.152/45.1584 MHz 11 = Reserved					

7.1.18 PHASE_ALIGNMENT_CFG1

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PHASE_ ALIGNME NT_EN				_		-		PHASE_ ALIGNME NT_STB_ EN	PHASE_ ALIGNME NT_MODE	PHASE_ ALIGNME NT_TRIG	PHASE_AL	IGNMENT_ EED	PHASE	_ALIGNMEN	IT_THR
Access	RW				_				RW	RW	WO	R	W		RW	
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15	PHASE_	Phase-alignment enable.
	ALIGNMENT_EN	0 = (Default) Disabled 1 = Enabled
14:8	_	Reserved
7	PHASE_ ALIGNMENT_STB_ EN	Phase-alignment stability control. If this bit is set, the phase-alignment process is only executed if the phase offset is stable. 0 = (Default) Disabled 1 = Enabled
6	PHASE_ ALIGNMENT_MODE	Phase-alignment trigger mode. 0 = (Default) Automatic 1 = Manual
5	PHASE_ ALIGNMENT_TRIG	Phase-alignment manual trigger. Write 1 to trigger the phase-alignment process in manual mode. 0 = (Default) No action 1 = Trigger

Address: 0x0000 0112

Address: 0x0000 0114

Bits	Name	Description						
4:3	PHASE_ ALIGNMENT_	hase-alignment speed. Selects the phase-alignment rate by configuring the maximum permitted stretching ne FSYNC cycle.						
	SPEED	00 = (Default) 1 MCLK per FSYNC cycle 01 = 10 MCLK per FSYNC cycle	10 = 50 MCLK per FSYNC cycle 11 = Maximum					
2:0	PHASE_ ALIGNMENT_THR	Phase-alignment threshold. Selects the phase-offset threshold to trigger the phase-alignment process automatic mode.						
		000 = (Default) 2 MCLK periods 001 = 4 MCLK periods 010 = 8 MCLK periods 011 = 16 MCLK periods	100 = 32 MCLK periods 101 = 64 MCLK periods 110 = 128 MCLK periods 111 = 256 MCLK periods					

7.1.19 **DEVICE_ID1**

RO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DEVID															
Default	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:0	DEVID	Device ID. A value of 0x2600 indicates the device is a CS2600.

7.1.20 **DEVICE_ID2**

RO	158	7	6	5	4	3	2	1	0
	_		ARE	VID		MTLREVID			
Default	0x00	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name Description						
15:8	_	Reserved					
7:4	AREVID	All-layer device revision. This field is incremented for every all-layer revision of the device.					
3:0	MTLREVID	Metal-layer device revision. This field is incremented for every metal-layer revision of the device.					

7.1.21 UNLOCK_INDICATORS

	158	7	6	5	4	3	2	1	0
	_		_	_		P_UNLOCK_STICKY	P_UNLOCK	F_UNLOCK_STICKY	F_UNLOCK
Access	_		_	_		W1C	RO	W1C	RO
Default	0x00	0	0	0	0	0	Х	0	Х

Bits	Name	Description
15:4	_	Reserved
3	P_UNLOCK_STICKY	Phase-unlock status. This bit is latching when set, it remains set until cleared by writing 1.
		0 = (Default) Locked 1 = Unlocked
2	P_UNLOCK	Phase-unlock status.
		0 = Locked 1 = Unlocked
1	F_UNLOCK_STICKY	Frequency-unlock status. This bit is latching when set, it remains set until cleared by writing 1. 0 = (Default) Locked 1 = Unlocked
0	F_UNLOCK	Frequency-unlock status. 0 = Locked 1 = Unlocked

Address: 0x0000 0120

7.1.22 ERROR_STS

W1C	158	7	6	5	4	3	2	1	0
	_	ERR_STS8	ERR_STS7	ERR_STS6	ERR_STS5	ERR_STS4	ERR_STS3	ERR_STS2	ERR_STS1
Default	0x00	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	_	Reserved
7	ERR_STS8	Error status bit indicates the device is defective. This bit is latching when set, it remains set until cleared by writing 1. 0 = (Default) Normal 1 = Error
6	ERR_STS7	Error status bit indicates the OTP memory is corrupt. This bit is latching when set, it remains set until cleared by writing 1. 0 = (Default) Normal 1 = Error
5	ERR_STS6	Error status bit indicates invalid register configuration. This bit is latching when set, it remains set until cleared by writing 1. 0 = (Default) Normal 1 = Error
4	ERR_STS5	Error status bit indicates the PLL is disabled. This bit is latching when set, it remains set until cleared by writing 1. 0 = (Default) Normal 1 = Error
3	ERR_STS4	Error status bit indicates invalid hardware configuration. This bit is latching when set, it remains set until cleared by writing 1. 0 = (Default) Normal 1 = Error
2	ERR_STS3	Error status bit indicates REF_CLK_IN is not present. This bit is latching when set, it remains set until cleared by writing 1. 0 = (Default) Normal 1 = Error
1	ERR_STS2	Error status bit indicates CLK_IN is not stable. This bit is latching when set, it remains set until cleared by writing 1. 0 = (Default) Normal 1 = Error
0	ERR_STS1	Error status bit indicates CLK_IN is not present. This bit is latching when set, it remains set until cleared by writing 1. 0 = (Default) Normal 1 = Error

7.1.23 OTP_VDD_CTRL

RW	158	7	6	5	4	3	2	1	0
	1		-	_		OTP_VDD_EN	_	OTP_LDO_DISCH_ EN	OTP_LDO_EN
Default	0x00	0	0	0	0	0	0	0	0

Bits	Name	Description
15:4	_	Reserved
3	OTP_VDD_EN	Enables the OTP programming supply
		0 = (Default) Disabled 1 = Enabled
2	_	Reserved
1	OTP_LDO_DISCH_ EN	LDO output discharge 0 = (Default) Disabled 1 = Enabled
0	OTP_LDO_EN	LDO enable (for OTP programming) 0 = (Default) Disabled 1 = Enabled

Address: 0x0000 2300

Address: 0x0000 2302

Address: 0x0000 2304

7.2 KEYS

7.2.1 USER_KEY_REG

WO	158	7	6	5	4	3	2	1	0	
	_	USER_KEY								
Default	0x00	0	0	0	0	0	0	0	0	

Bits	Name	Description
15:8	_	Reserved
7:0	USER_KEY	User Key control – requires two writes to set (unlock):
		0xAA followed by 0x55 sets the key
		A write of any other byte value unsets (locks) the key

7.3 OTP_IF

7.3.1 OTP_IMG_RD1

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_	RD_BYTE2							OTP_IMG_	RD_BYTE1			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_RD_ BYTE2	OTP image byte 2 read field
7:0	OTP_IMG_RD_ BYTE1	OTP image byte 1 read field

7.3.2 OTP_IMG_RD2

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_	RD_BYTE4							OTP_IMG_	RD_BYTE3			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_RD_ BYTE4	OTP image byte 4 read field
7:0	OTP_IMG_RD_ BYTE3	OTP image byte 3 read field

7.3.3 OTP_IMG_RD3

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_	RD_BYTE6							OTP_IMG_	RD_BYTE5			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_RD_ BYTE6	OTP image byte 6 read field
7:0	OTP_IMG_RD_ BYTE5	OTP image byte 5 read field

			.03	LOC												OTP_IF
7.3.4	0	TP_IM	IG_R	RD4										Addres	ss: 0x00	00 230
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_F	RD_BYTE8							OTP_IMG_	RD_BYTE7			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	escriptio	n					
15:8		P_IMG_R BYTE8		OTP imag												
7:0	OTF	P_IMG_R BYTE7	RD_	OTP imag	je byte 7	read fi	eld									
7.3.5	0	TP_IM	IG_R	RD5										Addres	ss: 0x00	00 230
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_R	D_BYTE10							OTP_IMG_	_RD_BYTE9			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	escriptio	n					-
15:8		P_IMG_R BYTE10	RD_	OTP imag	e byte 10) read	field									
7:0	OTF	P_IMG_R BYTE9	RD_	OTP imag	je byte 9	read fi	eld									
7.3.6	0	TP_IM	IG_R	D6										Addres	ss: 0x000	00 230/
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D (OTP_IMG_R						•			RD_BYTE11			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	escriptio	n					
15:8	E	P_IMG_R BYTE12		OTP imag												
7:0	OTF	P_IMG_R BYTE11	RD_ 	OTP imag	je byte 1	1 read	field									
7.3.7	0	TP_IM	IG_R	RD7										Addres	ss: 0x000	00 2300
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
5 ("				OTP_IMG_R									RD_BYTE13			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	escriptio	n					
15:8	I	P_IMG_R BYTE14		OTP imag												
7:0	OTF	P_IMG_R BYTE13	RD_	OTP imag	je byte 14	4 read	field									
7.3.8	0	TP_IM	IG_R	RD8										Addres	ss: 0x000	00 230F
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_ ,				OTP_IMG_R					_				RD_BYTE15			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name			_		_	_	De	escriptio	n		_			
15:8	I	P_IMG_R BYTE16		OTP imag	je byte 16	6 read	field									
7.0	~==	1110		OTD:												

				LOC	<i></i>										7.3 (OTP_II
7.3.9	0	TP_IM	IG R	RD9										Addres	ss: 0x00	00 231
RW	15	14	– 13	12	11	10	9	8	7	6	5	4	3	2	1	0
-					RD_BYTE18								RD_BYTE17			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	scriptio	n					
15:8		P_IMG_R BYTE18	RD_	OTP ima	ge byte 18	3 read	field									
7:0		P_IMG_R BYTE17	RD_	OTP ima	ge byte 17	read	field									
7.3.1	0 0	TP_IM	IG_R	RD10										Addres	ss: 0x00	00 231
RW	15	<u> </u>	 13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-				RD_BYTE20							OTP_IMG_	RD_BYTE19			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	scriptio	n					
15:8	OTF	P_IMG_R BYTE20	RD_	OTP ima	ge byte 20	read	field									
7:0		P_IMG_R BYTE19	RD_	OTP ima	ge byte 19	read	field									
7.3.1	1 0	TP_IM	IG_R	RD11										Addres	ss: 0x00	00 231
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_	RD_BYTE22							OTP_IMG_	RD_BYTE21			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	scriptio	n					
15:8	ОТГ	P_IMG_R BYTE22	RD_	OTP ima	ge byte 22	2 read	field									
7:0	OTF	P_IMG_R BYTE21	RD_	OTP ima	ge byte 21	l read	field									
7.3.1	2 0	TP_IM	IG_R	RD12										Addres	ss: 0x00	00 231
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Default	0	0	0	OTP_IMG_ 0	RD_BYTE24	0	0	0	0	0	0	OTP_IMG_ 0	RD_BYTE23	0	0	0
									l				0			
Bits	OT	Name		OTD:			C 11		De	scriptio	n					
15:8	OII	P_IMG_R BYTE24	KD_	OTPima	ge byte 24	read	field									
7:0	ОТЕ	P_IMG_R BYTE23	RD_	OTP ima	ge byte 23	3 read	field									
7.3.1	3 O	TP_IM	IG_R	RD13										Addres	ss: 0x00	00 231
RW	15	14	13	12 OTD IMC	11	10	9	8	7	6	5	4	3	2	1	0
Default	0	0	0	OTP_IMG_ 0	RD_BYTE26	0	0	0	0	0	0	01P_IMG_ 0	RD_BYTE25	0	0	0
Bits		Name							De	scriptio	n					
15:8	ОТЕ	P_IMG_R	RD	OTP ima	ge byte 26	read	field			. μ						
-	1 1		_	1	_ ,											

7:0

BYTE26

OTP_IMG_RD_
BYTE25

OTP image byte 25 read field

Address: 0x0000 231A

Address: 0x0000 231C

Address: 0x0000 231E

Address: 0x0000 2320

Address: 0x0000 2322

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	OTP_IMG_RD_BYTE28 OTP_IMG_RD_BYTE27															
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_RD_ BYTE28	OTP image byte 28 read field
7:0	OTP_IMG_RD_ BYTE27	OTP image byte 27 read field

7.3.15 OTP_IMG_RD15

		_	_													
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_F	RD_BYTE30							OTP_IMG_F	RD_BYTE29			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_RD_ BYTE30	OTP image byte 30 read field
7:0	OTP_IMG_RD_ BYTE29	OTP image byte 29 read field

7.3.16 OTP_IMG_RD16

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_F	RD_BYTE32							OTP_IMG_F	RD_BYTE31			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_RD_ BYTE32	OTP image byte 32 read field
7:0	OTP_IMG_RD_ BYTE31	OTP image byte 31 read field

7.3.17 OTP_IMG_RD17

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_F	RD_BYTE34							OTP_IMG_F	RD_BYTE33			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_RD_ BYTE34	OTP image byte 34 read field
7:0	OTP_IMG_RD_ BYTE33	OTP image byte 33 read field

7.3.18 OTP_IMG_RD18

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_F	RD_BYTE36							OTP_IMG_F	RD_BYTE35			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_RD_ BYTE36	OTP image byte 36 read field
7:0	OTP_IMG_RD_ BYTE35	OTP image byte 35 read field

7.3.1	9 0	TP_IN	IG_R	D19										Addre	ss: 0x00	00 23
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_	RD_BYTE38							OTP_IMG_F	RD_BYTE37			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	escriptio	n					
15:8	ОТГ	P_IMG_F BYTE38	RD_	OTP ima	ige byte 3	8 read f	ield									
7:0		P_IMG_F BYTE37	RD_	OTP ima	ige byte 3	7 read f	ield									
7.3.2	0 0	TP_IN	IG_R	D20										Addre	ss: 0x00	00 2
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	C
					RD_BYTE40							OTP_IMG_F				
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
Bits		Name							De	escriptio	n					
15:8		P_IMG_F BYTE40	RD_	OTP ima	ige byte 4	0 read f	ield									
		DIIL40														
7:0	ОТЕ	P_IMG_F BYTE39	RD_	OTP ima	ige byte 3	9 read f	ield									
7.3.2 ⁻	ОТГ	P_IMG_F			ige byte 3	9 read f	ield							Addre	ss: 0x00	000 2
	ОТГ	P_IMG_F BYTE39		R D21	11	9 read fi	ield 9	8	7	6	5	4	3	Addre 2	ss: 0 x00	
7.3.2°	OTF 1 O	P_IMG_F BYTE39 TP_IM	- I G_R	2 D21 12 OTP_IMG_	11 RD_BYTE42	10	9					OTP_IMG_F	RD_BYTE41	2	1	(
7.3.2°	отг 1 О	P_IMG_F BYTE39	IG_R	R D21	11			8	7 0	6	5					(
7.3.2° RW	OTF 1 0 15	P_IMG_F BYTE39 TP_IM 14 0 Name	13 0	2 D21 12 OTP_IMG_	11 RD_BYTE42	10	9		0		0	OTP_IMG_F	RD_BYTE41	2	1	(
7.3.2°	OTF 1 O 15 0	P_IMG_F BYTE39 TP_IM 14	13 0	12 OTP_IMG_ 0	11 RD_BYTE42	10	9		0	0	0	OTP_IMG_F	RD_BYTE41	2	1	(
7.3.2° RW Default Bits	OTF 1 O 15 0 OTF	TP_IMG_F BYTE39 TP_IM 14 0 Name P IMG F	13 0 RD_	T2 OTP_IMG_ 0 OTP ima	11 RD_BYTE42 0	10 0 2 read fi	9 0 ield		0	0	0	OTP_IMG_F	RD_BYTE41	2	1	(
7.3.2° RW Default Bits 15:8 7:0	OTF	TP_IMG_F BYTE39 TP_IM 14 0 Name P_IMG_F BYTE42 P_IMG_F	13 0 RD_	D21 12 OTP_IMG_ 0 OTP ima	11 RD_BYTE42 0 age byte 4	10 0 2 read fi	9 0 ield		0	0	0	OTP_IMG_F	RD_BYTE41	0	1	(
7.3.2° RW Default Bits 15:8 7:0	OTF	P_IMG_F BYTE39 TP_IM 14 0 Name P_IMG_F BYTE42 P_IMG_F BYTE41	13 0 RD_	D21 12 OTP_IMG_ 0 OTP ima OTP ima	11 RD_BYTE42 0 age byte 4 age byte 4	10 0 2 read fi	9 0 ield		0	0	0	OTP_IMG_F 0	RD_BYTE41	0 Address	0	00 2
7.3.2' RW Default Bits 15:8 7:0	OTF OTF OTF OTF	P_IMG_F BYTE39 TP_IN 14 0 Name P_IMG_F BYTE42 P_IMG_F BYTE41 TP_IN 14	13 0 RD_ RD_ 13 13 13	D21 12 OTP_IMG_ 0 OTP ima OTP ima RD22 12 OTP_IMG_	11 RD_BYTE42 0 age byte 4 age byte 4	10 0 2 read fi 1 read fi	9 0 ield ield	8	7	0 escriptio	0 n	OTP_IMG_F 0 4 OTP_IMG_F	RD_BYTE41 0 3 RD_BYTE43	0 Address 2	1 0 ss: 0x00	00 2
7.3.2' RW Default Bits 15:8 7:0	OTF OTF	TP_IMG_F BYTE39 TP_IM 14 0 Name P_IMG_F BYTE42 P_IMG_F BYTE41 TP_IM	13 0 RD_	D21 12 OTP_IMG_ 0 OTP ima OTP ima	11 RD_BYTE42 0 age byte 4 age byte 4	10 0 2 read fi	9 0 iield	0	De	0 escriptio	0 n	OTP_IMG_F 0	RD_BYTE41	0 Address	0 ss: 0x00	000 2
7.3.22 RW Default Bits 15:8 7:0 7.3.22 RW Default	OTF OTF OTF OTF	P_IMG_F BYTE39 TP_IN 14 0 Name P_IMG_F BYTE42 P_IMG_F BYTE41 TP_IN 14	13 0 RD_ RD_ 13 13 13	D21 12 OTP_IMG_ 0 OTP ima OTP ima RD22 12 OTP_IMG_	11 RD_BYTE42 0 age byte 4 age byte 4	10 0 2 read fi 1 read fi	9 0 ield ield	8	7 0	0 escriptio	5 0	OTP_IMG_F 0 4 OTP_IMG_F	RD_BYTE41 0 3 RD_BYTE43	0 Address 2	1 0 ss: 0x00	000 2
7.3.2° RW Default Bits 15:8 7:0	OTF OTF OTF OTF OTF	P_IMG_F BYTE39 TP_IM 14 0 Name P_IMG_F BYTE42 P_IMG_F BYTE41 TP_IM 14	13 0 RD_ 13 0 RD_ 13 RD_ 14 RD_ 15 RD	D21 12 OTP_IMG_ 0 OTP ima OTP ima RD22 12 OTP_IMG_ 0	11 RD_BYTE42 0 age byte 4 age byte 4	10 0 2 read fi 1 read fi 10	9 0 iield 9 0	8	7 0	0 escriptio	5 0	OTP_IMG_F 0 4 OTP_IMG_F	RD_BYTE41 0 3 RD_BYTE43	0 Address 2	1 0 ss: 0x00	(

Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	scriptio	n					
15:8	1	P_IMG_R BYTE46	D_	OTP ima	ge byte 4	16 read t	field									
7:0	ОТ	P_IMG_R BYTE45	D_	OTP ima	ge byte 4	15 read t	field									

RW

12

OTP_IMG_RD_BYTE46

11

0

OTP_IMG_RD_BYTE45

		CIKI	KUS		JIC.											OTP_IF
7.3.2	4 0	TP_IN	IG_F	RD24										Address	s: 0x00	00 232E
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					RD_BYTE48								RD_BYTE47			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	escriptio	n					
15:8		P_IMG_F BYTE48		OTP ima	ige byte 4	l8 read f	ield									
7:0		P_IMG_F BYTE47	RD_	OTP ima	ige byte 4	17 read f	ield									
7.3.2	5 O	TP_IN	1G_V	VR1										Address	s: 0x00	00 2340
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG	WR_BYTE2							OTP_IMG_	WR_BYTE1			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	escriptio	n					
15:8	ОТЕ	P_IMG_V BYTE2	VR_	OTP ima	ige byte 2	2 write fie	eld									
7:0	ОТЕ	P_IMG_V BYTE1	VR_	OTP ima	ige byte 1	write fie	eld									
7.3.2	6 O	TP_IN	IG_V	VR2										Address	s: 0x00	00 2342
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG	_WR_BYTE4							OTP_IMG_	WR_BYTE3			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	escriptio	n					
15:8	ОТЕ	P_IMG_V BYTE4	VR_	OTP ima	ige byte 4	write fie	eld									
7:0	ОТЕ	P_IMG_V BYTE3	VR_	OTP ima	ige byte 3	3 write fie	eld									
7.3.2	7 0	TP_IN	1G_V	VR3										Address	s: 0x00	00 2344
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG	_WR_BYTE6							OTP_IMG_	WR_BYTE5			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	escriptio	n					
15:8	OTF	P_IMG_V BYTE6	VR_	OTP ima	ige byte 6	3 write fie	eld									
7:0	ОТЕ	P_IMG_V BYTE5	VR_	OTP ima	ige byte 5	write fie	eld									
7.3.2	8 O	TP_IN	IG_V	VR4										Address	s: 0x00	00 2346
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					_WR_BYTE8							OTP_IMG_	WR_BYTE7			

Bits	Name	Description
15:8	OTP_IMG_WR_ BYTE8	OTP image byte 8 write field
7:0	OTP_IMG_WR_ BYTE7	OTP image byte 7 write field

Default 0

				LOC												DTP_IF
7.3.2	9 0	TP_IM	IG_W	VR5										Addres	ss: 0x00	00 2348
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_V									WR_BYTE9			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits	0.75	Name		OTD:			C . 1.1		De	scription	1					
15:8	OIF	P_IMG_W BYTE10	/R_	OTP imag	ge byte 10) write	field									
7:0		P_IMG_W BYTE9	/R_	OTP imag	ge byte 9	write fi	eld									
7.3.3	0 0	TP_IM	IG_W	VR6										Addres	s: 0x000)0 234 <i>A</i>
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_V									WR_BYTE11			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	scription	1					
15:8		P_IMG_W BYTE12		OTP imag												
7:0		P_IMG_W BYTE11	/R_	OTP imag	ge byte 11	write	field									
7.3.3 ⁻	1 0	TP_IM	IG_W	VR7	1				ı				1	Addres	s: 0x000)0 2340
RW	15	14	13	12 OTP_IMG_V	11 VD_DVTC14	10	9	8	7	6	5	4	3	2	1	0
 Default	0	0	0	0	0	0	0	0	0	0	0	0	WR_BYTE13	0	0	0
Bits		Name							De	scription	1		<u>'</u>			
15:8	OTF	P_IMG_W BYTE14	/R_	OTP imag	ge byte 14	write	field									
7:0		P_IMG_W BYTE13	/R_	OTP imag	ge byte 14	write	field									
7.3.3	2 0	TP_IM	IG_W	VR8										Addres	s: 0x000	00 234E
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_V									WR_BYTE15			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	scription	1					
15:8		P_IMG_W BYTE16		OTP imaç												
7:0	OTF	P_IMG_W BYTE15	/R_	OTP imag	ge byte 15	write	field									
7.3.3	3 O	TP_IM	IG_W	VR9										Addres	ss: 0x00	00 2350
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Default	0	0	0	OTP_IMG_V	VR_BYTE18 0	0	0	0	0	0	0	OTP_IMG_'	WR_BYTE17	0	0	0
'				<u> </u>	· •				l				ı *			
Bits 15:8	OTE	Name P_IMG_W	/R	OTP imag	ne hvte 19	R write	field		De	scription	1					
7.0		BYTE18		OTP IIIIa(yo byte 10	, wille	noiu									

OTP image byte 17 write field

7:0

Address: 0x0000 2356

Address: 0x0000 2358

Address: 0x0000 235A

7.3.3	4 O	TP_IM	G_W	/R10										Addre	ss: 0x00	00 2352
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_V	NR_BYTE20)						OTP_IMG_V	WR_BYTE19			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rite		Name							De	ecrintio	n					

Bits	Name	Description
15:8	OTP_IMG_WR_ BYTE20	OTP image byte 20 write field
7:0	OTP_IMG_WR_ BYTE19	OTP image byte 19 write field

7.3.35 OTP_IMG_WR11

		_	_													
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_V	VR_BYTE22							OTP_IMG_V	VR_BYTE21			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_WR_ BYTE22	OTP image byte 22 write field
7:0	OTP_IMG_WR_ BYTE21	OTP image byte 21 write field

7.3.36 OTP_IMG_WR12

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_V	VR_BYTE24							OTP_IMG_V	VR_BYTE23			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_WR_ BYTE24	OTP image byte 24 write field
7:0	OTP_IMG_WR_ BYTE23	OTP image byte 23 write field

7.3.37 OTP_IMG_WR13

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_V	VR_BYTE26							OTP_IMG_V	VR_BYTE25			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_WR_ BYTE26	OTP image byte 26 write field
7:0	OTP_IMG_WR_ BYTE25	OTP image byte 25 write field

7.3.38 OTP_IMG_WR14

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_V	VR_BYTE28							OTP_IMG_V	VR_BYTE27			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_WR_ BYTE28	OTP image byte 28 write field
7:0	OTP_IMG_WR_ BYTE27	OTP image byte 27 write field

															7.3 (OTP_II
7.3.3	9 0	TP_IM	G_V	VR15										Addres	ss: 0x00	00 2350
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_\	VR_BYTE30							OTP_IMG_	WR_BYTE29)		
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	scriptio	n					
15:8		P_IMG_W BYTE30	'R_	OTP ima	ge byte 3	0 write 1	field									
7:0		P_IMG_W BYTE29	R_	OTP ima	ge byte 2	9 write 1	field									
7.3.40	0 0	TP_IM	G_V	VR16										Addre	ss: 0x00	00 235E
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_\	WR_BYTE32							OTP_IMG_	WR_BYTE3	1		
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	scriptio	n					
15:8	OTF	P_IMG_W BYTE32	'R_	OTP ima	ge byte 3	2 write t	field									
7:0	OTF	P_IMG_W BYTE31	'R_	OTP ima	ge byte 3	1 write 1	field									
7.3.4	1 0	TP_IM	G_V	VR17										Addre	ss: 0x00	00 236
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					VR_BYTE34							OTP_IMG_	WR_BYTE3			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	scriptio	n					
15:8	OTF	P_IMG_W BYTE34	'R_	OTP ima	ge byte 3	4 write 1	field									
7:0	OTF	P_IMG_W BYTE33	'R_	OTP ima	ge byte 3	3 write t	field									
7.3.42	2 0	TP_IM	G_V	VR18										Addre	ss: 0x00	00 2362
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					VR_BYTE36							OTP_IMG_	WR_BYTE3	5		
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits		Name							De	scriptio	n					
15:8	OTF	P_IMG_W BYTE36	'R_	OTP ima	ge byte 3	6 write 1	field									
7:0	OTF	P_IMG_W BYTE35	'R_	OTP ima	ge byte 3	5 write 1	field									

7.3.4	3 O	TP_IM	IG_W	/R19										Addre	ss: 0x00	00 2364
RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ī				OTP_IMG_V	VR_BYTE38	3						OTP_IMG_V	WR_BYTE37			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rite		Name							D	secrintin	n					

ı	Bits	Name	Description
•	15:8	OTP_IMG_WR_ BYTE38	OTP image byte 38 write field
	7:0	OTP_IMG_WR_ BYTE37	OTP image byte 37 write field

Address: 0x0000 236A

Address: 0x0000 236C

Address: 0x0000 236E

7.3.44	O 1	ΓP_IM	IG_W	R20								Addre	ss: 0x00	000 2366
DW					 	_	_	l _	_	_	1 -	_		

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_V	VR_BYTE40	١						OTP_IMG_V	WR_BYTE39			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_WR_ BYTE40	OTP image byte 40 write field
7:0	OTP_IMG_WR_ BYTE39	OTP image byte 39 write field

7.3.45 OTP_IMG_WR21

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_V	VR_BYTE42							OTP_IMG_V	VR_BYTE41			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_WR_ BYTE42	OTP image byte 42 write field
7:0	OTP_IMG_WR_ BYTE41	OTP image byte 41 write field

7.3.46 OTP_IMG_WR22

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				OTP_IMG_\	WR_BYTE44							OTP_IMG_V	VR_BYTE43				
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
15:8	OTP_IMG_WR_ BYTE44	OTP image byte 44 write field
7:0	OTP_IMG_WR_ BYTE43	OTP image byte 43 write field

7.3.47 OTP_IMG_WR23

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OTP_IMG_V	VR_BYTE46							OTP_IMG_V	VR_BYTE45			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:8	OTP_IMG_WR_ BYTE46	OTP image byte 46 write field
7:0	OTP_IMG_WR_ BYTE45	OTP image byte 45 write field

7.3.48 OTP_IMG_WR24

RW	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
				OTP_IMG_V	VR_BYTE48					OTP_IMG_WR_BYTE47									
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

В	its	Name	Description
15	5:8	OTP_IMG_WR_ BYTE48	OTP image byte 48 write field
7	:0	OTP_IMG_WR_ BYTE47	OTP image byte 47 write field

Address: 0x0000 24A8

Address: 0x0000 24AC

Address: 0x0000 24BC

7.4 OTP_CTRL

7.4.1 OTP_CONTROL1

RW	158	7	6	5	4	3	2	1	0
				-	_			OTP_PROG_EN	_
Default	0x04	0	0	0	1	1	0	0	0

Bits	Name	Description				
15:2	_	Reserved				
1	OTP_PROG_EN	OTP programming enable 0 = (Default) Disabled (OTP writes ignored) 1 = Enabled (OTP writes permitted)				
0	_	Reserved				

7.5 OTP_STS

7.5.1 OTP_STS2

RO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	— OTP_IMG_ID								-	_						
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description					
15:12	_	Reserved					
11:8	OTP_IMG_ID	its [3:1] indicate the ID of the current OTP image. Valid for Production Mode programming only. Note that Bit[0] not valid.					
		Zero indicates the device has not been prog	Zero indicates the device has not been programmed in Production Mode.				
		0x0-0x1 = (Default) Blank 0x2-0x3 = ID = 1 0x4-0x5 = ID = 2 0x6-0x7 = ID = 3	0x8-0x9 = ID = 4 0xA-0xB = ID = 5 0xC-0xD = ID = 6 0xE-0xF = ID = 7				
7:0	_	Reserved					

7.5.2 OTP_STS3

RO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_					OTP_IMG_	_ECC_STS				-	_				
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description				
15:10	0 — Reserved					
9:8	OTP_IMG_ECC_STS	licates the number of errors detected in the OTP payload and parity bits.				
		00 = (Default) No Error, or ECC not run10 = Double Error01 = Single Error11 = Three or more errors				
7:0	_	Reserved				

7.5.3 OTP_STS6

RO	158	7	6	5	4	3	2	1	0
		_		OTP_IMG_NUM			_		OTP_MODE
Default	0x00	0	0	0	0	0	0	0	0

Bits	Name	Description			
15:7	_	Reserved			
6:4		dicates the number of Production Mode OTP images programmed. A maximum of 7 images can be rogrammed.			
		000 = (Default) 0 images 001 = 1 images 111 = 7 images			

Bits	Name	Description
3:1	_	Reserved
0	OTP_MODE	Indicates which mode of OTP programming is supported.
		Note that a blank device supports production or prototype programming. If OTP_MODE=0, check OTP_IMG_NUM to determine if the OTP has already been programmed in Production Mode.
		If OTP_MODE=0 and OTP_IMG_NUM=0x0, the OTP is blank and supports both programming modes.
		0 = (Default) Production mode 1 = Prototyping mode

8 Performance Plots

Performance data is provided for a variety of test cases. Performance is measured at the main clock output (CLK_OUT).

Test conditions (unless otherwise specified): T_A = 25°C, output load = 15 pF, output drive strength = 10 mA, REF_CLK is jitter-free (phase noise at least 20 dB lower than the device phase noise), VDD is noise free (noise present does not impact on jitter specifications).

8.1 Jitter Performance

Sinusoidal phase-deviation tolerance is illustrated in Fig. 8-1. Phase deviation is applied to the CLK_IN frequency reference; the performance plots show the phase deviation that can be tolerated without losing PLL lock.

Test conditions: CLK_IN = 12.288 MHz, CLK_OUT = 12.288 MHz, REF_CLK = External 12 MHz or internal oscillator. (Performance is measured with external 12 MHz reference clock, 12 MHz crystal, and internal oscillator; the plot shows worst-case performance.)

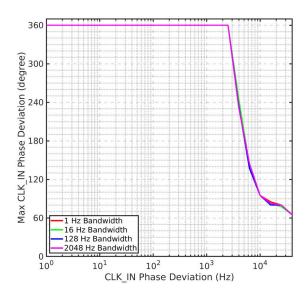
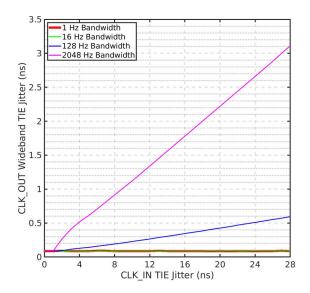



Figure 8-1. Sinusoidal Phase-Deviation Tolerance—External Clock or Internal Oscillator

Random TIE jitter rejection and tolerance is illustrated in Fig. 8-2 and Fig. 8-3. Jitter is applied to the CLK_IN frequency reference.

Test conditions: CLK_IN = 12.288 MHz, CLK_OUT = 12.288 MHz, REF_CLK = External 12 MHz or internal oscillator. (External clock is provided using 12 MHz reference or 12 MHz crystal; the plot shows worst-case performance.)

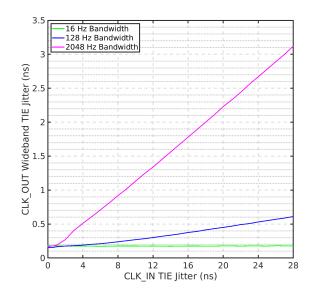


Figure 8-2. Random Jitter Rejection—External Clock

Figure 8-3. Random Jitter Rejection—Internal Oscillator

Sinusoidal TIE jitter transfer is illustrated in Fig. 8-4. Jitter is applied to the CLK_IN frequency reference; the performance plots show the output jitter level relative to the input jitter level.

Test conditions: CLK_IN = 12.288 MHz, CLK_OUT = 12.288 MHz, REF_CLK = External 12 MHz or internal oscillator. (Performance is measured with external 12 MHz reference clock, 12 MHz crystal, and internal oscillator; the plot shows worst-case performance.)

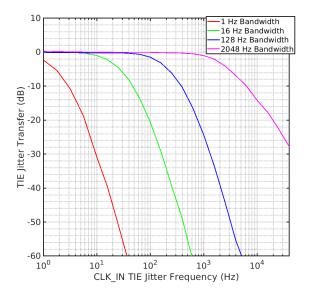


Figure 8-4. Sinusoidal Jitter Transfer—External Clock or Internal Oscillator

8.2 Phase Noise

The intrinsic phase-noise performance is illustrated in Fig. 8-5 and Fig. 8-6. The performance plots show the output phase noise under typical operating conditions. Note that the CLK IN frequency reference is jitter-free for these tests.

Test conditions: CLK_IN = 48 kHz, CLK_OUT = 24.576 MHz, REF_CLK = External 12 MHz or internal oscillator. (External clock is provided using 12 MHz reference or 12 MHz crystal; the plot shows worst-case performance.)

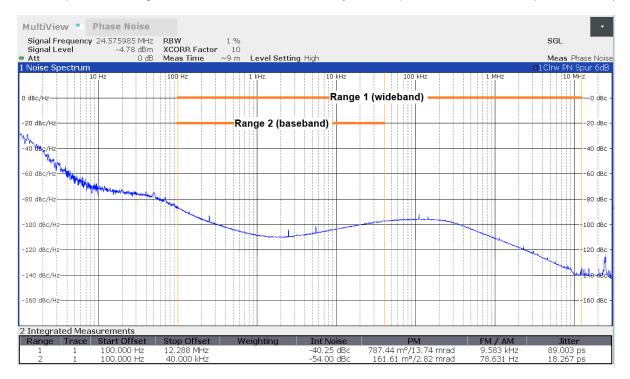


Figure 8-5. Phase Noise—External Clock

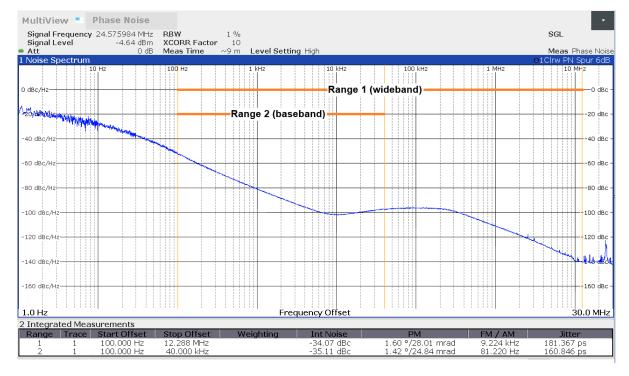


Figure 8-6. Phase Noise—Internal Oscillator

9 Thermal Characteristics

Table 9-1. Typical JEDEC Four-Layer, 2s2p Board Thermal Characteristics

Parameter	Symbol	QFN	Units
Junction-to-ambient thermal resistance	θ_{JA}	72.85	°C/W
Junction-to-board thermal resistance	θ_{JB}	60.99	°C/W
Junction-to-case (top) thermal resistance	θ_{JC}	240.45	°C/W
Junction-to-board thermal-characterization parameter	Ψ_{JB}	52.18	°C/W
Junction-to-package-top thermal-characterization parameter	$\Psi_{ m JT}$	23.16	°C/W

Notes:

- Natural convection at the maximum recommended operating temperature T_A (see Table 3-1)
- Four-layer, 2s2p PCB as specified by JESD51-9 and JESD51-11; dimensions: 101.5 x 114.5 x 1.6 mm
- Thermal parameters as defined by JESD51-12

10 Package Dimensions

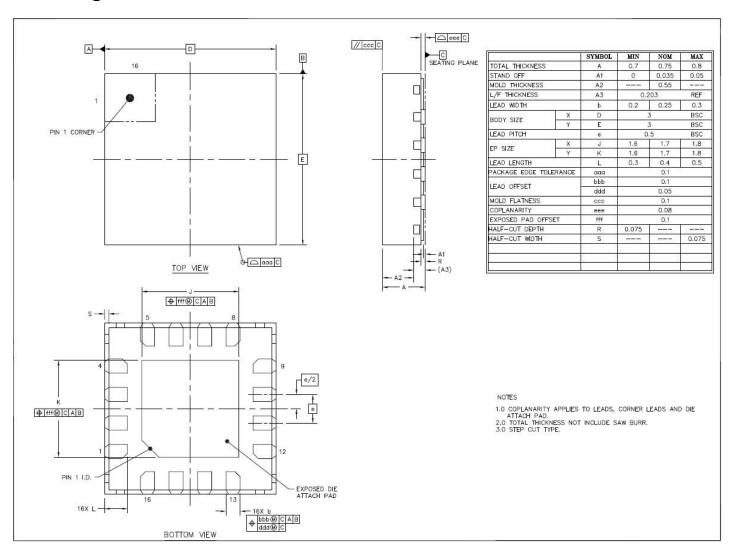
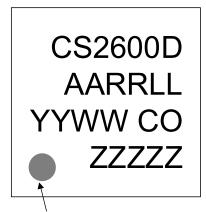


Figure 10-1. QFN Package Dimensions


11 Package Marking

Commercial Grade (CS2600-CN and CS2600-CNR)

CS2600C **AARRLL** YWW CO

Pin 1 Location Indicator

Automotive Grade 2 (CS2600-DN and CS2600-DNR)

Pin 1 Location Indicator

Top Side Brand

Line 1: Part number Line 2: Package mark

Line 3: Package mark date/Country of origin

Line 4: Encoded wafer/device ID

Package Mark Fields

AA = Assembly site code RR = Device revision code LL = Lot sequence code YY = Year of manufacture WW = Work week of manufacture

CO = Country of origin

Figure 11-1. Package Marking

12 Ordering Information

Table 12-1. Ordering Information

Product	Description	Package	RoHS Compliant	Grade	Temperature Range	Container	Orderable Part Number
CS2600	Clock Synthesizer and Multiplier	16-pin QFN	Yes	Commercial	–40 to +85°C	Tray	CS2600-CN
						Tape and Reel	CS2600-CNR
				Automotive	–40 to +105°C	Tray	CS2600-DN
				Grade 2		Tape and Reel	CS2600-DNR

13 References

 NXP Semiconductors, UM10204 Rev. 7, October 2021, I2C-Bus Specification and User Manual, http://www.nxp.com

14 Revision History

Table 14-1. Revision History

Revision	Change
F1	Initial production release
APR 2025	

Important: Please check www.cirrus.com or with your Cirrus Logic sales representative to confirm that you are using the latest revision of this document and to determine whether there are errata associated with this device.

Contacting Cirrus Logic Support

For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find one nearest you, go to www.cirrus.com.

IMPORTANT NOTICE

The products and services of Cirrus Logic International (UK) Limited; Cirrus Logic, Inc.; and other companies in the Cirrus Logic group (collectively either "Cirrus Logic" or "Cirrus") are sold subject to Cirrus Logic's terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. Software is provided pursuant to applicable license terms. Cirrus Logic reserves the right to make changes to its products and specifications or to discontinue any product or service. Customers should therefore obtain the latest version of relevant information from Cirrus Logic to verify that the information is current and complete. Testing and other quality control techniques are utilized to the extent Cirrus Logic deems necessary. Specific testing of all parameters of each device is not necessarily performed. In order to minimize risks associated with customer applications, the customer must use adequate design and operating safeguards to minimize inherent or procedural hazards. Cirrus Logic is not liable for applications assistance or customer product design. The customer is solely responsible for its overall product design, end-use applications, and system security, including the specific manner in which it uses Cirrus Logic components. Certain uses or product designs may require an intellectual property license from a third party. Features and operations described herein are for illustrative purposes only and do not constitute a suggestion or instruction to adopt a particular product design or a particular mode of operation for a Cirrus Logic component.

CIRRUS LOGIC PRODUCTS ARE NOT DESIGNED, TESTED, INTENDED OR WARRANTED FOR USE (1) WITH OR IN IMPLANTABLE PRODUCTS OR FDA/MHRA CLASS III (OR EQUIVALENT CLASSIFICATION) MEDICAL DEVICES, OR (2) IN ANY PRODUCTS, APPLICATIONS OR SYSTEMS, INCLUDING WITHOUT LIMITATION LIFE-CRITICAL MEDICAL EQUIPMENT OR SAFETY OR SECURITY EQUIPMENT, WHERE MALFUNCTION OF THE PRODUCT COULD CAUSE PERSONAL INJURY, DEATH, SEVERE PROPERTY DAMAGE OR SEVERE ENVIRONMENTAL HARM. INCLUSION OF CIRRUS LOGIC PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS LOGIC DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS LOGIC PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS LOGIC PRODUCTS IN SUCH A MANNER, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS LOGIC, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

This document is the property of Cirrus Logic, and you may not use this document in connection with any legal analysis concerning Cirrus Logic products described herein. No license to any technology or intellectual property right of Cirrus Logic or any third party is granted herein, including but not limited to any patent right, copyright, mask work right, or other intellectual property rights. Any provision or publication of any third party's products or services does not constitute Cirrus Logic's approval, license, warranty or endorsement thereof. Cirrus Logic gives consent for copies to be made of the information contained herein only for use within your organization with respect to Cirrus Logic integrated circuits or other products of Cirrus Logic, and only if the reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices and conditions (including this notice). This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. This document and its information is provided "AS IS" without warranty of any kind (express or implied). All statutory warranties and conditions are excluded to the fullest extent possible. No responsibility is assumed by Cirrus Logic for the use of information herein, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. Cirrus Logic, Cirrus, the Cirrus Logic logo design, and SoundClear are among the trademarks of Cirrus Logic. Other brand and product names may be trademarks or service marks of their respective owners.

Copyright © 2023–2025 Cirrus Logic, Inc. and Cirrus Logic International Semiconductor Ltd. All rights reserved.