PLLatinum ${ }^{\text {TM }}$ Fractional N RF/ Integer N IF Dual Low Power Frequency Synthesizer LMX2354 2.5 GHz/550 MHz

Check for Samples: LMX2354

FEATURES

- Pin Compatible/Functional Equivalent to the LMX2350
- Enhanced Low Noise Fractional Engine
- 2.7V to 5.5V Operation
- Low Current Consumption
- LMX2354: $\mathrm{I}_{\mathrm{Cc}}=7 \mathrm{~mA}$ Typical at 3V
- Programmable or Logical Power Down Mode:
$-I_{C C}=5 \mu \mathrm{~A}$ Typical at 3V
- Modulo 15 or 16 Fractional RF N Divider

Supports Ratios of 1, 2, 3, 4, 5, 8, 15, or 16

- Programmable Charge Pump Current Levels
- RF $100 \mu \mathrm{~A}$ to 1.6 mA in $100 \mu \mathrm{~A}$ Steps
- IF $100 \mu \mathrm{~A}$ or $\mathbf{8 0 0} \mu \mathrm{A}$
- Digital Filtered Lock Detect
- Available in 24-Pin TSSOP and 24-Pin LGA

APPLICATIONS

- Portable Wireless Communications (PCS/PCN, Cordless)
- Dual Mode Cellular Telephone Systems
- Zero Blind Slot TDMA Systems
- Spread Spectrum Communication Systems (CDMA)
- Cable TV Tuners (CATV)

DESCRIPTION

The LMX2354 is part of a family of monolithic integrated fractional $\mathrm{N} /$ Integer N frequency synthesizers designed to be used in a local oscillator subsystem for a radio transceiver. It is fabricated using TI's $0.5 \mu \mathrm{ABiC} \mathrm{V}$ silicon BiCMOS process. The LMX2354 contains quadruple modulus prescalers along with modulo 15 or 16 fractional compensation circuitry in the RF divider. The LMX2354 provides a continuous divide ratio of 80 to 32767 in 16/17/20/21 (1.2 GHz-2.5 GHz) fractional mode and 40 to 16383 in $8 / 9 / 12 / 13(550 \mathrm{MHz}-1.2 \mathrm{GHz}$) fractional mode. The IF circuitry for the LMX2354 contains an 8/9 prescaler, and is fully programmable. Using a fractional N phase locked loop technique, the LMX2354 can generate very stable low noise control signals for UHF and VHF voltage controlled oscillators (VCOs).
For the RF PLL, a highly flexible 16 level programmable charge pump supplies output current magnitudes from $100 \mu \mathrm{~A}$ to 1.6 mA . Two uncommitted CMOS outputs can be used to provide external control signals, or configured to FastLock mode. Serial data is transferred into the LMX2354 via a three wire interface (Data, LE, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX2354 family features very low current consumption; typically LMX2354 (2.5 GHz) - 7.0 mA . The LMX2354 are available in a 24-pin TSSOP surface mount plastic package and 24-pin LGA.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Functional Block Diagram

Connection Diagram

Figure 1. LMX2336U Pin Out

See Package Number PW0024A

	윽 득 능	
$V_{\text {CC }}^{\text {PF }}$	1124 23 22 21	$V_{P_{\text {IF }}}$
$V_{P r p}$	2020	$\mathrm{CPO}_{\text {IF }}$
$\mathrm{CPO}_{\text {RF }}$	3 19	GND
GND	418	fin IF
fin RF	517	$\overline{\text { fin IF }}$
$\overline{\text { fin RF }}$	616	GND
GND	7 15	LE
$\mathrm{OSC}_{\text {RF }}$	814	data
$\mathrm{OSC}_{\text {IF }}$	9 10111213	CLOCK

Figure 2. LMX2336U Pin Out See Package Number NPH

PIN DESCRIPTIONS

Pin No. for TSSOP Package	Pin No. for LGA Package	Pin Name	I/O	
1	24	OUTO	O	Proscription

PIN DESCRIPTIONS (continued)

Pin No. for TSSOP Package	Pin No. for LGA Package	Pin Name	I/O	
20	19	GND	-	Ground for IF digital circuitry.
21	20	CPo $_{\text {IF }}$	O	IF charge pump output. For connection to a loop filter for driving the input of an external VCO.
22	21	V $_{\text {PIF }}$	-	Power supply for IF charge pump. Must be $\geq \mathrm{V}_{\text {CCRF }}$ and $\mathrm{V}_{\text {CCIF. }}$
23	22	V $_{\text {CCIF }}$	-	IF power supply voltage input. Must be equal to $\mathrm{V}_{\text {CCRF. }}$ Input may range from 2.7V to s.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
24	23	OUT1	O	Programmable CMOS output. Level of the output is controlled by IF_N [18] bit.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings ${ }^{(1)(2)}$

Parameter	Symbol		Value		Units
		Min	Typ	Max	
Power Supply Voltage	$\mathrm{V}_{\text {CCrF }}$	-0.3		6.5	V
	$\mathrm{V}_{\text {CCiF }}$	-0.3		6.5	V
	$V p_{\text {RF }}$	-0.3		6.5	V
	Vp $\mathrm{IF}^{\text {F }}$	-0.3		6.5	V
Voltage on any pin with GND $=0 \mathrm{~V}$	Vi	-0.3		$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Storage Temperature Range	Ts	-65		+150	C°
Lead Temperature (Solder 4 sec.)	T_{L}			+260	C°

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.
(2) This Device is a high performance RF integrated circuit with an ESD rating < 2 kV and is ESD sensitive. Handling and assembly of this device should only be done at ESD-free workstations.

Recommended Operating Conditions

Parameter	Symbol		Value		Units
		Min	Typ	Max	
Power Supply Voltage	$\mathrm{V}_{\text {CCRF }}$	2.7		5.5	V
	$\mathrm{V}_{\text {CCiF }}$	$\mathrm{V}_{\text {CCrF }}$		$\mathrm{V}_{\text {CCRF }}$	V
	$\mathrm{V}_{\text {pRF }}$	V_{CC}		5.5	V
	$\mathrm{V}_{\text {plF }}$	V_{CC}		5.5	V
Operating Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\text {CCRF }}=\mathrm{V}_{\text {CCIF }}=\mathrm{V}_{\text {PRF }}=\mathrm{V}_{\text {PIF }}=3.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}\right.$ except as specified $)$
All min/max specifications are specified by design, or test, or statistical methods.

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
GENERAL						
Icc	Power Supply Current	RF and IF		6.0	8.5	mA
		IF Only		1.1	2.0	mA
ICC-PWDN	Power Down Current	RF_EN = IF_EN = LOW		20	50	$\mu \mathrm{A}$
$\mathrm{f}_{\text {in }} \mathrm{RF}$	RF Operating Frequency		0.5		2.5	GHz
$\mathrm{f}_{\text {in }} \mathrm{IF}$	IF Operating Frequency		10		550	MHz
$\mathrm{f}_{\mathrm{OSC}}$	Oscillator Frequency	No load on OSC RF	2		50	MHz
f φ	Phase Detector Frequency	RF and IF			10	MHz
$\mathrm{Pf}_{\text {in }} \mathrm{RF}$	RF Input Sensitivity	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-15		0	dBm
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-10		0	dBm
$\mathrm{Pf}_{\text {in } \mathrm{IF}}$	IF Input Sensitivity	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 5.5 \mathrm{~V}$	-10		0	dBm
$V_{\text {OSC }}$	Oscillator Sensitivity	OSC $_{\text {IF }}$, OSC $_{\text {RF }}$	0.5		$\mathrm{V}_{\text {CC }}$	V_{PP}

ICPo-source RF	RF Charge Pump Output Current (see Programming Description)	VCPo Vp/2, RF_CP_WORD $=0000$		-100		$\mu \mathrm{A}$
ICPo-sink RF		VCPo $=$ Vp/2, RF_CP_WORD $=0000$		100		$\mu \mathrm{A}$
ICPo-source RF		VCPo $=$ Vp/2, RF_CP_WORD $=1111$		-1.6		mA
$\mathrm{ICPO}_{\text {-sink }} \mathrm{RF}$		VCPo = Vp/2, RF_CP_WORD $=1111$		1.6		mA
ICPo-source IF	IF Charge Pump Output Current (see Programming Description)	VCPo $=$ Vp/2, CP_GAIN_8 $=0$		-100		$\mu \mathrm{A}$
ICPo-sink IF		VCPo $=\mathrm{Vp} / 2, \mathrm{CP}$ _GAIN_8 $=0$		100		$\mu \mathrm{A}$
ICPo-source IF		VCPo $=$ Vp/2, CP_GAIN_8 $=1$		-800		$\mu \mathrm{A}$
ICPo-sink IF		VCPo $=$ Vp/2, CP_GAIN_8 $=1$		800		$\mu \mathrm{A}$
ICPo-Tri	Charge Pump TRI-STATE Current	$\begin{aligned} & 0.5 \leq \text { VCPo } \leq \text { Vp }-0.5 \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \end{aligned}$	-2.5		2.5	nA
RF ICPo-sink vs. ICPo-source	RF CP Sink vs. Source Mismatch	$\begin{aligned} & \mathrm{VCPO}=\mathrm{Vp} / 2 \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{RF} \operatorname{ICPO}=900 \mu \mathrm{~A}-1.6 \mathrm{~mA} \end{aligned}$		3.5	10	\%
ICPo vs. VCPo	CP Current vs. Voltage Variation	$\begin{aligned} & 0.5 \leq \mathrm{VCPO} \leq \mathrm{Vp}-0.5 \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { RF ICPo } \end{aligned}$		5	10	\%
ICPo vs. T	CP Current vs Temperature	$\begin{aligned} & \text { VCPo }=\mathrm{Vp} / 2 \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \text { RF ICPo } \end{aligned}$		8		\%
V_{CP}	Charge Pump Output Voltage (RF only)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.3 \mathrm{~V}$, Doubler Enabled		$\begin{gathered} 2^{*} V_{c c} \\ -0.5 \end{gathered}$		V

DIGITAL INTERFACE (DATA, CLK, LE, EN, FoLD)

V_{IH}	High-level Input Voltage	${ }^{(1)}$	$0.8 \mathrm{~V}_{\mathrm{CC}}$			V
V_{IL}	Low-level Input Voltage	${ }^{(1)}$		$0.2 \mathrm{~V}_{\mathrm{CC}}$	V	
I_{IL}	Low-level Input Current	$\mathrm{V}_{\mathrm{IL}}=0, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V},{ }^{(1)}$	-1.0		1.0	$\mu \mathrm{~A}$
I_{H}	High-level Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},{ }^{(1)}$	-1.0		1.0	$\mu \mathrm{~A}$
I_{IH}	Oscillator Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{IL}	Oscillator Input Current	$\mathrm{V}_{\mathrm{IL}}=0, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100			$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}}$	High-level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}-0.4$			V
$\mathrm{~V}_{\mathrm{OL}}$	High-level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=500 \mu \mathrm{~A}$			0.4	V

MICROWIRE TIMING

t_{CS}	Data to Clock Setup Time	See SERIAL DATA INPUT TIMING	50		
t_{CH}	Data to Clock Hold Time	See SERIAL DATA INPUT TIMING	10		
$\mathrm{t}_{\mathrm{CWH}}$	Clock Pulse Width High	See SERIAL DATA INPUT TIMING	50		
$\mathrm{t}_{\mathrm{CWL}}$	Clock Pulse Width Low	See SERIAL DATA INPUT TIMING	50		ns

[^0]
Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {CCRF }}=\mathrm{V}_{\text {CCIF }}=\mathrm{V}_{\text {PRF }}=\mathrm{V}_{\text {PIF }}=3.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}\right.$ except as specified $)$
All min/max specifications are specified by design, or test, or statistical methods.

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
$\mathrm{t}_{\text {ES }}$	Clock to Load Enable Set Up Time	See SERIAL DATA INPUT TIMING	50			ns
$\mathrm{t}_{\text {EW }}$	Load Enable Pulse Width	See SERIAL DATA INPUT TIMING	50			ns

Charge Pump Current Specification Definitions

$11=\mathrm{CP}$ sink current at $\mathrm{V}_{\mathrm{Do}}=\mathrm{Vp}-\Delta \mathrm{V}$
$12=C P$ sink current at $V_{D o}=V p / 2$
$\mathrm{I} 3=\mathrm{CP}$ sink current at $\mathrm{V}_{\mathrm{Do}}=\Delta \mathrm{V}$
$14=C P$ source current at $V_{D o}=V p-\Delta V$
$15=C P$ source current at $V_{D o}=V p / 2$
$16=\mathrm{CP}$ source current at $\mathrm{V}_{\mathrm{Do}}=\Delta \mathrm{V}$
$\Delta \mathrm{V}=$ Voltage offset from positive and negative rails. Dependent on VCO tuning range relative to V_{CC} and ground. Typical values are between 0.5 V and 1.0 V .
$I_{D_{0}}$ vs $V_{D_{0}}=$ Charge Pump Output Current magnitude variation vs Voltage $=\left[1 / 2{ }^{*}\left\{| | 1|-||3|\}]\left[\left[^{1 / 2}{ }^{*}\left\{| | 1|+||3|\}]{ }^{*} 100 \%\right.\right.\right.\right.\right.$ and $\left[1 / 22^{*}\left\{| | 4|-||6|\}] /\left[1 / 22^{*}\{| | 4|+||6|\}] * 100 \%\right.\right.\right.$
$\mathrm{I}_{\text {Do-sink }}$ vs $\mathrm{I}_{\text {Do-source }}=$ Charge Pump Output Current Sink vs Source Mismatch $=\left[\left||2|-||5|]\left[\left[^{1 / 2}\right.\right.\right.\right.$ * $\{| | 2|+||5|\}]$ * 100%
I_{Do} vs $\mathrm{T}_{\mathrm{A}}=$ Charge Pump Output Current magnitude variation vs Temperature $=\left[| | 2 @\right.$ templ $\left.-\| 2 @ 25^{\circ} \mathrm{C} \mid\right] /| | 2 @$ $25^{\circ} \mathrm{C} \mid * 100 \%$ and $\left[\left|\mid 5\right.\right.$ @ temp| - ||5 @ $\left.\left.25^{\circ} \mathrm{C}\right|\right] /| | 5$ @ $25^{\circ} \mathrm{C} \mid{ }^{*} 100 \%$

RF Sensitivity Test Block Diagram

Note: $N=10,000 \quad R=50 \quad P=16$
Note: Sensitivity limit is reached when the error of the divided RF output, $F_{0} L D$, is $\geq 1 \mathrm{~Hz}$.

Typical Performance Characteristics

Figure 3.

Charge Pump Current
 vS
 CP ${ }_{0}$ Voltage

RF_CP WORD = 0000 and 0111
IF CP_GAIN_8 = 0 and 1

Figure 5.

Figure 7.

Figure 4.

Figure 6.

Figure 8.

Instruments

Typical Performance Characteristics (continued)

Marker $1=50 \mathrm{MHz}$, Real $=575.91$, Imaginary $=-330.06$ Marker $2=200 \mathrm{MHz}$, Real $=388.39$, Imaginary $=-237.7$ Marker $3=550 \mathrm{MHz}$, Real $=276.67$, Imaginary $=-219.84$ Marker $4=550 \mathrm{MHz}$, Real $=154.95$, Imaginary $=-173.8$

Figure 9.

Frequency (MHz)
Figure 11.

LMX2354 RF Sensitivity

Figure 10.

Figure 12.

FUNCTIONAL DESCRIPTION

GENERAL

The basic phase-lock-loop (PLL) configuration consists of a high-stability crystal reference oscillator, a frequency synthesizer such as the Texas Instruments LMX2354, a voltage controlled oscillator (VCO), and a passive loop filter. The frequency synthesizer includes a phase detector, current mode charge pump, as well as programmable reference [R] and feedback [N] frequency dividers. The VCO frequency is established by dividing the crystal reference signal down via the R counter to obtain a frequency that sets the comparison frequency. This reference signal, f_{r}, is then presented to the input of a phase/frequency detector and compared with another signal, f_{p}, the feedback signal, which was obtained by dividing the VCO frequency down by way of the N counter and fractional circuitry. The phase/frequency detector's current source outputs pump charge into the loop filter, which then converts the charge into the VCO's control voltage. The phase/frequency comparator's function is to adjust the voltage presented to the VCO until the feedback signal's frequency (and phase) match that of the reference signal. When this 'phase-locked' condition exists, the RF VCO's frequency will be N+F times that of the comparison frequency, where N is the integer divide ratio and F is the fractional component. The fractional synthesis allows the phase detector frequency to be increased while maintaining the same frequency step size for channel selection. The division value N is thereby reduced giving a lower phase noise referred to the phase detector input, and the comparison frequency is increased allowing faster switching times.

REFERENCE OSCILLATOR INPUTS

The reference oscillator frequency for the RF and IF PLLs is provided by an external reference through the $O_{\text {OF }}$ pin and $O S C_{\text {RF }}$ pin. $O S C_{\text {IF }} /$ OSC $_{\text {RF }}$ block can operate 50 MHz with an input sensitivity of 0.5 Vpp . The OSC bit (see OSC (IF_R[23])), selects whether the oscillator input pins OSC ${ }_{\mathrm{IF}}$ and $\mathrm{OSC}_{\mathrm{RF}}$ drive the IF and RF R counters separately or by a common input signal path. When an external TCXO is connected only at the OSC $\mathrm{IF}_{\mathrm{IF}}$ input pin and not at the OSC $\mathrm{RF}_{\mathrm{RF}}$ pin, the TCXO drives both IF R counter and RF R counter. When configured as
 have a $\mathrm{V}_{\mathrm{Cc}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.

REFERENCE DIVIDERS (R COUNTERS)

The RF and IF R Counters are clocked through the oscillator block either separately or in common. The maximum frequency is 50 MHz . Both R Counters are 15-bit CMOS counters with a divide range from 3 to 32,767. (See 15-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (RCOUNTER) (IF_R[2]-IF_R[16])

PROGRAMMABLE DIVIDERS (N COUNTERS)

The RF and IF N Counters are clocked by the small signal fin RF and fin IF input pins respectively. The RF N Counter can be configured as a fractional or fully integer counter. The LMX2354 RF N counter is 19 bits with 15 bits integer divide and 4 bits fractional. The integer part is configured as a 2-bit A Counter, a 2-bit B Counter and a 11-bit C Counter. The LMX2354 is capable of operating from 500 MHz to 1.2 GHz with the 8/9/12/13 prescaler offering a continuous integer divide range from 40 to 16,383 in fractional mode and 24 to 262143 in full integer mode. The LMX2354 is capable of operating from 1.2 GHz to 2.5 GHz with the $16 / 17 / 20 / 21$ prescaler offering a continuous integer divide range from 80 to 32,767 in fractional mode and 48 to 52,4287 in full integer mode. The RF counters for the LMX2354 also contain fractional compensation, programmable in either 1/15 or $1 / 16$ modes. The LMX2354 IF N counter is 15-bit integer divider configured with a 3-bit A Counter and a 12-bit B Counter offering a continuous integer divide range from 56 to 32,767 over the frequency range of 10 MHz to 550 MHz . The IF N counter does not include fractional compensation. The tables below show the differences between the LMX2354 in integer mode and in quadruple modulus prescaler with $P=16 / 17 / 20 / 21$. Also, the tables show that the bit used for the lower modulus prescaler values is different between the LMX2350 and the LMX2354. For the LMX2350 bit $N<9>=0$ (MSB of the A Word) is used for the $16 / 17$ modulus and for the LMX2354 bit $N<8>=0$ is used for the $8 / 9 / 12 / 13$ modulus. So if the LMX2354 is replacing a LMX2350 then bits $N<8>$ and $N<9>$ need to be swapped.

Table 1. LMX2354 RF N Counter Register in Fractional Mode with $P=16 / 17 / 20 / 21$:

Table 2. LMX2354 RF N Counter Register in Fractional Mode with $P=8 / 9 / 12 / 13$

	C Word											B Word		A Word		Fractional Word			
N	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
1-23	Divide ratios less than 24 are impossible since it is required that $\mathrm{C} \geq 3$															These bits are used for the fractional word when the part is operated in fractional mode			
24-39	Some of these values are legal divide ratios, some are not																		
40*	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0				
41	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1				
...																			
272	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0				
...				
16,383	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1				

Prescaler

The RF and IF inputs to the prescaler consist of fin and /fin; which are complimentary inputs to differential pair amplifiers. The complimentary inputs are internally coupled to ground with a 10 pF capacitor. These inputs are typically AC coupled to ground through external capacitors as well. The input buffer drives the A counter's ECL D-type flip flops in a dual modulus configuration. An 8/9/12/13 or 16/17/20/21 prescale ratio can be selected for the LMX2354. The IF circuitry for both the LMX2354 contains an 8/9 prescaler. The prescaler clocks the subsequent CMOS flip-flop chain comprising the fully programmable A and B counters.

Fractional Compensation

The fractional compensation circuitry of the LMX2354 RF dividers allows the user to adjust the VCO's tuning resolution in $1 / 16$ or $1 / 15$ increments of the phase detector comparison frequency. A 4-bit register is programmed with the fractions desired numerator, while another bit selects between fractional 15 and 16 modulo base denominator (see FRACTIONAL MODULUS ACCUMULATOR (FRAC_CNTR) (RF_N[2]-RF_N[5])). An integer average is accomplished by using a 4-bit accumulator. A variable phase delay stage compensates for the accumulated integer phase error, minimizing the charge pump duty cycle, and reducing spurious levels. This technique eliminates the need for compensation current injection in to the loop filter. Overflow signals generated by the accumulator are equivalent to 1 full VCO cycle, and result in a pulse swallow.

PHASE/FREQUENCY DETECTOR

The RF and IF phase/frequency detectors are driven from their respective N and R counter outputs. The phase detector outputs control the charge pumps. The polarity of the pump-up or pump-down control is programmed using RF_PD_POL or IF_PD_POL depending on whether RF/IF VCO characteristics are positive or negative (see IF_CP_WORD (IF_R[17]-IF_R[18]) and RF_CP_WORD (RF_R[17]-RF_R[21])). The phase detector also receives a feedback signal from the charge pump, in order to eliminate dead zone.

CHARGE PUMP

The phase detector's current source outputs pump charge into an external loop filter, which then converts the charge into the VCO's control voltage. The charge pumps steer the charge pump output, CPo, to Vcc (pump-up) or ground (pump-down). When locked, CPo is primarily in a TRI-STATE mode with small corrections. The RF charge pump output current magnitude is programmable from $100 \mu \mathrm{~A}$ to 1.6 mA in $100 \mu \mathrm{~A}$ steps as shown in table RF_CP_WORD (RF_R[17]-RF_R[21]). The IF charge pump is set to either $100 \mu \mathrm{~A}$ or $800 \mu \mathrm{~A}$ levels using bit IF_R [19] (see IF_CP_W

VOLTAGE DOUBLER

The $\mathrm{V}_{\mathrm{pRF}}$ pin is normally driven from an external power supply over a range of V_{CC} to 5.5 V to provide current for the RF charge pump circuit. An internal voltage doubler circuit connected between the $V_{C C}$ and $V_{\text {pRF }}$ supply pins alternately allows $\mathrm{V}_{C C}=3 \mathrm{~V}(\pm 10 \%)$ users to run the RF charge pump circuit at close to twice the V_{CC} power supply voltage. The voltage doubler mode is enabled by setting the V2_EN bit (RF_R [22]) to a HIGH level. The voltage doubler's charge pump driver originates from the RF oscillator input ($\mathrm{OSC}_{\mathrm{RF}}$). The average delivery current of the doubler is less than the instantaneous current demand of the RF charge pump when active and is thus not capable of sustaining a continuous out of lock condition. A large external capacitor connected to $\mathrm{V}_{\text {pRF }}$ ($\approx 0.1 \mu \mathrm{~F}$) is therefore needed to control power supply droop when changing frequencies.

MICROWIRE SERIAL INTERFACE

The programmable functions are accessed through the MICROWIRE serial interface. The interface is made of 3 functions: clock, data and latch enable (LE). Serial data for the various counters is clocked in from data on the rising edge of clock, into the 24 -bit shift register. Data is entered MSB first. The last two bits decode the internal register address. On the rising edge of LE, data stored in the shift register is loaded into one of the 4 appropriate latches (selected by address bits). A complete programming description is included in the following sections.

Fo/LD MULTIFUNCTION OUTPUT

The Fo/LD output pin can deliver several internal functions including analog/digital lock detects, and counter outputs. See FOLD Programming Truth Table (IF_R[19]-IF_R[21] for more details.

Lock Detect

A digital filtered lock detect function is included with each phase detector through an internal digital filter to produce a logic level output available on the Fo/LD output pin if selected. The lock detect output is high when the error between the phase detector inputs is less than 15 ns for 5 consecutive comparison cycles. The lock detect output is low when the error between the phase detector outputs is more than 30 ns for one comparison cycle. An analog lock detect signal is also selectable. The lock detect output is always low when the PLL is in power down mode. See FOLD Programming Truth Table (IF_R[19]-IF_R[21], LOCK DETECT DIGITAL FILTER TYPICAL LOCK DETECT TIMING for more details.

POWER CONTROL

Each PLL is individually power controlled by device enable pins or MICROWIRE power down bits. The enable pins override the power down bits except for the V2_EN bit. The RF_EN pin controls the RF PLL; IF_EN pin controls the IF PLL. When both pins are high, the power down bits determine the state of power control (see Programming Description). Activation of any PLL power down mode results in the disabling of the respective N counter and de-biasing of its respective fin input (to a high impedance state). The R counter functionality also becomes disabled when the power down bit is activated. The reference oscillator block powers down and the OSC $_{\text {IF }}$ pin reverts to a high impedance state when both RF and IF enable pins or power down bit's are asserted, unless the V2_EN bit (RF_R[22]) is high. Power down forces the respective charge pump and phase comparator logic to a TRI-STATE condition. A power down counter reset function resets both N and R counters. Upon powering up the N counter resumes counting in "close" alignment with the R counter (The maximum error is one prescaler cycle). The MICROWIRE control register remains active and capable of loading and latching in data during all of the power down modes.

Major Differences between the LMX2354 and the LMX2350/52

	LMX2350/52	LMX2354
OSC $_{\text {IF }}$	Supports resonator mode.	Does not support resonator mode.
Low modulus prescale ${ }^{(1)}$	5-bit A counter, so if $16 / 17$ prescale, bit-5 is the unused place holder.	4-bit A/B counters, so if 8/9/12/13, bit-4 is the unused place holder.
RF Prescaler	LMX2350-32/33 or $16 / 17$ LMX2352—16/17 or 8/9	LMX2354-16/17/20/21 or 8/9/12/13
Fractional Engine	Standard. Fractional Compensation cannot be turned off.	Similar structure to the LMX2350/52, but with some modifications for improved phase noise and spurs. Fractional Compensation can be turned off.

(1) If the LMX2354 is replacing a LMX2350/52 in a design, and you are using the lower modulus prescale value (16/17 on the LMX2350 changes to $8 / 9 / 12 / 13$ on the LMX2354), the unused prescaler bit of the LMX2350/52 needs to shift down one bit from $N<9>$ to $N<8>$.

Programming Description

INPUT DATA REGISTER

The descriptions below describe the 24-bit data register loaded through the MICROWIRE Interface. The data register is used to program the 15 -bit IF_R counter register, and the 15 -bit RF_R counter register, the 15 -bit IF_N counter register, and the 19 -bit RF_N counter register. The data format of the 24 -bit data register is shown below. The control bits CTL [1:0] decode the internal register address. On the rising edge of LE, data stored in the shift register is loaded into one of 4 appropriate latches (selected by address bits). Data is shifted in MSB first

MSB	LSB		
	DATA [21:0]	2	0
23	2	1	0

Register Location Truth Table

CTL [1:0]		
$\mathbf{1}$	$\mathbf{0}$	
0	0	IF_R register
0	1	IF_N register
1	0	RF_R register
1	1	RF_N register

Register Content Truth Table

	First Bit			REGISTER BIT LOCATION																		Last Bit		
	23	22	2 1	2 0	1 9	18	17	1	1	1	1 3	1	1	1 0	9	8	7	6	5	4	3	2	1 c 1	0 c 2
IF_R	OSC	FRAC_16	FoLD \quad IF_CP_WOR					IF_R_CNTR															0	0
IF_N	IF_CTL_WORD			CMOS OUTPUTS/ FRAC TEST				IF_NB_CNTR												IF_NA_CNTR			0	1
$\begin{gathered} \mathrm{RF}_{-} \\ \mathrm{R}^{-} \end{gathered}$	$\underset{\mathrm{E}}{\text { DLL_MOD }}$	V2_EN		RF_CP_WORD				RF_R_CNTR															1	0
$\begin{array}{\|c} \mathrm{RF}_{-} \\ \mathrm{N} \end{array}$	RF_CTL_WORD			C_WORD													A_WORD		FRAC_CNTR				1	1

PROGRAMMABLE REFERENCE DIVIDERS

IF_R REGISTER

If the Control Bits (CTL [1:0]) are 0 0, when data is transferred from the 24-bit shift register into a latch when LE is transitioned high. This register determines the IF R counter value, IF Charge pump current, FoLD pin output, fractonal modulus, and oscillator mode.

MSB									$\begin{aligned} & \hline \text { LSB } \\ & \hline 0 \\ & \hline \end{aligned}$
OSC	FRAC_16	FoLD [2:0]		IF_CP_WORD [1:0]		IF_R_CNTR [14:0]		0	
23	22	21	19	18		16	2	1	0

OSC (IF_R[23])
The OSC bit, IF_R [23], selects whether the oscillator inputs OSC $_{\text {IF }}$ and OSC $_{\text {RF }}$ drive the IF and RF R counters separately or by a common input signal path. When OSC $=0$, the $\mathrm{OSC}_{\mathrm{IF}}$ pin drives the IF R counter while the $O S C_{R F}$ pin drives the RF R counter. When the $O S C=1$, the $O S C_{I F}$ pin drives both R counters.

FRAC_16(IF_R[22])

The FRAC_16 bit, IF_R [22], is used to set the fractional compensation at either $1 / 16$ and $1 / 15$ resolution. When FRAC-16 is set to one, the fractional modulus is set to $1 / 16$ resolution, and FRAC_16 $=0$ corresponds to $1 / 15$ (See FRACTIONAL MODULUS ACCUMULATOR (FRAC_CNTR) (RF_N[2]-RF_N[5])).

15-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (R COUNTER) (IF_R[2]-IF_R[16]) ${ }^{(1)}$

IF_R_CNTR/RF_R_CNTR															
Divide Ratio	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
32,767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

(1) Notes: Divide ratio: 3 to 32,767 (Divide ratios less than 3 are prohibited).

RF_R_CNTR/IF_R_CNTR These bits select the divide ratio of the programmable reference dividers.

IF_CP_WORD (IF_R[17]-IF_R[18])

CP_GAIN_8	IF_PD_POL

BIT	LOCATION	FUNCTION	$\mathbf{0}$	$\mathbf{1}$
CP_GAIN_8	IF_R [18]	IF Charge Pump Current	$1 X$	$8 X$
IF_PD_POL	IF_R [17]	IF Phase Detector Polarity	Negative	Positive

CP_GAIN_8 is used to toggle the IF charge pump current magnitude between 1 X mode ($100 \mu \mathrm{~A}$ typical) and 8 X mode ($800 \mu \mathrm{~A}$ typical).
IF_PD_POL is set to one when IF VCO characteristics are positive. When IF VCO frequency decreases with increasing control voltage IF_PD_POL should set to 0 .
FoLD Programming Truth Table (IF_R[19]-IF_R[21]) ${ }^{(1)}$

FoLD	Fo/LD OUTPUT STATE
000	IF and RF Analog Lock Detect
100	IF Digital Lock Detect

[^1]| FoLD | Fo/LD OUTPUT STATE |
| :--- | :--- |
| 01 0 RF Digital Lock Detect
 1 1 IF and RF Digital Lock Detect
 001 IF R counter
 10 1 IF N counter
 0 1 1
 1 1 1 | RF R counter |

RF_R Register

If the Control Bits (CTL [1:0]) are 10, data is transferred from the 24 -bit shift register into the RF_R register latch which sets the RF PLL's 15 -bit R counter divide ratio. The divide ratio is programmed using the RF_R_CNTR word as shown in 15-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (R COUNTER) (IF_R[2]_IF_R[16]). The divide ratio must be ≥ 3. The bits used to control the voltage doubler (V2_EN) and R \bar{F} Charge Pump (RF_CP_WORD) are detailed in RF_CP_WORD (RF_R[17]-RF_R[21]).

MSB						LSB	
DLL_MODE	V2_EN	RF_CP_WORD [4:0]	RF_R_CNTR [14:0]		1	0	
23	22	21	17	16	2	1	0

(RF_R[22]-RF_R[23]) ${ }^{(1)}$

DLL_MODE \quad V2_EN
(1) Note 1. V2_EN bit when set high enables the voltage doubler for the RF Charge Pump supply.

Note 2. DLL_MODE bit should be set to one for normal usage.

BIT	LOCATION	FUNCTION	$\mathbf{0}$	1
DLL_MODE	RF_R [23]	Delay Line Loop Calibration Mode	RF_Voltage Doubler Enable	Disabled
V2_EN	RF_R [22]	Enabled		

RF_CP_WORD (RF_R[17]-RF_R[21])

CP_8X	CP_4X	CP_2X	CP_1X	RF_PD_POL

RF_PD_POL (RF_R[17]) should be set to one when RF VCO characteristics are positive. When RF VCO frequency decreases with increasing control voltage RF_PD_POL should be set to zero.
CP_1X, CP_2X, CP_4X, and CP_8X are used to step the RF Charge Pump output current magnitude from 100 $\mu \mathrm{A}$ to 1.6 mA in $100 \overline{\mu \mathrm{~A}}$ steps as shown in the table below.

Table 3. RF Charge Pump Output Truth Table

ICPo μ A (typ)	$\begin{gathered} \text { CP8X } \\ \text { RF_R[21] } \end{gathered}$	$\begin{gathered} \text { CP4X } \\ \text { RF_R[20] } \end{gathered}$	$\begin{gathered} \text { CP2X } \\ \text { RF_R[19] } \end{gathered}$	$\begin{gathered} \text { CP1X } \\ \text { RF_R[18] } \end{gathered}$
100	0	0	0	0
200	0	0	0	1
300	0	0	1	0
400	0	0	1	1
-	-	-	-	-
900	1	0	0	0
-	-	-	-	-
1600	1	1	1	1

Programmable Dividers (N Counters)

IF_N REGISTER

If the Control Bits (CTL [1:0]) are 0 1, data is transferred from the 24 -bit shift register into the IF_N register latch which sets the PLL's 15 -bit programmable N counter value and various control functions. The IF_N counter consists of the 3-bit swallow counter (A counter), and the 12-bit programmable counter (B counter). Serial data format is shown below in Programmable CMOS Output Truth Table and3-BIT IF SWALLOW COUNTER DIVIDE RATIO (IF A COUNTER) (IF_N[2]-IF_N[4]). The divide ratio (IF_NB_CNTR) must be ≥ 3. The divide ratio is programmed using the bits IF_N_CNTR as shown in CMOS (Programmable CMOS outputs) (IF_N[17]-IF_N[20]) and Programmable CMOS Output Truth Table. The minimum continuous divide ratio is 56. The CMOS [3:0] bits program the 2 CMOS outputs detailed in CMOS (Programmable CMOS outputs) (IF_N[17]-IF_N[20]), and also contain the fractional test bit.

MSB					LSB
IF_CTL_WORD [2:0]	CMOS [3:0]	IF_NB_CNTR [11:0]	IF_NA_CNTR [2:0]	0	1
23	2120	1716	54	21	0

IF_CTL_WORD (IF_N[21]-IF_N[23])

MSB		
IF_CNT_RST	PWDN_IF	PWDN_MODE

NOTE
See RF/IF Control Word Truth Table for IF control word truth table.

CMOS (Programmable CMOS outputs) (IF_N[17]-IF_N[20])

MSB			LSB
FastLock	TEST	OUT_1	OUT_0

NOTE
Test bit is reserved and should be set to zero for normal usage.

Programmable CMOS Output Truth Table

Bit	Location	Function	$\mathbf{0}$	$\mathbf{1}$
OUT_0	IF_N[17]	OUT0 CMOS Output Pin Level Set	LOW	HIGH
OUT_1	IF_N[18]	OUT1 CMOS Output Pin Level Set	LOW	HIGH
Test	IF_N[19]	Fractional Test Bit	Normal Operation	No Fractional Compensation
Fastlock	IF_N[20]	Fastlock Mode Select	CMOS Output	Fastlock Mode

Test Bit IF_N[19] controls the fractional spur compensation and should be set to 0 for normal operation. If the test bit is set to 1 , then the fractional spurs become much worse, but the phase noise improves about 5 dB .
When the Fastlock bit is set to $\mathbf{1 ,}$ OUT_0 and OUT_1 are don't care bits. Fastlock mode utilizes the OUT0 and OUT1 output pins to synchronously switch between active low and TRI-STATE. The OUT0 = LOW state occurs whenever the RF loop's CP_8X is selected HIGH while the Fastlock bit is set HIGH (see RF_CP_WORD (RF_R[17]-RF_R[21])). The OUTO pin reverts to TRI-STATE when the CP_8X bit is LOW. Similarly for the IF loop, the synchronous activation of OUT1 = LOW or TRI-STATE, is dependent on whether the CP_GAIN_8 is high or low respectively (see IF_CP_WORD (IF_R[17]-IF_R[18])).

3-BIT IF SWALLOW COUNTER DIVIDE RATIO (IF A COUNTER) (IF_N[2]-IF_N[4])

12-BIT IF PROGRAMMABLE COUNTER DIVIDE RATIO (IF B COUNTER) (IF_N[5]-IF_N[16])

IF_NB_CNTR												
Divide Ratio	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	1	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-
4095	1	1	1	1	1	1	1	1	1	1	1	1

NOTE
Divide ratio: 3 to 4095 (Divide ratios less than 3 are prohibited)
IF_NB_CNTR \geq IF_NA_CNTR
N divider continuous integer divide ratio 56 to 32,767 .

RF_N Register

If the control bits (CTL[2:0]) are 11 , data is transferred from the 24 -bit shift register into the RF_N register latch which sets the RF PLL's programmable N counter register and various control functions. The RF N counter consists of a 2-bit A counter, 2-bit B counter, 11-bit C counter, and a 4-bit fractional counter. For proper operation, C_WORDミMAX\{A_WORD, B_WORD\}+2. Serial data format is shown below.

MSB								
RF_CTL_WORD [2:0]	C_WORD [10:0]	B_WORD [1:0]	A_WORD [1:0]	FRAC_CONT [3:0]	1	LSB		
23	21	20	10	9	8	7	6	5

RF_CTL_WORD (RF_N[21]-RF_N[23])

MSB		LSB
RF_CNT_RST	PWDN_RF	PRESC_SEL

RF/IF Control Word Truth Table

BIT	FUNCTION	$\mathbf{0}$	$\mathbf{0}$
IF_CNT_RST/RF_CNT_RST	IF/RF counter reset	Normal Operation	Reset
PWDN_IF/PWDN_RF	IF/RF power down	Powered up	Powered down
PWDN_MODE	Power down mode select	Asynchronous power down	Synchronous power down

BIT		FUNCTION	$\mathbf{0}$	$\mathbf{1}$
PRESC_SEL	LMX2354	Prescaler Modulus Select	$8 / 9 / 12 / 13$	$16 / 17 / 20 / 21$

The Counter Reset enable bit when activated allows the reset of both N and R counters. Upon powering up, the N counter resumes counting in "close" alignment with the R counter (the maximum error is one prescaler cycle).
Activation of the PLL power down bits result in the disabling of the respective N counter divider and de-biasing of its respective fin inputs (to a high impedance state). The respective R counter functionality also becomes disabled when the power down bit is activated. The $\mathrm{OSC}_{\mathbb{I F}}$ pin reverts to a high impedance state when both RF and IF power down bits are asserted. Power down forces the respective charge pump and phase comparator logic to a TRI-STATE condition. The MICROWIRE control register remains active and capable of loading and latching in data during all of the power down modes.
Both synchronous and asynchronous power down modes are available with the LMX235x family in order to adapt to different types of applications. The power down mode bit IF_N[21] is used to select between synchronous and asynchronous power down. The MICROWIRE control register remains active and capable of loading and latching in data during all of the power down modes.

Synchronous Power Down Mode

One of the PLL loops can be synchronously powered down by first setting the power down mode bit HIGH (IF_N[21] = 1) and then asserting its power down bit (IF_N[22] or RF_N[22] = 1). The power down function is gated by the charge pump. Once the power down bit is loaded, the part will go into power down mode upon the completion of a charge pump pulse event.

Asynchronous Power Down Mode

One of the PLL loops can be asynchronously powered down by first setting the power down mode bit LOW (IF_N[21] = 0) and then asserting its power down bit (IF_N[22] or RF_N[22] = 1). The power down function is NOT gated by the charge pump. Once the power down bit is loaded, the part will go into power down mode immediately.
Prescaler select is used to set the RF prescaler. The LMX2354 contains quadruple modulus prescalers. It uses the $16 / 17 / 20 / 21$ prescaler mode to operate at $1.2 \mathrm{GHz}-2.5 \mathrm{GHz}$. In addition, it can use the 8/9/12/13 prescaler to operate at $550 \mathrm{MHz}-1.2 \mathrm{GHz}$.

N REGISTER-(8/9/12/13) PRESCALER OPERATING IN FRACTIONAL MODE (RF_N[6]-RF_N[20])

RF_N_CNTR [14:0]															
Divide Ratio	C Word											B Word		A Word	
1-23	Divide Ratios Less than 24 are impossible since it is required that C>=3														
24-39	Some of these N values are Legal Divide Ratios, some are not														
40	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
41	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1
\ldots	0	.	.	.
16383	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1

N REGISTER-(16/17/20/21) PRESCALER OPERATING IN FRACTIONAL MODE (RF_N[6]-RF_N[20])

RF_N_CNTR [14:0]															
Divide Ratio	C Word											B Word		A Word	
1-47	Divide Ratios Less than 48 are impossible since it is required that $\mathrm{C}>=3$														
48-79	Some of these N values are Legal Divide Ratios, some are not														
80	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
81	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1
...	0	.	.	.
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

FRACTIONAL MODULUS ACCUMULATOR (FRAC_CNTR) (RF_N[2]-RF_N[5])

Fractional Ratio (F)		FRAC_CNTR			
Modulus 15	Modulus 16	RF_N[5]	RF_N[4]	RF_N[3]	RF_N[2]
0	0	0	0	0	0
$1 / 15$	$1 / 16$	0	0	0	1
$2 / 15$	$2 / 16$	0	0	1	0
\cdot	\cdot	\cdot	\cdot	\boldsymbol{e}	•
$14 / 15$	$14 / 16$	1	1	1	0
N/A	$15 / 16$	1	1	1	1

QUADRATURE MODULUS PRESCALER

The LMX2354 contains a quadrature modulus prescaler, consisting of a prescaler, A counter, B counter and C counter. Once the N value is known, the A, B, and C values can be calculated by:
$\mathrm{C}=\mathrm{N}$ div P
$B=(N-C \cdot P) \operatorname{div} 4$
A $=\mathrm{N} \bmod 4$
For the divide ratio to be legal, it is also required:
$C>=\max \{A, B\}+2$
fvco $=[\mathrm{N}+\mathrm{F}] \times[$ fosc $/ R]$
$N=P \cdot C+4 \cdot B+A$
F: Fractional ratio (contents of FRAC_CNTR divided by the fractional modulus)
$\mathrm{f}_{\mathrm{vco}}$: Output frequency of external voltage controlled oscillator (VCO)
C: Preset value of the C counter
B: Preset value of the B counter
A: Preset value of the A counter
$f_{\text {osc }}$: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 15 -bit programmable reference counter (3 to 32,767)
P: Preset modulus of quadrature modulus prescaler
8/9/12/13 $550 \mathrm{MHz}-1.2 \mathrm{GHz}$
16/17/20/21 1.2 GHz-2.5 GHz

SERIAL DATA INPUT TIMING

NOTE

Data shifted into register on clock rising edge. Data is shifted in MSB first.
TEST CONDITIONS: The Serial Data Input Timing is tested using a symmetrical waveform around $\mathrm{V}_{\mathrm{cc}} / 2$. The test waveform has an edge rate of $0.6 \mathrm{~V} / \mathrm{ns}$ with amplitudes of $2.2 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $2.6 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.

LOCK DETECT DIGITAL FILTER

The Lock Detect Digital Filter compares the difference between the phase of the inputs of the phase detector to a RC generated delay of approximately 15 ns. To enter the locked state (Lock $=\mathrm{HIGH}$) the phase error must be less than the 15 ns RC delay for 5 consecutive reference cycles. Once in lock (Lock $=H I G H$), the RC delay is changed to approximately 30 ns . To exit the locked state (Lock $=\mathrm{LOW}$), the phase error must become greater than the 30 ns RC delay. When the PLL is in the power down mode, Lock is forced LOW. A flow chart of the digital filter is shown at right.

ANALOG LOCK DETECT FILTER

When the Fo/LD output is configured in analog lock detect mode an external lock detect circuit is needed in order to provide a steady LOW signal when the PLL is in the locked state. A typical circuit is shown below.

TYPICAL LOCK DETECT TIMING

REVISION HISTORY

[^2]
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: (1) except f_{IN}, OSC $_{\mathrm{IF}}$ and $\mathrm{OSC}_{\text {RF }}$

[^1]: (1) FoLD - Fout/Lock Detect PROGRAMMING BITS

[^2]: - Changed layout of National Data Sheet to TI format

