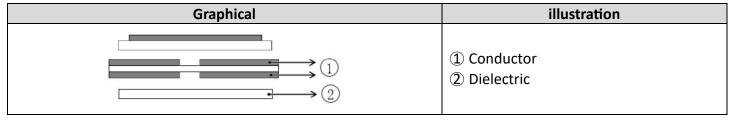
Double-sided metallized polypropylene

MMK104J3AE158 MMK124J3AE158 MMK224J3AE208 MMK474J3AF208

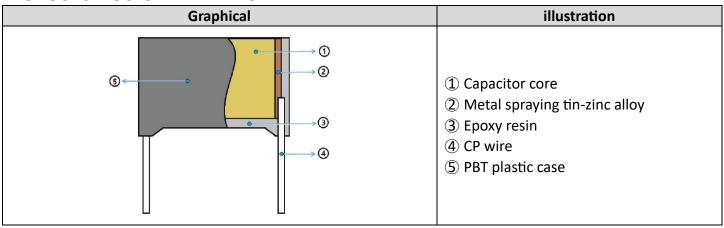
FEATURES

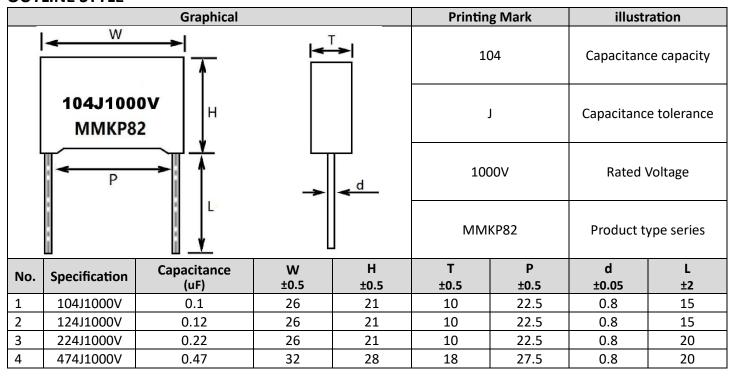
- Excellent self-healing performance
- Excellent High Frequency Performance
- Excellent Temperature Characteristics
- Excellent moisture proof performance
- Excellent flame retardancy
- Low Loss Value and High Insulation Resistance
- Excellent Capacity Stability under Long-term Load

- Widely used in high voltage and high frequency pulse circuit
- Suitable for LC resonant circuit



Item	Specification						
Reference standard	GB/T 10190 (IEC 60384-16)						
Climate classification	40/105/56						
Flame retardant grade	В						
Rated voltage	630V, 1000V, 1600V, 2000V						
Working temperature range	-40°C ~ +105°C						
Capacitance range	$0.0001\mu F \sim 0.47\mu F$						
Capacitance tolerance	G(±2%), H(±3%), J(±5%), K(±10%), M (±20%)						
Withstand voltage	1.6UR(5S)						
Tangent of loss angle	≤ 0.1% (1KHz , 20°C)						
Insulation resistance	≥ 30000MΩ; CR ≤ 0.33μF ≥ 10000S; CR > 0.33μF	20°C, 100V, 60S					

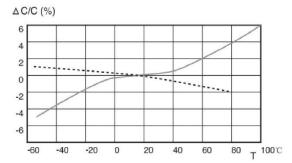


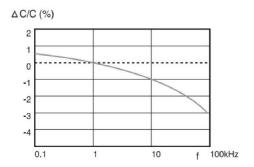

CORE STRUCTURE DIAGRAM

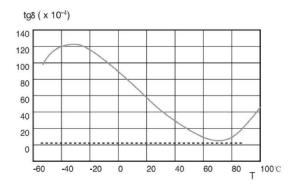
PRODUCT STRUCTURE DRAWING

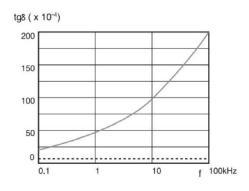
OUTLINE STYLE

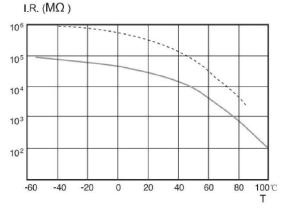
CHARACTERISTIC TEST

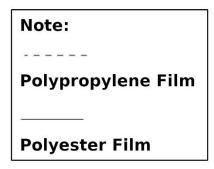

No.	Item	Performance requirement	Test method					
1	Initial	Capacitance Loss Angle Tangent: 1KHz						
	measurement							
	Terminal tensile	No visible damage to appearance	Tensile test Ual:					
	strength		pull: 0.5 < φd ≤ 0.8mm; 10N					
			Bending test Ub:					
			Second bending in each direction Reverse:					
			Two consecutive twists 180 degrees					
	Welding heat	No visible damage, clear marking	Welding groove method Tb, Method 1A					
	resistance		260±5°C, 5±1S					
	Final measurement	Capacitance: Delta C/C < Initial						
		Measured Value (+5%)						
		Loss tangent: The increase of DF is less						
		than 0.01 (1KHz)						
2	Initial	Capacitance Loss Angle Tangent: 1KHZ						
	measurement							
	Rapid temperature	No visible damage to appearance	0 _A =-40°C, 0=+105°C					
	change		5 cycles, duration: t = 30 minutes					
	Vibration	No visible damage to appearance	Amplitude 0.75 mm or acceleration 98 m/s ²					
			For those with lower degrees, the frequency					
			ranges from 10 Hz to 500 Hz.					
			Direction, 2 hours in each direction, 6 hours in					
	Collision	No visible develop to propose	total					
	Collision	No visible damage to appearance	4000 times, acceleration 390 m/s ² , pulse duration					
			Time: 6ms					
	Final measurement	Capacitance: C/C < 5% of the initial	Time. oms					
	Tillar illeasarellielle	measurement value.						
		Loss tangent: the increase of DF is less						
		than 0.01						
		Insulation resistance IR: > 50% of rated						
		value						
3	Initial	Capacitance Loss Angle Tangent: 1KHz						
	measurement							
	Dry heat		+105°C, 16h					
	Circulating damp		Test Db, severity b, first cycle					
	heat							
	Cold		-40°C, 2h					
	Low atmospheric	In the last 5 minutes at the end of the	15 ~ 35°C, 8.5Kpa, 1h					
	pressure	test, UR is applied without permanent						
		breakdown, flying arc or harmful						
		deformation at the bottom of the shell.						
	Circulating damp	At the end of the experiment, UR was	test Db, severity b, the rest of the cycle					
	heat	applied for 1 minute.						


No.	Item	Performance requirement	Test method
4	Final measurement	No visible damage, clear marking	
		Capacitance: C/C < 5% of the initial	
		measurement value.	
		Loss tangent: DF < 0.01	
		Voltage withstand: 1.6URDC, 5S no	
		breakdown or arc	
		Insulation resistance IR: > 50% of rated	
		value	
5	Steady pressure	No visible damage, clear marking	Temperature: 40 + 2 C
	and damp heat	Capacitance: C/C < 5% of the initial	Humidity: 93 + 2% RH
		measurement value.	Duration: 56 days
		Loss Angle Tangent (1KHz): The increase	
		of DF is less than 0.01	
		Voltage withstand: 1.6URDC, 5S no	
		breakdown or arc	
		Insulation resistance IR: > 50% of rated	
		value	
6	Durability	No visible damage, clear marking	+105°C, 1000h
		Capacitance: C/C < 10% of initial	Applying voltage: 1.25UR rated voltage
		measurement value	
		Loss Angle Tangent (1KHz): The increase	
		of DF is less than 0.01	
		Voltage withstand: 1.6URDC, 5S no	
		breakdown or arc	
		Insulation resistance IR: > 50% of rated	
7	Charging and	value Capacitance: C/C < 10% of initial	Number: 10,000 times
'	Discharging	measurement value	Charging duration: 0.5S
	Discharging	Loss Angle Tangent (1KHz): The increase	Discharge duration: 0.5S
		of DF is less than 0.01	Charging voltage is rated voltage
		Insulation resistance IR: > 50% of rated	Charging Resistance: 220/CR (_) or 20 (larger)
		value	CR is nominal capacitance (muF)
8	Flame Retardant	After leaving the flame, any capacitor	IEC695-2-2 Needle Flame Method
	Test	will continue to burn for no more than	Flame Retardant Level: B
		10 seconds, and the droplets burned by	Capacitor Volume: V(mm3) < 250,
		the capacitor shall not ignite the cotton	Flame application time is 5 S
		paper laid underneath it.	Capacitance volume: 250 < V(mm3) < 500,
			Flame application time is 20 s
			Capacitance volume: 500 < V (mm3) < 1750,
			Flame application time is 30 s
			Capacitance volume: V (mm3) > 1750,
			The time of applying flame is 60s.


CHARACTERISTIC CHART OF CAPACITOR


Capacitance vs. temperature at 1kHz


Capacitance vs. frequency (Room temperature)


Dissipation factor vs. temperature at 1kHz

Dissipation factor vs. frequency (Room temperature)

I.R. vs. temperature

All products, product specifications and data are subject to change without notice to improve reliability, function or design or otherwise.

PART NUMBER CODING

<u>MMK</u> <u>824</u> <u>K</u> <u>31</u> <u>E</u> <u>18</u> <u>8</u> (1) (2) (3) (4) (5) (6) (7)

(1)	Product Series	MMK=MMKP82 Series											
(2)	Capacitance	3 digit code											
		Example: 824=82x10 ⁴ pF=820nF=0.82μF											
(3)	Tolerance	· — ·											
		Code	F	G		Н		k	(M	L		Р
		Tol.	±1%	±2%		3%	±5%	5 ±10)%	±20% -10)%	0~+10%
		"										•	
(4)	Rated Voltage												
		Code	VDC	Code				Cod	e V	VDC		ode	VDC
		1A	10		2A	100		3A		000		10	100
		1M	12		2M	120		31/		1200		22	220
		-	-		2B	125		3B		1259		25	250
		1N	15		2N	150		3N		500		27	275
		1C	16		2C	160		30		500		28	280
		-	-	-	2D	200		3D		000		30	305
		1E	25		2E	250		3E		2500		31	310
		-	-		2F	300		3F		000		33	330
		1V	35		2V	350		3V		3500		35	350
		-	-		2G	400		3G	i 40	000		40	400
		-	-		2W		450			-		44	440
		1H	50	-	2H	500		-				45	450
		1T	540 63		2T 2J	520		-		-		50 60	500 600
		1J 1K	80		2K	630 800		-		-	63		630
		1U	600		ZK	800						70	700
			000	-							M3		1200
										1VI3 12UU			
(5)	Plastic case /	Linit: mr								Unit: mm			
(5)	Lead space	Cod	le	М	В	С		D	D		Е		
		Lead S		5	7.5		10	15		R 20 22			27.5
						l l			<u> </u>		1		
(6)	Lead length											Unit: mm	
		Code	03	04	05	5	15	18	20	2	2 25		35
		Length	3.0	4.0	5.0			18	20	2	2 2	25	35
		Code	Z	Х	С		٧	В	B N		/I S	V	
		Length	0.2	0.3	0.4	4 0.5		0.6	0.7	0	.8 10	0.5	
(7)	Lead diameter	Unit: mm								Unit: mm			
		Cod		5		6		8		1		2	
		Dia	э.	0.5		0.6		0.8		1.0		1.2	