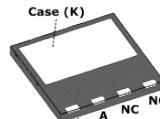


GE04MPS06Q

650V 4A SiC Schottky MPS™ Diode

Silicon Carbide Schottky Diode



V _{RRM}	=	650 V
I _F (T _C = 163°C)	=	4 A
Q _C	=	9 nC

Features

- Benchmark Low Built-In Voltage (V_{BI})
- Superior Figure of Merit Q_C * V_F
- Gen5 Thin Chip Technology for Low V_F
- Enhanced Surge Current & UIS Robustness
- Low Thermal Resistance
- Zero Reverse Recovery
- Excellent dV/dt Ruggedness

Package

QFN8x8

Advantages

- Low Conduction Losses for All Load Conditions
- Optimal Price Performance
- Increased System Power Density
- High System Reliability
- Reduced Cooling Requirements
- Temperature Independent Fast Switching
- Easy to Parallel without Thermal Runaway

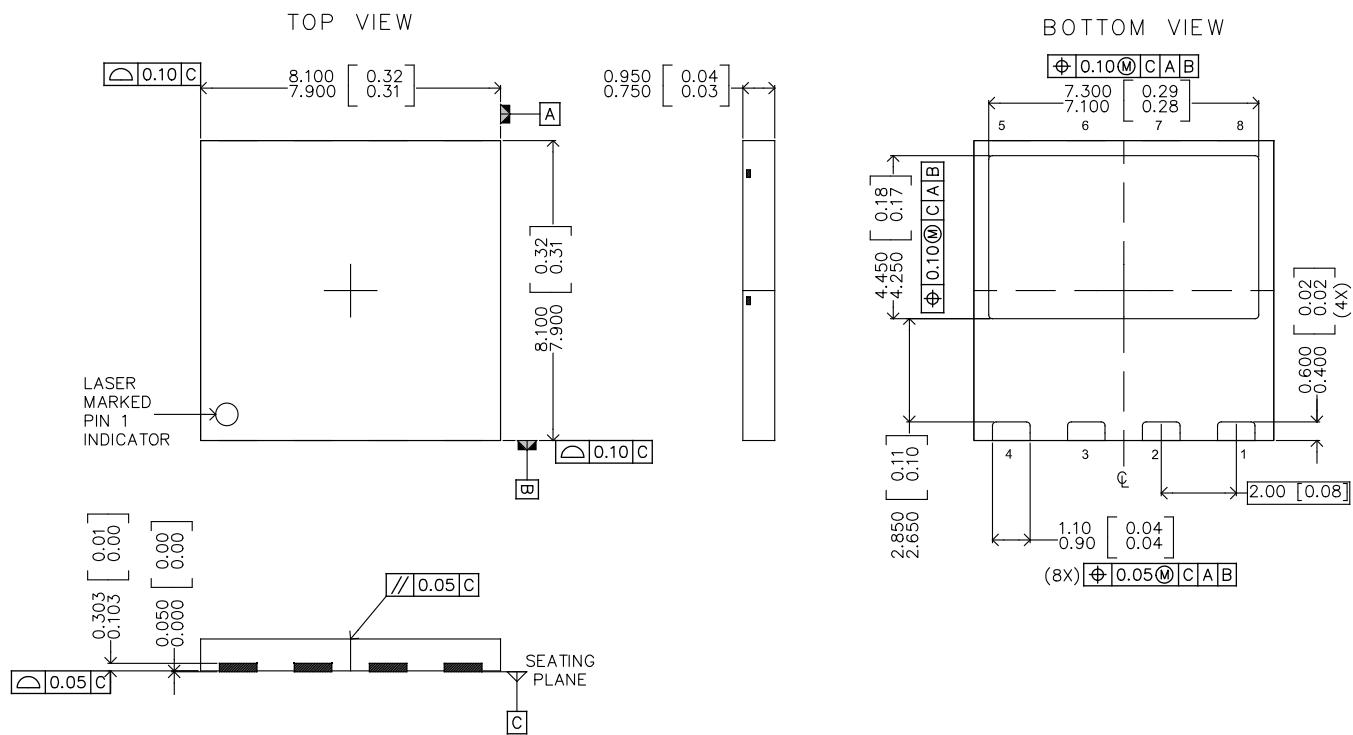
Applications

- Switched Mode Power Supply (SMPS)
- Boost Power Factor Correction (PFC)
- Server and Telecom Power Supply
- LLC Clamping
- Uninterruptible Power Supply (UPS)

Absolute Maximum Ratings (At T_C = 25°C Unless Otherwise Stated)

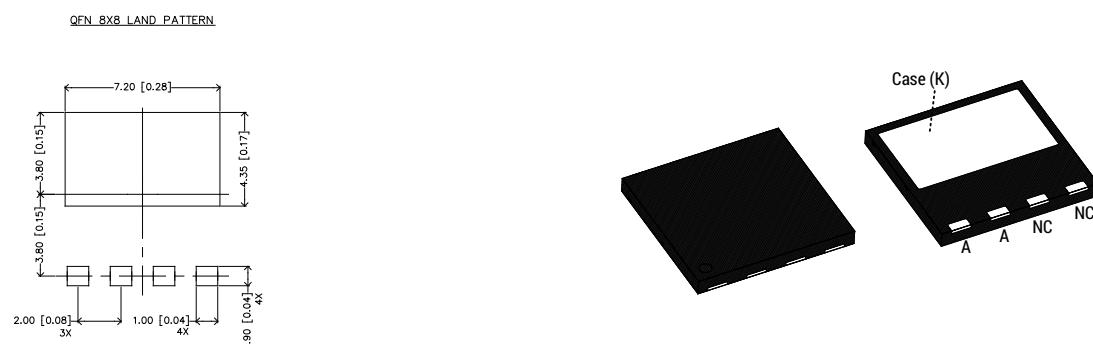
Parameter	Symbol	Conditions	Values	Unit	Note
Repetitive Peak Reverse Voltage	V _{RRM}		650	V	
Continuous Forward Current	I _F	T _C = 100°C, D = 1	11		
		T _C = 135°C, D = 1	8	A	
		T _C = 163°C, D = 1	4		
Non-Repetitive Peak Forward Surge Current, Half Sine Wave	I _{FSM}	T _C = 25°C, t _P = 10 ms	24		
		T _C = 150°C, t _P = 10 ms	20	A	
Repetitive Peak Forward Surge Current, Half Sine Wave	I _{FRM}	T _C = 25°C, t _P = 10 ms	TBD		
		T _C = 150°C, t _P = 10 ms	TBD	A	
Non-Repetitive Peak Forward Surge Current	I _{FMAX}	T _C = 25°C, t _P = 10 μs	TBD	A	
i ² t Value	J _{i²t}	T _C = 25°C, t _P = 10 ms	2.88	A ² s	
Non-Repetitive Avalanche Energy	E _{AS}	L = 2.6 mH, I _{AS} = 4 A	21	mJ	
Diode Ruggedness	dV/dt	V _R = 0 ~ 520 V	100	V/ns	
Power Dissipation	P _{TOT}	T _C = 25°C	81	W	
Operating and Storage Temperature	T _j , T _{stg}		-55 to 175	°C	

Electrical Characteristics


Parameter	Symbol	Conditions	Values			Unit	Note
			Min.	Typ.	Max.		
Diode Forward Voltage	V _F	I _F = 4 A, T _j = 25°C		1.3	1.5	V	
		I _F = 4 A, T _j = 125°C		1.48			
Reverse Current	I _R	V _R = 650 V, T _j = 25°C		1		μA	
		V _R = 650 V, T _j = 125°C		TBD			
Total Capacitive Charge	Q _C	V _R = 200 V		6		nC	
		I _F ≤ I _{F,MAX} V _R = 400 V		9			
Switching Time	t _S	dI _F /dt = 200 A/μs	V _R = 200 V		< 10	ns	
			V _R = 400 V				
Total Capacitance	C	V _R = 1 V, f = 1MHz		175		pF	
		V _R = 400 V, f = 1MHz		12			

Thermal/Package Characteristics

Parameter	Symbol	Conditions	Values			Unit	Note
			Min.	Typ.	Max.		
Thermal Resistance, Junction - Case	R _{thJC}			1.86		°C/W	
Weight	W _T		-			g	


Package Dimensions

QFN8x8 Package Outline

Recommended Solder Pad Layout

Package View

NOTE

1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Compliance

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

Disclaimer

GeneSiC Semiconductor, LLC, a wholly owned subsidiary of Navitas Semiconductor, reserves right to make changes to the product specifications and data in this document without notice. GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

www.genesicsemi.com/sic-schottky-mps/