

GPY245

Ethernet Network Connection

4-Port 2.5 Gigabit Ethernet PHY

GPY245 (GPY245B0BI)

Data Sheet

Revision 1.3, 2023-06-15 Reference ID 620157

Legal Notice

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this document. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

EXCEPT AS OTHERWISE PROVIDED EXPRESSLY IN WRITING BY MAXLINEAR, AND TO THE MAXIMUM EXTENT PERMITTED BY LAW: (A) THE MAXLINEAR PRODUCTS ARE PROVIDED ON AN "AS IS" BASIS WITHOUT REPRESENTATIONS OR WARRANTIES OF ANY KIND, INCLUDING WITHOUT LIMITATION ANY IMPLIED OR STATUTORY WARRANTIES AND ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; AND (B) MAXLINEAR DOES NOT GUARANTEE THAT THE PRODUCTS WILL BE FREE OF ERRORS OR DEFECTS. MAXLINEAR PRODUCTS SHOULD NOT BE USED IN ANY EMERGENCY, SECURITY, MILITARY, LIFE-SAVING, OR OTHER CRITICAL USE CASE WHERE A FAILURE OR MALFUNCTION COULD CAUSE PERSONAL INJURY OR DEATH, OR DAMAGE TO OR LOSS OF PROPERTY. USERS ASSUME ALL RISK FOR USING THE MAXLINEAR PRODUCTS IN SUCH USE CASE. CUSTOMERS AND USERS ARE SOLELY RESPONSIBLE FOR USING THEIR OWN SKILL AND JUDGMENT TO DETERMINE WHETHER MAXLINEAR PRODUCTS ARE SUITABLE FOR THE INTENDED USE CASE.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

MaxLinear, the MaxLinear logo, any other MaxLinear trademarks (including but not limited to MxL, Full-Spectrum Capture, FSC, AirPHY, Puma, AnyWAN, VectorBoost, MXL WARE, and Panther), and the MaxLinear logo on the products sold are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

All third-party products, company names and logos are trademarks™ or registered® trademarks and remain the property of their respective holders/owners. Use of such marks does not imply any affiliation with, sponsorship or endorsement by the owners/holders of such trademarks. All references by MaxLinear to third party trademarks are intended to constitute nominative fair use under applicable trademark laws.

The URLs provided are for informational purposes only; they do not constitute an endorsement or an approval by MaxLinear of any of the products or services of the corporation or organization or individual. MaxLinear bears no responsibility for the accuracy, legality or content of the external site or for that of subsequent links. Contact the external site for answers to questions regarding its content.

© 2023 MaxLinear, Inc. All rights reserved.

MaxLinear, Inc. 5966 La Place Court, Suite 100 Carlsbad, CA 92008 Tel.: +1 (760) 692-0711

Fax: +1 (760) 444-8598 www.maxlinear.com

Revision History

Current: Previous:	Revision 1.3, 2023-06-15 Revision 1.2, 2022-07-28						
Page	Major changes since previous revision						
11	Section 1 Product Overview: Changed MDIO frequency to 25 MHz.						
12	Section 1.1 Communication Interfaces: Added jumbo frames. Removed QSGMII. Changed MDIO frequency to 25 MHz.						
17	Figure 3 Ball Diagram for PG-VF2BGA-260 (Top View): Added Ball B21.						
22	Table 6 USXGMII Interface Signals: Changed UTXP and UTXM pin type.						
23	Table 7 Management Interface Signals: Removed MDINT buffer type.						
24	 Table 10 LED and Debug Interface Signals: Removed alternative type LIGHT from PHYLED2_1. Removed alternative type MOSI from PHYLED2_3. Removed alternative type MISO from PHYLED3_3. 						
27	Table 12 Power Supply Pins: Added Ball B21.						
45	Section 3.6.3 LED Brightness Control: Updated the LED brightness control frequency.						
159	VSPEC1_PM_CTRL, Packet Manager Control (Register 30.12): Changed MAC_FREQ_TUNE to 100 PPM.						
169	Section 32 Absolute Maximum Ratings: Updated minimum value and description of Absolute Junction Temperature parameter.						
171	Section 33 Operating Range: Updated 0.95 V operating range.						
177	Section 7.7.1 Power Up and Power Down Sequence: Updated description.						
192	Table 61 Product Naming: Added MMID.						

Third-Party Trademark and Registered Trademark Declarations

Cisco is a registered trademark or trademark of Cisco Systems, Inc. and/or its

affiliates in the United States and certain other countries. A list of other Cisco marks

is available at https://www.cisco.com/c/en/us/about/legal/trademarks.html.

IEEE® "IEEE", the IEEE logo, and other IEEE logos and titles are registered trademarks or

service marks of The Institute of Electrical and Electronics Engineers, Incorporated.

JEDEC® JEDEC is a registered trademark of the JEDEC Solid State Technology Association.

All other trademarks or registered trademarks are the property of their respective holders/owners.

Table of Contents

Table of Contents

	Table of Contents	. 5
	List of Figures	. 8
	List of Tables	. 9
1	Product Overview	11
1.1	Features	12
1.2	Block Diagram	14
2	External Signals	15
2.1	Overview	
2.2	External Signal Description	16
2.2.1	Ball Diagram Overview	16
2.2.2	Ball Diagram	16
2.2.3	Abbreviations	18
2.2.4	Input/Output Signals	19
2.2.4.1	Ethernet Media Interface	19
2.2.4.2	SGMII Interface	21
2.2.4.3	USXGMII Interface	22
2.2.4.4	MDIO Interface	23
2.2.4.5	SPI Interface	23
2.2.4.6	Reset Interface	
2.2.4.7	LED/UART/JTAG Interface	24
2.2.4.8	Miscellaneous Signals	26
2.2.4.9	Power Supply for GPHY	
2.2.4.10	Power Supply for SGMIIs and USXGMII	
2.2.4.11	Power Supply for Twisted Pair Interface (TPI) Analog Front End (AFE)	
2.2.4.12	Ground	30
3	Functional Description	31
3.1	Power Supply, Clock and Reset	31
3.1.1	Power Supply	31
3.1.2	Clock	31
3.1.3	Reset Generation	31
3.1.4	Power-On Sequence	31
3.1.5	Configuration by Pin Strapping	
3.2	Configuration via MDIO Management Interface	32
3.3	Ethernet PHY Interface	33
3.3.1	Twisted Pair Interface	33
3.3.2	Transformerless Ethernet (TLE)	
3.3.3	Auto-Negotiation (ANEG)	
3.3.4	Auto-Downspeed (ADS)	
3.3.5	Polarity Reversal Correction	
3.3.6	Auto-Crossover Correction	
3.3.7	Wake-on-LAN (WoL)	
3.4	CCMII Interfece	
	SGMII Interface	
3.4.1	Selection of Gigabit PHY	37
3.4.2	Selection of Gigabit PHYSGMII Control and Status Registers	37 37
3.4.2 3.4.3	Selection of Gigabit PHY SGMII Control and Status Registers Operation Procedure	37 37 38
3.4.2	Selection of Gigabit PHYSGMII Control and Status Registers	37 37 38 39

Table of Contents

3.4.6	SGMII PHY-Side Setup Fixed Irrespective of TPI Setup	
3.4.7	SGMII MAC-Side Setup by MAC SoC	
3.4.8	SGMII Link Monitoring by MAC SoC	
3.4.8.1	Actions on TPI Link Down / Link Up Status Change	
3.4.8.2	New TPI Link Up at Same Speed	
3.4.8.3	Change of Speed After a New Link Up on TPI	
3.4.9	Auto-Negotiation Modes Supported by SGMII	
3.4.9.1	Enabling SGMII Auto-Negotiation Mode	
3.5	USXGMII Interface	
3.5.1	USXGMII Configuration at Power Up	
3.6	LED Interface	
3.6.1	LED	
3.6.2	LED Configuration	
3.6.3	LED Brightness Control	
3.7	Precision Time Protocol Feature	
3.7.1	PTP Feature Purpose	
3.7.2	PTP Feature Configuration	
3.8	Pulse Per Second Feature	
3.8.1	PPS Feature Purpose	
3.8.2	PPS Feature Configuration	
3.9	Synchronous Ethernet Feature	
3.9.1	SyncE Feature Purpose	
3.9.2	SyncE Feature Configuration	
3.10	Smart-AZ Feature	
3.11	MACsec Feature	
3.11.1	MACsec Feature Usage	
3.11.2	MACsec Engine Control API Executed on MAC SoC	
3.12	Power Management	
3.12.1	Power States	
3.12.2	RESET Power Up	
3.12.3	POWER DOWN State	
3.12.4	SCAN State	
3.12.5	PING State	
3.12.6	LP State	
3.12.7	NORMAL State	
3.12.8	Low Power IDLE State: Energy-Efficient Ethernet	
3.13	Field Firmware Upgrade (FFU)	55
1	MDIO and MMD Register Interface Description	56
1.1	MDIO-Specific Terminology	56
1.2	Register Naming and Numbering	57
1.2.1	Register Numbering	57
1.2.2	Register Naming	57
1.2.3	Examples	57
1.3	MMD Devices Present in GPY245	58
1.4	Responsibilities of the STA	58
1.5	MDIO Access Protocols to Read / Write Registers	58
5	MDIO Registers Detailed Description	59
5.1	Standard Management Registers	
5.1.1	Standard Management Registers	
5.2	GPY-specific Management Registers	77

Table of Contents

5.2.1	GPY-specific Management Registers	77
6	MMD Registers Detailed Description	91
6.1	Standard PMAPMD Registers for MMD=0x01	92
6.1.1	Standard PMAPMD Registers for MMD=0x01	93
6.2	Standard PCS Registers for MMD=0x03	. 116
6.2.1	Standard PCS Registers for MMD=0x03	. 116
6.3	Standard Auto-Negotiation Registers for MMD=0x07	. 130
6.3.1	Standard Auto-Negotiation Registers for MMD=0x07	. 131
6.4	Vendor Specific 1 Device for MMD=0x1E	. 150
6.4.1	Vendor Specific 1 Device for MMD=0x1E	. 150
6.5	Vendor Specific 2 Device for MMD=0x1F	. 165
6.5.1	Vendor Specific 2 Device for MMD=0x1F	. 165
7	Chip Electrical Characteristics	
7.1	Absolute Maximum Ratings	. 169
7.2	Operating Range	. 171
7.3	Typical Power Consumption	. 172
7.4	Maximum Thermal Design Power	. 173
7.5	Peak Current	. 174
7.6	DC Characteristics	. 175
7.6.1	Digital Interfaces	. 175
7.6.2	Twisted Pair Interface	. 175
7.6.3	Built-in Temperature Sensor	. 175
7.7	AC Characteristics	. 176
7.7.1	Power Up and Power Down Sequence	. 177
7.7.2	Input Clock	. 179
7.7.3	Power Supply Rail Requirements	. 179
7.7.4	MDIO Interface	. 180
7.7.5	Serial Peripheral Interface (SPI)	. 181
7.7.6	JTAG Interface	. 182
7.7.7	SGMII Interface Timing	. 183
7.7.7.1	SGMII Transmit Timing Characteristics	. 183
7.7.7.2	SGMII Receive Timing Characteristics	
7.7.8	UXSGMII Interface Timing	. 185
7.7.8.1	UXSGMII Transmit Timing Characteristics	
7.7.8.2	UXSGMII Receive Timing Characteristics	
7.7.9	Crystal Specification	
7.8	External Circuitry	
7.8.1	Twisted-Pair Common-Mode Rejection and Termination Circuitry	
7.8.2	Transformer (Magnetics)	
7.8.3	RJ45 Plug	
7.8.4	Calibration Resistors	
7.9	Power Supply	
8	Package Outline	. 190
8.1	Chip Identification and Ordering Information	. 192
	Literature References	. 193
	Standards References	. 193
	Terminology	. 194

List of Figures

List of Figures

igure 1	Ethernet Network Connection GPY245 Block Diagram	14
igure 2	Ethernet Network Connection GPY245 External Signal Overview	15
igure 3	Ball Diagram for PG-VF2BGA-260 (Top View)	17
igure 4	MDIO Access Timing	32
igure 5	Twisted-Pair Interface of GPY245 Including Transformer and RJ45 Plug	33
igure 6	External Circuitry for the Transformerless Ethernet Application	34
igure 7	Block Diagram of WoL Application	36
igure 8	GPY245 SGMII Configuration and Status Registers	37
igure 9	LED Connection Options to Ground or Power Supply	43
igure 10	Connection of a Dual Color LED and Configuring Pin Strap Value	44
igure 11	Connection of a Single Color LED and Configuring Pin Strap Value	44
igure 12	LED Brightness Control by Controlling LED Output Enable/Disable	45
igure 13	State Diagram for Power Down State Management	49
igure 14	LP Sequence	51
igure 15	EEE Low Power Idle Sequence	
igure 16	Input/Output Waveform for AC Tests	176
igure 17	Timing Diagram for the Reset Sequence in SGMII Mode	177
igure 18	Timing Diagram for the Reset Sequence in USXGMII Mode	
igure 19	Timing Diagram for the MDIO Interface	
igure 20	SPI Master Interface Timing	181
igure 21	Test Interface Timing	182
igure 22	Transmit Timing Diagram of the SGMII (shows alternating data sequence)	183
igure 23	Receive Timing Diagram of the SGMII (alternating data input sequence)	184
igure 24	Twisted Pair Common-Mode Rejection and Termination Circuitry	187
igure 25	Schematic of an Ethernet Transformer Device	188
igure 26	PG-VF2BGA-260 12 mm x 12 mm Package Outline	191
igure 27	Chip Marking of GPY245	192

List of Tables

List of Tables

Table 1	Ball Diagram Color Codes	16
Table 2	Abbreviations for Pin Type	18
Table 3	Abbreviations for Buffer Type	18
Table 4	Ethernet Media Interface Signals	19
Table 5	SGMII Interface Signals	21
Table 6	USXGMII Interface Signals	22
Table 7	Management Interface Signals	23
Table 8	Management Interface Signals	23
Table 9	Reset Signals	
Table 10	LED and Debug Interface Signals	
Table 11	Miscellaneous Signals	
Table 12	Power Supply Pins	
Table 13	Power Supply Pins	
Table 14	Power Supply Pins	
Table 15	Power Supply Pins	
Table 16	Pin Names Used for Pin Strapping	
Table 17	Pin Strapping Configuration Description	
Table 18	Supported Twisted Pair Mappings on a CAT5 or Better Cable	
Table 19	Programming Sequence for the Wake-on-LAN Functionality	
Table 20	XPCS Feature List	
Table 21	LP State Entry and Exit Sequence	
Table 22	MDIO / MMD Devices Present in GPY245	
Table 23	Register Access Type	
Table 24	Registers Overview	
Table 25	Registers Overview	
Table 26	Register Access Type	
Table 27	Registers Overview	
Table 28	Registers Overview	
Table 29	Registers Overview	
Table 30	Registers Overview	
Table 31	Registers Overview	
Table 32	Absolute Maximum Ratings	
Table 33	Operating Range	
Table 34	Typical Power Consumption in SGMII Configuration	
Table 35	Typical Power Consumption in USXGMII Configuration.	
Table 36	Maximum Power Consumption	
Table 37	Peak Current Per Rail	
Table 38	DC Characteristics of the GPIO Interfaces (VDDP=3.3 V)	
Table 39	Temperature Sensor Characteristics	
Table 40	Power Supply Timings	
Table 41	AC Characteristics of Input Clock on XTAL1 Pin	
Table 42	AC Characteristics of the Power Supply	
Table 43	Timing Characteristics of the MDIO Interface	
Table 44	SPI Interface Timing Parameters	
Table 45	Test Interface Clock	
Table 46	JTAG Timing	
Table 47	Transmit Timing Characteristics of the SGMII	
Table 48	Receive Timing Characteristics of the SGMII	
Table 49	Transmit Timing Characteristics of the UXSGMII	. 185

Ethernet Network Connection GPY245

List of Tables

Table 50	Receive Timing Characteristics of the UXSGMII	185
Table 51	Specification of the Crystal	186
Table 52	Electrical Characteristics for Common-Mode Rejection and Termination Circuitry	187
Table 53	Electrical Characteristics for Supported Transformers (Magnetics)	188
Table 54	Electrical Characteristics for Supported RJ45 Plugs	189
Table 55	Calibration Resistors Values	189
Table 56	JEDEC Thermal Resistance Package Parameter - Still air conditions at 85°C	190
Table 57	JEDEC Thermal Resistance Package Parameter - Still air conditions at 70°C	190
Table 58	JEDEC Thermal Resistance Package Parameter - With Thermal Solution Environment	190
Table 59	JEDEC Thermal Resistance Package Parameter - Compact 2-R Model Network	190
Table 60	Chip Marking Pattern	192
Table 61	Product Naming	192

1 Product Overview

The Ethernet Network Connection GPY245 is a low power Quad - Ethernet PHY transceiver integrated circuit. It offers a cost-optimized solution well-suited for routers, switches, and home gateways. GPY245 supports four data rates: 2500, 1000, 100, and 10 Mbps.

On the Ethernet twisted pair interface, the GPY245 is compliant with these IEEE 802.3 standards referenced in [5] and [6]: 2.5GBASE-T (IEEE 802.3bz, NBASE-T), 1000BASE-T (IEEE 802.3 Clause 40), 100BASE-TX (IEEE 802.3 Clause 25), and 10BASE-Te (IEEE 802.3 Clause 14). This interface supports the Energy-Efficient Ethernet feature to reduce idle mode power consumption. Power saving at the system level is also possible with the wake-on-LAN feature. A low-EMI line driver with integrated termination facilitates the PCB design.

With reference to the Open System Interconnection (OSI) model, GPY245 implements a layer 1 physical media access device, and is connected to a layer 2 MAC using a SerDes data interface and an MDIO management interface.

GPY245 provides two options for the SerDes data interface:

- A USXGMII single-lane interface with 10.3125 GHz bit clock to connect to a MAC processor with a single Rx / Tx lane
- A quad-lane SGMII interface with a clock of up to 3.125 GHz or 1.25 GHz bit to connect to legacy switches that only support SGMII and not USXGMII.

The chip operates in one of the two SerDes modes, which are mutually exclusive.

On the SerDes interface, connecting to another chip implementing a MAC layer, the GPY245 supports these standards: IEEE802.3 Clause 36 and 27 [5], and Cisco SGMII [8]. This interface also operates at these data rates: 2500, 1000, 100, and 10 Mbps.

The GPY245 supports the Precision Time Protocol (PTP) and Synchronous Ethernet (SyncE). The GPY245 integrates a MAC security engine (MACsec) that performs wire-speed point-to-point encryption when the MAC SoC does not support the feature in its MAC layer.

The GPY245 supports a standard MDIO management interface as defined in IEEE 802.3 Clause 22 and Clause 45 [5], [6]. The MDIO serial interface is operable with a clock running up to 25 MHz. It allows a management entity (the external chip implementing the MAC) to access standard MDIO / MMD registers to control the GPY245 behavior, or to read the link status. In addition, two vendor specific register banks (VSPEC1 and VSPEC2) allow GPY245 specific configuration of LED, SGMII, and wake-on-LAN features. The MDIO and MMD registers are documented in Chapter 5. The GPY245 is also configurable via pin strapping.

The GPY245 is capable of driving up to twelve LEDs (3 per BASE-T port). Each LED is independently programmable to indicate the link speed and traffic activities. Several indication schemes are selectable.

External supplies of 0.95 V and 3.3 V are required to power the GPY245. When USXGMII is used, an additional external supply of 1.8 V is required for the USXGMII SerDes and Low Jitter PLL.

The GPY245 uses a ball grid array package (type BGA 18 x18 matrix, size 12 mm x 12 mm).

1.1 Features

This section provides an overview of the features supported by the GPY245.

Communication Interfaces

- The multiple speed, four-port Ethernet PHY interfaces to the twisted pair cables support:
 - Ethernet modes and standards: 2.5GBASE-T (IEEE 802.3bz, NBASE-T), 1000BASE-T (IEEE 802.3), 100BASE-TX (IEEE 802.3) and 10BASE-Te (IEEE 802.3)
 - Ethernet twisted pair copper cable of category CAT5 or higher
 - Low EMI voltage mode line driver with integrated termination resistors
 - Transformerless Ethernet for backplane applications
 - Auto-negotiation (ANEG) with extended next page support
 - Auto-MDIX and polarity correction
 - Auto-downspeed (ADS)
 - Energy-Efficient Ethernet (EEE) and Power Down (PD) mode
 - Cable diagnostics: cable open/short detection and cable length estimation
 - Wake-on-LAN (WoL)
 - Power-over-Ethernet (POE)
 - Precise time stamping, implementing standard IEEE 1588v2
 - Jumbo frames of up to 10 KB
- · The four SGMII SerDes interfaces support:
 - Cisco Serial-GMII Specification [8] operating at 1.25 Gbaud/s; extensions to achieve 3.125 GBaud/s by overclocking the SerDes
 - 2.5 Gbps (one lane of XAUI conforming per 802.3, part 4, clause 47: 10 Gigabit Attachment Unit Interface (XAUI) full duplex)
 - Clock and Data Recovery (CDR), no clock forwarding required
 - SGMII power saving when a Low Power Indication (LPI) is active
- The four SGMII PCS interfaces support:
 - IEEE 802.3 clause 36 and 37 compliant PCS component
 - Cisco Serial-GMII Specification [8] operating at 1.25 Gbaud/s; extensions to achieve 3.125 GBaud/s by overclocking the SGMII PCS
 - IEEE 802.3 clause 35 compliant GMII and MII interface (GMII compliant except for transmit clock direction);
 extensions to achieve operation at 2.5 Gbps by overclocking
 - 2.5 Gbps full duplex, 1 Gbps full duplex, 100 Mbps full/half duplex, and 10 Mbps full/half duplex
 - Minimum IPG of 4 bytes and minimum preamble of 0 bytes (before considering clock deviation factor)
- The USXGMII SerDes interface supports:
 - IEEE 802.3-2012, IEEE 10GBASE-KR (10.3125 Gbps) and Energy Efficient Ethernet (EEE) Physical Layer electrical specifications
 - Back channel adaptation, auto-negotiation, forward error correction (FEC), and Energy-Efficient Ethernet
 (EEE)
 - Clock and Data Recovery (CDR), no clock forwarding required
 - Power saving when a Low Power Indication (LPI) is active
- The quad mode XPCS supports:
 - Clause 73 auto-negotiation per Ethernet PCS
 - USXGMII with clause 37 auto-negotiation per Ethernet XPCS
 - Clause 72 for 10G-base (K)R training
 - PCH preamble

- EEE mode
- The management interface supports the communication between the Station Management (STA), per the IEEE 802.3, and the GPY245 using:
 - An MDIO slave interface that provides access to the standard registers in the MMD as described in IEEE 802.3 Clause 22 and Clause 45 [4] and Chapter 5.
 - An MDIO interface clock of up to 25 MHz
 - 3 MDIO message frame types as described in IEEE 802.3: Clause 22, Clause 22 Extended, Clause 45 [4]
- The SPI master interface connecting to serial external E2PROM memory supports:
 - Programmable interface clocks: maximum 100 MHz
 - Internal PHY firmware code access from external E2PROM memory
 - Write access to the E2PROM memory
 - Different E2PROM sizes from 512 Kbit to 128 Mbit
 - Secure Field Firmware Upgrade (FFU) of the flash memory
- The JTAG boundary scan, test and debug interface supports:
 - Shared pins with GPIO functions
- The LED interface supports:
 - Up to 3 LEDs per port
 - Single and dual color LEDs
 - Connection of LED to ground or 3.3 V
 - Several LED indication schemes (link/activity, duplex/collision, link speed)
 - Configuration of LED indication via MDIO registers
 - Control of LED brightness via software driver API
 - Alternative configuration of LED pins as GPIO for custom indication
- Supports two external interrupts:
 - Configurable as output to an external controller
 - Configurable as input from external device(s)
 - Configurable edge, level, and polarity

Clocking, Timing and Time Stamping Features

- · 25 MHz crystal operation
- Synchronous Ethernet (Sync-E), implementing standard ITU-T G.8262/Y.1362
- Precise time stamping (PTP) according to standard IEEE 1588v2
- Three general purpose clock pins GPC1, GPC2, and GPC3 shared with GPIO for several usage options, configurable by GPY API:
 - to input or output the Synchronous Ethernet reference clock Sync-E: 2.048 MHz, 1.544 MHz
 - to input or output the precise time stamping signals (PTP)
 - to output the pulse per second signal (PPS)

MACsec per Port

- One instance of MACsec for each port
- IEEE 802.1AE for 128-bit and 256-bit, with 16 security channels and 32 security associations in each direction
- Classification based on packet header fields
- Bypassing for Non-MACsec packets

Other Features

- SyncE
- Temperature Sensor (warning, interrupt and auto-downspeed)

Power Supply

- 3.3 V and 0.95 V external power sources
- When operated in USXGMII mode instead of SGMII mode, an additional external supply of 1.8 V is required.

1.2 Block Diagram

Figure 1 shows the block diagram of the GPY245. The main interfaces are:

- Data interface to a MAC processor, using SGMII/USXGMII
- Slave control interface driven by a MAC processor, using MDIO slave
- Interrupt signal MDINT allowing the GPY245 to notify the MAC processor about a change of status
- LED control
- · Twisted pair interface
- Master SPI interface to download the firmware

The GPY245 product variant supports the MACsec block, which performs encryption and decryption of the MAC frames as indicated in **Figure 1**.

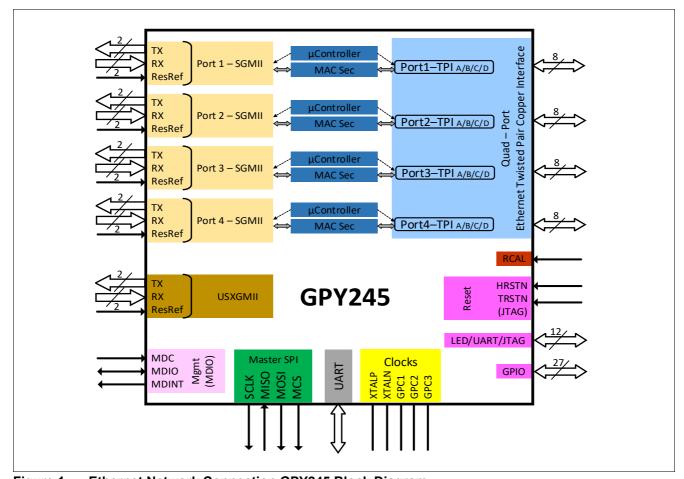


Figure 1 Ethernet Network Connection GPY245 Block Diagram

2 External Signals

This chapter describes the signal mapping to the package.

2.1 Overview

Figure 2 provides an overview of the external interfaces of the GPY245.

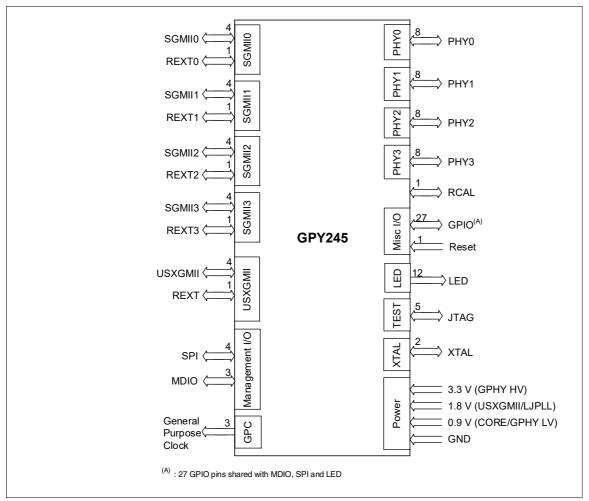


Figure 2 Ethernet Network Connection GPY245 External Signal Overview

2.2 External Signal Description

This section provides in detail the ball diagram, abbreviations for pin types and buffer types, and the table of input and output signals.

2.2.1 Ball Diagram Overview

Figure 3 describes the positions of the balls on the GPY245 package.

2.2.2 Ball Diagram

Figure 3 shows the ball diagram. Table 1 lists the ball diagram color codes.

Table 1 Ball Diagram Color Codes

Color	Description
White in outer ring	Unpopulated Balls
Orange	Power
Grey	Ground
Red	GPHY Signals
Pink	SGMII Signals
Green	USXGMI Signals
Yellow	GPIO, JTAG Interface
Blue	MDIO, SPI, Reset Signals
White	NC

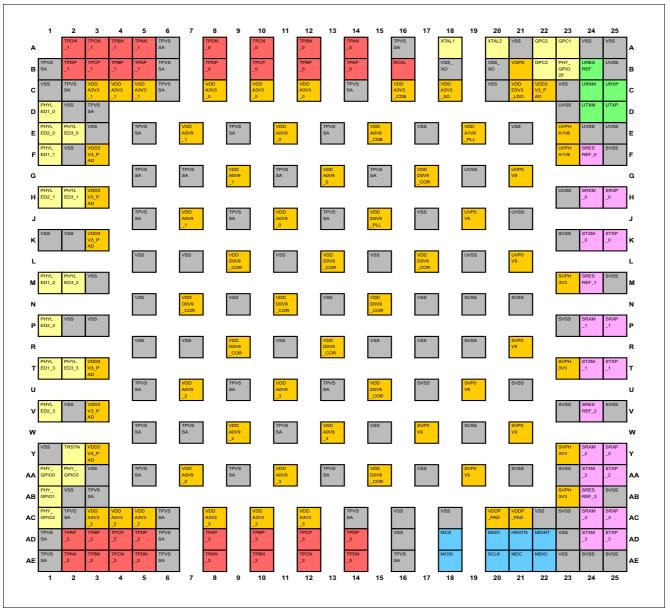


Figure 3 Ball Diagram for PG-VF2BGA-260 (Top View)

2.2.3 Abbreviations

Table 2 and Table 3 summarize the abbreviations used in the signal tables.

Table 2 Abbreviations for Pin Type

Abbreviations	Description			
I	Input only, digital levels			
0	Output only, digital levels			
I/O	Bidirectional input/output signal, digital levels			
Prg	Bidirectional pad, programmable to operate either as input or output, digital levels			
Al	Input only, analog levels			
AO	Output only, analog levels			
AI/O	Bidirectional, analog levels			
PWR	Power			
GND	Ground			

Table 3 Abbreviations for Buffer Type

Abbreviations	Description			
LVTTL n	LVTTL characteristics, n = A, B, or C (driver strength)			
LVTTL n PU m	LVTTL characteristics with weak pull-up device; n = A, B, or C (driver strength); m = A, B, or C (pull-up strength)			
LVTTL n PD m	LVTTL characteristics with weak pull-down device; n = A, B, or C (driver strength); m = A, B, or C (pull-down strength)			
LVTTL n OD	LVTTL characteristics with open-drain characteristic, n = A, B, or C (driver strength)			
LVTTL n PP	LVTTL characteristics with push-pull characteristic, n = A, B, or C (driver strength)			
A	Analog characteristics, refer to the AC/DC specification for more detail.			

2.2.4 Input/Output Signals

Table 4 to Table 15 provide a detailed description of all the pins.

2.2.4.1 Ethernet Media Interface

Table 4 Ethernet Media Interface Signals

Name			
Hallie	Pin	Buffer	Function
	Type	Type	
Port 0 Ethernet N	/ledia Interfa	ce	
TPAP_0	AI/AO	Α	Port 0 Transmit/Receive Positive/Negative
TPAN_0	AI/AO	Α	
TPBP_0	AI/AO	Α	
TPBN_0	AI/AO	Α	
TPCP_0	AI/AO	Α	
TPCN_0	AI/AO	Α	
TPDP_0	AI/AO	Α	
TPDN_0	AI/AO	Α	
TPAP_1	AI/AO	Α	Port 1 Transmit/Receive Positive/Negative
TPAN_1	AI/AO	Α	
TPBP_1	AI/AO	Α	
TPBN_1	AI/AO	Α	
TPCP_1	AI/AO	Α	
TPCN_1	AI/AO	Α	
TPDP_1	AI/AO	Α	
TPDN_1	AI/AO	Α	
TPAP_2	AI/AO	Α	Port 2 Transmit/Receive Positive/Negative
TPAN_2	AI/AO	Α	
TPBP_2	AI/AO	Α	
TPBN_2	AI/AO	Α	
TPCP_2	AI/AO	Α	
TPCN_2	AI/AO	Α	
TPDP_2	AI/AO	Α	
TPDN_2	AI/AO	Α	
	TPAP_0 TPAN_0 TPBP_0 TPBN_0 TPCP_0 TPCN_0 TPCN_0 TPDN_0 TPAP_1 TPAN_1 TPBN_1 TPCP_1 TPCN_1 TPCN_1 TPDN_1 TPDN_1 TPDN_2 TPAN_2 TPAN_2 TPAN_2 TPBN_2 TPBN_2 TPBN_2 TPCP_2 TPCN_2 TPCN_2 TPCN_2 TPCN_2	Port 0 Ethernet Media Interfa TPAP_0	Port 0 Ethernet Media Interface TPAP_0

Table 4 Ethernet Media Interface Signals (cont'd)

Pin No.	Name	Pin Type	Buffer Type	Function
AD8	TPAP_3	AI/AO	Α	Port 3 Transmit/Receive Positive/Negative
AE8	TPAN_3	AI/AO	Α	
AD10	TPBP_3	AI/AO	Α	
AE10	TPBN_3	AI/AO	Α	
AD12	TPCP_3	AI/AO	Α	
AE12	TPCN_3	AI/AO	Α	
AD14	TPDP_3	AI/AO	Α	
AE14	TPDN_3	AI/AO	Α	
Ethernet	Port Calibration	1	+	-
B16	RCAL	AI/AO	Α	Calibration for all GPHY Ethernet Ports

2.2.4.2 SGMII Interface

Table 5 SGMII Interface Signals

Pin No.	Name	Pin Type	Buffer Type	Function
H25	SRXP_0	Al	HD	Differential SGMII Data Input Pair/Lane 0
H24	SRXM_0	AI	HD	These are the negative and positive signals, respectively, of the differential input pair of the SGMII SerDes interface. Due to the integrated CDR, no external transmission peer source-synchronous clock is required for SGMII. These pins must be AC-coupled.
K25	STXP_0	AO	HD	Differential SGMII Data Output Pair/Lane 0
K24	STXM_0	AO	HD	These are the negative and positive signals, respectively, of the differential output pair of the SGMII SerDes interface. Due to the integrated CDR, no external transmission peer source-synchronous clock is required for SGMII. These pins must be AC-coupled.
F24	SRESREF_0	AI/O	Α	Connection for External Tuning Resistor/Lane 0
P25	SRXP_1	Al	HD	Differential SGMII Data Input Pair/Lane 1
P24	SRXM_1	AI	HD	These are the negative and positive signals, respectively, of the differential input pair of the SGMII SerDes interface. Due to the integrated CDR, no external transmission peer source-synchronous clock is required for SGMII. These pins must be AC-coupled.
T25	STXP_1	AO	HD	Differential SGMII Data Output Pair/Lane 1
T24	STXM_1	AO	HD	These are the negative and positive signals, respectively, of the differential output pair of the SGMII SerDes interface. Due to the integrated CDR, no external transmission peer source-synchronous clock is required for SGMII. These pins must be AC-coupled.
M24	SRESREF_1	AI/O	Α	Connection for External Tuning Resistor/Lane 1
Y25	SRXP_2	Al	HD	Differential SGMII Data Input Pair/Lane 2
Y24	SRXM_2	AI	HD	These are the negative and positive signals, respectively, of the differential input pair of the SGMII SerDes interface. Due to the integrated CDR, no external transmission peer source-synchronous clock is required for SGMII. These pins must be AC-coupled.
AA25	STXP_2	AO	HD	Differential SGMII Data Output Pair/Lane 2
AA24	STXM_2	AO	HD	These are the negative and positive signals, respectively, of the differential output pair of the SGMII SerDes interface. Due to the integrated CDR, no external transmission peer source-synchronous clock is required for SGMII. These pins must be AC-coupled.
V24	SRESREF_2	AI/O	Α	Connection for External Tuning Resistor/Lane 2

Table 5 SGMII Interface Signals (cont'd)

Pin No.	Name	Pin Type	Buffer Type	Function
AC25	SRXP_3	Al	HD	Differential SGMII Data Input Pair/Lane 3
AC24	SRXM_3	AI	HD	These are the negative and positive signals, respectively, of the differential input pair of the SGMII SerDes interface. Due to the integrated CDR, no external transmission peer source-synchronous clock is required for SGMII. These pins must be AC-coupled.
AD25	STXP_3	AO	HD	Differential SGMII Data Output Pair/Lane 3
AD24	STXM_3	AO	HD	These are the negative and positive signals, respectively, of the differential output pair of the SGMII SerDes interface. Due to the integrated CDR, no external transmission peer source-synchronous clock is required for SGMII. These pins must be AC-coupled.
AB24	SRESREF_3	AI/O	Α	Connection for External Tuning Resistor/Lane 3

2.2.4.3 USXGMII Interface

Table 6 USXGMII Interface Signals

Pin No.	Name	Pin Type	Buffer Type	Function
C25	URXP	Al	HD	Differential USXGMII Data Input Pair
C24	URXM	Al	HD	These are the negative and positive signals, respectively, of the differential input pair of the USXGMII SerDes interface. Due to the integrated CDR, no external transmission peer source-synchronous clock is required for USXGMII. These pins must be AC-coupled.
D25	UTXP	AO	HD	Differential USXGMII Data Output Pair
D24	UTXM	AO	HD	These are the negative and positive signals, respectively, of the differential output pair of the USXGMII SerDes interface. Due to the integrated CDR, no external transmission peer source-synchronous clock is required for USXGMII. These pins must be AC-coupled.
B24	URESREF	Al	Α	Connection for External USXGMII Tuning Resistor

2.2.4.4 MDIO Interface

There are two types of serial management interfaces provided:

- SPI master interface
- · MDIO slave interface

Attention: The pin functionality in Table 7 highlighted in bold indicates the pin name.

 Table 7
 Management Interface Signals

Pin No.	Name	Pin Type	Buffer Type	Function
MDIO SI	ave Interface			
AD22	MDINT	0		MDIO Interrupt from Any GPHY The MDIO interrupt is used to interrupt an external block, such as a higher-level management entity or a device controller of an SoC, on detection of certain events and states inside the GPHY device.
AE21	MDC	I		MDIO Slave Clock The external controller provides the serial clock of up to 25 MHz on this input.
AE22	MDIO	I/O		MDIO Slave Data Input/Output The external controller uses this signal to address internal registers and to transfer data to and from the internal registers.

2.2.4.5 SPI Interface

Table 8 Management Interface Signals

Pin No.	Name	Pin Type	Buffer Type	Function
AD20	MISO	I		SPI Data Input SPI interface data input
AE18	MOSI	0		SPI Data Output SPI interface data output
AE20	SCLK	0		SPI Clock SPI interface clock
AD18	MCS	0		SPI Chip Select SPI interface chip select. Active low signal.

2.2.4.6 Reset Interface

Table 9 Reset Signals

Pin No.	Name	Pin Type	Buffer Type	Function
AD21	HRSTN	I	PU	Hardware Reset Asynchronous active low device reset

2.2.4.7 LED/UART/JTAG Interface

The LED interface is used to connect external LEDs to indicate the status of the the Ethernet PHY interfaces. Single and dual color LEDs are supported.

Attention: The pin functionality highlighted in bold in Table 10 indicates the pin name.

Table 10 LED and Debug Interface Signals

Pin No.	Name	Pin Type	Buffer Type	Function
LED Sigi	nals			-1
D1	PHYLED1_0	0		GPHY LED1 for Port 0 This signal controls the LED output. It is freely configurable and drives either single color or dual color LEDs.
	FW_UTXD	0		Firmware UART Data Output Firmware UART interface data output
E1	PHYLED2_0	0		GPHY LED2 for Port 0 This signal controls the LED output. It is freely configurable and drives either single color or dual color LEDs.
	FW_URXD	I		Firmware UART Data Input Firmware UART interface data input
E2	PHYLED3_0	I/O		GPHY LED3 for Port 0 This signal controls the LED output. It is freely configurable and drives either single color or dual color LEDs. This pin is also used for the brightness control switch input.
F1	PHYLED1_1	0		GPHY LED1 for Port 1 This signal controls the LED output. It is freely configurable and drives either single color or dual color LEDs.
	FW_UTXD	0		Firmware UART Data Output Firmware UART interface data output
H1	PHYLED2_1	0		GPHY LED2 for Port 1 This signal controls the LED output. It is freely configurable and drives either drives single color or dual color LEDs.
H2	PHYLED3_1	0		GPHY LED3 for Port 1 This signal controls the LED output. It is freely configurable and drives either drives single color or dual color LEDs.
M1	PHYLED1_2	0		GPHY LED1 for Port 2 This signal controls the LED output. It is freely configurable and drives either single color or dual color LEDs.
	FW_UTXD	0		Firmware UART Data Output Firmware UART interface data output
	TDI	I		JTAG Serial Test Data Input
P1	PHYLED2_2	0		GPHY LED2 for Port 2 This signal controls the LED output. It is freely configurable and drives either single color or dual color LEDs.
	TMS	I		JTAG Test Mode Select
	*	•	•	

Table 10 LED and Debug Interface Signals (cont'd)

Pin No.	Name	Pin Type	Buffer Type	Function
M2	PHYLED3_2	0		GPHY LED3 for Port 2 This signal controls the LED output. It is freely configurable and drives either single color or dual color LEDs.
	TDO	0		JTAG Serial Test Data Output JTAG test data output
T1	PHYLED1_3	0		GPHY LED1 for Port 3 This signal controls the LED output. It is freely configurable and drives either single color or dual color LEDs.
	FW_UTXD	0		Firmware UART Data Output Firmware UART interface data output
	TCK	1		JTAG Test Clock The signals TDI, TDO and TMS are synchronous to this JTAG test clock. Note: When the JTAG Controller is held in the reset state, i.e. GPY245 operates in normal mode, this clock pin does not need to be clocked.
V1	PHYLED2_3	0		GPHY LED2 for Port 3 This signal controls the LED output. It is freely configurable and drives either single color or dual color LEDs.
T2	PHYLED3_3	0		GPHY LED3 for Port 3 This signal controls the LED output. It is freely configurable and drives either single color or dual color LEDs.
Y2	TRSTN	I	PD	JTAG Test Enabling 1 _B JTAG The GPIO pins are used as the JTAG interface (TCK, TDI, TDO, TMS). 0 _B GPIO The GPIO pins are in their normal application mode. Note: The integrated pull-down resistor holds the TAP controller in its reset state when this pin is left open. This is different to the JTAG specification given by IEEE 1149.1.

2.2.4.8 Miscellaneous Signals

Attention: The pin functionality highlighted in bold in Table 11 indicates the pin name.

Table 11 Miscellaneous Signals

Pin No.	Name	Pin Type	Buffer Type	Function
Reset and	d Clocking	•	-1	
A18	XTAL1	AI	A	Crystal: Oscillator Input A crystal must be connected between XTAL1 and XTAL2. Additional load capacitances must tie both pins to GND. Crystal Oscillator: Clock Input A clock must be connected to XTAL1. See Section 7.7.2 for the clock details.
A20	XTAL2	AO	A	Crystal: Oscillator Output A crystal must be connected between XTAL1 and XTAL2. Additional load capacitances must tie both pins to GND.
A22	GPC2	Prg		General Purpose Clock 2 General purpose clock for SyncE or external devices. Selectable as input or output.
A23	GPC1	Prg		General Purpose Clock 1 General purpose clock for SyncE or external devices. Selectable as input or output.
B22	GPC3	Prg		General Purpose Clock 2 General purpose clock for SyncE or external devices. Selectable as input or output.
AA1	PHY_GPIO0	Prg	Prg	General Purpose IO 1 Selectable as input or output. The output characteristic is configurable as open drain or pushpull.
	EXTINT0	Prg	Prg	External Interrupt 0
	HW_UTXD	Prg	Prg	
AB1	PHY_GPIO1	Prg	Prg	General Purpose IO 1 Selectable as input or output. The output characteristic is configurable as open drain or pushpull.
	EXTINT1	Prg	Prg	External Interrupt 1
	HW_URXD	Prg	Prg	
AC1	PHY_GPIO2	Prg	Prg	General Purpose IO 2 Selectable as input or output. The output characteristic is selected as open drain or push-pull.
	OBS CLK	0		Clock Observation Output (Alternate to GPIO2)

Table 11 Miscellaneous Signals (cont'd)

Pin No.	Name	Pin Type	Buffer Type	Function
AA2	PHY_GPIO3	Prg	Prg	General Purpose IO 3 Selectable as input or output. The output characteristic is configurable as open drain or pushpull.
B23	PHY_GPIO26	Prg		General Purpose IO 26 Selectable as input or output. The output characteristic is configurable as open drain or pushpull.

2.2.4.9 Power Supply for GPHY

This section specifies the power supply pins for GPHY.

Table 12 Power Supply Pins

Pin No.	Name	Pin Type	Buffer Type	Function
C8, C10, C12	VDDA3V3_0	PWR		GPHY0 High Voltage Domain Supply This is the group of supply pins for the high voltage domain. It supplies the Analog Front End (AFE) of the Gigabit Ethernet PHY.
E11, G13, J11	VDDA0V9_0	PWR		GPHY0 Low Voltage Domain Supply This is the group of supply pins for the low voltage domain. It supplies mixed signal blocks in the AFE and CDB of the Gigabit Ethernet PHY.
C3, C4, C5	VDDA3V3_1	PWR		GPHY1 High Voltage Domain Supply This is the group of supply pins for the high voltage domain. It supplies the AFE of the Gigabit Ethernet PHY.
E7, G9, J7	VDDA0V9_1	PWR		GPHY1 Low Voltage Domain Supply This is the group of supply pins for the low voltage domain. It supplies mixed signal blocks in the AFE and CDB of the Gigabit Ethernet PHY.
AC3, AC4, AC5	VDDA3V3_2	PWR		GPHY2 High Voltage Domain Supply This is the group of supply pins for the high voltage domain. It supplies the AFE of the Gigabit Ethernet PHY.
U7, W9, AA7	VDDA0V9_2	PWR		GPHY2 Low Voltage Domain Supply This is the group of supply pins for the low voltage domain. It supplies mixed signal blocks in the AFE and CDB of the Gigabit Ethernet PHY.
AC8, AC10, AC12	VDDA3V3_3	PWR		GPHY3 High Voltage Domain Supply This is the group of supply pins for the high voltage domain. It supplies the AFE of the Gigabit Ethernet PHY.
U11, W13, AA11	VDDA0V9_3	PWR		GPHY3 Low Voltage Domain Supply This is the group of supply pins for the low voltage domain. It supplies mixed signal blocks in the AFE and CDB of the Gigabit Ethernet PHY.

Table 12 Power Supply Pins (cont'd)

Pin No.	Name	Pin Type	Buffer Type	Function
C22, F3, H3, K3, T3, V3, Y3	VDD3V3_PAD	PWR		Power Supply Digital Domain 3.3 V 3.3 V pad voltage digital power supply
AC20, AC21	VDDP_PAD	PWR		Power Supply 3.3 V pad voltage digital power supply.
G17, L9, L13, L17, N7, N11, N15, R9, R13, U15, AA15	VDDD0V9_COR	PWR		Power Supply Digital Domain 0.9 V 0.95 V core voltage digital power supply
C18	VDDA3V3_XO	PWR		Power Supply Digital Domain 3.3 V 3.3 V XO voltage digital power supply
C16	VDDA3V3_CDB	PWR		Power Supply Digital Domain 3.3 V 3.3 V CDB voltage digital power supply
E15	VDDA0V9_CDB	PWR		Power Supply Digital Domain 0.9 V 0.9 V CDB voltage digital power supply
C21	VDDD3V3_LDO	PWR		Power Supply Digital Domain 3.3 V 3.3 V LDO voltage digital power supply
E19	VDDA1V8_PLL	PWR		Power Supply Digital Domain 1.8 V 1.8 V LJPLL voltage digital power supply
J15	VDDD0V9_PLL	PWR		Power Supply Digital Domain 0.9 V 0.9 V LJPLL voltage digital power supply
B21	VQPS	PWR		OTP fusing Supply Tie to ground

2.2.4.10 Power Supply for SGMIIs and USXGMII

This section specifies the power supply pins for SGMIIs and USXGMII.

Table 13 Power Supply Pins

Pin No.	Name	Pin Type	Buffer Type	Function
R21, U19, W17, W21, AA19	SVP0V9	PWR		SGMII Port 0, 0.9 V Domain Supply
M23, T23, Y23, AB23	SVPH3V3	PWR		SGMII Port 0, 3.3 V Domain Supply
G21, J19, L21	UVP0V9	PWR		USXGMII 0.9 V Analog Domain Supply
E23, F23	UVPHA1V8	PWR		USXGMII 1.8 V Domain Supply

2.2.4.11 Power Supply for Twisted Pair Interface (TPI) Analog Front End (AFE)

This section specifies the power supply pins for TPI (AFE).

Table 14 Power Supply Pins

Pin No.	Name	Pin Type	Buffer Type	Function
A6, A16, B1, B6, C2, C6, C14, D3, E5, E9, E13, G5, G7, G11, G15, J5, J9, J13, U5, U9, U13, W5, W7, W11, AA5, AA9, AA13, AB3, AC2, AC6, AC14, AD1, AD6, AE1, AE6, AE16	TPVSSA	GND		Twisted Pair Ground

2.2.4.12 Ground

This section specifies the ground pins.

Table 15 Power Supply Pins

Pin No.	Name	Pin Type	Buffer Type	Function
A21, A24, A25, C1, C20, C23, D2, E17, E21, E3, F2, J17, K1, K2, L5, L7, L11, L15, M3, N5, N9, N13, N17, P2, P3, R5, R7, R11, R15, R17, V2, W15, Y1, AA3, AA17, AB2, AC16, AC18, AC22, AD16, AD23, AE23	VSS	GND		General Device Ground Ground
B25, D23, E24, E25, G19, H23, J21, L19	UVSS	GND		USXGMII Ground
F25, K23, M25, N19, N21, P23, R19, U17, U21, V23, V25, W19, AA23, AA21, AB25, AC23, AE24, AE25	svss	GND		SGMII Ground
B18, B20	VSS_XO	GND		General Device Ground XO ground

3 Functional Description

3.1 Power Supply, Clock and Reset

This section provides the information required to power up the GPY245.

3.1.1 Power Supply

The number of power supply levels depends on the SerDes used to communicate with the MAC:

- When SGMII is used to connect to the MAC, two external power supplies of 3.3 V and 0.95 V are required.
- When USXGMII is used to connect to the MAC, in addition to the two external power supplies of 3.3 V and 0.95 V, an additional 1.8 V supply must also be supplied to the USXGMII interface and Low Jitter PLL.

Section 7.9 documents the detailed power supply connection requirements.

3.1.2 Clock

An external 25 MHz crystal must be connected to the GPY245. **Section 7.7.9** documents the required crystal specification. An internal PLL circuit generates all the required internal clocks.

3.1.3 Reset Generation

The external hardware reset input (HRSTN pin) resets all the hardware modules including the pin strapping information during boot:

- Driving the HRSTN pin low causes an asynchronous reset of the GPY245 system.
- Releasing the HRSTN pin high triggers the power-on sequence and boot-up procedure.

The HRSTN pin is internally connected to a weak internal pull-up resistor.

3.1.4 Power-On Sequence

The GPY245 powers on when the power is applied as shown in Figure 17 and Figure 18.

The steps executed at power on are:

- Locking of internal PLL.
- Calibration of internal voltage using a high precision external reference resistor connected to the RCAL pin.
- Reading of pin strap information, as described in Section 3.1.5.
- Booting of the microprocessor from internal ROM.
- Auto-negotiation on the Ethernet twisted pair interface and USXGMII/SGMII interface using the speed capability of 2.5 Gbps, full duplex.
- Training and link up in accordance with the IEEE 802.3 [5] and SGMII [8] standards.

3.1.5 Configuration by Pin Strapping

The GPY245 device is configurable by means of pin strapping on a number of the GPIO pins. The pin strapping configurations are captured during the chip power-on sequence, up until the reset initialization is complete.

The pin strap values are set to logical high or low by connecting the corresponding pin via an external 1 k Ω resistor to either ground or 3.3 V.

Table 16 and Table 17 describe the pin strap mapping.

Table 16 Pin Names Used for Pin Strapping

Ball Name	Pin Number	Configuration Item Description
GPC1	A23	PS_PHY_MADDR(4)
GPC2	A22	PS_PHY_MADDR(3)
GPC3	B22	PS_PHY_MADDR(2)
PHY_GPIO0	AA1	PS_DATA_IF_MODE
MDINT	AD22	PS_MINT_POL

Table 17 Pin Strapping Configuration Description

Pin Strapping Signals	Description				
PS_PHY_MADDR(4:2)	MDIO PHY Address This is to specify the most significant 3 bits of the MDIO address. The lowest 2 bit are hard-coded to 0,1,2,3 for each BASE-T port of the GPY245.				
PS_MINT_POL	MDIO Interrupt Polarity This is to specify the polarity of the MDIO interrupt. For automatic configuration of the MDIO Interrupt polarity, this configuration bit may be connected to the input of the MDIO interrupt pad. 0 _B HIGH MDIO Interrupt is active high 1 _B LOW MDIO Interrupt is active low				
PS_DATA_IF_MODE	Data Interface Mode This is to specify which type of data interface is used. 0 _B USXGMII USXGMII mode 1 _B SGMII SGMII mode				

An alternative way to configure the GPY245 after the boot process is to use the MDIO interface and write into various control registers, as detailed in **Section 3.2**.

3.2 Configuration via MDIO Management Interface

It is possible to connect the external controller's station manager (STA) to the chip's slave MDIO interface. This allows access to the MDIO and MMD registers standardized in IEEE 802.3, enabling the STA to control the chip configuration and retrieve status information. The MDIO transactions are any of the 3 types described in IEEE 802.3 Clause 22, Clause 22 Extended, and Clause 45 [5]. Chapter 4 lists the MDIO registers.

Figure 4 shows the minimum time required for the MDIO to be available for access.

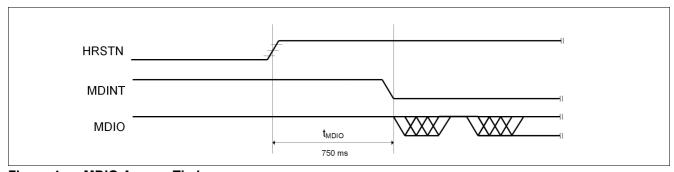


Figure 4 MDIO Access Timing

3.3 Ethernet PHY Interface

The Ethernet PHY implements the physical layer of the Ethernet standard. It supports Digital Signal Processing (DSP) and Analog Signal Processing (ASP) functions in transmitting data over the twisted pair cable.

3.3.1 Twisted Pair Interface

The TPI of the GPY245 is fully compliant with IEEE 802.3. The GPY245 integrates series resistors required to terminate the TPI links with a 100 Ω nominal impedance to facilitate a low-power implementation and to reduce PCB costs. As a consequence, it is possible to connect the TPI pins directly via a transformer to the RJ45 connector. Additional external circuitry is required for common-mode termination and rejection. **Figure 5** shows a schematic of the TPI circuitry that takes these components into account.

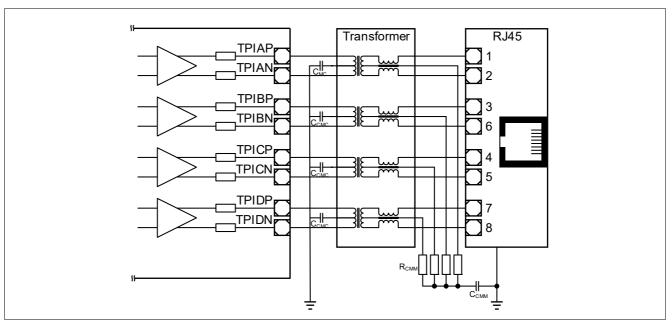


Figure 5 Twisted-Pair Interface of GPY245 Including Transformer and RJ45 Plug

3.3.2 Transformerless Ethernet (TLE)

Transformerless Ethernet (TLE) is required for backplane applications where the use of a transformer is not necessarily required to fulfill the galvanic decoupling requirements of the isolation specifications. In such applications, removing the transformer reduces both the external bill of material and the space requirements on the PCB.

As the GPY245 incorporates a voltage-mode line driver, the only stringent requirement is to use AC coupling. AC coupling is achievable using simple SMD type series capacitors. The value of the capacitors is selected such that the high-pass characteristics correspond to an equivalent standard transformer based application. The recommended value is $C_{coupling} = 100$ nF. Figure 6 shows the external circuitry for TLE.

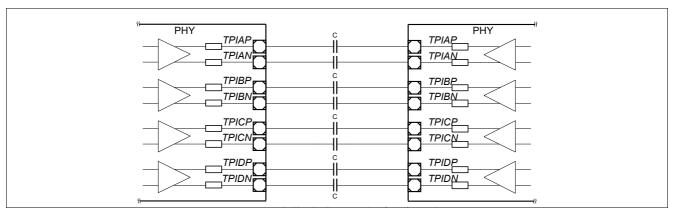


Figure 6 External Circuitry for the Transformerless Ethernet Application

3.3.3 Auto-Negotiation (ANEG)

The GPY245 supports ANEG as part of the startup procedure to exchange capability information with the link partner. ANEG is enabled at GPY245 initialization and its 2.5 Gbps speed capability is advertised.

The ANEG procedure is executed according to IEEE 802.3 Clause 28, Clause 40 [5], and IEEE 802.3bz Clause 126 [6].

When the link partner does not support ANEG, the GPY245 extracts the link speed configuration using parallel detection as described in Clause 28.

When required, a STA connected to the MDIO interface is able to reprogram the GPY245 advertised capability. The STA is also able to disable ANEG. In this situation the system configuration must ensure compatibility between link partners to allow link up in a compatible mode.

Attention: STD_CTRL.DPLX only takes effect when the ANEG process is disabled and the GPY TPI is not operating in loopback mode, that is, bits STD_CTRL.ANEN and STD_CTRL.LB are set to zero. Forced half duplex mode (STD_CTRL.DPLX = 0b0) is only supported in 10BASE-T/100BASE-TX speed modes in non-MACsec operations. This field is ignored for higher speeds and MACsec operations.

3.3.4 Auto-Downspeed (ADS)

The ADS feature implements a process to decrease the operating speed of the link when the link quality is insufficient. The feature ensures maximum interoperability even in harsh, or inadequate, cable infrastructure environments. In particular, ADS is applied during the 2.5GBASE-T/1000BASE-T training phase. ADS is also necessary when the quality or characteristics of the cable in use cannot support the advertised speed.

For example, it is possible to advertise 2.5GBASE-T/1000BASE-T during ANEG when both link partners are connected via a cable that does not support the 4-pair Gigabit Ethernet mode. The GPY245 detects such configurations to avoid repeating link up failures and clears Gigabit capability in the ANEG advertisement registers. After the resulting link down, the next ANEG procedure no longer advertises 1000BASE-T/2.5GBASE-T. The next link up is done at the next advertised speed below 1000 Mbps.

The GPY245 also executes an ADS procedure when the signal quality is not suited to a 1000BASE-T/2.5GBASE-T link up due to increased alien noise or over long cables.

When the GPY245 is configured to advertise no speed capability below 1000 Mbps, the ADS feature is disabled automatically.

3.3.5 Polarity Reversal Correction

For each of the 4 pairs, the GPY245 automatically detects and corrects any inversion of the signal polarity on the P and N signals. The detection is done during the auto-negotiation phase. The detected polarity is frozen when the link has been established, and remains unchanged until the link is dropped.

The polarity corrections applied are indicated in the register: PMA_MGBT_POLARITY (register 1.130); and are valid when auto-negotiation is complete.

3.3.6 Auto-Crossover Correction

To maximize interoperability, even in inadequate wiring environments, the GPY245 automatically performs cable crossover (MDI-X) correction. **Table 18** lists the supported pair-mappings detectable and correctable by the device.

The purpose is to compensate for any non-standard (ANSI TIA/EIA-568-A:1995) cabling, both straight-through, and crossover cable connections. The GPY245 automatically detects and corrects any crossed cable configuration, where the transmit-receive pairing between partners does not match. The auto-crossover function is fully compliant with IEEE 802.3, Clause 40.4.4 [5], in 1000BASE-T and 2.5GBASE-T mode.

The corrections applied are indicated in the register: PMA_MGBT_POLARITY (register 1.130); and are valid when auto-negotiation is complete.

Table 18 Supported Twisted Pair Mappings on a CAT5 or Better Cable

Cross	over Modes on RJ45 ¹⁾	RJ45 P	inning						
Mode	Description	1	2	3	4	5	6	7	8
11	Straight cable, standard compliant	TPIAP (A+)	TPIAN (A-)	TPIBP (B+)	TPICP (C+)	TPICN (C-)	TPIBN (B-)	TPIDP (D+)	TPIDN (D-)
00	Full Gigabit Ethernet MDI-X This is the standard compliant MDI-X with pair A/B swapped and pair C/D swapped.	TPIBP (B+)	TPIBN (B-)	TPIAP (A+)	TPIDP (D+)	TPIDN (D-)	TPIAN (A-)	TPICP (C+)	TPICN (C-)

¹⁾ This pin assignment is according to TIA/EIA-568-A/B.

3.3.7 Wake-on-LAN (WoL)

The GPY245 supports wake-on-LAN. The GPY245 generates an interrupt to an external controller when it detects special WoL Ethernet packets. This allows the controller to enter sleep mode when there is no Ethernet traffic to process, and be woken up when traffic starts. WoL packets are detected for all link speeds. **Figure 7** shows this scenario.

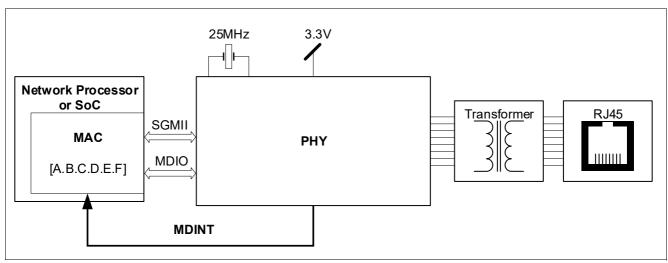


Figure 7 Block Diagram of WoL Application

The most commonly used WoL packet is called a magic packet. A magic packet contains the MAC address of the device to be woken up, and an optional password called SecureON. The MAC address and the optional SecureON password relevant for the WoL logic inside the GPY245 are configurable in the WOL MDIO registers in the Vendor Specific 2, VSPEC2 MMD, device described in **Chapter 4**. When such a configured magic packet is received by the GPY245, an MDINT interrupt is issued.

Table 19 gives an example programming sequence for these configuration registers.

Table 19 Programming Sequence for the Wake-on-LAN Functionality

Step	Register Access	Remark
1	MDIO.MMD.WOLAD01 = EEFF _H	Program the fifth and sixth MAC address bytes
2	MDIO.MMD.WOLAD23 = CCDD _H	Program the third and fourth MAC address bytes
3	MDIO.MMD.WOLAD45 = AABB _H	Program the first and second MAC address bytes
4	MDIO.MMD.WOLPW01 = 4455 _H	Program the fifth and sixth SecureON password bytes
5	MDIO.MMD.WOLPW23 = 2233 _H	Program the third and fourth SecureON password bytes
6	MDIO.MMD.WOLPW45 = 0011 _H	Program the first and second SecureON password bytes
7	MDIO.PHY.IMASK.WOL = 1 _B	Enable the wake-on-LAN interrupt mask
8	MDIO.MMD.WOLCTRL.WOL.EN = 1 _B	Enable wake-on-LAN functionality

3.4 SGMII Interface

The GPY245 implements a serial data interface, called SGMII or SerDes, to connect to another chip implementing the MAC layer (MAC SoC). The data rates supported by the SGMII interface are the same as for the TPI (10 Mbps, 100 Mbps, 1 Gbps, or 2.5 Gbps). These rates correspond to baud rates of 1.25 Gbaud (for 10/100/1000 Mbps using data repetition), and 3.125 Gbaud (for 2.5 Gbps).

3.4.1 Selection of Gigabit PHY

There are 4 Gigabit PHYs in the GPY245. For any given transaction, the MDIO interface is only able to access the standard registers of one Gigabit PHY. A dedicated PHY Selector API selects the Gigabit PHY that is accessed via the MDIO interface.

3.4.2 SGMII Control and Status Registers

The GPY245 API [1] describing the driver software executed on the MAC SoC must be followed to configure the SGMII interface.

The MAC SoC uses MDIO registers to retrieve the TPI and SGMII status of the selected Gigabit PHY of the GPY245. This is explained in **Section 3.4.1**.

The API controls the SGMII interface using 2 MDIO registers described in Figure 8:

- VSPEC1_SGMII_CTRL is used to enable and configure the SGMI auto-negotiation or force a link
 configuration. Programming this register is optional as the SGMII interface comes up in a default configuration
 after reset that does not need any additional control from the STA. The STA is also able to control the SGMII
 reset, SGMII power down or SGMII loopback using this register. Until SGMII is in the power down
 (VSPEC1_SGMII_CTRL.PD = 1) state, the programming of other bits in the VSPEC1_SGMII_CTRL register
 is ignored.
- VSPEC1_SGMII_STAT is a read-only register that is used by the STA to retrieve the SGMII link status, data rate and auto-negotiation completion status.

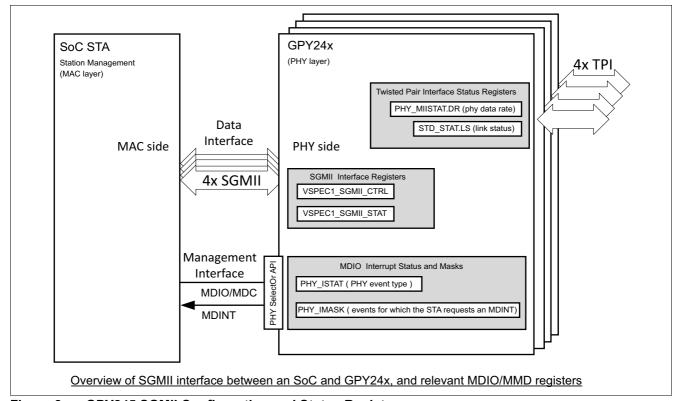


Figure 8 GPY245 SGMII Configuration and Status Registers

3.4.3 Operation Procedure

The SoC is responsible for monitoring the PHY ISTAT events, TPI data rate, and link status.

- LSTC: PHY link status change with new status indicated in STD_STATS.LS
- LSPC: PHY link speed change with new TPI speed indicated in PHY_MIISTAT.DR

The GPY24x PHY side SGMII is set up by the GPY24x at the same speed as the TPI link. The MAC SoC is responsible for programming the MAC side SGMII at the matching speed.

The PHY_ISTAT event fields in the PHY ISTAT MDIO register:

- LSTC: Link State Change
- LSPC: Link Speed Change
- DXMC: Duplex Mode Change
- MDIXC: MDIX Change, Polarity Change
- · ADSC: Auto-Downspeed Event
- · TEMP: PVT Sensor Event
- LP: Low Power Event
- LOR: SyncE Loss of Reference
- ANCE: ANEG Complete or ANEG Error
- NPRX: ANEG Next Page RX
- NPTX: ANEG Next Page TX
- MSRE: Master Slave Resolution Error
- WOL: Wake-on-LAN Event

3.4.4 SGMII Configuration at Power Up

The GPY245 SGMII interface is configured to operate automatically after reset. The STA does not have to change the register VSPEC1 SGMII CTRL to operate in this default mode:

- · SGMII auto-negotiation is enabled.
- The TPI configuration after link up defines the SGMII PHY-side configuration. The MAC-side SoC must configure its SGMII MAC-side interface to match the GPY245 PHY-side configuration, as explained in Section 3.4.5, Section 3.4.6, and Section 3.4.7.

3.4.5 SGMII PHY-Side Setup According to TPI Setup

The GPY245 PHY-side SGMII is set up by the GPY245 at the same speed as the twisted pair interface (TPI) link. To operate the GPY245 in this mode, VSPEC1_SGMII_CTRL.FIXED2G5 must be programmed to 0. This is the default mode.

When a link status changes on the TPI (up/down and speed change), the GPY245 reconfigures its SGMII automatically. In particular, the SGMII clock is changed when the speed changes from 2.5 Gbps to lower speeds, or vice-versa.

3.4.6 SGMII PHY-Side Setup Fixed Irrespective of TPI Setup

The GPY245 PHY-side SGMII is fixed to 2.5G mode irrespective of the twisted pair interface (TPI) link. To operate the GPY245 in this mode, VSPEC1 SGMII CTRL.FIXED2G5 must be programmed to 1 (default value is 0).

When GPY245 operation in this mode is intended, MaxLinear recommends that the GPY245 is switched to this mode by programming VSPEC1_SGMII_CTRL.FIXED2G5 to 1 when the MDIO interface is available after power up. When a link status changes on the TPI (up/down and speed change), the SGMII on the GPY245 operates at 2.5G speed. To alleviate the packet drops due to the rate mismatch on the SGMII and TPI link, the host MAC must enable flow control to detect and react to the PAUSE frames generated by the PHY. An internal buffer path is enabled in this mode, thus introducing latency.

3.4.7 SGMII MAC-Side Setup by MAC SoC

The MAC SoC (STA) is responsible for monitoring the PHY_STAT events, which indicate TPI data rate and link status. The methods available for the MAC SoC to monitor link status or link speed changes are:

- Using the MDIO interface MDINT interrupt and reading the associated event.
- Using the MDIO interface polling (reading) of the link status register STD_STAT.LS.
- Restarting the SGMII ANEG, which conveys the new link parameters. In this case, the SGMII Cisco ANEG
 must be enabled after power up.

In all three cases:

- The GPY245 reconfigures the PHY-side SGMII to match the TPI setup.
- · The MAC SoC must set up the MAC-side SGMII to match the PHY-side SGMII.

3.4.8 SGMII Link Monitoring by MAC SoC

The GPY245 indicates its interface status using using these registers, listed in Section 3.4.3:

- MDIO register PHY_MIISTAT indicates the TPI status.
- MDIO register SGMII_STAT indicates the SGMII status.

A change of status on the TPI is indicated by the MDIO interrupt MDINT, which is generated when the STA has programmed the event mask in the PHY_IMASK register. These interrupts correspond to any of these events occurring on the TPI:

39

- LSTC: Link State Change
- LSPC: Link Speed Change
- DXMC: Duplex Mode Change

- MDIXC: MDIX Change, Polarity Change
- ADSC: Auto-Downspeed Event
- TEMP: PVT Sensor Event
- LP: Low Power Event
- · LOR: SyncE Loss of Reference
- ANCE: ANEG Complete or ANEG Error
- NPRX: ANEG Next Page RX
- NPTX: ANEG Next Page TX
- MSRE: Master Slave Resolution Error
- WOL: Wake-on-LAN Event

The MDINT signal is deasserted by the GPY245 when the MAC SoC STA performs a read access to the MDIO register PHY ISTAT.

The events relevant to the TPI status that are useful for monitoring SGMII are LSTC and LSPC.

3.4.8.1 Actions on TPI Link Down / Link Up Status Change

The GPY245 does not systematically bring the SGMII link down when the TPI link is down. The STA is able to read the status on each side (SGMII and TPI) and make the appropriate decision about whether to bring the SGMII link down. For example, when the TPI status is in link down for too long, the STA may also decide to power down the SGMII.

3.4.8.2 New TPI Link Up at Same Speed

This section contains a scenario which describes a transition on the TPI that does not require any restart or change of mode on the SGMII interface:

- The SGMII interface is set to a specific speed and the SGMII link is up.
- The TPI goes to link down and link up.
- When the TPI is down, the SGMII side is transmitting Idle packets.
- The TPI links up at the same speed as before.

In these cases, the GPY245 does not reprogram the PHY-side SGMII.

3.4.8.3 Change of Speed After a New Link Up on TPI

This section contains a scenario which describes a transition on the TPI that requires a change of mode on SGMII: As a PHY-side SGMII controller, the GPY245 enforces the speed on the MAC-side SGMII.

For a change in TPI speed within the [10/100/1000 Mbps] rate subset, there is no change in baud speed on SGMII:

- The new TPI configuration is reflected in the MDIO status registers; the MDINT interrupt is triggered to indicate the change as explained in **Section 3.4.8**.
- The GPY245 programs its SGMII to the new speed. In particular, for speeds of 10 Mbps and 100 Mbps, the GPY245 SGMII PCS performs data repetition by 100x and 10x, respectively.
- The SGMII lane clock remains unchanged at 1.25 Gbaud clock speed.
- When the Cisco ANEG protocol is enabled, the GPY245 conveys the changed speed parameters by restarting the SGMII ANEG.
- When the Cisco ANEG protocol is disabled, the GPY245 changes the SGMII configuration immediately and expects the MAC SoC to monitor the link change and match the same configuration.

For a change in data speed from the SGMII subset [10/100/100 Mbps] to the SGMII* subset [2.5 Gbps], the SGMII lane baud speed must be changed to the over clocked 3.125 Gbaud:

- The new TPI configuration is reflected in the MDIO status registers; the MDINT interrupt is triggered to indicate the change as explained in **Section 3.4.8**.
- The GPY245 reprograms its SGMII to the 3.125 Gbaud clock speed.

- When the Cisco ANEG protocol is enabled, the GPY245 conveys the changed speed parameters by restarting the SGMII ANEG.
- When the Cisco ANEG protocol is disabled, the GPY245 changes the SGMII configuration immediately and expects the MAC SoC to monitor the link change and match the same configuration.
- The MAC SoC reconfigures its MAC-side SGMII to the new baud rate.

3.4.9 Auto-Negotiation Modes Supported by SGMII

Two modes are supported for the SGMII auto-negotiation protocol:

- Cisco Serial-GMII Specification 1.8 [8]
- 1000BX IEEE 802.3 following IEEE Clause 37 [5]

The information exchange mechanism of ANEG is the same in both modes, but the parameters communicated are slightly different. The 1000BX scheme allows for some parameters to be aligned with the highest common capability between the two sides of the SerDes. The Cisco SGMII scheme uses the protocol to communicate the configuration requested by the PHY-side SGMII to the MAC-side SGMII, such as a speed request, it is a one-way request.

The parameters communicated by the Cisco ANEG protocol [8] from SGMII-PHY to SGMII-MAC are:

- · Link up or link down indication (reflects the TPI status)
- · Half duplex or full duplex mode
- Data rate (standard only supports 10 Mbps to 1000 Mbps)
- · EEE capability support
- · EEE clock stop capability support

The parameters exchanged by the 1000BX ANEG protocol [5] are:

- Remote fault
- Pause support and mode (symmetrical or asymmetrical)
- · Half duplex or full duplex

MaxLinear recommends implementing the Cisco ANEG protocol for standard applications.

3.4.9.1 Enabling SGMII Auto-Negotiation Mode

SGMII auto-negotiation is ON at power up. Disable or enable ANEG by setting the register field: VSPEC1 SGMII CTRL.ANEN.

In the default case:

- The GPY245 PHY-side SGMII is configured by the GPY245 to match the TPI link configuration.
- The GPY245 uses ANEG to convey the new link parameters to the MAC SoC.
- The SoC MAC-side SGMII must be configured by the MAC SoC to match the GPY245 PHY-side SGMII configuration.

3.5 USXGMII Interface

The GPY245 implements an alternate serial data interface, called USXGMII, to connect to another chip implementing the MAC layer (MAC SoC). The SerDes is connected externally to a MAC SoC via a single SerDes lane in USXGMII. The interface supports the PCH preamble usage to transport control or timestamp indications between the MAC SoC and the PHY. **Table 20** lists the data rates supported by the USXGMII interface.

Upon change of speed request from one of the Gigabit PHYs, the GPY245 initiates USXGMII auto-negotiation and new link up.

Speed Features

USXGMII with clause 37 auto-negotiation is supported for these modes:

- Speed and duplex modes are auto-determined without software involvement
- 2.5 Gbps, 10.3125 GT/s, XGMII mode
- 1 Gbps, 10.3125 GT/s, GMII mode
- 100 Mbps, 10.3125 GT/s, GMII/MII mode (GMII mode or MII mode are statically configurable)
- 10 Mbps, 10.3125 GT/s, GMII/MII mode (GMII mode or MII mode are statically configurable)

Table 20 XPCS Feature List

Modes	Baudrate	Coding	Link speed	XPCS Clause	Auto- Negotiation Clause	
10G-USXGMII-4P	10.3125 GT/s	64b/66b	2.5 Gbps, 1 Gbps, 100 Mbps, and 10 Mbps	49.0	37.0	

3.5.1 USXGMII Configuration at Power Up

The GPY245 USXGMII interface is configured to operate automatically after reset. The STA does not have to change the register VSPEC1_SGMII_CTRL.USXGMII_REACH to operate in this default mode:

- USXGMII auto-negotiation is enabled by default.
- The TPI configuration after link up defines the corresponding USXGMII PHY-side port configuration. The MAC-side SoC must configure its USXGMII MAC-side interface to match the GPY245 PHY-side configuration.
- The GPY245 API [1] describes the procedure to update the Rx / Tx equalization parameters. The GPY
 automatically updates the Rx / Tx equalization parameters for standard trace lengths based on the trace length
 programmed in VSPEC1_SGMII_CTRL.USXGMII_REACH. For custom trace lengths, the Rx / Tx equalization
 parameters are configured using the API.

3.6 LED Interface

This section describes the LED interface.

3.6.1 LED

The GPY245 allows 12 LEDs to be used for visual status indication. Each LED pin drives either a single color LED or dual color LED.

3.6.2 LED Configuration

The GPY245 API [1] describing the driver software executed on the MAC SoC must be followed to configure this interface.

Figure 9 shows the external LED connected to either ground or the power rail in single color mode.

The Power Mode is only supported for single color LEDs.

Figure 10 and **Figure 11** illustrate the connection of single and dual color LEDs when the pin is also used for pin strapping.

Note: These figures do not show the full recommended circuits with all the necessary components. Refer to the relevant HDK/EVK PCB design documentation for more details [2].

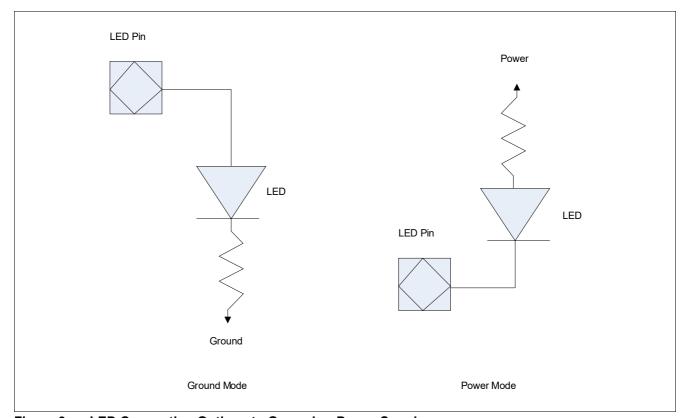


Figure 9 LED Connection Options to Ground or Power Supply

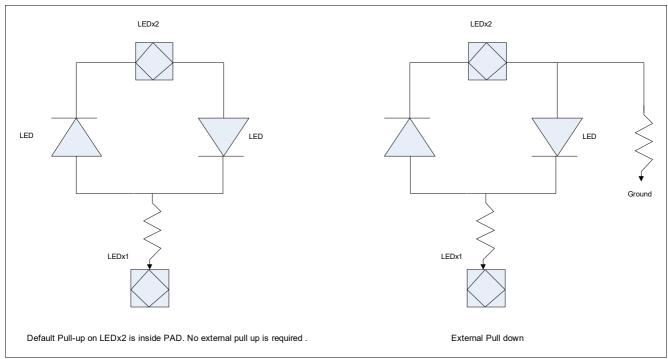


Figure 10 Connection of a Dual Color LED and Configuring Pin Strap Value

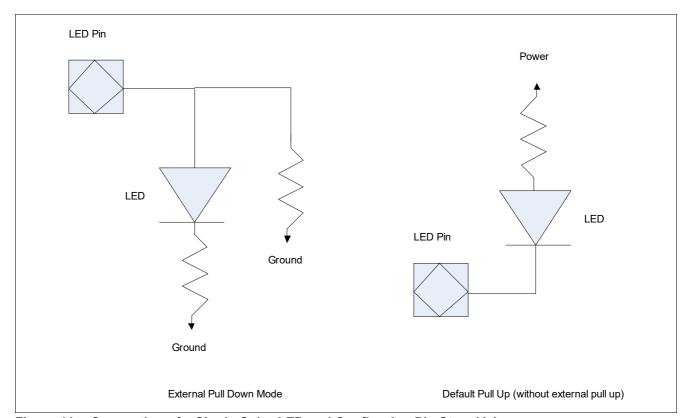


Figure 11 Connection of a Single Color LED and Configuring Pin Strap Value

3.6.3 LED Brightness Control

There are two LED brightness modes configurable by the GPY API, based on the system requirement.

- LED Brightness Level Maximum Mode
 Fixed level signal (no pulses) for maximum brightness, which is also available as a control signal for other purposes.
- LED Brightness Level Control Mode (Constant Mode)
 Allows the configuration of 16 levels of LED brightness as described in Brightness Control.

Brightness Control

This block controls the brightness of the LED by controlling the time duration for which the LED is on/off. The persistence characteristic of the eye causes it to perceive this as LED brightness. When LED is off, the output is disabled. When the LED is on, the output is enabled. The brightness control affects the LED output enable directly.

Figure 12 shows the brightness control frequency is 81.25 Hz, where each period is divided into 64 slots.

When the LED brightness control is disabled, the LED is enabled in all 64 slots.

When the LED brightness control is enabled, the LED is enabled for n consecutive slots, where n is determined by the configured brightness level. The LED output is disabled in the 64th slot.

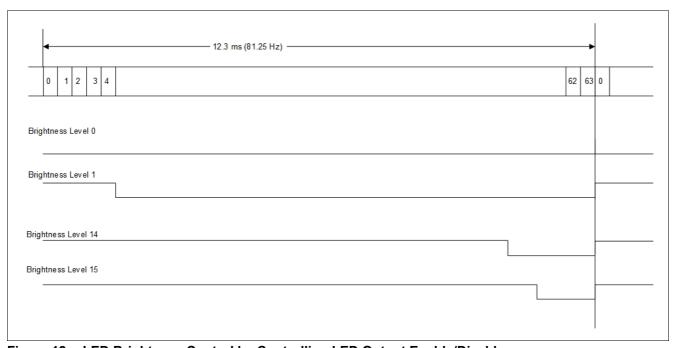


Figure 12 LED Brightness Control by Controlling LED Output Enable/Disable

3.7 Precision Time Protocol Feature

This section introduces the Precision Time Protocol (PTP) feature.

3.7.1 PTP Feature Purpose

The GPY245 provides support for the Precision Time Protocol, defined by the PTP Protocol IEEE 1588 Version 2, IEEE 802.1as, and IEEE P802.3bf, which is used to precisely synchronize clocks at the system level. The station manager (STA) selects GPC1, GPC2, or GPC3 alternate functions to input a time stamp synchronization request signal (TsSync). For each edge transition of the TsSync signal, the GPY245 captures a time stamp. Alternatively, for more precision, the GPY245 supports hardware assisted physical layer time stamping. In this case, the TsSync is triggered by the physical layer.

The time stamp is inserted in a PTP event message. The PTP protocol is executed by the STA at the OSI layer above the UDP/ IP or MAC layer. The PTP protocol chooses 1-step or 2-step time stamping; both are supported by the GPY245:

· 2-step time stamping

This scheme uses a Follow_Up message to carry the time stamp of the corresponding sync message. The time stamp is not inserted in the sync message on the fly while the packet is being transmitted, but later in the next PTP message. This scheme allows the GPY245 to perform hardware-assisted precise time stamping capture, using the PHY layer to precisely indicate when the packet Start-of-Frame Delimiter (SFD) symbol is sent out or received on the physical layer. The time stamp, together with the corresponding packet CRC, is stored in a memory area on the GPY245. The STA reads this time stamp using the MDIO interface.

1-step time stamping

This scheme is used to reduce the number of PTP messages. In this scheme, the GPY245 MAC inserts the time stamp in the sync message on the fly when it passes through the GPY MAC layer. The GPY245 inserts the time stamp in the PTP sync message on the fly.

Special care must be taken at the system level configuration to ensure that the MACsec feature is configured to disable the encryption of PTP time stamp packets when both PTP and MACsec are enabled concurrently.

3.7.2 PTP Feature Configuration

The GPY245 API [1] describing the driver software executed on the MAC SoC must be followed to configure this feature.

The steps used by the API to configure and enable the 1588 feature are:

- 1. (Optional) The STA uses the GPIO configuration API to select GPC1, GPC2, or GPC3 to be used to input the TsSync. This is not required when 2-step PTP mode is chosen, because the TsSync is generated internally by the GPY245 physical layer in that case.
- 2. The STA selects 1-step or 2-step PTP mode in the MDIO VSPEC1 PM CTRL register.
- 3. The STA enables the 1588 feature in the MDIO VSPEC1_PM_CTRL register. This triggers the GPY245 firmware to configure the internal GMAC and Packet Manager to capture the time stamps of the PTP packets.

In the case of 2-step PTP mode, the STA MAC SoC retrieves the time stamp and CRC to associate it to the PTP follow-up message.

3.8 Pulse Per Second Feature

This section introduces the Pulse Per Second (PPS) feature.

3.8.1 PPS Feature Purpose

The GPY245 provides support for PPS signal generation, which is used at the system level to synchronize various chips. The general purpose clock pins GPC1, GPC2, or GPC3 are configured for this purpose.

3.8.2 PPS Feature Configuration

The GPY245 API [1] describing the driver software executed on the MAC SoC must be followed to configure this feature.

The steps used by the API to configure and enable the PPS feature are:

- 1. (Optional) The STA uses the configuration API to configure the desired PPS frequency; the default is 1 second.
- 2. The STA enables the PPS feature. This triggers the GPY245 firmware to configure the GPY245 MAC and Packet Manager to output a PPS signal on the selected GPC1, GPC2, or GPC3.

3.9 Synchronous Ethernet Feature

This section introduces the Synchronous Ethernet (SyncE) feature.

3.9.1 SyncE Feature Purpose

The GPY245 allows a SyncE interface to support transportation of a source-referable clock from a clock master to clock clients. When the TPI is a clock slave, the GPY245 receives the synchronization clock from the Ethernet cable, and provides it to the system on pin GPC1 or GPC2. If the TPI is a clock master, the GPY245 receives the clock from the system on pin GPC1 or GPC2 and sends it over the Ethernet cable as a clock master.

3.9.2 SyncE Feature Configuration

The GPY245 API [1] describing the driver software executed on the MAC SoC must be followed to configure this feature. The SyncE feature is enabled using register VSPEC1_PM_CTRL. This triggers the GPY245 to configure the GPC1 or GPC2 pin as a clock master or slave and as SyncE clock input or output, respectively.

3.10 Smart-AZ Feature

The Smart-AZ feature is relevant when the GPY245 is connected to a MAC SoC that does not implement the EEE feature in its MAC layer. In this case, the MAC SoC is not able to initiate a transition to the low-power idle state.

To alleviate the limitation of such a MAC SoC, the GPY245 detects the conditions that may lead to low-power idle and generates the control messages to enter EEE mode in accordance with the IEEE 802.3az standard.

The Smart-AZ feature is always enabled.

3.11 MACsec Feature

The GPY245 integrates MACsec frame processing engine hardware to execute MACsec frame transformation along with frame classification and statistic counter updates. The MACsec feature is only supported by the GPY245 product variant.

The MACsec engine operates in conjunction with a MACsec driver executed on the MAC SoC. The upper layers of the MACsec protocol in charge of key provisioning are under the control of the MAC SoC. The MACsec features supported by the GPY245 are:

- Compliance to IEEE 802.1AE, IEEE 802.1BN and IEEE 802.1BW standards
- AES-256 and AES-128 encryption and decryption in both Rx and Tx directions
- 16 MACsec Secure Channels (SCs) and 32 MACsec Associations (SAs)

- · Modes per security association:
 - Integrity check mode only
 - Both confidentiality (data payload encryption) and integrity check mode
- Rx non-MACsec packet filtering mode:
 - Forwarding all packets with Ethernet type different to MACsec type
- Rx MACsec association lookup:
 - When MACsec is enabled, lookup is based on SCI+AN for packets with the MACsec tag. When SCI+AN is found, the packet association is found. The packets with unknown association are forwarded.
 - Unknown association packets are marked with MACsec unknown status and counted.
 - There is a corresponding MACsec configuration (security mode, key etc.) for each association.
 - The MACsec tag and ICV (Integrity Check Value) fields are stripped.
- Tx MACsec association lookup:
 - Using a special tag mode, the security channel and MACsec enable/bypass are configurable based on bits
 5:0 of byte 5 in the special tag and the packet header.
 - Without the special tag mode, the security channel and enable/bypass are based on the packet header lookup.
 - There is a corresponding MACsec configuration (MACsec enable, security mode etc.) for each association.
- MACsec counters:
 - Number of Integrity Check Value (ICV) failed packets
 - Number of MACsec unknown association packets (excluding ICV failed packets)
 - Number of MACsec bypass packets
 - Number of total packets

3.11.1 MACsec Feature Usage

The feature is relevant when the GPY245 is connected to a MAC SoC that does not support MACsec in its Layer-2. In this case, the GPY245 performs the MACsec data transformations that is normally performed by the SoC.

3.11.2 MACsec Engine Control API Executed on MAC SoC

The MACsec engine on the GPY245 is controlled by a MACsec driver executed on the MAC SoC. The control interface is the MDIO. The MACsec driver is part of the MAC SoC API software documented in the GPY245 API. The MACsec feature is enabled by default in the GPY245 chip variant. The API is used to disable it.

3.12 Power Management

This section describes the power management functions of the GPY245.

3.12.1 Power States

Figure 13 illustrates the power states and transitions of the GPY245. In this state diagram, the (0.11) syntax corresponds to the value of bit 11 from register 0 in device 0, which is STD_CTRL.PD. This is the Power Down (PD) bit in MDIO STD_CTRL described in **Chapter 4**. The STA is able to use this STD_CTRL.PD field to bring the physical interface into the SLEEP state.

The other states are automatically entered by the GPY245 depending on the context, and following the Energy Efficient Ethernet protocol. This is done without need for any intervention from the STA.

The Normal Link Pulse (NLP) and Fast Link Pulse (FLP) are received on the twisted pair interface from a link partner and used to wake up the GPY245 and enter auto-negotiation.

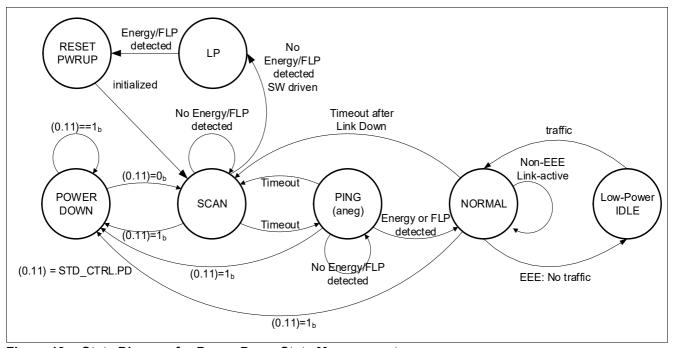


Figure 13 State Diagram for Power Down State Management

3.12.2 RESET Power Up

The GPY245 starts up in the RESET Power Up (PWRUP) state after either a hardware reset or power up. After initialization, the GPY245 always transitions to the SCAN state.

3.12.3 POWER DOWN State

The POWER DOWN state is entered by setting the PD bit (0.11) of the MDIO standard register STD_CTRL to 1, regardless of the current state of the device. The POWER DOWN state corresponds to power down as specified in IEEE 802.3, Clause 22.2.4.1.5. Some signal processing blocks are stopped to save energy, but the GPY245 still responds to MDIO messages. The SGMII interface to the MAC SoC is also switched off.

Exiting the POWER DOWN state is triggered by setting the PD bit (0.11) of STD_CTRL to '0', which initiates a transition to the SCAN state.

3.12.4 SCAN State

The SCAN state differs from the SLEEP state in that the receiver periodically scans for signal energy or FLP bursts on the twisted pair interface. There is no transmission in this state. When an FLP burst is received, the GPY245 enters the auto-negotiation protocol to exchange capabilities with the link partner and establish a data link in the NORMAL state.

3.12.5 PING State

The PING state is similar to the SCAN state except that the transceiver transmits an FLP burst onto the TPI for a programmable amount of time. This is used to wake potential link partners from the power down state. This state corresponds to the state of ANEG described in Clause 28 of the IEEE standard [5].

3.12.6 LP State

The GPY245's low power (LP) state is enabled by configuring the MDIO register PHY_CTL2.LP. This LP state is not applicable to the master port (default port 0), regardless of the setting of this bit. The LP state is entered automatically when there is no Ethernet cable connected to the GPY245. The GPY245 firmware detects this condition when no energy or LP is present on the twisted pair interface and enters the LP state. It is intended to set the GPY245 into its maximum power saving state. In this state, most digital domains are in reset. Only a minimal amount of circuitry (analog/digital) operates in order to detect signal energy on the receiver of one twisted pair interface and trigger a wake-up.

When the port is in the LP state, the STAs do not have access to the corresponding MDIO/MMD registers.

The LP state is exited upon detection of signal energy on the twisted pair (either NLP or FLP). The port transitions to the RESET Power Up state automatically. The STA host is also able to trigger an LP state exit by applying an API to wake up the specific port that has entered the low power state.

The STA host may be informed of the LP entry condition. By setting the PHY_IMASK.LP bit to ACTIVE, the STA requests the MDINT interrupt from the port when the entry conditions are met. All the LP related control bits and communication mechanism between the STA and the GPY are shown in the flowchart in **Figure 14**.

The STA host may be informed of the LP exit condition. By setting the VSPEC1_IMASK.CDET bit to ACTIVE, the STA requests the MDINT interrupt from the port (including master port) when energy on the link is detected during auto-negotiation. Although the LP state is not applicable to the master port, this bit is applicable to the master port. So even if no port is in the LP state, it can trigger this interrupt whenever energy is first detected on the link. If the STA triggers the LP state exit via a wake-up request, and there is no energy on the link after the LP state exit, no interrupt will be asserted.

Attention: An active-high MDINT in push-pull mode (default is tristate mode) is not supported in Low Power mode.

Attention: VSPEC1_IMASK.CDET is not supported in forced speed 10BASE-T/100BASE-TX mode. Autonegotiation is needed to support this feature.

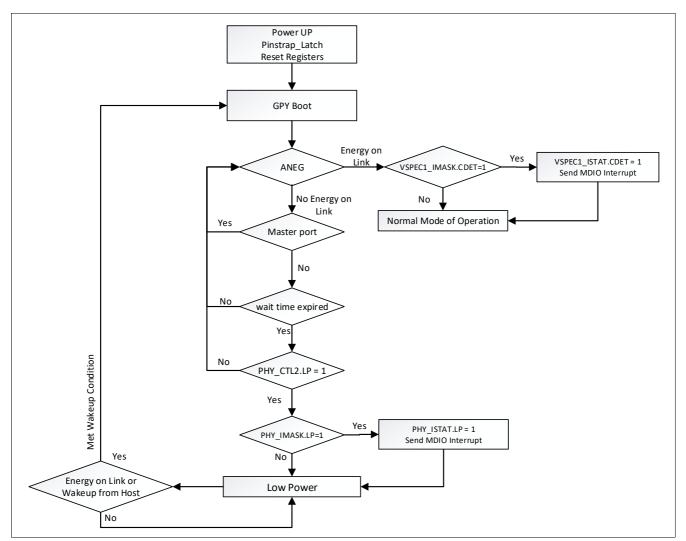


Figure 14 LP Sequence

Table 21 LP State Entry and Exit Sequence

Step	State	Remark
1	ACTIVE The LP feature is enabled by setting PHY_CTL2.LP = 1	Use MDIO register PHY_CTL2.LP to enable or disable the LP feature.
2	ANEG, Ability Detect	The firmware detects that no energy is seen on the cable when no FLP is received for a long period of time. If the Low Power feature is not enabled, this time is fixed to between 6.4 seconds and 9.6 seconds. If the Low Power feature is enabled, this time is configured using the register: VSPEC1_LOW_POWER_ENTRY_TIME.LPE_TIM. Time in seconds = 4 x value programmed. Default time is 4 seconds (VSPEC1_LOW_POWER_ENTRY_TIME.LPE_TIM = 1). There is an initial time of between 2.4 seconds and 5.6 seconds, which adds on to the programmed time.
3	LP Entry Timer	This time is configured with register: VSPEC1_LOW_POWER_ENTRY_TIME.LPE_TIM. The value is set in steps of 4 seconds. Default time is 4 seconds.
4	LP Entry	The GPY245 saves MDIO LP persistent registers. An interrupt is sent to indicate entry into the LP state.
5	LP State	Power consumption is saved in this state. The GPY245 listen to energy pulses from the link partner ANEG as a condition to trigger an exit from the LP state. Only a minimal amount of circuitry operates in order to detect signal energy on TPI and trigger a wake-up. The port LEDs and MDIO interface are disabled.
6	LP Exit (Option 1) Based on energy detected on the cable.	The GPY245 restores the MDIO LP persistent registers. The STA is responsible for restoring any custom MDIO information that was not saved in the group of LP persistent registers. An interrupt is sent to indicate an exit from the LP state.
7	LP Exit (Option 2) Based on a wake-up request from the STA.	The STA is able to request an LP exit by using an API which will be provided. GPY245 restores the MDIO LP persistent registers. The STA is responsible to restore any custom MDIO information that were not saved in the group of LP persistent registers. No interrupt is sent to notify LP exit.
8	ANEG, LINK-UP and ACTIVE	The GPY245 operates in normal power modes.

These are persistent MDIO registers saved and restored during LP entry-exit.

- 1. STD CTRL.SSM
- 2. STD CTRL.DPLX
- 3. STD_CTRL.ANEN
- 4. STD CTRL.SSL
- STD AN ADV.TAF
- 6. STD_AN_ADV.XNP
- 7. STD GCTRL.MBTHD
- STD_GCTRL.MBTFD
- 9. STD_GCTRL.MS
- 10. STD_GCTRL.MSEN
- 11. PHY_IMASK
- 12. PHY_CTL1.AMDIX
- 13. PHY CTL1.MDIAB
- 14. PHY CTL1.MDICD
- 15. PHY_CTL1.POLA
- 16. PHY CTL1.POLB
- 17. PHY_CTL1.POLC
- 18. PHY CTL1.POLD
- 19. ANEG_CTRL.ANEG_ENAB
- 20. ANEG_MGBT_AN_CTRL.LDL
- 21. ANEG MGBT AN CTRL.FR
- 22. ANEG_MGBT_AN_CTRL.FR2G5BT
- 23. ANEG_MGBT_AN_CTRL.AB2G5BT
- 24. ANEG MGBT AN CTRL.PT
- 25. ANEG MGBT AN CTRL.MS MAN EN
- 26. ANEG_MGBT_AN_CTRL.MSCV
- 27. ANEG_EEE_AN_ADV1.EEE_100BTX
- 28. ANEG_EEE_AN_ADV1.EEE_1000BT
- 29. ANEG_EEE_AN_ADV2.EEE2G5
- 30. VSPEC1_SGMII_CTRL.ANMODE
- 31. VSPEC1_SGMII_CTRL.SSM
- 32. VSPEC1_SGMII_CTRL.EEE_CAP
- 33. VSPEC1_SGMII_CTRL.DPLX
- 34. VSPEC1 SGMII CTRL.RXINV
- 35. VSPEC1 SGMII CTRL.ANEN
- 36. VSPEC1_SGMII_CTRL.SSL
- 37. VSPEC1 NBT DS CTRL.NO NRG RST
- 38. VSPEC1_NBT_DS_CTRL.DOWNSHIFTEN
- 39. VSPEC1_NBT_DS_CTRL.DOWNSHIFT_THR
- 40. VSPEC1 NBT DS CTRL.NRG RST CNT
- 41. VSPEC1_NBT_DS_CTRL.FORCE_RST
- 42. VSPEC1_LED0
- 43. VSPEC1 LED1
- 44. VSPEC1_LED2
- 45. VSPEC1_PM_CTRL.PM_EN
- 46. VSPEC1 PM CTRL.MACSEC EN
- 47. VSPEC1_PM_CTRL.PTP_1588_EN
- 48. VSPEC1_PM_CTRL.PTP_1588_STEP
- 49. VSPEC1_PM_CTRL.SYNCE_EN
- 50. VSPEC1_PM_CTRL.SYNCE_CLK

51. VSPEC1_SGMII_CTRL.USXGMII_REACH

52. VSPEC1 SGMII CTRL.SGMII FIXED2G5

53. VSPEC1 LOW POWER ENTRY TIME.LPE TIM

54. VSPEC1_PM_CTRL.MDIO_MODE

55. VSPEC1 IMASK.CDET

3.12.7 NORMAL State

The NORMAL state is used to establish and maintain a link connection. When a connection is dropped, the GPY245 moves back into the SCAN state.

3.12.8 Low Power IDLE State: Energy-Efficient Ethernet

The IEEE 802.3 standard [5] describes the Energy-Efficient Ethernet (EEE) operation that is supported by the GPY245. EEE is supported in the various speeds of 100BASE-TX, 1000BASE-T, and 2.5GBASE-T. The general idea of EEE is to save power during periods of low link utilization. Instead of sending active idle data, the transmitters are switched off for a short period of time. This is called the quiet period in the standard. The link is kept active by means of a frequent refresh cycle initiated by the PHY itself while in the low power state. This sequence is repeated until a wake request is generated by one of the link partner MACs. The GPY245 follows the IEEE 802.3 standard regarding EEE. Figure 15 illustrates the principle. This state is entered automatically when the low power idle conditions are met.

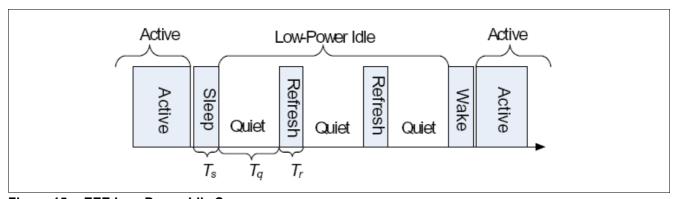


Figure 15 EEE Low Power Idle Sequence

3.13 Field Firmware Upgrade (FFU)

The GPY245 provides a Firmware Field Upgrade (FFU) feature that allows feature and functional enhancements of the GPY245 in the field.

The GPY245 is initially provided with a permanent on-chip firmware image in a one-time programmable memory (OTP). It is possible to download a new firmware image via the GPY245 to a low-cost serial flash memory device connected to the GPY245's SPI interface; the GPY245 is then able to fetch the upgraded firmware from the flash memory after a reboot.

For security reasons, the GPY245 only accepts firmware images that are electronically signed by MaxLinear. When authentication of the flash image by the GPY245 fails, or the download of the image is aborted or fails, the GPY245 defaults to running from the internal firmware image in OTP.

The GPY API [1] describing the driver software executed on the MAC SoC must be followed to execute this feature. It provides information on the update process and which actions are required in the MAC SoC application. Security features to prevent rollback of the image to a previous version (flash anti-rollback) and to prevent flash memory wear-out due to frequent updates (flash anti-wear out) are not supported within the GPY245. When the system (SoC) to which the GPY245 is attached mandates such features, they must be supported by the system itself.

- The host software is expected to verify that the new firmware is a higher version than the previously installed firmware before downloading it to the flash memory.
- The system is also expected to ensure that firmware is only installed when there is new firmware available and not attempt to install new firmware after every reboot.
- Flash memory components typically support a minimum of 100,000 erase/program cycles, so flash wear-out
 is unlikely. However, ensuring a minimum interval between flash updates decreases the likelihood of wear-out.
 An interval of 1 hour sets the minimum time before wear-out to longer than 11 years.

MDIO and MMD Register Interface Description

4 MDIO and MMD Register Interface Description

This chapter describes the MDIO and MMD registers, which are standardized by IEEE 802.3 [5] and [6], and available to support the GPY245 feature set. These registers are accessible by an external management entity (also called STA in IEEE) to control, configure or read the status of the GPY245. After power-on, the GPY245 resets the MDIO and MMD registers to default values that are sufficient to operate without specific programing.

All the register definitions, behaviors and fields are strictly compliant with the IEEE 802.3 [5] and [6]. Refer to IEEE 802.3 for more detailed explanations of the registers. The only registers that are not referenced in IEEE 802.3 are two register groups that are vendor specific, VSPEC1 and VSPEC2. These allow custom functions related to the GPY245. In the register descriptions, the section or table references refer to the IEEE 802.3 [5] and [6] documents.

4.1 MDIO-Specific Terminology

This list describes how these common IEEE802.3 terms relate to MDIO and MMD register concepts discussed in this chapter.

- STA: Station Management. A host connected to the MDIO interface. STAs are generally Media Access Controllers (MACs). The STA drives the MDIO bus as a clock master and the GPY245 is MDIO slave.
- PHY: Physical Layer. In the GPY245 this encompasses Analog Signal Processing, Digital Signal Processing, PCS. The PHY contains several sub-layers that are individually manageable entities known as MDIO manageable devices (MMDs).
- MMD: MDIO Manageable Device. Section 4.3 lists the MMDs available in the GPY245.
- Device: In the context of MDIO/MMD registers, a device is a register bank grouped by logical sub-layers of the PHY layer.
- Clause: Refers to a particular section of the IEEE 802.3 standard [5] and [6]. In particular Clause 22 describes MDIO device 0, and Clause 45 describes the other MMDs.
- MII: Media Independent Interface. This encompasses the MDIO and the GMII as described in Clause 22. STD registers in device 0 are also called MII registers.

MDIO and **MMD** Register Interface Description

4.2 Register Naming and Numbering

The register numbering convention in this document is similar to that of IEEE 802.3:

The numbering syntax uses 3 numbers, a.b.c, as specified in IEEE 802.3 paragraph 45.1 [5], and the notation is generalized to Clause 22 registers in device 0 "STD". The alphanumeric syntax also uses the same structure and uses the names of the MMD devices, registers and register fields separated by underscore and dot as described below.

4.2.1 Register Numbering

The syntax is as follows, with a, b, c written as decimal numbers:

a.b.c = <DEVICE_NUMBER>.<REGISTER_NUMBER>.<FIELD_NUMBER>

When the last indicator (c) is omitted, the register numbering refers to the full register.

When a field is more than a single bit, the bit range is indicated using a semicolon (e.g. 1:3 is the field of bits 1 to 3). In an MDIO register, the least significant bit is bit 0 and most significant bit is bit 15. All MDIO registers are 16 bit wide.

4.2.2 Register Naming

The syntax is as follows, with AA, BB, CC written as alphanumeric strings:

AA.BB.CC = <DEVICE_NAME>_<REGISTER_NAME>.<FIELD_NAME>

When the last indicator (CC) is omitted, the register naming refers to the full register.

The fields named Res, RES1, RES2 refer to reserved fields as per IEEE 802.3 documents.

4.2.3 Examples

STD_STAT.ANOK is the name of the field 0.1.5, which indicates that auto-negotiation is complete.

ANEG_CTRL.ANEG_RESTART is the name of the field 7.0.9, which allows the STA to restart the Ethernet ANEG procedure.

ANEG_PHYID1 is the complete 16-bit register number 7.2, for the PHY identifier 1 number.

VSPEC1_LED1.BLINKS is the 4-bit wide field number 30.2.15:12, which contains LED1 slow blinking configuration.

MDIO and MMD Register Interface Description

4.3 MMD Devices Present in GPY245

The MMD devices implement groups of standardized registers under the management of the STA. They are defined in IEEE 802.3.

Table 22 MDIO / MMD Devices Present in GPY245

MDIO / MMD Name	Device Number (decimal)	Description
STD	0	MDIO Standard Device as described in Clause 22. This also contains a number of PHY registers that are GPY245 specific.
PMAPMD	1	Control and status registers related to the PMA/PMD signal processing modules.
PCS	3	Control and status registers related to the PCS encoding/decoding device.
ANEG	7	Control and status registers related to the auto-negotiation device.
VSPEC1	30	GPY245-specific LED control and GPY245 SGMII control.
VSPEC2	31	GPY245-specific wake-on-LAN control.

4.4 Responsibilities of the STA

The GPY245 responds to all published register addresses for the device and returns a value of zero for undefined and unsupported registers.

In accordance with IEEE 802.3 guidelines, it is the responsibility of the STA entity to ensure that mutually acceptable speeds are applied consistently across all the MMDs of the GPY245.

The GPY245 ignores writes to the PMA/PMD speed selection bits that select speeds which are not advertised in the PMA/PMD speed ability register. The PMA/PMD speed selection defaults to a supported ability.

4.5 MDIO Access Protocols to Read / Write Registers

All the MDIO/MMD registers are accessible from an external chip connected to the MDIO bus on the MDIO and MDC pins. The GPY245 supports several MDIO frame protocols:

- Clause 22: To access Device 0
- Clause 22 Extended: To access other devices (Dev 1: PMAPMD, Dev 3: PCS, Dev7: ANEG, Dev 30: VSPEC1, DEV 31: VSPEC2) using the indirection scheme specified by IEEE 802.3.
- Clause 45: to access all devices

Both Clause 22 Extended and Clause 45 are used to access MMD devices. However, the mechanism implemented in the GPY245 provides faster speeds using Clause 45, so there are some differences in latencies in the MDIO reply:

- The Clause 22 Extended protocol involves the GPY245 an indirection mechanism.
- The Clause 45 protocol provides faster replies.

The Clause 22 registers are accessed using the Clause 45 electrical interface and the Clause 22 management frame structure. Refer to IEEE 802.3 section 45 [5].

MDIO Registers Detailed Description

5 MDIO Registers Detailed Description

Table 23 Register Access Type

Mode	Symbol
Status Register (Status or Ability Register)	RO
Read-Write Register (MDIO Register)	RW
Read-Write Self-Clearing Register (bit is cleared after read from MDIO)	RWSC
Read-Only Self-Clearing Register (bit is cleared after read from MDIO)	ROSC

5.1 Standard Management Registers

This section describes the IEEE 802.3 standard management registers corresponding to Clause 22.

Table 24 Registers Overview

Register Short Name	Register Long Name	Reset Value
STD_CTRL	STD Control (Register 0.0)	3040 _H
STD_STAT	Status Register (Register 0.1)	7949 _H
STD_PHYID1	PHY Identifier 1 (Register 0.2)	67C9 _H
STD_PHYID2	PHY Identifier 2 (Register 0.3)	DC00 _H ¹⁾
STD_AN_ADV	Auto-Negotiation Advertisement (Register 0.4)	91E1 _H
STD_AN_LPA	Auto-Negotiation Link Partner Ability (Register 0.5)	11E0 _H
STD_AN_EXP	Auto-Negotiation Expansion (Register 0.6)	0064 _H
STD_AN_NPTX	Auto-Negotiation Next Page Transmit Register (Register 0.7)	2001 _H
STD_AN_NPRX	Auto-Negotiation Link Partner Received Next Page Register (Register 0.8)	0000 _H
STD_GCTRL	Gigabit Control Register (Register 0.9)	0200 _H
STD_GSTAT	Gigabit Status Register (Register 0.10)	0000 _H
STD_MMDCTRL	MMD Access Control Register (Register 0.13)	0000 _H
STD_MMDDATA	MMD Access Data Register (Register 0.14)	0000 _H
STD_XSTAT	Extended Status Register (Register 0.15)	2000 _H

¹⁾ For the device specific reset value, see the Product Naming table in the Package Outline chapter.

5.1.1 Standard Management Registers

This section describes all the STD registers in detail.

STD Control (Register 0.0)

This register controls the main functions of the PHY.

IEEE Standard Register=0.0

STD_C		(Regis	ster 0.0)										Reset	Value 3040 _H
15	14	13	12	11	10	9	8	7	6	5				0
RST	LB	SSL	ANEN	PD	ISOL	ANRS	DPLX	COL	SSM		1 1	RES	' '	
rwsc	r\n/	rw.	rw.	r\n/	r\/	rwsc	rw/	r\w	r\v/		1	ro		

Field	Bits	Type	Description
RST	15	RWSC	Reset Resets the PHY to its default state. Active links are terminated. This is a self-clearing bit, which is set to zero by the hardware after a reset is performed. Refer to IEEE 802.3-2008 22.2.4.1.1. 0 _B NORMAL Normal operational mode 1 _B RESET Resets the device.
LB	14	RW	Loopback on GMII This mode enables looping back of MII data (SGMII) from the transmit to the receive direction. No data is transmitted to the Ethernet PHY. The device operates at the selected speed. The collision signal remains de-asserted unless otherwise forced by the collision test. O _B NORMAL Normal operational mode 1 _B ENABLE Closes the loopback from Tx to Rx at xMII.
SSL	13	RW	Forced Speed Selection LSB This bit only takes effect when the auto-negotiation process is disabled, that is, bit ANEN is set to zero. This is the lower bit (LSB) of the forced speed selection. In conjunction with the highest bit (MSB), the following encoding is valid: MSB LSB bit values: 0 0 = 10 Mbps 0 1 = 100 Mbps 1 0 = 1000 Mbps 1 = Reserved, defaults to 2500 Mbps when the PMA_CTRL register 1.0.5:2 is equal to [0 1 1 0]. The standard procedure to force 2500 Mbps (when ANEG is disabled) is to program PMA_CTRL with 1.0.6 = 1.0.13 = 1 and 1.0.5:2 = [0 1 1 0]. The GPY PHY mirrors 1.0.6, 1.0.13 and 0.0.6, 0.0.13.
ANEN	12	RW	Auto-Negotiation Enable Allows enabling and disabling of the auto-negotiation process capability of the PHY. When enabled, the force bits for duplex mode (CTRL.DPLX) and the speed selection (CTRL.SSM, CTRL.SSL) become inactive; otherwise, the force bits define the PHY operation. Refer to IEEE 802.3-2008 22.2.4.1.4. OB DISABLE Disable the auto-negotiation protocol. 1 B ENABLE Enable the auto-negotiation protocol.
PD	11	RW	Power Down Forces the device into a power down state (SLEEP) in which power consumption is the bare minimum required to still maintain the MII management interface communication. When activating the power down functionality, the PHY terminates active data links. The MII interface is also stopped in power down mode. Refer to IEEE 802.3-2008 22.2.4.1.5. O _B NORMAL Normal operational mode 1 _B POWERDOWN Forces the device into power down mode.

Field	Bits	Type	Description (cont'd)
ISOL	10	RW	Isolate The isolation mode isolates the PHY from the MAC. The MAC interface inputs are ignored, whereas the MAC interface outputs are set to tristate (high-impedance). Refer to IEEE 802.3-2008 22.2.4.1.6. 0 _B NORMAL Normal operational mode 1 _B ISOLATE Isolates the PHY from the MAC
ANRS	9	RWSC	Restart Auto-Negotiation Restarts the auto-negotiation process on the MDI. This bit does not have any effect when auto-negotiation is disabled using (CTRL.ANEN). This bit is self-clearing after the auto-negotiation process is initiated. Refer to IEEE 802.3-2008 22.2.4.1.7. 0 _B NORMAL Stay in current mode. 1 _B RESTART Restart auto-negotiation.
DPLX	8	RW	Forced Duplex Mode This bit only takes effect when the auto-negotiation process is disabled, that is, bit CTRL.ANEN is set to zero. This bit controls the forced duplex mode. It allows forcing of the PHY into full or half duplex mode. This bit does not take effect in loopback mode, that is, when bit CTRL.LB is set to 1. Refer to IEEE 802.3-2008 22.2.4.1.8. The duplex mode may only be forced to half duplex in 10BASE-T and 100BASE-TX speed modes. This field is ignored for higher speeds. OB HD Half duplex 1B FD Full duplex
COL	7	RW	Collision Test Allows testing of the COL signal at the xMII interface. When the collision test is enabled, the state of the TX_EN signal is looped back to the COL signal within a minimum latency. Refer to IEEE 802.3-2008 22.2.4.1.9. 0 _B DISABLE Normal operational mode 1 _B ENABLE Activates the collision test.
SSM	6	RW	Forced Speed Selection MSB This bit only takes effect when the auto-negotiation process is disabled, that is, bit ANEN is set to zero. This is the most significant bit (MSB) of the forced speed selection. In conjunction with the lower bit, (LSB), the following encoding is valid: MSB LSB: 0 0 = 10 Mbps 0 1 = 100 Mbps 1 0 = 1000 Mbps 1 = Reserved, defaults to 2500 Mbps when the PMA_CTRL (1.0.5:2 = [0 1 1 0]). The preferred way to force 2500 Mbps (when ANEG is disabled) is to program PMA_CTRL with 1.0.6 = 1.0.13 = 1 and 1.0.5:2 = [0 1 1 0]. The GPY mirrors 1.0.6, 1.0.13 and 0.0.6, 0.0.13
RES	5:0	RO	Reserved Write as zero, ignore on read.

Status Register (Register 0.1)

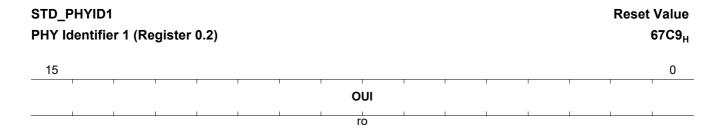
This register contains status and capability information about the device. All the bits are read-only. A write access by the MAC does not have any effect. Refer to IEEE 802.3-2008 22.2.4.2.

IEEE Standard Register=0.1

STD_STAT Reset Value
Status Register (Register 0.1) 7949_H

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	СВТ4	CBTX F	CBTX H	XBTF	хвтн	CBT2F	CBT2 H	EXT	RES	MFPS	ANOK	RF	ANAB	LS	JD	XCAP
_	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	rolh	ro	roll	rolh	ro

Field	Bits	Type	Description
CBT4	15	RO	IEEE 100BASE-T4 Specifies the 100BASE-T4 ability. 0 _B DISABLED PHY does not support this mode. 1 _B ENABLED PHY supports this mode.
CBTXF	14	RO	IEEE 100BASE-TX Full Duplex Specifies the 100BASE-TX full duplex capability. 0 _B DISABLED PHY does not support this mode. 1 _B ENABLED PHY supports this mode.
СВТХН	13	RO	IEEE 100BASE-TX Half Duplex Specifies the 100BASE-TX half duplex capability. 0 _B DISABLED PHY does not support this mode. 1 _B ENABLED PHY supports this mode.
XBTF	12	RO	IEEE 10BASE-T Full Duplex Specifies the 10 BASE-T full duplex capability. 0 _B DISABLED PHY does not support this mode. 1 _B ENABLED PHY supports this mode.
ХВТН	11	RO	IEEE 10BASE-T Half Duplex Specifies the 10BASE-T half duplex capability. 0 _B DISABLED PHY does not support this mode. 1 _B ENABLED PHY supports this mode.
CBT2F	10	RO	IEEE 100BASE-T2 Full Duplex Specifies the 100BASE-T2 full duplex capability. 0 _B DISABLED PHY does not support this mode. 1 _B ENABLED PHY supports this mode.
CBT2H	9	RO	IEEE 100BASE-T2 Half Duplex Specifies the 100BASE-T2 half duplex capability. 0 _B DISABLED PHY does not support this mode. 1 _B ENABLED PHY supports this mode.



Field	Bits	Type	Description (cont'd)
EXT	8	RO	Extended Status The extended status registers are used to specify 1000 Mbps speed capabilities in the register XSTAT. Refer to IEEE 802.3-2008 Clause 22.2.4.2.16. 0 _B DISABLED No extended status information available in register 15. 1 _B ENABLED Extended status information available in register 15.
RES	7	RO	Reserved Ignore when read.
MFPS	6	RO	Management Preamble Suppression Specifies the MF preamble suppression ability. Refer to IEEE 802.3-2008 22.2.4.2.9. 0 _B DISABLED PHY requires management frames with preamble. 1 _B ENABLED PHY accepts management frames without preamble.
ANOK	5	RO	Auto-Negotiation Completed Indicates whether the auto-negotiation process is completed or in progress. Refer to IEEE 802.3-2008 22.2.4.2.10. 0 _B RUNNING Auto-negotiation process is in progress. 1 _B COMPLETED Auto-negotiation process is completed.
RF	4	ROLH	Remote Fault Indicates the detection of a remote fault event. Refer to IEEE 802.3-2008 22.2.4.2.11. GPY doesn't indicate RF. 0 _B INACTIVE No remote fault condition detected. 1 _B ACTIVE Remote fault condition detected.
ANAB	3	RO	Auto-Negotiation Ability Specifies the auto-negotiation ability. Refer to IEEE 802.3-2008 22.2.4.2.12. 0 _B DISABLED PHY is not able to perform auto-negotiation. 1 _B ENABLED PHY is able to perform auto-negotiation.
LS	2	ROLL	Link Status Indicates the link status of the PHY to the link partner. Refer to IEEE 802.3-2008 22.2.4.2.13. 0 _B INACTIVE The link is down. No communication with link partner possible. 1 _B ACTIVE The link is up. Data communication with link partner is possible.
JD	1	ROLH	Jabber Detect Indicates that a jabber event has been detected. Refer to IEEE 802.3- 2008 22.2.4.2.14. 0 _B NONE No jabber condition detected. 1 _B DETECTED Jabber condition detected.
XCAP	0	RO	Extended Capability Indicates the availability and support of extended capability registers. Refer to IEEE 802.3-2008 22.2.4.2.15. 0 _B DISABLED Only base registers are supported. 1 _B ENABLED Extended capability registers are supported.

PHY Identifier 1 (Register 0.2)

This code specifies the Organizationally Unique Identifier (OUI), and the vendor's model and revision number. IEEE Standard Register=0.2

Field	Bits	Туре	Description
OUI	15:0	RO	Organizationally Unique Identifier Bits 3:18

PHY Identifier 2 (Register 0.3)

IEEE Standard Register=0.3

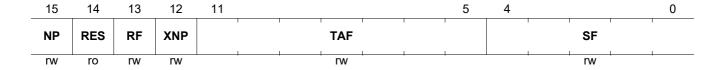
STD_PHYID2 PHY Identifier 2 (Register 0.3)										Res	et Value DC00 _H		
15				10	9					4	3		0
,	O	UI	1	1		1	LE) N	ı	ı	'	LDRN	ı
	r	0		1		-	re	0	1	1		ro	

Field	Bits	Type	Description
OUI	15:10	RO	Organizationally Unique Identifier Bits 19:24
LDN	9:4	RO	Device Number Specifies the device number ¹⁾ to distinguish between several different products.
LDRN	3:0	RO	Device Revision Number Specifies the device revision number ¹⁾ to distinguish between several versions of this device.

¹⁾ For the device specific reset value, see the Product Naming table in the Package Outline chapter.

Auto-Negotiation Advertisement (Register 0.4)

This register contains the advertised abilities of the PHY during auto-negotiation.


IEEE Standard Register=0.4

STD_AN_ADV

Auto-Negotiation Advertisement (Register 0.4)

Reset Value
91E1_H

Field	Bits	Type	Description
NP	15	RW	Next Page The next page indication is encoded in bit AN_ADV.NP regardless of the selector field value or link code word encoding. The PHY always advertises NP when a 1000BASE-T mode is advertised during autonegotiation. Refer to IEEE 802.3-2008 28.2.1.2.6. 0 _B INACTIVE No next page to follow. 1 _B ACTIVE Additional next page(s) to follow.
RES	14	RO	Reserved Write as zero, ignore on read.
RF	13	RW	Remote Fault The remote fault bit allows indication of a fault to the link partner. Refer to IEEE 802.3-2008 28.2.1.2.4. 0 _B NONE No remote fault is indicated. 1 _B FAULT A remote fault is indicated.
XNP	12	RW	Extended Next Page Indicates that the GPY supports transmission of extended next pages (XNP). 0 _B UNABLE GPY is XNP unable. 1 _B ABLE GPY is XNP able.
TAF	11:5	RW	Technology Ability Field The technology ability field is an 8-bit wide field containing information indicating supported technologies. The GPY supports 10BASE-T (half and full duplex), 100BASE-TX (half and full duplex) and both symmetric and asymmetric PAUSE. 40 _H PS_ASYM Advertise asymmetric pause 20 _H PS_SYM Advertise symmetric pause 10 _H DBT4 Advertise 100BASE-T4 08 _H DBT_FDX Advertise 100BASE-TX full duplex 04 _H DBT_HDX Advertise 10BASE-TX half duplex 02 _H XBT_FDX Advertise 10BASE-T full duplex
SF	4:0	RW	Selector Field The selector field is a 5-bit wide field for encoding 32 possible messages. Selector field encodings are defined in IEEE 802.3-2008 Annex 28A. Combinations not specified are reserved for future use. Reserved combinations of the selector field are not to be transmitted. Refer to IEEE 802.3-2008 28.2.1.2.1. 00001 _B IEEE802DOT3 Select the IEEE 802.3 technology

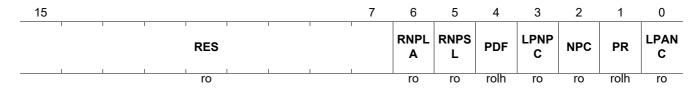
Auto-Negotiation Link Partner Ability (Register 0.5)

IEEE Standard Register=0.5

When the auto-negotiation is complete, this register contains the advertised ability of the link partner. The bit definitions are a direct representation of the received link code word.

STD_AN_LPA Auto-Negotiation Link Partner Ability (Register 0.5)									Reset	Value 11E0 _H				
15	14	13	12	11					5	4				0
NP	ACK	RF	XNP			1	TAF	ı				SF	1	
ro	ro	ro	rw	1	1		rw	I		1	-	ro		

Field	Bits	Type	Description
NP	15	RO	Next Page Next page request indication from the link partner. Refer to IEEE 802.3-2008 28.2.1.2.6. 0 _B INACTIVE No next page to follow. 1 _B ACTIVE Additional next pages to follow.
ACK	14	RO	Acknowledge Acknowledgment indication from the link partner's link code word. Refer to IEEE 802.3-2008 28.2.1.2.5. 0 _B INACTIVE The device did not successfully receive its link partner's link code word. 1 _B ACTIVE The device successfully received its link partner's link code word.
RF	13	RO	Remote Fault Remote fault indication from the link partner. Refer to IEEE 802.3-2008 28.2.1.2.4. 0 _B NONE Remote fault is not indicated by the link partner. 1 _B FAULT Remote fault is indicated by the link partner.
XNP	12	RW	Extended Next Page Indicates that the GPY supports the transmission of extended next pages (XNP). 0 _B UNABLE Link partner is XNP unable. 1 _B ABLE Link partner is XNP able.
TAF	11:5	RW	Technology Ability Field 40 _H PS_ASYM Advertise asymmetric pause 20 _H PS_SYM Advertise symmetric pause 10 _H DBT4 Advertise 100BASE-T4 08 _H DBT_FDX Advertise 100BASE-TX full duplex 04 _H DBT_HDX Advertise 100BASE-TX half duplex 02 _H XBT_FDX Advertise 10BASE-T full duplex 01 _H XBT_HDX Advertise 10BASE-T half duplex
SF	4:0	RO	Selector Field 00001 _B IEEE802DOT3 Select the IEEE 802.3 technology


Auto-Negotiation Expansion (Register 0.6)

This is the auto-negotiation expansion register indicating the status of the link partner's auto-negotiation. This register is valid only after the auto-negotiation is completed.

Refer to IEEE 802.3 28.2.4.1.5.

IEEE Standard Register=0.6

STD_AN_EXP
Auto-Negotiation Expansion (Register 0.6)
Reset Value
0064_H

Field	Bits	Type	Description
RES	15:7	RO	Reserved Write as zero, ignore on read.
RNPLA	6	RO	Receive Next Page Location Able According to 802.3 - 2015, indicate that the Rx NP location is indicated by field RNPSL. 0 _B UNABLE Received Next Page Storage Location is not specified by bit (6.5). 1 _B ABLE Received Next Page Storage Location is specified by bit (6.5).
RNPSL	5	RO	Receive Next Page Storage Location According to 802.3 - 2015, indicate that the Rx NP is in register 0.8 for the GPY. 0 _B FIVE Link partner next pages are stored in register 5. 1 _B EIGHT Link partner next pages are stored in register 8.
PDF	4	ROLH	Parallel Detection Fault 0 _B NONE A fault has not been detected via the parallel detection function. 1 _B FAULT A fault has been detected via the parallel detection function.
LPNPC	3	RO	Link Partner Next Page Capable 0 _B UNABLE Link partner is unable to exchange next pages. 1 _B CAPABLE Link partner is capable of exchanging next pages.
NPC	2	RO	Next Page Capable 0 _B UNABLE GPY is unable to exchange next pages. 1 _B CAPABLE GPY is capable of exchanging next pages.
PR	1	ROLH	Page Received 0 _B NONE A new page has not been received. 1 _B RECEIVED A new page has been received.
LPANC	0	RO	Link Partner Auto-Negotiation Capable 0 _B UNABLE Link partner is unable to auto-negotiate. 1 _B CAPABLE Link partner is auto-negotiation capable.

Auto-Negotiation Next Page Transmit Register (Register 0.7)

The auto-negotiation next page transmit register contains the next page link code word to be transmitted when next page ability is supported. Refer to IEEE 802.3 28.2.4.1.6.

IEEE Standard Register=0.7

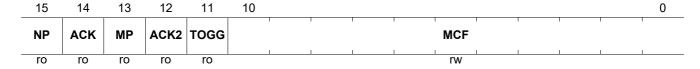
STD_AN_NPTX
Auto-Negotiation Next Page Transmit Register (Register 2001_H 0.7)

Reset Value

	15	14	13	12	11	10						0
_	NP	RES	MP	ACK2	TOGG			ı	MCF			
-	rw	ro	rw	rw	ro		 L		rw			
	1 44	10	1 44	1 77	10				1 77			

Field	Bits	Туре	Description
NP	15	RW	Next Page 0 _B INACTIVE Last page 1 _B ACTIVE Additional next page(s) to follow.
RES	14	RO	Reserved Write as zeros, ignore on read.
MP	13	RW	Message Page Indicates that the content of MCF is either an unformatted page or a formatted message. 0 _B UNFOR Unformatted page 1 _B MESSG Message page
ACK2	12	RW	Acknowledge 2. GPY Does Not Comply 0 _B INACTIVE Device is not able to comply with message. 1 _B ACTIVE Device complies with message.
TOGG	11	RO	Toggle This bit always takes the opposite value of the Toggle bit in the previously exchanged link code word. Refer to IEEE 802.3-2008 28.2.3.4. 0 _B ZERO Previous value of the transmitted link code word was ONE. 1 _B ONE Previous value of the transmitted link code word was ZERO.

Field	Bits	Туре	Description (cont'd)
MCF	10:0	RW	Message or Unformatted Code Field
			When the Message Page bit is set to 1 (0.7.13), this field is the Message
			Code Field of a message page used in next page exchange. The
			message codes are described in IEEE802.3 Appendix 28C.
			It is used to indicate the type of message in UCF1 and UCF2.
			0x0 = Reserved
			0x1 = Null message
			0x2 = One Unformatted Page (UP) with TAF follows
			0x3 = Two UPs with TAF follows
			0x4 = Remote fault details message
			0x5 = OUI message
			0x6 = PHY ID message
			0x7 = 100BASE-T2 message
			0x8 = 1000BASE-T message
			0x9 = MULTIGBASE-T message
			0xA = EEE technology capability follows in next UP
			0xB = OUI XNP


Auto-Negotiation Link Partner Received Next Page Register (Register 0.8)

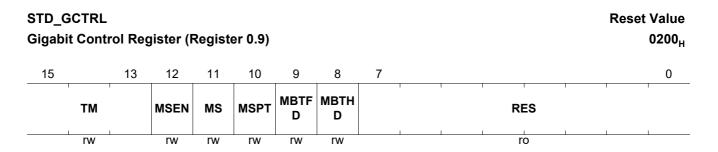
This register contains the next page link code word received from the link partner. Refer to IEEE 802.3-2008 28.2.4.1.7.

IEEE Standard Register=0.8

STD_AN_NPRX
Auto-Negotiation Link Partner Received Next Page
Register (Register 0.8)

Reset Value
0000_H

Field	Bits	Туре	Description
NP	15	RO	Next Page
			Refer to IEEE 802.3-2008 28.2.3.4.
			0 _B INACTIVE No next pages to follow.
			1 _B ACTIVE Additional next page(s) to follow.
ACK	14	RO	Acknowledge
			Refer to IEEE 802.3-2008 28.2.3.4.
			0 _B INACTIVE The device did not successfully receive its link partner's link code word.
			1 _B ACTIVE The device successfully received its link partner's link code word.



Field	Bits	Type	Description (cont'd)
MP	13	RO	Message Page Indicates that the content of MCF is either an unformatted page or a formatted message. Refer to IEEE 802.3-2008 28.2.3.4. 0 _B UNFOR Unformatted page 1 _B MESSG Message page
ACK2	12	RO	Acknowledge 2 Refer to IEEE 802.3-2008 28.2.3.4. 0 _B INACTIVE Device is not able to comply with the message. 1 _B ACTIVE Device complies with the message.
TOGG	11	RO	Toggle This bit always takes the opposite value of the Toggle bit in the previously exchanged link code word. Refer to IEEE 802.3-2008 28.2.3.4. 0 _B ZERO Previous value of the transmitted link code word was ONE. 1 _B ONE Previous value of the transmitted link code word was ZERO.
MCF	10:0	RW	Message or Unformatted Code Field This field is the Message Code Field of a message page used in next page exchange. The message codes are described in IEEE802.3 Appendix 28C. It is used to indicate the type of message in UCF1 and UCF2. 0x0 = Reserved 0x1 = Null message 0x2 = One Unformated Page (UP) with TAF follows 0x3 = Two UPs with TAF follows 0x4 = Remote fault details message 0x5 = OUI message 0x6 = PHY ID message 0x7 = 100BASE-T2 message 0x8 = 1000BASE-T message 0x9 = MULTIGBASE-T message 0xA = EEE technology capability follows in next UP 0xB = OUI XNP

Gigabit Control Register (Register 0.9)

This is the control register used to configure the Gigabit Ethernet behavior of the PHY. Refer to IEEE 802.3-2008 40.5.1.1.

IEEE Standard Register=0.9

Field	Bits	Туре	Description
TM	15:13	RW	Transmitter Test Mode This register field allows enabling of the standard transmitter test modes. Refer to IEEE 802.3-2008 Table 40-7. 000 _B NOP Normal operation 001 _B WAV Test mode 1 transmit waveform test 010 _B JITM Test mode 2 transmit jitter test in MASTER mode 011 _B JITS Test mode 3 transmit jitter test in SLAVE mode 100 _B DIST Test mode 4 transmitter distortion test
MSEN	12	RW	Master/Slave Manual Configuration Enable Refer to IEEE 802.3-2008 40.5.1.1. 0 _B DISABLED Disable master/slave manual configuration value. 1 _B ENABLED Enable master/slave manual configuration value.
MS	11	RW	Master/Slave Config Value Allows forcing of master or slave mode manually when AN_GCTRL.MSEN is set to logical 1. Refer to IEEE 802.3-2008 40.5.1.1. 0 _B SLAVE Configure PHY as SLAVE during master/slave negotiation. 1 _B MASTER Configure PHY as MASTER during master/slave negotiation.
MSPT	10	RW	Master/Slave Port Type Defines whether the PHY advertises itself as a multi- or single-port device, which in turn impacts the master/slave resolution function. Refer to IEEE 802.3-2008 40.5.1.1. 0 _B SPD Single-port device 1 _B MPD Multi-port device
MBTFD	9	RW	1000BASE-T Full Duplex Advertises the 1000BASE-T full duplex capability; always forced to 1 in converter mode. Refer to IEEE 802.3-2008 40.5.1.1. 0 _B DISABLED Advertise PHY as not 1000BASE-T full duplex capable. 1 _B ENABLED Advertise PHY as 1000BASE-T full duplex capable.
MBTHD	8	RW	1000BASE-T Half Duplex Always advertises the 1000BASE-T half duplex capability as disabled; the GPY does not support 1000BASE-T half duplex capability. 0 _B DISABLED Advertise PHY as not 1000BASE-T half duplex capable. 1 _B ENABLED Advertise PHY as 1000BASE-T half duplex capable.
RES	7:0	RO	Reserved Write as zero, ignore on read.

Gigabit Status Register (Register 0.10)

This is the status register used to reflect the Gigabit Ethernet status of the PHY. Refer to IEEE 802.3-2008 40.5.1.1.

IEEE Standard Register=0.10

STD_GSTAT

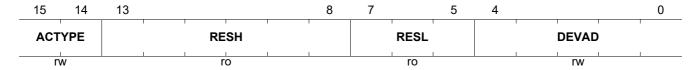
Gigabit Status Register (Register 0.10)

Reset Value

0000_H

15	14	13	12	11	10	9	8	7							0
MSFA ULT	MSRE S	LRXS TAT	RRXS TAT	MBTF D	MBTH D	RE	ΞS			ı	ı II	EC	ı	ı	1
							l .		1	1	1	1		1	L
rwsc	ro	ro	ro	ro	ro	re	0				r٧	VSC			

Field	Bits	Туре	Description
MSFAULT	15	RWSC	Master/Slave Manual Configuration Fault This bit is set when the number of failed MASTER-SLAVE resolutions reaches 7. It is cleared upon each read of GSTAT. This bit self clears on auto-negotiation enable or auto-negotiation complete. 0 _B OK Master/slave manual configuration resolved successfully. 1 _B NOK Master/slave manual configuration resolved with a fault.
MSRES	14	RO	Master/Slave Configuration Resolution 0 _B SLAVE Local PHY configuration resolved to SLAVE. 1 _B MASTER Local PHY configuration resolved to MASTER.
LRXSTAT	13	RO	Local Receiver Status Indicates the status of the local receiver. Refer to IEEE 802.3-2008 40.5.1.1 register 10 in Table 40-3. 0 _B NOK Local receiver not OK. 1 _B OK Local receiver OK.
RRXSTAT	12	RO	Remote Receiver Status Indicates the status of the remote receiver. Refer to IEEE 802.3-2008 40.5.1.1 register 10 in Table 40-3. 0 _B NOK Remote receiver not OK. 1 _B OK Remote receiver OK.
MBTFD	11	RO	Link Partner Capable of Operating 1000BASE-T Full Duplex Refer to IEEE 802.3-2008 40.5.1.1 register 10 in Table 40-3. 0 _B DISABLED Link partner is not capable of operating 1000BASE-T full duplex. 1 _B ENABLED Link partner is capable of operating 1000BASE-T full duplex.


Field	Bits	Туре	Description (cont'd)
MBTHD	10	RO	Link Partner Capable of Operating 1000BASE-T Half Duplex Refer to IEEE 802.3-2008 40.5.1.1 register 10 in Table 40-3. 0 _B DISABLED Link partner is not capable of operating 1000BASE-T half duplex. 1 _B ENABLED Link partner is capable of operating 1000BASE-T half duplex.
RES	9:8	RO	Reserved Write as zero, ignore on read.
IEC	7:0	RWSC	Idle Error Count Indicates the idle error count. This field contains a cumulative count of the errors detected when the receiver receives idles.

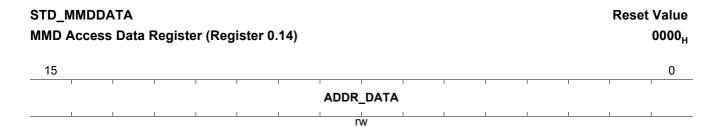
MMD Access Control Register (Register 0.13)

The MMD access control register is used in conjunction with the MMDDATA register to access the MMD register space. This uses address directing as specified in IEEE802.3 Clause 22 Extended.

IEEE Standard Register=0.13

STD_MMDCTRL Reset Value
MMD Access Control Register (Register 0.13) 0000_H

Field	Bits	Туре	Description				
ACTYPE	15:14	RW	Access Type Function When the MMDDATA register is accessed via an address access (ACTYPE=0), the access is directed to the address register within the MMD associated with the value in the DEVAD field. Otherwise, both the DEVAD field and the MMD's address register direct the MMDDATA register data accesses to the appropriate registers within that MMD. 00 _B ADDRESS Accesses to the MMDDATA register access the MMD individual address register. 01 _B DATA Accesses to the MMDDATA register access the register within the MMD selected. 10 _B DATA_PI Accesses to the MMDDATA register access the register within the MMD selected. 11 _B DATA_PIWR Accesses to the MMDDATA register access the register within the MMD selected.				
RESH	13:8	RO	Reserved Write as zero, ignored on read.				
RESL	7:5	RO	Reserved Write as zero, ignored on read.				



Field	Bits	Type	Description (cont'd)
DEVAD	4:0	RW	Device Address The DEVAD field directs any accesses of register MMDDATA to the
			appropriate MMD as described in IEEE 802.3-2008 Clause 45.2.

MMD Access Data Register (Register 0.14)

The MMD access data register is used in conjunction with the MMD access control (MMDCTRL) register to access the MMD register space. For more information on MMD access, refer to IEEE 802.3-2008 Clause 22.2.4.3.12, Clause 45.2 and Annex 22D.

IEEE Standard Register=0.14

Field	Bits	Туре	Description
ADDR_DATA	15:0	RW	Address or Data Register
			This register accesses either a specific MMD address register or the data content of the MMD register to which this address register points. The MMDCTRL register defines which function is currently valid.

Extended Status Register (Register 0.15)

This register contains extended status and capability information about the PHY. All the bits are read-only. A write access does not have any effect.

IEEE Standard Register=0.15

STD_X Extend		ıtus Re	egister	(Regist	er 0.15)							Reset Value 2000 _H
15	14	13	12	11		8	7					0
MBXF	MBXH	MBTF	MBTH	'	RESH			1	ı	RI	ESL	 '
ro	ro	ro	ro		ro						ro	

Field	Bits	Туре	Description
MBXF	15	RO	1000BASE-X Full Duplex Capability
			Specifies whether the PHY is capable of operating 1000BASE-X full duplex.
			0 _B DISABLED PHY does not support this mode.
			1 _B ENABLED PHY supports this mode.

Field	Bits	Type	Description (cont'd)
МВХН	14	RO	1000BASE-X Half Duplex Capability Specifies whether the PHY is capable of operating 1000BASE-X half duplex. 0 _B DISABLED PHY does not support this mode. 1 _B ENABLED PHY supports this mode.
MBTF	13	RO	1000BASE-T Full Duplex Capability Specifies whether the PHY is capable of operating 1000BASE-T full duplex. 0 _B DISABLED PHY does not support this mode. 1 _B ENABLED PHY supports this mode.
MBTH	12	RO	1000BASE-T Half Duplex Capability GPY do not support 1000BASE-T half duplex capability. 0 _B DISABLED PHY does not support this mode. 1 _B ENABLED PHY supports this mode.
RESH	11:8	RO	Reserved Ignore when read.
RESL	7:0	RO	Reserved Ignore when read.

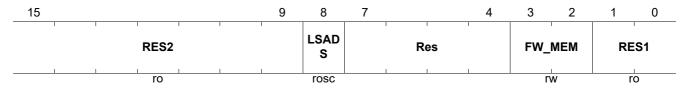
5.2 GPY-specific Management Registers

This section describes the GPY-specific management registers in device 0.

Table 25 Registers Overview

Register Short Name	Register Long Name	Reset Value
PHY_STAT1	Physical Layer Status 1 (Register 0.17)	0000 _H
PHY_CTL1	Physical Layer Control 1 (Register 0.19)	0001 _H
PHY_CTL2	Physical Layer Control 2 (Register 0.20)	0006 _H
PHY_ERRCNT	Error Counter (Register 0.21)	0000 _H
PHY_MIISTAT	Media-Independent Interface Status (Register 0.24)	0000 _H
PHY_IMASK	Interrupt Mask Register (Register 0.25)	0000 _H
PHY_ISTAT	Interrupt Status Register (Register 0.26)	0000 _H
PHY_LED	LED Control Register (Register 0.27)	FF00 _H
PHY_FWV	Firmware Version Register (Register 0.30)	0000 _H

5.2.1 GPY-specific Management Registers


This section describes all the PHY registers in detail.

Physical Layer Status 1 (Register 0.17)

This register reports PHY link information, for example link-up, polarity reversals, and port mapping. The content of this register is only valid when the link is up.

IEEE Standard Register=0.17

PHY_STAT1
Physical Layer Status 1 (Register 0.17)

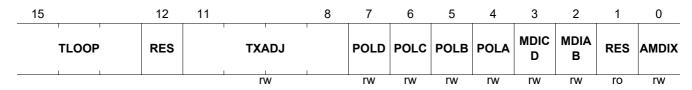
Field	Bits	Type	Description
RES2	15:9	RO	Reserved
			Write as zero, ignored on read.
LSADS	8	ROSC	Link Speed Auto-Downspeed Status
			Monitors the status of the auto-downspeed.
			0 _B NORMAL Did not perform any link speed auto-downspeed.
			1 _B DETECTED Detected an auto-downspeed.

Reset Value

0000_H

Reset Value

0001_H


Field	Bits	Туре	Description (cont'd)
FW_MEM	3:2	RW	Firmware Memory Location Indicates memory target used for firmware execution. 00 _B ROM Firmware is executed from ROM. 01 _B OTP Firmware is executed from OTP. 10 _B FLASH Firmware is executed from FLASH. 11 _B RAM Firmware is executed from SRAM.
RES1	1:0	RO	Reserved Write as zero, ignored on read.

Physical Layer Control 1 (Register 0.19)

This register controls the PHY functions.

IEEE Standard Register=0.19

PHY_CTL1 Physical Layer Control 1 (Register 0.19)

Field	Bits	Туре	Description						
TLOOP	15:13	RW	Test Loop Configures predefined test loops. 000 _B OFF Test loops are switched off - normal operation. 001 _B NETL Near-end test loop 010 _B FETL Far-end test loop. Others: Reserved.						
TXADJ	11:8	RW	Transmit Level Adjustment Transmit level adjustment is used to fine tune the transmit amplitude of the PHY. The amplitude adjustment is valid for all supported speed modes. The adjustment is performed in digits. One digit represents 3.125 percent of the nominal amplitude. The scaling factor is gain = 1 + signed(TXADJ)*2^-7.						
POLD	7	RW	Polarity Inversion Control on Port D 0 _B NORMAL Polarity normal 1 _B INVERTED Polarity inversion						
POLC	6	RW	Polarity Inversion Control on Port C 0 _B NORMAL Polarity normal 1 _B INVERTED Polarity inversion						
POLB	5	RW	Polarity Inversion Control on Port B 0 _B NORMAL Polarity normal 1 _B INVERTED Polarity inversion						

Field	Bits	Туре	Description (cont'd)
POLA	4	RW	Polarity Inversion Control on Port A 0 _B NORMAL Polarity normal 1 _B INVERTED Polarity inversion
MDICD	3	RW	Mapping of MDI Ports C and D Used when Auto-MDIX is OFF to force the MDIX cable crossover configuration. 0 _B MDI Normal MDI mode 1 _B MDIX Crossover MDI-X mode
MDIAB	2	RW	Mapping of MDI Ports A and B Used when Auto-MDIX is OFF to force the MDIX cable crossover configuration. 0 _B MDI Normal MDI mode 1 _B MDIX Crossover MDI-X mode
RES	1	RO	Reserved
AMDIX	0	RW	PHY Performs Auto-MDI/MDI-X or Uses Manual MDI/MDI-X 0 _B MANUAL PHY uses manual MDI/MDI-X. 1 _B AUTO PHY performs Auto-MDI/MDI-X.

Physical Layer Control 2 (Register 0.20)

This register controls the PHY functions.

IEEE Standard Register=0.20

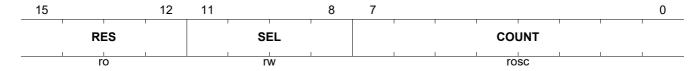
PHY_CTL2 Physical Layer Control 2 (Register 0.20)

Reset Value 0006_H

1	5				10	9	8	7		5	4	3	2	1	0	
		R	es	1		SDET P	STICK Y		RES1		RES2	LP	PSCL	ANPD	LPI	=
			'			rw	rw		ro		rw	rw	rw	rw	rw	-

Field	Bits	Туре	Description						
SDETP	9	RW	Signal Detection Polarity for the 1000BASE-X PHY Allows specification of the signal detection polarity of the SIGDET input. Although this bit is reset to 0, its actual value depends on the pinstrapping configuration when no EEPROM is detected. 0 _B LOWACTIVE SIGDET input is low active. 1 _B HIGHACTIVE SIGDET input is high active.						
STICKY	8	RW	Sticky-Bit Handling Setting this bit to 1 ensures that all the vendor specific registers (of type RW) in the PHY (device 0), VSPEC1 (device 30), and VSPEC2 (device 31) are not changed during a MDIO reset or software reset of the GPY. This allows the STA to keep the configurations chosen before reset. OB OFF Sticky-bit handling is disabled. ON Sticky-bit handling is enabled.						

Field	Bits	Type	Description (cont'd)
RES1	7:5	RO	Reserved Write as zero, ignored on read.
RES2	4	RW	Reserved
LP	3	RW	Low Power Mode Low Power Mode (LP) allows the GPY to save energy by disabling most of the digital logic to reduce power consumption to its lowest level. The entry to LP is triggered when the PHY does not sense any energy on the cable and no link pulses (NLP, FLP, Beacons) are received. After spending VSPEC1_NBT_DS_CTRL.NRG_RST_CNT without energy in the ABILITY_DETECT state defined by IEEE802.3 Clause 28, and after the timer defined VSPEC1_LOW_POWER_ENTRY_TIME.LPE_TIM expired, the PHY enters LP. OB OFF LP is disabled. The GPY does not enter LP. 1B ON LP is enabled. The GPY enters LP when no energy is sensed.
PSCL	2	RW	Power Consumption Scaling Depending on Link Quality Allows enabling/disabling of the power consumption scaling depending on the link quality. 0 _B OFF PSCL is disabled. 1 _B ON PSCL is enabled.
ANPD	1	RW	Auto-Negotiation Power Down Allows enabling/disabling of the power down modes during auto- negotiation looking for a link partner. 0 _B OFF ANPD is disabled. 1 _B ON ANPD is enabled.
LPI	0	RW	Assert LPI via MDIO Controls asserts/de-asserts of the LPI by the MDIO instead of following the (X)GMII LPI. Used to force the EEE on the TPI (ignoring the LPI indication from MAC). 0 _B DE-ASSERT LPI is de-asserted on TPI. 1 _B ASSERT LPI is asserted on TPI.



Error Counter (Register 0.21)

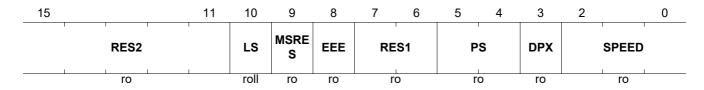
This register controls the error counter. It allows the number of errors detected in the PHY to be counted for monitoring purposes.

IEEE Standard Register=0.21

PHY_ERRCNT Reset Value Error Counter (Register 0.21) 0000_H

Field	Bits	Туре	Description
RES	15:12	RO	Reserved
			Write as zero, ignored on read.
SEL	11:8	RW	Select Error Event
			Configures which error type the error counter counts:
			0000 _B RXERR Receive errors are counted.
			0001 _B RXACT Receive frames are counted.
			0010 _B ESDERR ESD errors are counted.
			0011 _B SSDERR SSD errors are counted.
			0100 _B TXERR Transmit errors are counted.
			0101 _B TXACT Transmit frames events are counted.
			0110 _B COL Collision events are counted.
			1000 _B NLD Number of Link Down events are counted.
			1001 _B NDS Number of auto-downspeed events are counted.
			1010 _B CRC CRC counter
			1011 _B TTL Time to Link
COUNT	7:0	ROSC	Counter Value
			This counter value is updated each time the selected error event is
			detected. The counter value is reset every time a read operation on this
			register is performed or the error event is changed. The counter saturates at value 0xFF.

81



Media-Independent Interface Status (Register 0.24)

This register contains status information on the Ethernet link, concatenated in a single register to allow concise status read by the STA in a single register.

IEEE Standard Register=0.24

PHY_MIISTAT Reset Value
Media-Independent Interface Status (Register 0.24) 0000_H

Field	Bits	Туре	Description						
RES2	15:11	RO	Reserved Write as zero, ignored on read.						
LS	10	ROLL	 Link Status of GPY Ethernet PHY Operation Indicates the link status of the PHY. INACTIVE The link is down. No communication with link partner possible. ACTIVE The link is up. Data communication with link partner is possible. 						
MSRES	9	RO	Idaster/Slave Configuration Indicates the Master/Slave Configuration B SLAVE Local PHY configuration is SLAVE after ANEG. B MASTER Local PHY configuration is MASTER after ANEG.						
EEE	8	RO	Energy-Efficient Ethernet Mode 0 _B OFF EEE is disabled after auto-negotiation resolution. 1 _B ON EEE is enabled after auto-negotiation resolution.						
RES1	7:6	RO	Reserved						
PS	5:4	RO	Pause Status for Flow Control 00 _B NONE No PAUSE 01 _B TX Transmit PAUSE 10 _B RX Receive PAUSE 11 _B TXRX Both transmit and receive PAUSE						
DPX	3	RO	GPY Ethernet PHY Duplex Mode 0 _B HDX Half duplex 1 _B FDX Full duplex						
SPEED	2:0	RO	GPY Ethernet PHY Speed 000 _B TEN 10 Mbps 001 _B FAST 100 Mbps 010 _B GIGA 1000 Mbps 011 _B ANEG Auto-negotiation mode 100 _B BZ2G5 2.5 Gbps						

Interrupt Mask Register (Register 0.25)

This register defines the mask for the Interrupt Status Register (ISTAT), which contains the event source for the MDINT interrupt sent from the GPY to an external chip.

The information about the interrupt source is indicated in the ISTAT register.

IEEE Standard Register=0.25

PHY_IMASK
Interrupt Mask Register (Register 0.25)

Reset Value
0000_H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WOL	MSRE	NPRX	NPTX	ANE	ANC	Res	LOR	LP	TEMP	ADSC	MDIPC	MDIXC	DXMC	LSPC	LSTC
rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Type	Description						
WOL	15	RW	Wake-on-LAN Event Mask When active and masked in IMASK, the MDINT is activated upon detection of a valid wake-on-LAN event. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.						
MSRE	14	RW	Master/Slave Resolution Error Mask When active, MDINT is activated upon detection of a master/slave resolution error during a 1000BASE-T auto-negotiation. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.						
NPRX	13	RW	Next Page Received Mask When active, MDINT is activated upon reception of a next page in STD.AN_NPRX. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.						
NPTX	12	RW	Next Page Transmitted Mask When active, MDINT is activated upon transmission of the currently stored next page in STD.AN_NPTX. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.						
ANE	11	RW	Auto-Negotiation Error Mask When active, MDINT is activated upon detection of an auto-negotiation error. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.						
ANC	10	RW	Auto-Negotiation Complete Mask When active, MDINT is activated upon completion of the auto-negotiation process. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.						

Field	Bits	Type	Description (cont'd)
LOR	8	RW	SyncE Loss Of Reference When active, MDINT is activated upon loss of SyncE reference clock. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.
LP	7	RW	 LP Entry Indication Mask 0_B INACTIVE Interrupt is masked out. The STA does not need to be informed of the event. 1_B ACTIVE Interrupt is activated. The STA receives MDINT when the PHY is about to enter LP.
TEMP	6	RW	 TEMP 0_B INACTIVE Interrupt is masked out. The STA does not need to be informed of the event. 1_B ACTIVE Interrupt is activated. The interrupt is triggered when the temperature goes beyond the normal operating range.
ADSC	5	RW	Link Speed Auto-Downspeed Detect Mask When active, MDINT is activated upon detection of a link speed auto- downspeed event. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.
MDIPC	4	RW	MDI Polarity Change Detect Mask When active, MDINT is activated upon detection of an MDI polarity change event. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.
MDIXC	3	RW	MDIX Change Detect Mask When active, MDINT is activated upon detection of an MDI/MDIX cross- over change event. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.
DXMC	2	RW	Duplex Mode Change Mask When active, MDINT is activated upon detection of full or half duplex change. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.
LSPC	1	RW	Link Speed Change Mask When active, MDINT is activated upon detection of link speed change. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.
LSTC	0	RW	Link State Change Mask When active, MDINT is activated upon detection of link status change. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.

Interrupt Status Register (Register 0.26)

This register defines the event source for the MDINT interrupt sent from the GPY to an external chip. PHY_ISTAT is a cleared on read by the STA.

IEEE Standard Register=0.26

PHY_ISTAT Reset Value Interrupt Status Register (Register 0.26) 0000_H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WOL	MSRE	NPRX	NPTX	ANE	ANC	Res	LOR	LP	TEMP	ADSC	MDIPC	MDIXC	DXMC	LSPC	LSTC
rosc	rosc	rosc	rosc	rosc	rosc		rosc	rosc	rosc	rosc	rosc	rosc	rosc	rosc	rosc

Field	Bits	Type	Description						
WOL	15	ROSC	Wake-on-LAN Interrupt Status When bit is set, the MDINT is activated upon detection of a valid wake-on-LAN event. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE WoL event is the source of the interrupt.						
MSRE	14	ROSC	Master/Slave Resolution Error Interrupt Status When bit is set, the MDINT is activated upon detection of a master/slave resolution error during a 1000BASE-T auto-negotiation. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE MSRE event is the source of the interrupt.						
NPRX	13	ROSC	Next Page Received Interrupt Status When bit is set, the MDINT is activated upon reception of a next page in STD.AN_NPRX. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE NPRX event is the source of the interrupt.						
NPTX	12	ROSC	Next Page Transmitted Interrupt Status When bit is set, the MDINT is activated upon transmission of the currently stored next page in STD.AN_NPTX. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE NPTX event is the source of the interrupt.						
ANE	11	ROSC	Auto-Negotiation Error Interrupt Status When bit is set, the MDINT is activated upon detection of an auto- negotiation error. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE ANEG error event is the source of the interrupt.						
ANC	10	ROSC	Auto-Negotiation Complete Interrupt Status When bit is set, the MDINT is activated upon completion of the autonegotiation process. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE ANEG complete event is the source of the interrupt.						

Field	Bits	Type	Description (cont'd)						
LOR	8	ROSC	SyncE Loss Of Reference When bit is set, MDINT is activated upon loss of SyncE reference clock. O _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE LOR Change event is the source of the interrupt.						
LP	7	ROSC	LP Entry Indication 0 _B INACTIVE No indication of LP entry. 1 _B ACTIVE Indication of LP entry.						
TEMP	6	ROSC	TEMP Indicates that thermal mitigation action must be taken when the temperature goes beyond the normal operating range. It is recommended that the SoC initiates a link down and changes the speed capability to cool the device back to the normal temperature range. When the temperature reaches the maximum absolute rating, the GPY resets for safety purposes. Thermal mitigation must ensure that the maximum absolute temperature limits are never reached. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE TEMP Change event is the source of the interrupt.						
ADSC	5	ROSC	Link Speed Auto-Downspeed Detect Interrupt Status When bit is set, the MDINT is activated upon detection of a link speed auto-downspeed event. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE ADSC Change event is the source of the interrupt.						
MDIPC	4	ROSC	MDI Polarity Change Detect Interrupt Status When bit is set, the MDINT is activated upon detection of an MDI polarity change event. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE MDIPC Change event is the source of the interrupt.						
MDIXC	3	ROSC	MDIX Change Detect Interrupt Status When bit is set, the MDINT is activated upon detection of an MDI/MDIX cross-over change event. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE MDIX Change event is the source of the interrupt.						
DXMC	2	ROSC	 1_B ACTIVE MDIX Change event is the source of the interrupt. Duplex Mode Change Interrupt Status When bit is set, the MDINT is activated upon detection of a full or half duplex change. 0_B INACTIVE This event is not the interrupt source. 1_B ACTIVE Duplex Mode Change event is the source of the interrupt 						
LSPC	1	ROSC	Link Speed Change Interrupt Status When bit is set, the MDINT is activated upon detection of link speed change. O _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE Link Speed Change event is the source of the interrupt.						
LSTC	0	ROSC	Link State Change Interrupt Status When bit is set, the MDINT is activated upon detection of link status change. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE Link State Change event is the source of the interrupt.						

LED Control Register (Register 0.27)

This register contains the control bits for direct access to the LEDs by setting the on/off LEDxA bits (where x is from 0 to 4).

To directly control the LED, the integrated LED functions must be disabled by the LEDxEN bit in this register.

The integrated LED functions are specified in the more sophisticated LED control registers in the MMD device VSPEC1.

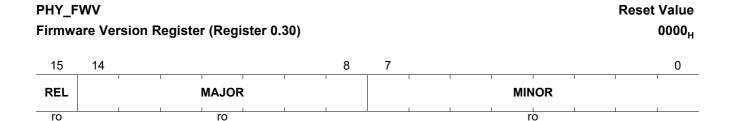
IEEE Standard Register=0.27

PHY_LED LED Control Register (Register 0.27)

Reset Value FF00_H

15	5		12	11	10	9	8	7			4	3	2	1	0
	IN	V	1	LED3E N	LED2E N	LED1E N	LED0E N		RE	S1		LED3 DA	LED2 DA	LED1 DA	LED0 DA
	rv	٧		rw	rw	rw	rw		rc)		rw	rw	rw	rw

Field	Bits	Type	Description					
INV	15:12	RW	Invert LED Output This provides a per LED control to invert the output of the LEDs. Set to 1 to support LEDs that are driven by VDDs. Set to 0 to support LEDs that are driven by the output pins of this product.					
LED3EN	11	RW	Enable Integrated Function of LED3 Write a 0 to this bit to disable the pre-configured integrated function for this LED. The LED remains off unless directly accessed via LED3DA. 0 _B DISABLE Disables the integrated LED function. 1 _B ENABLE Enables the integrated LED function.					
LED2EN	10	RW	Enable Integrated Function of LED2 Write a 0 to this bit to disable the pre-configured integrated function for this LED. The LED remains off unless directly accessed via LED2DA. 0 _B DISABLE Disables the integrated LED function. 1 _B ENABLE Enables the integrated LED function.					
LED1EN	9	RW	Enable Integrated Function of LED1 Write a 0 to this bit to disable the pre-configured integrated function for this LED. The LED remains off unless directly accessed via LED1DA. O _B DISABLE Disables the integrated LED function. 1 _B ENABLE Enables the integrated LED function.					
LED0EN	8	RW	Enable Integrated Function of LED0 Write a 0 to this bit to disable the pre-configured integrated function for this LED. The LED remains off unless directly accessed via LED0DA. 0 _B DISABLE Disables the integrated LED function. 1 _B ENABLE Enables the integrated LED function.					
RES1	7:4	RO	Reserved Write as zero, ignored on read.					



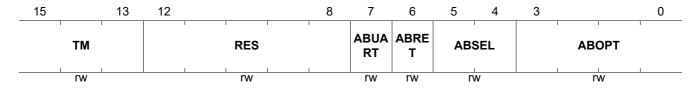
Field	Bits	Туре	Description (cont'd)
LED3DA	3	RW	Direct Access to LED3 Write a 1 to this bit to illuminate the LED. LED3EN must be set to zero. 0 _B OFF Switch off the LED. 1 _B ON Switch on the LED.
LED2DA	2	RW	Direct Access to LED2 Write a 1 to this bit to illuminate the LED. LED2EN must be set to zero. 0 _B OFF Switch off the LED. 1 _B ON Switch on the LED.
LED1DA	1	RW	Direct Access to LED1 Write a 1 to this bit to illuminate the LED. LED1EN must be set to zero. 0 _B OFF Switch off the LED. 1 _B ON Switch on the LED.
LED0DA	0	RW	Direct Access to LED0 Write a 1 to this bit to illuminate the LED. LED0EN must be set to zero. 0 _B OFF Switch off the LED. 1 _B ON Switch on the LED.

Firmware Version Register (Register 0.30)

This register contains the version of the PHY firmware. The firmware initializes the version number at boot time with its current software version. This register is read-only by the external STA.

IEEE Standard Register=0.30

Field	Bits	Type	Description
REL	15	RO	Release Indication This parameter indicates either a test or a release version. 0 _B TEST Indicates a test version. 1 _B RELEASE Indicates a released version.
MAJOR	14:8	RO	Major Version Number Specifies the main version release number of the firmware.
MINOR	7:0	RO	Minor Version Number Specifies the sub-version release number of the firmware.


Internal Test Modes CDIAG and ABIST (Register 0.31)

This is the control register used to configure the Gigabit Ethernet behavior of the PHY. Refer to IEEE 802.3-2008 40.5.1.1.

IEEE Standard Register=0.31

PHY_TEST
Internal Test Modes CDIAG and ABIST (Register 0.31)
Reset Value
0000_H

Field	Bits	Туре	Description
TM	15:13	RW	Proprietary Test Modes ABIST and CDIAG Enter the test mode. Any value different from 6 or 7 has no effect. 110 _B CDIAG GPY-specific cable diagnostic 111 _B ABIST GPY-specific analog built-in self-test
RES	12:8	RW	Reserved
ABUART	7	RW	ABIST UART output for debug When this bit is set to 1, it enables a detail report on the debug UART output. This is used to debug the feature and not in production mode, because in that case the two LED signals are not used to indicate completion or pass fail. An alternative to the UART output is to read the STB via MDIO commands. O _B NORMAL ABIST normal output 1 _B UART ABIST output to UART
ABRET	6	RW	ABIST ReTrig When this bis is set to 1, it enables a restart of the selected ABIST test. This is used to debug the feature and not in production mode. 0 _B NORMAL Normal Mode 1 _B RETRIG Restart the current ABIST Test.
ABSEL	5:4	RW	ABIST Sub-mode Selection 00 _B ANALOG ABIST Analog Tests 01 _B DC ABIST DC Tests 01 _B RES Reserved 11 _B RES Reserved

Field	Bits	Туре	Description (cont'd)					
ABOPT	3:0	RW	ABIST Option for DC test					
			In ABIST DC test					
			0000, ABIST DC test for 10BASE-T mode LD, maximum positive differential level					
			0001, ABIST DC test for 1000BASE-T mode LD, maximum positive differential level					
			0010, ABIST DC test for 10BASE-T mode LD, 0 differential level					
			0011, ABIST DC test for 1000BASE-T mode LD, 0 differential level					
			0100, ABIST DC test for 10BASE-T mode LD, maximum negative differential level					
			0101, ABIST DC test for 1000BASE-T mode LD, maximum negative differential level					
			0110, ABIST DC test for 2.5GBASE-T mode LD, maximum positive differential level					
			0111, ABIST DC test for 2.5GBASE-T mode LD, 0 differential level 1000, ABIST DC test for 2.5GBASE-T mode LD, maximum negative differential level					

MMD Registers Detailed Description

6 MMD Registers Detailed Description

Table 26 Register Access Type

Mode	Symbol
Status Register (Status or Ability Register)	RO
Read-Write Register (MDIO Register)	RW
Read-Write Self-Clearing Register (bit is cleared after read from MDIO)	RWSC
Read-Only Self-Clearing Register (bit is cleared after read from MDIO)	ROSC

6.1 Standard PMAPMD Registers for MMD=0x01

Table 27 Registers Overview

rable 27 Registers Overview	1	
Register Short Name	Register Long Name	Reset Value
PMA_CTRL1	PMA/PMD Control 1 (Register 1.0)	2058 _H
PMA_STAT1	PMA/PMD Status 1 (Register 1.1)	0000 _H
PMA_DEVID1	PHY Identifier 1 (Register 1.2)	67C9 _H
PMA_DEVID2	PHY Identifier 2 (Register 1.3)	DC00 _H ¹⁾
PMA_SPEED_ABILITY	PMA/PMD Speed Ability (Register 1.4)	2070 _H
PMA_DIP1	Devices in Package 1 (Register 1.5)	008B _H
PMA_DIP2	Devices in Package 2 (Register 1.6)	C000 _H
PMA_CTL2	PMA/PMD Control 2 (Register 1.7)	0030 _H
PMA_STAT2	PMA/PMD Status 2 (Register 1.8)	8200 _H
PMA_EXT_ABILITY	PMA/PMD Extended Ability (Register 1.11)	41A0 _H
PMA_PACKID1	AN Package Identifier (Register 1.14)	67C9 _H
PMA_PACKID2	AN Package Identifier (Register 1.15)	DC00 _H
PMA_MGBT_EXTAB	PMAPMD Extended Ability (Register 1.21)	0001 _H
PMA_MGBT_STAT	MULTIGBASE-T Status (Register 1.129)	0000 _H
PMA_MGBT_POLARITY	MULTIGBASE-T Pair Swap and Polarity (Register 1.130)	0003 _H
PMA_MGBT_TX_PBO	MULTIGBASE-T Tx Power Backoff and PHY Short Reach Setting (Register 1.131)	0000 _H
PMA_MGBT_TEST_MODE	MULTIGBASE-T Test Mode (Register 1.132)	0000 _H
PMA_MGBT_SNR_OPMARGIN_A	MULTIGBASE-T SNR Margin Channel A (Register 1.133)	0000 _H
PMA_MGBT_SNR_OPMARGIN_B	MULTIGBASE-T SNR Margin Channel B (Register 1.134)	0000 _H
PMA_MGBT_SNR_OPMARGIN_C	MULTIGBASE-T SNR Margin Channel C (Register 1.135)	0000 _H
PMA_MGBT_SNR_OPMARGIN_D	MULTIGBASE-T SNR Margin Channel D (Register 1.136)	0000 _H
PMA_MGBT_MINMARGIN_A	MULTIGBASE-T SNR Minimum Margin Channel A (Register 1.137)	0000 _H
PMA_MGBT_MINMARGIN_B	MULTIGBASE-T SNR Minimum Margin Channel B (Register 1.138)	0000 _H
PMA_MGBT_MINMARGIN_C	MULTIGBASE-T SNR Minimum Margin Chan C (Register 1.139)	0000 _H
PMA_MGBT_MINMARGIN_D	MULTIGBASE-T SNR Minimum Margin Chan D (Register 1.140)	0000 _H
PMA_MGBT_POWER_A	MULTIGBASE-T Rx Power Channel A (Register 1.141)	0000 _H
PMA_MGBT_POWER_B	MULTIGBASE-T Rx Power Channel B (Register 1.142)	0000 _H
PMA_MGBT_POWER_C	MULTIGBASE-T Rx Power Chan C (Register 1.143)	0000 _H
PMA_MGBT_POWER_D	MULTIGBASE-T Rx Power Chan D (Register 1.144)	0000 _H
PMA_MGBT_SKEW_DELAY_0	MULTIGBASE-T Skew Delay 0 (Register 1.145)	0000 _H
PMA_MGBT_SKEW_DELAY_1	MULTIGBASE-T Skew Delay 1 (Register 1.146)	0000 _H
		1

Table 27 Registers Overview (cont'd)

Register Short Name	Register Long Name	Reset Value
PMA_MGBT_FAST_RETRAIN_ST	MULTIGBASE-T Skew Delay 2 (Register 1.147)	0000 _H
A_CTRL		
PMA_TIMESYNC_CAP	PMA TimeSync Capability Indication (Register 1.1800)	0000 _H

¹⁾ For the device specific reset value, see the Product Naming table in the **Package Outline** chapter.

6.1.1 Standard PMAPMD Registers for MMD=0x01

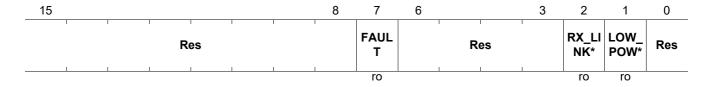
This section describes all the PMAPMD registers in detail.

PMA/PMD Control 1 (Register 1.0)

IEEE Standard Register=1.0

_	CTRL1 PMD Co	ontrol 1	l (Regi	ster 1.0))									Reset	Value 2058 _H
15	14	13	12	11	10	,		7	6	5	,		2	1	0
RST	Res	SSL	Res	LOW_ POW*		R	es	1	SSM		SPEE	D_SEL		NS1	NS2
rw	1	rw	1	rw		1		1	rw		r	N		ro	ro

Field	Bits	Туре	Description					
RST	15	RW	Reset 1 = PMA/PMD reset 0 = Normal operation					
SSL	13	RW	Speed Selection (LSB) Used in conjunction with field SPEED_SEL_MSB. MSB LSB: 1 1 = Bits 5:2 are used to select speed (SPEED_SEL field) 1 0 = 1000 Mbps 0 1 = 100 Mbps 0 0 = 10 Mbps					
LOW_POWER	11	RW	Low Power 1 = Enter Low power mode 0 = Normal operation					
SSM	6	RW	Speed Selection (MSB) Used in conjunction with field SPEED_SEL_LSB. MSB LSB: 1 1 = bits 5:2 select speed (SPEED_SEL field) 1 0 = 1000 Mbps 0 1 = 100 Mbps 0 0 = 10 Mbps					

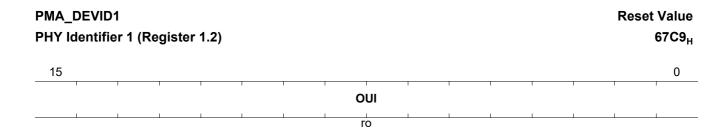

Field	Bits	Туре	Description (cont'd)
SPEED_SEL	5:2	RW	Speed Selection
			Bit usage (from bit 5 to bit 2):
			1 x x x = Reserved
			0 1 1 1 = Not supported
			0 1 1 0 = 2.5 Gbps
			0 1 0 0 = Not supported, defaults to 2.5 Gbps
			0 0 1 1 = Not supported, defaults to 2.5 Gbps
			0 0 1 0 = Not supported, defaults to 2.5 Gbps
			0 0 0 1 = Not supported, defaults to 2.5 Gbps
			0 0 0 0 = Not supported, defaults to 2.5 Gbps
NS1	1	RO	Not Supported
			PMA remote loopback mode is not supported by the GPY.
NS2	0	RO	Not Supported
			PMA local loopback mode is not supported by the GPY.

PMA/PMD Status 1 (Register 1.1)

IEEE Standard Register=1.1

PMA_STAT1 PMA/PMD Status 1 (Register 1.1)

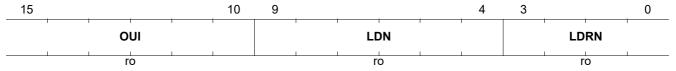
Reset Value 0000_H



Field	Bits	Туре	Description
FAULT	7	RO	Fault 1 = Fault condition detected 0 = Fault condition not detected
RX_LINK_STA TUS	2	RO	Receive Link Status 1 = PMA/PMD receive link up 0 = PMA/PMD receive link down
LOW_POWER _ABILITY	1	RO	Low Power Ability 1 = PMA/PMD supports low power mode. 0 = PMA/PMD does not support low power mode.

PHY Identifier 1 (Register 1.2)

IEEE Standard Register=1.2 Bits 31 - 16 of Device ID


Field	Bits	Туре	Description
OUI	15:0	RO	Organizationally Unique Identifier Organizationally Unique Identifier Bits 3:18

PHY Identifier 2 (Register 1.3)

IEEE Standard Register=1.3

Bits 15 - 0 of Device ID

PMA_DEVID2	Reset Value
PHY Identifier 2 (Register 1.3)	DC00 _H

Field	Bits	Type	Description
OUI	15:10	RO	Organizationally Unique Identifier Bits 19:24
LDN	9:4	RO	Device Number Specifies the device number ¹⁾ to distinguish between several different products.
LDRN	3:0	RO	Device Revision Number Specifies the device revision number ¹⁾ to distinguish between several versions of this device.

¹⁾ For the device specific reset value, see the Product Naming table in the Package Outline chapter.

PMA/PMD Speed Ability (Register 1.4)

IEEE Standard Register=1.4

PMA_SPEED_ABILITY PMA/PMD Speed Ability (Register 1.4)

Reset Value 2070_H

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Res	CAP_5 G	CAP_2 G5	RES2	R	es	CAP_1 00G	CAP_4 0G	CAP_1 0_*	CAP_1 0M	CAP_1 00M	CAP_1 00*	Res	R10PA SS*	CAP_2 BA*	CAP_1 0G*
_		ro	ro	ro			ro	ro	ro	ro	ro	ro		ro	ro	ro

Field	Bits	Type	Description
CAP_5G	14	RO	Not Supported 1 = PMA/PMD is capable of operating at 5 Gbps. 0 = PMA/PMD is not capable of operating as 5 Gbps.
CAP_2G5	13	RO	2.5 G capable1 = PMA/PMD is capable of operating at 2.5 Gbps.0 = PMA/PMD is not capable of operating as 2.5 Gbps.
RES2	12	RO	Reserved Value always 0
CAP_100G	9	RO	Not Supported 1 = PMA/PMD is capable of operating at 100 Gbps. 0 = PMA/PMD is not capable of operating as 100 Gbps.
CAP_40G	8	RO	Not Supported 1 = PMA/PMD is capable of operating at 40 Gbps. 0 = PMA/PMD is not capable of operating as 40 Gbps.
CAP_10_1G	7	RO	Not Supported 1 = PMA/PMD is capable of operating at 10 Gbps downstream and 1 Gbps upstream. 0 = PMA/PMD is not capable of operating at 10 Gbps downstream and 1 Gbps upstream.
CAP_10M	6	RO	10M capable 1 = PMA/PMD is capable of operating at 10 Mbps. 0 = PMA/PMD is not capable of operating as 10 Mbps.
CAP_100M	5	RO	100M capable 1 = PMA/PMD is capable of operating at 100 Mbps. 0 = PMA/PMD is not capable of operating at 100 Mbps.
CAP_1000M	4	RO	1000M capable 1 = PMA/PMD is capable of operating at 1000 Mbps. 0 = PMA/PMD is not capable of operating at 1000 Mbps.
R10PASS_TS _CAPABLE	2	RO	Not Supported 1 = PMA/PMD is capable of operating as 10PASS-TS. 0 = PMA/PMD is not capable of operating as 10PASS-TS.

Field	Bits	Туре	Description (cont'd)
CAP_2BASE_ TL	1	RO	Not Supported 1 = PMA/PMD is capable of operating as 2BASE-TL. 0 = PMA/PMD is not capable of operating as 2BASE-TL.
CAP_10G_CA P	0	RO	Not Supported 1 = PMA/PMD is capable of operating at 10 Gbps. 0 = PMA/PMD is not capable of operating at 10 Gbps.

Devices in Package 1 (Register 1.5)

IEEE Standard Register=1.5

PMA_DIP1 Reset Value
Devices in Package 1 (Register 1.5) 008B_H

15		12	11	10	9	8	7	6	5	4	3	2	1	0
	RES	1	SEP_P MA*	SEP_P MA*	SEP_P MA*	SEP_P MA*	ANEG	тс	DTE_X S	PHY_ XS	PCS	wis	PMD_ PMA	CLAU SE_*
	ro		ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro

Field	Bits	Туре	Description
RES	15:12	RO	Reserved Ignore on Read
SEP_PMA_4	11	RO	Separate PMA (4) 1 = Separate PMA (4) present in package. 0 = Separate PMA (4) not present in package.
SEP_PMA_3	10	RO	Separate PMA (3) 1 = SeparatedPMA (3) present in package. 0 = Separate PMA (3) not present in package.
SEP_PMA_2	9	RO	Separate PMA (2) 1 = Separate PMA (2) present in package. 0 = Separate PMA (2) not present in package.
SEP_PMA_1	8	RO	Separate PMA (1) 1 = Separate PMA (1) present in package. 0 = Separate PMA (1) not present in package.
ANEG	7	RO	Auto-Negotiation Present This bit is always set to 1 in the GPY. 1 = Auto-negotiation present in package. 0 = Auto-negotiation not present in package.
TC	6	RO	TC Present 1 = TC present in package. 0 = TC not present in package.
DTE_XS	5	RO	DTE XS Present 1 = DTE XS present in package. 0 = DTE XS not present in package.

97

Field	Bits	Туре	Description (cont'd)
PHY_XS	4	RO	PHY XS Present 1 = PHY XS present in package. 0 = PHY XS not present in package.
PCS	3	RO	PCS Present This bit is always set to 1 in the GPY. 1 = PCS present in package. 0 = PCS not present in package.
WIS	2	RO	WIS Present 1 = WIS present in package. 0 = WIS not present in package.
PMD_PMA	1	RO	PMD/PMA Present This bit is always set to 1 in the GPY. 1 = PMA/PMD present in package. 0 = PMA/PMD not present in package.
CLAUSE_22	0	RO	Clause 22 Registers Present This bit is always set to 1 in the GPY. 1 = Clause 22 registers present in package. 0 = Clause 22 registers not present in package.

Devices in Package 2 (Register 1.6)

IEEE Standard Register=1.6

_	PMA_DIP2 Devices in Package 2 (Register 1.6)														Value C000 _H
15	14	13	12												0
VSPE C2	VSPE C1	CLA_2 2_*							RES					1	
ro	ro	ro		1	1	1	1		ro			1	1		

Field	Bits	Туре	Description
VSPEC2	15	RO	Vendor-specific Device 2 This bit is always set to 1 in the GPY. 1 = Vendor-specific device 2 present in package. 0 = Vendor-specific device 2 not present in package.
VSPEC1	14	RO	Vendor-specific Device 1 This bit is always set to 1 in the GPY. 1 = Vendor-specific device 1 present in package. 0 = Vendor-specific device 1 not present in package.
CLA_22_EXT	13	RO	Clause 22 Extension 1 = Clause 22 extension present in package. 0 = Clause 22 extension not present in package.
RES	12:0	RO	Reserved Ignore on read.

PMA/PMD Control 2 (Register 1.7)

IEEE Standard Register=1.7

PMA_CTL2 PMA/PMD Control 2 (Register 1.7)

Reset Value 0030_H

Field	Bits	Туре	Description
PMA_PMD_TY	5:0	RW	PMA/PMD Type Selection
PE_SEL			543210
			1 1 0 0 0 1 = Unsupported, defaults to 2.5GBASE-T PMA
			1 1 0 0 0 0 = 2.5GBASE-T PMA
			1 0 1 1 x x = Unsupported, defaults to 2.5GBASE-T PMA
			1 0 1 0 1 1 = Unsupported, defaults to 2.5GBASE-T PMA
			1 0 1 0 1 0 = Unsupported, defaults to 2.5GBASE-T PMA
			1 0 1 0 0 1 = Unsupported, defaults to 2.5GBASE-T PMA
			1 0 1 0 0 0 = Unsupported, defaults to 2.5GBASE-T PMA
			1 0 0 1 1 x = Unsupported, defaults to 2.5GBASE-T PMA
			1 0 0 1 0 1 = Unsupported, defaults to 2.5GBASE-T PMA
			1 0 0 1 0 0 = Unsupported, defaults to 2.5GBASE-T PMA
			1 0 0 0 1 1 = Unsupported, defaults to 2.5GBASE-T PMA
			1 0 0 0 1 0 = Unsupported, defaults to 2.5GBASE-T PMA
			1 0 0 0 0 1 = Unsupported, defaults to 2.5GBASE-T PMA
			1 0 0 0 0 0 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 1 1 x x = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 1 0 1 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 1 0 1 0 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 1 0 0 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 1 0 0 0 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 0 1 1 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 0 1 1 0 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 0 1 0 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 0 1 0 0 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 0 0 1 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 0 0 1 0 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 0 0 0 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 1 0 0 0 0 = Unsupported, defaults to 2.5GBASE-T PMA

Field	Bits	Туре	Description (cont'd)
PMA_PMD_TY	5:0	RW	PMA/PMD Type Selection (cont'd)
PE_SEL			0 0 1 1 1 1 = 10BASE-T PMA/PMD
			0 0 1 1 1 0 = 100BASE-TX PMA/PMD
			0 0 1 1 0 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 1 1 0 0 = 1000BASE-T PMA/PMD
			0 0 1 0 1 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 1 0 1 0 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 1 0 0 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 1 0 0 0 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 0 1 1 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 0 1 1 0 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 0 1 0 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 0 1 0 0 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 0 0 1 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 0 0 1 0 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 0 0 0 1 = Unsupported, defaults to 2.5GBASE-T PMA
			0 0 0 0 0 0 = Unsupported, defaults to 2.5GBASE-T PMA
			Others = Reserved

PMA/PMD Status 2 (Register 1.8)

IEEE Standard Register=1.8

PMA_STAT2 Reset Value
PMA/PMD Status 2 (Register 1.8) 8200_H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	E_PRE NT	TX_FA UL*	RX_F AUL*	TX_FA ULT	RX_F AULT	EXT_A BI*	PMD_ TX_*	RMGB T_S*	RMGB T_L*	RMGB T_E*	RMGB T_L*	RMGB T_S*	RMGB T_L*	RMGB T_E*	PMA_ LOC*
r	O	ro													

Field	Bits	Туре	Description
DEVICE_PRE SENT	15:14	RO	Device Present 1 0 = Device responding at this address. 1 1 = No device responding at this address. 0 1 = No device responding at this address. 0 0 = No device responding at this address.
TX_FAULT_A BILITY	13	RO	Transmit Fault Ability 1 = PMA/PMD has the ability to detect a fault condition on the transmit path. 0 = PMA/PMD does not have the ability to detect a fault condition on the transmit path.
RX_FAULT_A BILITY	12	RO	Receive Fault Ability 1 = PMA/PMD has the ability to detect a fault condition on the receive path. 0 = PMA/PMD does not have the ability to detect a fault condition on the receive path.

Field	Bits	Туре	Description (cont'd)
TX_FAULT	11	RO	Transmit Fault 1 = Fault condition on transmit path. 0 = No fault condition on transmit path.
RX_FAULT	10	RO	Receive Fault 1 = Fault condition on receive path. 0 = No fault condition on receive path.
EXT_ABILITIE S	9	RO	Extended Abilities 1 = PMA/PMD has extended abilities listed in register 1.11. 0 = PMA/PMD does not have extended abilities.
PMD_TX_DIS ABLE	8	RO	PMD Transmit Disable 1 = PMD has the ability to disable the transmit path. 0 = PMD does not have the ability to disable the transmit path.
RMGBT_SR_A BILITY	7	RO	MULTIGBASE-SR Ability 1 = PMA/PMD is able to perform MULTIGBASE-SR. 0 = PMA/PMD is not able to perform MULTIGBASE-SR.
RMGBT_LR_A BILITY	6	RO	MULTIGBASE-LR Ability 1 = PMA/PMD is able to perform MULTIGBASE-LR. 0 = PMA/PMD is not able to perform MULTIGBASE-LR.
RMGBT_ER_A BILITY	5	RO	MULTIGBASE-ER Ability 1 = PMA/PMD is able to perform MULTIGBASE-ER. 0 = PMA/PMD is not able to perform MULTIGBASE-ER.
RMGBT_LX4_ ABILITY	4	RO	MULTIGBASE-LX4 Ability 1 = PMA/PMD is able to perform MULTIGBASE-LX4. 0 = PMA/PMD is not able to perform MULTIGBASE-LX4.
RMGBT_SW_ ABILITY	3	RO	MULTIGBASE-SW Ability 1 = PMA/PMD is able to perform MULTIGBASE-SW 0 = PMA/PMD is not able to perform MULTIGBASE-SW
RMGBT_LW_ ABILITY	2	RO	MULTIGBASE-LW Ability 1 = PMA/PMD is able to perform MULTIGBASE-LW. 0 = PMA/PMD is not able to perform MULTIGBASE-LW.
RMGBT_EW_ ABILITY	1	RO	MULTIGBASE-EW Ability 1 = PMA/PMD is able to perform MULTIGBASE-EW. 0 = PMA/PMD is not able to perform MULTIGBASE-EW.
PMA_LOCAL_ LOOPBACK	0	RO	PMA Local Loopback 1 = PMA has the ability to perform a local loopback function. 0 = PMA does not have the ability to perform a local loopback function.

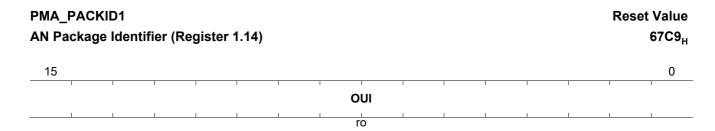
PMA/PMD Extended Ability (Register 1.11)

IEEE Standard Register=1.11

PMA_EXT_ABILITY PMA/PMD Extended Ability (Register 1.11)

Reset Value 41A0_H

15	14	13		11	10	9	8	7	6	5	4	3	2	1	0
Res	R2G5_ EX*		Res		R40G_ 10*	P2MP _AB*		R100B AS*	R1000 BA*	R1000 BA*	RMGB T_K*	RMGB T_K*	RMGB T_A*	RMGB T_L*	RMGB T_C*
	ro		I.		ro	ro	ro	ro	ro	ro	ro	ro	ro	ror	ror


Field	Bits	Туре	Description
R2G5_EXT_A BILITIES	14	RO	2.5G/5G Extended Abilities 1 = PMA/PMD has 2.5G/5G extended abilities listed in register 1.21. 0 = PMA/PMD does not have 2.5G/5G extended abilities.
R40G_100G_ EXT_ABILITIE S	10	RO	40G/100G Extended Abilities 1 = PMA/PMD has 40G/100G extended abilities listed in register 1.13. 0 = PMA/PMD does not have 40G/100G extended abilities.
P2MP_ABILIT Y	9	RO	P2MP Ability 1 = PMA/PMD has P2MP abilities listed in register 1.12. 0 = PMA/PMD does not have P2MP abilities.
R10BASE_T_ ABILITY	8	RO	10BASE-T Ability 1 = PMA/PMD is able to perform 10BASE-T. 0 = PMA/PMD is not able to perform 10BASE-T.
R100BASE_T X_ABILITY	7	RO	100BASE-TX Ability 1 = PMA/PMD is able to perform 100BASE-TX. 0 = PMA/PMD is not able to perform 100BASE-TX.
R1000BASE_ KX_ABILITY	6	RO	1000BASE-KX Ability 1 = PMA/PMD is able to perform 1000BASE-KX. 0 = PMA/PMD is not able to perform 1000BASE-KX.
R1000BASE_T _ABILITY	5	RO	1000BASE-T Ability 1 = PMA/PMD is able to perform 1000BASE-T. 0 = PMA/PMD is not able to perform 1000BASE-T.
RMGBT_KR_A BILITY	4	RO	MULTIGBASE-KR Ability 1 = PMA/PMD is able to perform MULTIGBASE-KR. 0 = PMA/PMD is not able to perform MULTIGBASE-KR.
RMGBT_KX4_ ABILITY	3	RO	MULTIGBASE-KX4 Ability 1 = PMA/PMD is able to perform MULTIGBASE-KX4. 0 = PMA/PMD is not able to perform MULTIGBASE-KX4.
RMGBT_ABILI TY	2	RO	10GBASE-T Ability 1 = PMA/PMD is able to perform MULTIGBASE-T. 0 = PMA/PMD is not able to perform MULTIGBASE-T.
RMGBT_LRM _ABILITY	1	ROR	MULTIGBASE-LRM Ability 1 = PMA/PMD is able to perform MULTIGBASE-LRM. 0 = PMA/PMD is not able to perform MULTIGBASE-LRM.

Field	Bits	Туре	Description (cont'd)
RMGBT_CX4_	0	ROR	MULTIGBASE-CX4 Ability
ABILITY			1 = PMA/PMD is able to perform MULTIGBASE-CX4.
			0 = PMA/PMD is not able to perform MULTIGBASE-CX4.

AN Package Identifier (Register 1.14)

IEEE Standard Register=1.14

Field	Bits	Туре	Description
OUI	15:0	RO	Organizationally Unique Identifier Organizationally Unique Identifier Bits 3:18

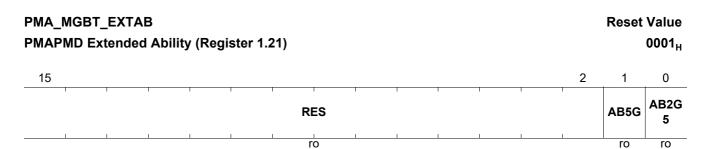
AN Package Identifier (Register 1.15)

IEEE Standard Register=1.15

PMA_PACKID2 AN Package Identifier (Register 1.15)

Field	Bits	Туре	Description
OUI	15:10	RO	Organizationally Unique Identifier Bits 19:24
LDN	9:4	RO	Device Number Specifies the device number ¹⁾ to distinguish between several different products.
LDRN	3:0	RO	Device Revision Number Specifies the device revision number ¹⁾ to distinguish between several versions of this device.

¹⁾ For the device specific reset value, see the Product Naming table in the Package Outline chapter.

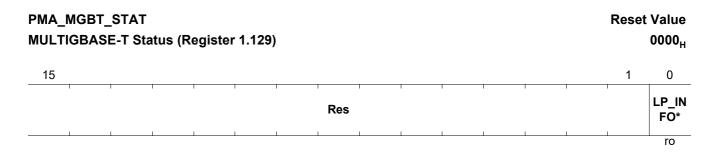

Reset Value

DC00_H

PMAPMD Extended Ability (Register 1.21)

Read only, write from STA has no effect IEEE Standard Register=1.21

Field	Bits	Туре	Description
RES	15:2	RO	Reserved Value always 0
AB5G	1	RO	PMA Ability to Perform 5GBASE-T 0 _B UNABLE PMA is not able to perform 5GBASE-T. 1 _B ABLE PMA Able to perform 5GBASE-T.
AB2G5	0	RO	PMA Ability to Perform 2.5GBASE-T 0 _B UNABLE PMA is not able to perform 2.5GBASE-T. 1 _B ABLE PMA Able to perform 2.5GBASE-T.

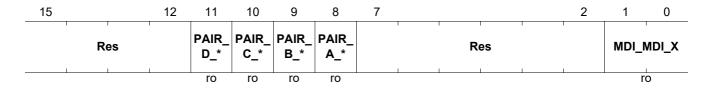

MULTIGBASE-T Status (Register 1.129)

IEEE Standard Register=1.129

Indicates startup in 126.4.2.5 for 2.5G has been completed.

When read as a 1, indicates that the startup protocol defined in 126.4.2.5 (for 2.5G/5GBASE-T) has been completed (link_status=OK, pcs_status = OK), and that the contents of bits 1.130.11:0 (Polarity), 1.131.15:10 (PBO), 1.145.14:8 (Skew), 1.146.14:8, and 1.146.6:0 (Skew), which are established during the startup protocol, are valid.

When read as a zero, bit 1.129.0 indicates that the startup process has not been completed, and that the contents of these bits that are established during the startup protocol are invalid. A PMA must return a value of zero in bit 1.129.1 when the PMA link status=FAIL.

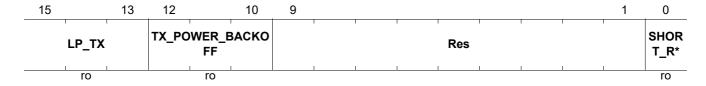

Field	Bits	Type	Description
LP_INFORMA	0	RO	LP Information Valid
TION_VALID			When set this bit indicates the startup protocol (126.4.2.5) has completed.
			1 = Link partner information is valid
			0 = Link partner information is invalid

MULTIGBASE-T Pair Swap and Polarity (Register 1.130)

IEEE Standard Register=1.130

PMA_MGBT_POLARITY MULTIGBASE-T Pair Swap and Polarity (Register 1.130)

Reset Value 0003_H


Field	Bits	Type	Description			
PAIR_D_POL ARITY	11	RO	Pair D Polarity 1 = Polarity of pair D is reversed. 0 = Polarity of pair D is not reversed.			
PAIR_C_POL ARITY	10	RO	Pair C Polarity I = Polarity of pair C is reversed. D = Polarity of pair C is not reversed.			
PAIR_B_POLA RITY	9	RO	Pair B Polarity 1 = Polarity of pair B is reversed. 0 = Polarity of pair B is not reversed.			
PAIR_A_POLA RITY	8	RO	Pair A Polarity 1 = Polarity of pair A is reversed. 0 = Polarity of pair A is not reversed.			
MDI_MDI_X	1:0	RO	MDI/MDI-X Indicates the status of pair swaps at the MDI / MD-X. 00 _B ABCDCROSS Pair AB and Pair CD crossover 01 _B CDCROSS Pair CD crossover only 10 _B ABCROSS Pair AB crossover only 11 _B NORMAL No crossover			

MULTIGBASE-T TX Power Backoff and PHY Short Reach Setting (Register 1.131)

IEEE Standard Register=1.131

PMA_MGBT_TX_PBO MULTIGBASE-T TX Power Backoff and PHY Short Reach Setting (Register 1.131) Reset Value 0000_H

Field	Bits	Туре	Description
LP_TX	15:13	RO	Link Partner TX The power backoff setting of the link partner. Bit number assignment: 15 14 13 1 1 1 = 14 dB 1 1 0 = 12 dB 1 0 1 = 10 dB 1 0 0 = 8 dB 0 1 1 = 6 dB 0 1 0 = 4 dB 0 0 1 = 2 dB 0 0 0 = 0 dB
TX_POWER_ BACKOFF	12:10	RO	TX Power Backoff The power backoff of PHY211 PMA. Bit number assignment: 12 11 10 1 1 = 14 dB 1 0 = 12 dB 1 0 1 = 10 dB 1 0 0 = 8 dB
SHORT_REA CH_MODE	0	RO	0 1 1 = 6 dB 0 1 0 = 4 dB 0 0 1 = 2 dB 0 0 0 = 0 dB Short Reach Mode 1 = PHY is operating in short reach mode (not supported). 0 = PHY is not operating in short reach mode.

MULTIGBASE-T Test Mode (Register 1.132)

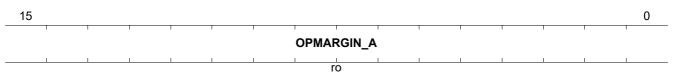
IEEE Standard Register=1.132

PMA_MGBT_TEST_MODE MULTIGBASE-T Test Mode (Register 1.132)

Reset Value 0000_H

15	13	12	10	9								0
					T		I	I	I	T	I	,
TEST_MOD	E_CTL	TXTE	R_TEST				R	es				
		1			1	 		1		1	1	
rw			rw									

Field	Bits	Туре	Description
TEST_MODE_	15:13	RW	Test Mode Control
CTL			1 1 1 = Test mode 7
			1 1 0 = Test mode 6
			1 0 1 = Test mode 5
			1 0 0 = Test mode 4
			0 1 1 = Test mode 3
			0 1 0 = Test mode 2
			0 0 1 = Test mode 1
			0 0 0 = Normal operation
TXTER_TEST	12:10	RW	Transmitter Test
			Frequencies for tones used in Test Mode 4.
			1 1 1 = Reserved
			1 1 0 = Dual tone 5
			1 0 1 = Dual tone 4
			1 0 0 = Dual tone 3
			0 1 1 = Reserved
			0 1 0 = Dual tone 2
			0 0 1 = Dual tone 1
			0 0 0 = Reserved

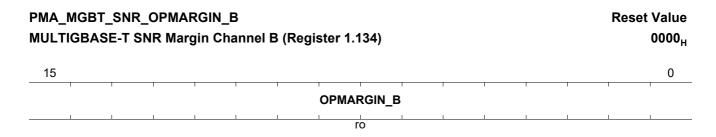

MULTIGBASE-T SNR Margin Channel A (Register 1.133)

Register 1.133 contains the current SNR operating margin measured at the slicer input for channel A for the MULTIGBASE-T PMA.

IEEE Standard Register=1.133

PMA_MGBT_SNR_OPMARGIN_A MULTIGBASE-T SNR Margin Channel A (Register 1.133)

Reset Value 0000_H

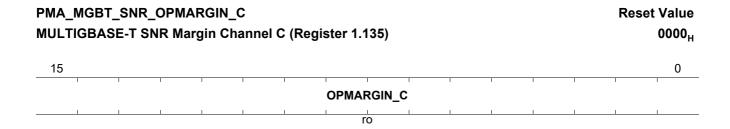


Field	Bits	Туре	Description			
OPMARGIN_A	15:0	RO	DPMARGIN_A			
			SNR operating margin measured at the slicer input for channel A.			

MULTIGBASE-T SNR Margin Channel B (Register 1.134)

Register 1.134 contains the current SNR operating margin measured at the slicer input for channel B for the MULTIGBASE-T PMA.

IEEE Standard Register=1.134

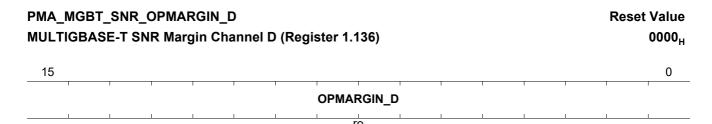


Field	Bits	Туре	Description			
OPMARGIN_B	15:0	RO	OPMARGIN_B			
			SNR operating margin measured at the slicer input for channel B.			

MULTIGBASE-T SNR Margin Channel C (Register 1.135)

Register 1.135 contains the current SNR operating margin measured at the slicer input for channel C for the MULTIGBASE-T PMA.

IEEE Standard Register=1.135


Field	Bits	Type	Description		
OPMARGIN_C	15:0	RO	OPMARGIN_C SNR operating margin measured at the slicer input for channel C.		

MULTIGBASE-T SNR Margin Channel D (Register 1.136)

Register 1.136 contains the current SNR operating margin measured at the slicer input for channel D for the MULTIGBASE-T PMA.

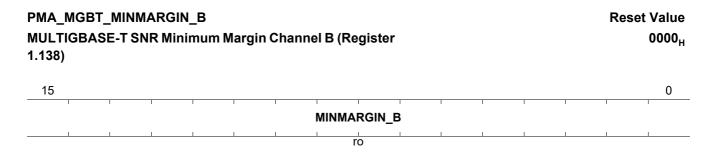
IEEE Standard Register=1.136

Field	Bits	Туре	Description
OPMARGIN_D	15:0	RO	OPMARGIN_D
			SNR operating margin measured at the slicer input for channel D.

MULTIGBASE-T SNR Minimum Margin Channel A (Register 1.137)

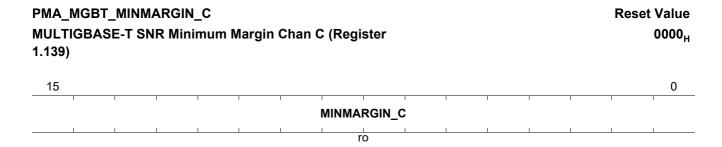
The minimum margin channel A register contains a latched copy of the lowest value observed in the SNR operating margin channel A register (1.133) since the last read.

PMA_MG	PMA_MGBT_MINMARGIN_A								Reset Value			
MULTIGE 1.137)	BASE-T	SNR M	inimun	n Marg	in Char	nnel A (R	egister					0000 _H
15												0
						MINM	ARGIN_A					
							ro					


Field	Bits	Type	Description
MINMARGIN_	15:0	RO	MINMARGIN_A
Α			Lowest value observed in the SNR operating margin channel A register (1.133) since the last read.

MULTIGBASE-T SNR Minimum Margin Channel B (Register 1.138)

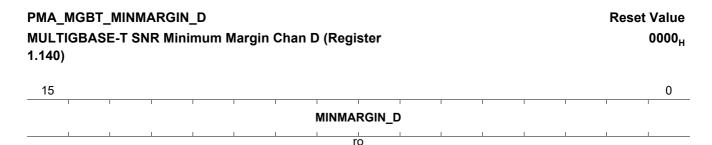
The minimum margin channel A register contains a latched copy of the lowest value observed in the SNR operating margin channel B register (1.134) since the last read.


IEEE Standard Register=1.138

Field	Bits	Type	Description
MINMARGIN_ B	15:0	RO	MINMARGIN_B Lowest value observed in the SNR operating margin channel B register (1.134) since the last read.

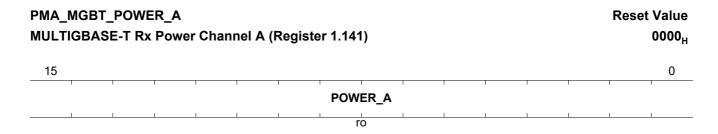
MULTIGBASE-T SNR Minimum Margin Chan C (Register 1.139)

The minimum margin channel C register contains a latched copy of the lowest value observed in the SNR operating margin channel C register (1.135) since the last read.


Field	Bits	Type	Description
MINMARGIN_	15:0	RO	MINMARGIN_C
C			Lowest value observed in the SNR operating margin channel C register (1.135) since the last read.

MULTIGBASE-T SNR Minimum Margin Chan D (Register 1.140)

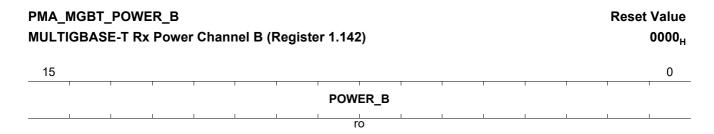
The Minimum margin channel D register contains a latched copy of the lowest value observed in the SNR operating margin channel D register (1.136) since the last read.


IEEE Standard Register=1.140

Field	Bits	Туре	Description
MINMARGIN_ D	15:0	RO	MINMARGIN_D Lowest value observed in the SNR operating margin channel D register (1.136) since the last read

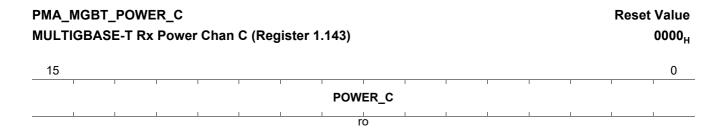
MULTIGBASE-T Rx Power Channel A (Register 1.141)

The Rx signal power channel A register is read only and contains the receive signal power measured at the MDI during training as described in 55.4.3.1.


Field	Bits	Type	Description
POWER_A	15:0	RO	POWER_A
			Receive signal power measured at the MDI during training.

MULTIGBASE-T Rx Power Channel B (Register 1.142)

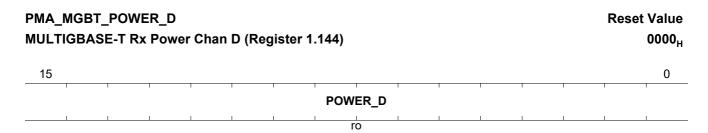
The Rx signal power channel B register is read only and contains the receive signal power measured at the MDI during training as described in 55.4.3.1.


IEEE Standard Register=1.142

Field	Bits	Туре	Description
POWER_B	15:0	RO	POWER_B
			Receive signal power measured at the MDI during training.

MULTIGBASE-T Rx Power Chan C (Register 1.143)

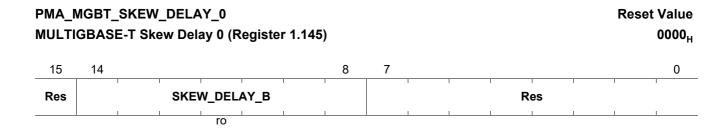
The Rx signal power channel C register is read only and contains the receive signal power measured at the MDI during training as described in 55.4.3.1.


Field	Bits	Type	Description
POWER_C	15:0	RO	POWER_C
			Receive signal power measured at the MDI during training.

MULTIGBASE-T Rx Power Chan D (Register 1.144)

The Rx signal power channel D register is read only and contains the receive signal power measured at the MDI during training as described in 55.4.3.1.

IEEE Standard Register=1.144



Field	Bits	Туре	Description
POWER_D	15:0	RO	POWER_D
			Receive signal power measured at the MDI during training.

MULTIGBASE-T Skew Delay 0 (Register 1.145)

IEEE Standard Register=1.145

The skew delay reports the current skew delay on each of the pairs with respect to physical pair A. It is reported with 1.25 ns resolution to an accuracy of 2.5 ns. The number is in two's complement notation with positive values representing delay and negative values representing advance with respect to physical pair A. When the delay exceeds the maximum amount represented by the range -80 ns to +78.75 ns, the field displays the maximum value.

Field	Bits	Type	Description
SKEW_DELAY	14:8	RO	Skew Delay B
_B			Skew delay for pair B.

MULTIGBASE-T Skew Delay 1 (Register 1.146)

IEEE Standard Register=1.146

The skew delay reports the current skew delay on each of the pairs with respect to physical pair A. It is reported with 1.25 ns resolution to an accuracy of 2.5 ns. The number is in two's complement notation with positive values representing delay and negative values representing advance with respect to physical pair A. When the delay exceeds the maximum amount represented by the range -80 ns to +78.75 ns, the field displays the maximum value.

PMA_MGBT_SKEW_DELAY_1 MULTIGBASE-T Skew Delay 1 (Register 1.146)

Reset Value 0000_H

Field	Bits	Туре	Description
SKEW_DELAY _D	14:8	RO	Skew Delay D Skew delay for pair D.
SKEW_DELAY _C	6:0	RO	Skew Delay C Skew delay for pair C.

MULTIGBASE-T Skew Delay 2 (Register 1.147)

IEEE Standard Register=1.147

PMA_MGBT_FAST_RETRAIN_STA_CTRL MULTIGBASE-T Skew Delay 2 (Register 1.147)

Reset Value 0000 L

Field	Bits	Туре	Description
LP_FAST_RE TRAIN_COUN T	15:11	RO	LP Fast Retrain Count Counts the number of fast retrains requested by the link partner.
LD_FAST_RE TRAIN_COUN T	10:6	RO	LD Fast Retrain Count Counts the number of fast retrains requested by the local device.
FAST_RETRAI N_ABILITY	4	RO	Fast Retrain Ability 1 = Fast retrain capability is supported. 0 = Fast retrain capability is not supported.

Field	Bits	Туре	Description (cont'd)
FAST_RETRAI N_NEGOTIAT ED	3	RO	Fast Retrain Negotiated 1 = Fast retrain capability was negotiated. 0 = Fast retrain capability was not negotiated.
FAST_RETRAI N_SIG_TYPE	2:1	RW	Fast Retrain Signal Type 11 = Reserved 10 = PHY signals Link Interruption during fast retrain. 01 = PHY signals Local Fault during fast retrain. 00 = PHY signals IDLE during fast retrain.
FAST_RETRAI N_ENABLE	0	RW	Fast Retrain Enable 1 = Fast retrain capability is enabled. 0 = Fast retrain capability is disabled.

PMA TimeSync Capability Indication (Register 1.1800)

PMA TimeSync Capability indication register.

GPY does not support providing data path delay information.

PMA_1 PMA T		_		Indica	tion (R	egiste	r 1.180	0)							Value 0000 _H
15													2	1	0
	1	1	1	1	1	R	es	1	1	1	I	1		TXDE L	RXDE L
			1					1						ro	ro

Field	Bits	Туре	Description			
TXDEL	1	RO	Transmit Data Path Delay Information Not supported by the GPY. 0 _B NONE PHYs do not have this capability. 1 _B CAPABLE Minimum and maximum Tx data path delay available.			
RXDEL	0	RO	Receive Data Path Delay Information Not supported by the GPY. 0 _B NONE PHYs do not have this capability. 1 _B CAPABLE Minimum and maximum Rx data path delay available.			

6.2 Standard PCS Registers for MMD=0x03

This section describes the PCS registers for MMD device 0x03.

Table 28 Registers Overview

Register Short Name	Register Long Name	Reset Value
PCS_CTRL1	PCS Control 1 (Register 3.0)	205C _H
PCS_STAT1	PCS Status 1 (Register 3.1)	0000 _H
PCS_DEVID1	PHY Identifier 1 (Register 3.2)	67C9 _H
PCS_DEVID2	PHY Identifier 2 (Register 3.3)	DC00 _H ¹⁾
PCS_SPEED_ABILITY	PCS Speed Ability (Register 3.4)	0040 _H
PCS_DIP1	PCS Devices in Package 1 (Register 3.5)	008B _H
PCS_DIP2	PCS Devices in Package 2 (Register 3.6)	C000 _H
PCS_CTRL2	PCS Control 2 (Register 3.7)	000A _H
PCS_STAT2	PCS Status 2 (Register 3.8)	9000 _H
PCS_PACKID1	PCS Package Identifier 1 (Register 3.14)	67C9 _H
PCS_PACKID2	PCS Package Identifier 2 (Register 3.15)	DC00 _H
PCS_EEE_CAP	PCS EEE Capability (Register 3.20)	0006 _H
PCS_EEE_CAP2	EEE Control and Capability 2 (Register 3.21)	0001 _H
PCS_EEE_WAKERR	PCS EEE Status Register 1 (Register 3.22)	0000 _H
PCS_2G5_STAT1	BASE-R and 10GBASE-T PCS Status 1 (Register 3.32)	0000 _H
PCS_2G5_STAT2	MULTIGBASE-T PCS Status 2 (Register 3.33)	0000 _H
PCS_TIMESYNC_CAP	PCS TimeSync Capability Register (Register 3.1800)	0000 _H

¹⁾ For the device specific reset value, see the Product Naming table in the Package Outline chapter.

6.2.1 Standard PCS Registers for MMD=0x03

This section describes all the PCS registers in detail.

PCS Control 1 (Register 3.0)

IEEE Standard Register=3.0

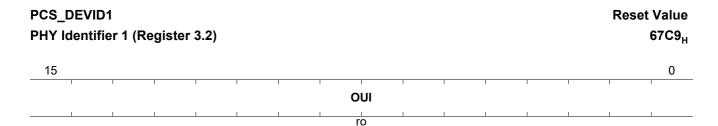
PCS_CTRL1 **Reset Value** PCS Control 1 (Register 3.0) 205C_H 15 14 13 12 11 10 9 7 6 5 0 LOOP LOW **RXCK** SSL **RST** Res Res SSM SPEED_SEL Res **BACK** POW* ST rw rw rw rw rw rw

Field	Bits	Туре	Description
RST	15	RW	Reset 1 = PCS reset - Self Clearing 0 = Normal operation
LOOPBACK	14	RW	Loopback 1 = Enable loopback mode. 0 = Disable loopback mode.
SSL	13	RW	Forced Speed Selection (LSB) This bit is used in conjunction with SPEED_SEL_LSB MSB LSB 1 1 = Bits 5:2 select speed 1 0 = 1000 Mbps 0 1 = 100 Mbps 0 0 = 10 Mbps
LOW_POWER	11	RW	Low Power 1 = Low-power mode 0 = Normal operation
RXCKST	10	RW	Clock Stop Enable The MAC sets this bit to active to allow the GPY to stop the clocking during the LPI_MODE. 1 = The GPY stops the (X)GMII clock during LPI. 0 = Clock not stoppable.
SSM	6	RW	Forced Speed Selection (MSB) This bit is used in conjunction with SPEED_SEL_MSB. MSB LSB 1 1 = bits 5:2 select speed 1 0 = 1000 Mbps 0 1 = 100 Mbps 0 0 = 10 Mbps
SPEED_SEL	5:2	RW	Forced Speed Selection Values 1 1 x x = Reserved 0 1 1 1 = 2.5 Gbps 0 1 0 1 = Reserved 0 1 0 0 = Unsupported, defaults to 2.5 Gbps 0 0 1 1 = Unsupported, defaults to 2.5 Gbps 0 0 1 0 = Unsupported, defaults to 2.5 Gbps 0 0 1 0 = Unsupported, defaults to 2.5 Gbps 0 0 0 0 = Unsupported, defaults to 2.5 Gbps

PCS Status 1 (Register 3.1)

IEEE Standard Register=3.1

PCS_STAT1 Reset Value
PCS Status 1 (Register 3.1) 0000_H


15		12	11	10	9	8	7	6	5		3	2	1	0
	Res		TX_LP I_*	RX_LP I_*	TX_LP I_*	RX_LP I_*	FAUL T	TXCK ST		Res		PCS_ RX_*	LOW_ POW*	Res
<u>.</u>			ro	ro	ro	ro	ro	ro				ro	ro	

Field	Bits	Туре	Description			
TX_LPI_RXD	11	RO	Tx LPI Received 1 = Tx PCS received LPI. 0 = LPI not received.			
RX_LPI_RXD	10	RO	Rx LPI Received 1 = Rx PCS received LPI. 0 = LPI not received.			
TX_LPI_INDIC ATION	9	RO	Tx LPI Indication 1 = Tx PCS is currently receiving LPI. 0 = PCS is not currently receiving LPI.			
RX_LPI_INDIC ATION	8	RO	Rx LPI Indication 1 = Rx PCS is currently receiving LPI. 0 = PCS is not currently receiving LPI.			
FAULT	7	RO	Fault 1 = Fault condition detected. 0 = No fault condition detected.			
TXCKST	6	RO	Clock Stop Capable 1 = The MAC is allowed to stop the clock during LPI. 0 = Clock not stoppable.			
PCS_RX_LINK _STATUS	2	RO	PCS Receive Link Status 1 = PCS receive link up. 0 = PCS receive link down.			
LOW_POWER _ABILITY	1	RO	Low Power Ability 1 = PCS supports low power mode. 0 = PCS does not support low power mode.			

PHY Identifier 1 (Register 3.2)

IEEE Standard Register=3.2

Field	Bits	Туре	Description
OUI	15:0	RO	Organizationally Unique Identifier Bits 3:18

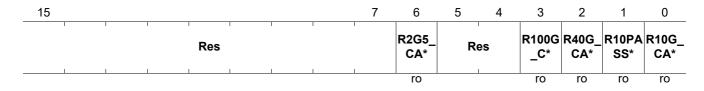
PHY Identifier 2 (Register 3.3)

Organizationally Unique Identifier Bits 19:24

_	PCS_DEVID2 PHY Identifier 2 (Register 3.3)									
15		10	9		4	3		0		
'	OUI	' '		LDN	ľ	,	LDRN	,		
	ro		_	ro		1	ro	1		

Field	Bits	Туре	Description
OUI	15:10	RO	Organizationally Unique Identifier Bits 19:24
LDN	9:4	RO	Device Number Specifies the device number ¹⁾ to distinguish between several different products.
LDRN	3:0	RO	Device Revision Number Specifies the device revision number ¹⁾ to distinguish between several versions of this device.

¹⁾ For the device specific reset value, see the Product Naming table in the Package Outline chapter.



PCS Speed Ability (Register 3.4)

IEEE Standard Register=3.4

PCS_SPEED_ABILITY PCS Speed Ability (Register 3.4)

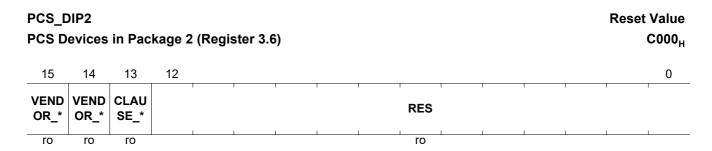
Reset Value 0040_H

Field	Bits	Туре	Description
R2G5_CAPAB LE	6	RO	2G5 Capable This bit is always set to 1 because the PCS is capable of operating at 2.5 Gbps.
R100G_CAPA BLE	3	RO	100G Capable 1 = PCS is capable of operating at 100 Gbps. 0 = PCS is not capable of operating at 100 Gbps.
R40G_CAPAB LE	2	RO	40G Capable1 = PCS is capable of operating at 40 Gbps.0 = PCS is not capable of operating at 40 Gbps.
R10PASS_TS _2BASE_TL	1	RO	10PASS-TS/2BASE-TL Capable 1 = PCS is capable of operating as the 10P/2B PCS. 0 = PCS is not capable of operating as the 10P/2B PCS.
R10G_CAPAB LE	0	RO	10G Capable1 = PCS is capable of operating at 10 Gbps.0 = PCS is not capable of operating at 10 Gbps.

PCS Devices in Package 1 (Register 3.5)

IEEE Standard Register=3.5

PCS_DIP1 Reset Value
PCS Devices in Package 1 (Register 3.5) 008B_H


15		12	11	10	9	8	7	6	5	4	3	2	1	0
	RES		SEPA RAT*	SEP_P MA*	SEPA RAT*	SEPA RAT*	ANEG	тс	DTE_X S	PHY_ XS	PCS	WIS_P RE*	PMD_ PMA	CL22
	ro		ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro

Field	Bits	Type	Description
RES	15:12	RO	Reserved Ignore on read.
SEPARATED_ PMA_4	11	RO	Separate PMA (4) 1 = Separate PMA (4) present in package.
SEP_PMA_3	10	RO	Separate PMA (3) 1 = Separate PMA (3) present in package. 0 = Separate PMA (3) not present in package.
SEPARATED_ PMA_2	9	RO	Separate PMA (2) 1 = Separate PMA (2) present in package present. 0 = Separate PMA (2) not present in package.
SEPARATED_ PMA_1	8	RO	Separate PMA (1) 1 = Separate PMA (1) present in package present. 0 = Separate PMA (1) not present in package.
ANEG	7	RO	Auto-Negotiation Present 1 = Auto-negotiation present in package. 0 = Auto-negotiation not present in package.
TC	6	RO	TC Present 1 = TC present in package. 0 = TC not present in package.
DTE_XS	5	RO	DTE XS Present 1 = DTE XS present in package. 0 = DTE XS not present in package.
PHY_XS	4	RO	PHY XS Present 1 = PHY XS present in package. 0 = PHY XS not present in package.
PCS	3	RO	PCS Present 1 = PCS present in package. 0 = PCS not present in package.
WIS_PRESEN T	2	RO	WIS Present 1 = WIS present in package. 0 = WIS not present in package.

Field	Bits	Туре	Description (cont'd)
PMD_PMA	1	RO	PMD/PMA Present 1 = PMA/PMD present in package. 0 = PMA/PMD not present in package.
CL22	0	RO	Clause 22 Registers Present 1 = Clause 22 registers present in package. 0 = Clause 22 registers not present in package.

PCS Devices in Package 2 (Register 3.6)

Field	Bits	Туре	Description
VENDOR_SP ECIFIC_DEVI CE_2	15	RO	Vendor-specific Device 2 1 = Vendor-specific device 2 present in package. 0 = Vendor-specific device 2 not present in package.
VENDOR_SP ECIFIC_DEVI CE_1	14	RO	Vendor-specific Device 1 1 = Vendor-specific device 1 present in package. 0 = Vendor-specific device 1 not present in package.
CLAUSE_22_ EXTENSION	13	RO	Clause 22 Extension 1 = Clause 22 extension present in package. 0 = Clause 22 extension not present in package.
RES	12:0	RO	Reserved Ignore on read.

PCS Control 2 (Register 3.7)

IEEE Standard Register=3.7

PCS_CTRL2
PCS Control 2 (Register 3.7)

Reset Value 000A_H

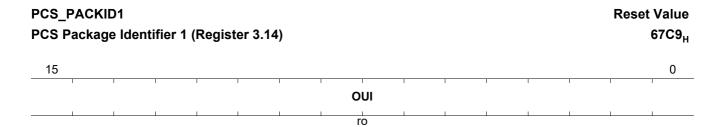
Field	Bits	Туре	Description
PCS_TYPE_S	3:0	RW	PCS Type Selection
EL			1 0 1 1 = Not supported, defaults to 2.5 Gbps
			1 0 1 1 = Select 2.5 Gbps PCS type (Default)
			0 1 0 1 Not supported, defaults to 2.5 Gbps
			0 1 0 0 Not supported, defaults to 2.5 Gbps
			0 0 1 1 Not supported, defaults to 2.5 Gbps
			0 0 1 0 Not supported, defaults to 2.5 Gbps
			0 0 0 1 Not supported, defaults to 2.5 Gbps
			0 0 0 Not supported, defaults to 2.5 Gbps

PCS Status 2 (Register 3.8)

IEEE Standard Register=3.8

PCS_STAT2
PCS Status 2 (Register 3.8)

Reset Value 9000_H


15	14	13	12	11	10	9			6	5	4	3	2	1	0
	E_PRE :NT	Res	R2G5_ CA*	TX_FA ULT	RX_F AULT		Res	i		R100G BA*	R40G BAS*			R10G BAS*	
r	O		ro	ro	ro					ro	ro	ro	ro	ro	ro

Field	Bits	Туре	Description
DEVICE_PRE SENT	15:14	RO	Device Present 1 0 = Device responding at this address. 1 1 = No device responding at this address. 0 1 = No device responding at this address. 0 0 = No device responding at this address.
R2G5_CAPAB LE	12	RO	2G5BASE-T Capable 1 = PCS is able to support 2.5GBASE-T PCS type. 0 = PCS is not able to support 2.5GBASE-T.
TX_FAULT	11	RO	Transmit Fault 1 = Fault condition on transmit path. 0 = No fault condition on transmit path.

Field	Bits	Туре	Description (cont'd)
RX_FAULT	10	RO	Receive Fault 1 = Fault condition on the receive path. 0 = No fault condition on the receive path.
R100GBASE_ R_CAPABLE	_		100GBASE-R Capable 1 = PCS is able to support 100GBASE-R PCS type. 0 = PCS is not able to support 100GBASE-R PCS type.
R40GBASE_R _CAPABLE	4	RO	40GBASE-R Capable 1 = PCS is able to support 40GBASE-R PCS type. 0 = PCS is not able to support 40GBASE-R PCS type.
R10GBASE_T _CAPABLE	3	RO	10GBASE-T Capable 1 = PCS is able to support 10GBASE-T PCS type. 0 = PCS is not able to support 10GBASE-T PCS type.
R10GBASE_W _CAPABLE	2	RO	10GBASE-W Capable 1 = PCS is able to support 10GBASE-W PCS type. 0 = PCS is not able to support 10GBASE-W PCS type.
R10GBASE_X _CAPABLE	1	RO	10GBASE-X Capable 1 = PCS is able to support 10GBASE-X PCS type. 0 = PCS is not able to support 10GBASE-X PCS type.
R10GBASE_R _CAPABLE	0	RO	10GBASE-R Capable 1 = PCS is able to support 10GBASE-R PCS types. 0 = PCS is not able to support 10GBASE-R PCS types.

PCS Package Identifier 1 (Register 3.14)

Field	Bits	Туре	Description
OUI	15:0	RO	Organizationally Unique Identifier Bits 3:18

PCS Package Identifier 2 (Register 3.15)

IEEE Standard Register=3.15

PCS_PACKID2 PCS Package Identifier 2 (Register 3.15)

Reset Value DC00_H

Field	Bits	Туре	Description
OUI	15:10	RO	Organizationally Unique Identifier Bits 19:24
LDN	9:4	RO	Device Number Specifies the device number ¹⁾ to distinguish between several different products.
LDRN	3:0	RO	Device Revision Number Specifies the device revision number to distinguish between several versions of this device.

¹⁾ For the device specific reset value, see the Product Naming table in the Package Outline chapter.

PCS EEE Capability (Register 3.20)

IEEE Standard Register=3.20

PCS_EEE_CAP
PCS EEE Capability (Register 3.20)

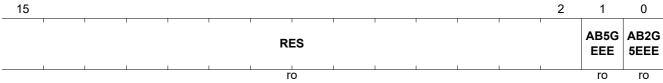
Reset Value 0006_H

15					7	6	5	4	3	2	1	0
		Res				R10G BAS*	R10G BAS*		R10G BAS*		R100B AS*	Res
				I		ro	ro	ro	ro	ro	ro	

Field	Bits	Туре	Description
R10GBASE_K R_EEE	6	RO	10GBASE-KR EEE 1 = EEE is supported for 10GBASE-KR. 0 = EEE is not supported for 10GBASE-KR.
R10GBASE_K X4_EEE	5	RO	10GBASE-KX4 EEE 1 = EEE is supported for 10GBASE-KX4. 0 = EEE is not supported for 10GBASE-KX4.
R1000BASE_ KX_EEE	4	RO	1000BASE-KX EEE 1 = EEE is supported for 1000BASE-KX. 0 = EEE is not supported for 1000BASE-KX.

Field	Bits	Туре	Description (cont'd)
R10GBASE_T _EEE	3	RO	10GBASE-T EEE 1 = EEE is supported for 10GBASE-T. 0 = EEE is not supported for 10GBASE-T.
R1000BASE_T _EEE	2	RO	1000BASE-T EEE 1 = EEE is supported for 1000BASE-T. 0 = EEE is not supported for 1000BASE-T.
R100BASE_T X_EEE	1	RO	100BASE-TX EEE 1 = EEE is supported for 100BASE-TX. 0 = EEE is not supported for 100BASE-TX.

EEE Control and Capability 2 (Register 3.21)


Read only, write from STA has no effect IEEE Standard Register=3.21

PCS_EEE_CAP2

EEE Control and Capability 2 (Register 3.21)

Reset Value

0001_H

Field	Bits	Туре	Description
RES	15:2	RO	Reserved Value always 0.
AB5GEEE	1	RO	EEE Supported for 5GBASE-T 0 _B UNABLE EEE not supported for 5GBASE-T. 1 _B ABLE EEE supported for 5GBASE-T.
AB2G5EEE	0	RO	EEE Supported for 2.5GBASE-T 0 _B UNABLE EEE not supported for 2.5GBASE-T. 1 _B ABLE EEE supported for 2.5GBASE-T.

G5_*

ro

G5_*

ro

G5_*

ro

PCS EEE Status Register 1 (Register 3.22)

IEEE Standard Register=3.22

Field	Bits	Туре	Description
ERRCNT	15:0	RWSC	EEE Wake Error Counter
			This is a 16-bit saturating counter indicating the number of times the GPY PHY fails to wake up within the EEE time. This counter is cleared upon read from the STA.

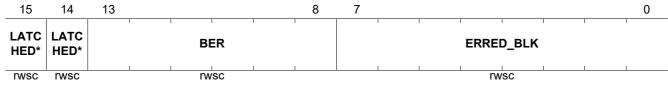
BASE-R and 10GBASE-T PCS Status 1 (Register 3.32)

G5_*

IEEE Standard Register=3.32

Res

_	PCS_2G5_STAT1 BASE-R and 10GBASE-T PCS Status 1 (Register 3.32)								Reset	Value 0000 _H				
15		13	12	11						4	3	2	1	0
	Poo		PCS2				D	00			PCS2	Boo	PCS2	PCS2


Res

Field	Bits	Туре	Description
PCS2G5_LINK _STATUS	12	RO	BASE-R and 10GBase-T Rx Link Status 1 = 2G5 PCS receive link up 0 = 2G5 PCS receive link down
PCS2G5_PAT _TEST_AB	3	RO	10GBASE-R PRBS9 Pattern Testing Ability 1 = PCS is able to support PRBS9 pattern testing. 0 = PCS is not able to support PRBS9 pattern testing.
PCS2G5_HI_B ER	1	RO	PCS 2G5 High BER 1 = The 64B/65B receiver detects a BER above or equal to 10 ^ -4. 0 = The 64B/65B receiver detects a BER below 10 ^ -4. This bit is a direct reflection of the state of the hi_lfer variable in 126.3.6.2.2 for 2.5GBASE-T. A latch high view of this status is reflected in MDIO register 3.33.14.
PCS2G5_BLO _LOCK	0	RO	PCS 2G5 Block Lock 1 = 64B/65B receiver has block lock. 0 = 64B/65B receiver does not have block lock.

MULTIGBASE-T PCS Status 2 (Register 3.33)

PCS_2G5_STAT2 MULTIGBASE-T PCS Status 2 (Register 3.33) Reset Value 0000_H

Field	Bits	Туре	Description
LATCHED_BL OCK_LOCK	15	RWSC	Latched Block Lock 1 = PCS 2G5 has block lock. 0 = PCS 2G5 does not have block lock.
LATCHED_HI GH_BER	14	RWSC	Latched High BER 1 = PCS 2G5 has reported a high BER. 0 = PCS 2G5 did not report a high BER.
BER	13:8	RWSC	BER BER counter
ERRED_BLK	7:0	RWSC	Errored Blocks Errored blocks counter

PCS TimeSync Capability Register (Register 3.1800)

IEEE Standard Register=3.1800

PCS_TIMESYNC_CAP

PCS TimeSync Capability Register (Register 3.1800)

Reset Value

0000_H

Field	Bits	Туре	Description
TIMESYNC_T X_PATH_DAT A_DELAY	1	RO	TimeSync Transmit Path Data Delay 1 = PCS provides information on transmit path data delay in registers 3.1801 through 3.1804. 0 = PCS does not provide information on transmit path data delay. For the GPY, the value is always zero.

Field	Bits	Туре	Description (cont'd)
TIMESYNC_R	0	RO	TimeSync Receive Path Data Delay
X_PATH_DAT			1 = PCS provides information on receive path data delay in registers
A_DELAY			3.1805 through 3.1808.
			0 = PCS does not provide information on receive path data delay. For the
			GPY, the value is always zero.

6.3 Standard Auto-Negotiation Registers for MMD=0x07

This register file contains the auto-negotiation registers for MMD device 0x07.

Table 29 Registers Overview

Register Short Name	Register Long Name	Reset Value
ANEG_CTRL	Auto-Negotiation Control (Register 7.0)	3000 _H
ANEG_STAT	Auto-Negotiation Status (Register 7.1)	0008 _H
ANEG_DEVID1	PHY Identifier 1 (Register 7.2)	67C9 _H
ANEG_DEVID2	PHY Identifier 2 (Register 7.3)	DC00 _H ¹⁾
ANEG_DIP1	Device in Package 1 (Register 7.5)	008B _H
ANEG_DIP2	Device in Package 2 (Register 7.6)	C000 _H
ANEG_PACKID1	AN Package Identifier (Register 7.14)	67C9 _H
ANEG_PACKID2	AN Package Identifier (Register 7.15)	DC00 _H
ANEG_ADV	ANEG Adv. for GPY (Register 7.16)	91E1 _H
ANEG_LP_BP_AB	AN Link Partner Base Page Ability (Register 7.19)	01E0 _H
ANEG_XNP_TX1	ANEG Local Dev XNP TX1 (Register 7.22)	0001 _H
ANEG_XNP_TX2	ANEG Local Dev XNP TX2 (Register 7.23)	0000 _H
ANEG_XNP_TX3	ANEG Local Dev XNP TX3 (Register 7.24)	0000 _H
ANEG_LP_XNP_AB1	ANEG Link Partner XNP RX (Register 7.25)	0000 _H
ANEG_LP_XNP_AB2	ANEG Link Partner XNP RX (Register 7.26)	0000 _H
ANEG_LP_XNP_AB3	ANEG Link Partner XNP RX (Register 7.27)	0000 _H
ANEG_MGBT_AN_CTRL	MULTI GBT AN Control (Register 7.32)	0082 _H
ANEG_MGBT_AN_STA	MultiGBASE-T AN Status (Register 7.33)	0000 _H
ANEG_EEE_AN_ADV1	EEE Advertisement 1 (Register 7.60)	0006 _H
ANEG_EEE_AN_LPAB1	EEE Link Partner Ability 1 (Register 7.61)	0000 _H
ANEG_EEE_AN_ADV2	EEE Advertisement 2 (Register 7.62)	0001 _H
ANEG_EEE_LP_AB2	EEE Link Partner Ability 2 (Register 7.63)	0001 _H
ANEG_MGBT_AN_CTRL2	MGBT ANEG Control 2 (Register 7.64)	0008 _H

¹⁾ For the device specific reset value, see the Product Naming table in the Package Outline chapter.

6.3.1 Standard Auto-Negotiation Registers for MMD=0x07

This section describes all the ANEG registers in detail.

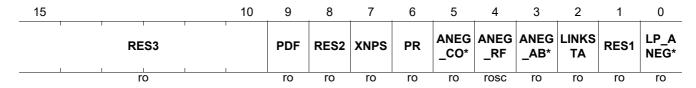
Auto-Negotiation Control (Register 7.0)

The register controls the main function of auto-negotiation as defined in Clause 45. Refer to IEEE 802.3 45.2.7.1. This register mirrors register STD.CTRL from Clause 22.

IEEE Standard Register=7.0

ANEG_CTRL **Reset Value Auto-Negotiation Control (Register 7.0)** 3000_H 15 14 13 12 11 8 0 **ANEG ANEG RST** RES3 **XNP** RES2 RES1 _EN* _RE* rw ro ro ro rw rw rw

Field	Bits	Туре	Description
RST	15	RW	Reset This bit resets the entire PHY to its default state. Active links are terminated. This is a self-clearing bit. The GPY firmware sets the bit to zero via the hardware when the reset has completed. 0 _B NORMAL Normal GPY operation 1 _B RESET GPY reset
RES3	14	RO	Reserved Value always zero, writes ignored.
XNP	13	RW	Extended Next Page Control 0 _B ZERO Extended next page is disabled. 1 _B ONE Extended next page is enabled.
ANEG_ENAB	12	RW	Auto-Negotiation Enable This bit enables the auto-negotiation process to determine the link configuration. Bit 7.0.12 is a copy of bit 0.12 in register 0 (STD_CTRL) (refer to 22.2.4.1.4). 0 _B ZERO Auto-negotiation process is disabled. 1 _B ONE Auto-negotiation process is enabled.
RES2	11:10	RO	Reserved Value always zero, writes ignored.
ANEG_RESTA RT	9	RW	Restart Auto-Negotiation The auto-negotiation process is restarted by setting bit 7.0.9 to 1. Bit 7.0.9 is a mirror of bit 0.9 in register 0 (STD_CTRL) (refer to IEEE 802.3 22.2.4.1.7). Completion of ANEG is indicated in bit 0.1.5 and 7.1.5. 0 _B ZERO Normal operation 1 _B RESTART Restart auto-negotiation process.

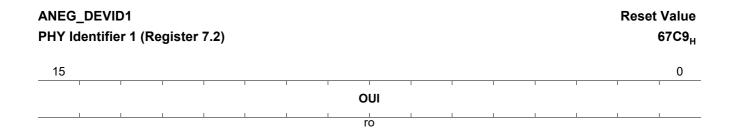

Field	Bits	Туре	Description (cont'd)
RES1	8:0	RO	Reserved
			Value always zero, writes ignored.

Auto-Negotiation Status (Register 7.1)

All the bits in the ANEG_STA status register are read only and correspond to the outcome or current status of the auto-negotiation process.

IEEE Standard Register=7.1

ANEG_STAT Reset Value
Auto-Negotiation Status (Register 7.1) 0008_H


Field	Bits	Туре	Description
RES3	15:10	RO	Reserved Value always zero, writes ignored.
PDF	9	RO	Parallel Detection Fault 0 _B NOFAULT No fault detected. 1 _B FAULT Fault detected via the parallel mechanism.
RES2	8	RO	Reserved Value always zero, writes ignored.
XNPS	7	RO	Extended Next Page Status When set to 1, bit 7.1.7 indicates that both the GPY and the link partner confirmed support for extended next page. When set to 0, bit 7.1.7 indicates that the extended next page feature is not used. 0 _B ZERO Extended next page is not allowed. 1 _B ONE Extended next page format is used.
PR	6	RO	Page Received The Page Received bit (7.1.6) is set to 1 to indicate that a new link codeword was received and stored in the AN LP Base Page ability registers 7.19, or AN LP XNP ability registers 7.25 to 7.27. 0 _B ZERO No page received. 1 _B ONE Page received.

Field	Bits	Type	Description (cont'd)
ANEG_COMP LETE	5	RO	Auto-Negotiation Complete When read as a 1, bit 7.1.5 indicates that the auto-negotiation process has completed, and that the contents of the auto-negotiation registers 7.16 and 7.19 are valid. When read as a 0, bit 7.1.5 indicates that the auto-negotiation process has not completed, and that the contents of the 7.19, 7.22 through 7.27, and 7.33 registers are as defined by the current state of the auto-negotiation protocol, or as written by manual configuration. 0 _B ZERO Auto-negotiation process not completed. 1 _B ONE Auto-negotiation process completed.
ANEG_RF	4	ROSC	Remote Fault When read as 1, bit 7.1.4 indicates that a remote fault condition was detected. Bit 7.1.4 is a copy of bit 1.4 in register 1, device 0 (refer to 22.2.4). 0 _B NORMAL No remote fault condition detected. 1 _B FAULT Remote fault condition detected.
ANEG_ABLE	3	RO	Auto-Negotiation Ability Bit 7.1.3 is a copy of bit 1.3 in register 1 (refer to 22.2.4). This is the ANEG ability of the GPY. 0 _B UNABLE PHY is not able to perform auto-negotiation. 1 _B ABLE PHY is able to perform auto-negotiation.
LINKSTA	2	RO	Link Status When read as 1, bit 7.1.2 indicates that the PMA/PMD has determined that a valid link has been established. This bit is a duplicate of the PMA/PMD link status bit in 1.1.2. This bit latches low so it does not represent the current status, but is used to indicate link drop since the last read from the management interface. Reading this bit from the MDIO resets the bit to the current value of the link. 0 _B DOWN Link is down. 1 _B UP Link is up.
RES1	1	RO	Reserved Value always zero, write ignored.
LP_ANEG_AB LE	0	RO	Link Partner Auto-Negotiation Ability 0 _B UNABLE Link partner is not capable of auto-negotiation. 1 _B ABLE Link partner is capable of auto-negotiation.

PHY Identifier 1 (Register 7.2)

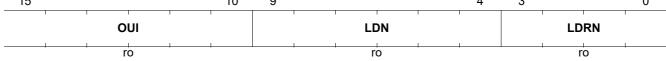
Field	Bits	Туре	Description			
OUI	15:0	RO	Organizationally Unique Identifier			

PHY Identifier 2 (Register 7.3)

Organizationally Unique Identifier IEEE Standard Register=7.3

ANEG_DEVID2
PHY Identifier 2 (Register 7.3)

15


10

9

4

3

0

Field	Bits	Type	Description
OUI	15:10	RO	Organizationally Unique Identifier
LDN	9:4	RO	Device Number Specifies the device number ¹⁾ to distinguish between several different products.
LDRN	3:0	RO	Device Revision Number Specifies the device revision number ¹⁾ to distinguish between several versions of this device.

¹⁾ For the device specific reset value, see the Product Naming table in the Package Outline chapter.

Device in Package 1 (Register 7.5)

IEEE Standard Register=7.5

ANEG_DIP1 Reset Value
Device in Package 1 (Register 7.5) 008B_H

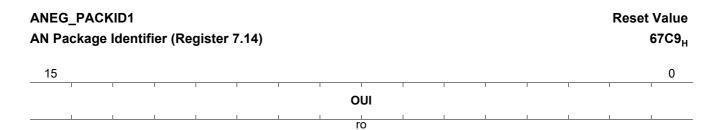
15		12	11	10	9	8	7	6	5	4	3	2	1	0
	RES		PMA4	PMA3	PMA2	PMA1	ANEG	тс	DTEX S	PHYX S	PCS	wis	PMAP MD	CL22
	ro		ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro

Field	Bits	Type	Description
RES	15:12	RO	Reserved Ignore on read.
PMA4	11	RO	Separate PMA4 Present in Package 0 _B ABSENT Separate PMA4 not present in package. 1 _B PRESENT Separate PMA4 present in package.
PMA3	10	RO	Separate PMA3 Present in Package 0 _B ABSENT Separate PMA3 not present in package. 1 _B PRESENT Separate PMA3 present in package.
PMA2	9	RO	Separate PMA2 Present in Package 0 _B ABSENT Separate PMA2 not present in package. 1 _B PRESENT Separate PMA2 present in package.
PMA1	8	RO	Separate PMA1 Present in Package 0 _B ABSENT Separate PMA1 not present inn package. 1 _B PRESENT Separate PMA1 present in package.
ANEG	7	RO	Auto-Negotiation Present in Package 0 _B ABSENT ANEG not present inn package. 1 _B PRESENT ANEG present in package.
TC	6	RO	TC Present in Package 0 _B ABSENT TC registers not present in package. 1 _B PRESENT TC registers present in package.
DTEXS	5	RO	DTE XS Present in Package 0 _B ABSENT DTE XS registers not present in package. 1 _B PRESENT DTE XS registers present in package.
PHYXS	4	RO	PHYXS Present in Package 0 _B ABSENT PHYXS registers not present in package. 1 _B PRESENT PHYXS registers present in package.
PCS	3	RO	PCS Present in Package 0 _B ABSENT PCS registers not present in package. 1 _B PRESENT PCS registers present in package.
WIS	2	RO	WIS Present in Package 0 _B ABSENT WIS registers present in package. 1 _B PRESENT WIS registers present in package.

Field	Bits	Туре	Description (cont'd)
PMAPMD	1	RO	PMA PMD Present in Package 0 _B ABSENT PMA PMD registers not present in package. 1 _B PRESENT PMA PMD registers present in package.
CL22	0	RO	Clause 22 Register Present in Package 0 _B ABSENT Clause 22 registers no present in package. 1 _B PRESENT Clause 22 registers present in package.

Device in Package 2 (Register 7.6)

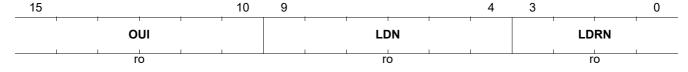
IEEE Standard Register=7.6


ANEG_DIP2 **Reset Value** Device in Package 2 (Register 7.6) C000H 15 14 13 12 0 **VSPE** VSPE CL22E **RES** C2 C1 ΧT ro ro ro ro

Field	Bits	Туре	Description
VSPEC2	15	RO	Vendor Specific Device 2 Present in Package 0 _B ABSENT Vendor Specific Device 2 not present in package. 1 _B PRESENT Vendor Specific Device 2 present in package.
VSPEC1	14	RO	Vendor Specific Device 1 Present in Package 0 _B ABSENT Vendor Specific Device 1 not present in package. 1 _B PRESENT Vendor Specific Device 1 present in package.
CL22EXT	13	RO	Clause 22 Extension Present in Package 0 _B ABSENT Clause 22 extension not present in package. 1 _B PRESENT Clause 22 extension present in package.
RES	12:0	RO	Reserved Ignore on read.

AN Package Identifier (Register 7.14)

IEEE Standard Register=7.14


Field	Bits	Туре	Description			
OUI	15:0	RO	Organizationally Unique Identifier Bits 3:18			

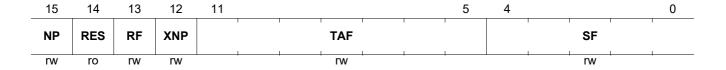
AN Package Identifier (Register 7.15)

IEEE Standard Register=7.15

ANEG_PACKID2 Reset Value
AN Package Identifier (Register 7.15)

DC00_H

Field	Bits	Туре	Description
OUI	15:10	RO	Organizationally Unique Identifier Bits 19:24
LDN	9:4	RO	Device Number Specifies the device number ¹⁾ to distinguish between several different products.
LDRN	3:0	RO	Device Revision Number Specifies the device revision number ¹⁾ to distinguish between several versions of this device.


¹⁾ For the device specific reset value, see the Product Naming table in the Package Outline chapter.

ANEG Adv. for GPY (Register 7.16)

This register is a copy of the auto-negotiation advertisement register (Register 4). A read to the AN advertisement register (7.16) reports the value of the auto-negotiation advertisement register (Register 4); writes to the AN advertisement register (7.16) cause a write to occur to the auto-negotiation advertisement register (Register 4). IEEE Standard Register=7.16

ANEG_ADV ANEG Adv. for GPY (Register 7.16) Reset Value 91E1_H

Field	Bits	Type	Description						
NP	15	RW	Next Page Able 0 _B INACTIVE No next page allowed. 1 _B ACTIVE Additional next page(s) to follow.						
RES	14	RO	Reserved Write as zero, ignore on read.						
RF	13	RW	Remote Fault The remote fault bit allows indication of a fault to the link partner. Refer to IEEE 802.3 28.2.1.2.4.						
XNP	12	RW	Transmission of Extended Next Pages Indicates that the GPY is able to transmit extended next pages. 0 _B UNABLE GPY is XNP unable. 1 _B ABLE GPY is XNP able.						
TAF	11:5	RW	Technology Ability Field The technology ability field is an 8-bit wide field containing information indicating supported technologies. The GPY supports 10BASE-T (half and full duplex), 100BASE-TX (half and full duplex), and both symmetric and asymmetric PAUSE. 40 _H PS_ASYM Advertise asymmetric pause 20 _H PS_SYM Advertise symmetric pause 10 _H DBT4 Advertise 100BASE-T4 08 _H DBT_FDX Advertise 100BASE-TX full duplex 04 _H DBT_HDX Advertise 10BASE-TX half duplex 02 _H XBT_FDX Advertise 10BASE-T full duplex						
SF	4:0	RW	Selector Field This field is always set to 1 because the GPY only supports the 802.3 Ethernet standard. 00001 _B IEEE8023 IEEE 802.3 technology.						

AN Link Partner Base Page Ability (Register 7.19)

Register 7.19 is a copy of register 5 from Clause 28. It contains the Base Page received from the link partner. All of the bits in the AN LP Base Page Ability register are read only.

IEEE Standard Register=7.19

ANEG_LP_BP_AB

AN Link Partner Base Page Ability (Register 7.19)

Reset Value

01E0_H

15	14	13	12	11			5	4		0
NP	ACK	RF	XNP		TAF				SF	
ro	ro	ro	ro	1	 ro	l .			ro	"

Field	Bits	Type	Description
NP	15	RO	Link Partner Next Page Next page request indication from the link partner. Refer to IEEE 802.3 28.2.1.2.6. 0 _B INACTIVE No next page to follow. 1 _B ACTIVE Additional next page to follow.
ACK	14	RO	Link Partner Acknowledge Acknowledgment indication from the link partner's link code word. Refer to IEEE 802.3 28.2.1.2.5. 0 _B INACTIVE Device did not successfully receive its link partner's link code word. 1 _B ACTIVE Device successfully received its link partner's link code word.
RF	13	RO	Link Partner Remote Fault Remote fault indication from the link partner. Refer to IEEE 802.3 28.2.1.2.4. 0 _B NONE Remote fault is not indicated by the link partner. 1 _B FAULT Remote fault is indicated by the link partner.
XNP	12	RO	Link Partner XNP Ability 0 _B UNABLE Link partner is not XNP able. 1 _B ABLE Link partner is XNP able.
TAF	11:5	RO	Technology Ability Field These bits indicate the link partner's supported technologies received in the Base Page. 40 _H PS_ASYM Advertise asymmetric pause 20 _H PS_SYM Advertise symmetric pause 10 _H DBT4 Advertise 100BASE-T4 08 _H DBT_FDX Advertise 100BASE-TX full duplex 04 _H DBT_HDX Advertise 100BASE-TX half duplex 02 _H XBT_FDX Advertise 10BASE-T full duplex 01 _H XBT_HDX Advertise 10BASE-T half duplex

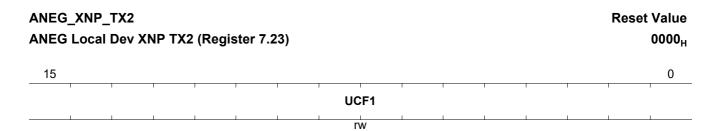
Field	Bits	Туре	Description (cont'd)
SF	4:0	RO	Link Partner Selector Field
			This selector field represents one of the 32 possible messages with
			encoding definitions defined in IEEE 802.3 Annex 28A.
			0x00 = Reserved
			0x01 = IEEE 802.3
			0x02 = IEEE 802.9 ISLAN-16T
			0x03 = IEEE 802.5
			0x04 = IEEE 1394
			0x05 -> 0x1F = Reserve

ANEG Local Dev XNP TX1 (Register 7.22)

ANEG_XNP_TX1 Reset Value
ANEG Local Dev XNP TX1 (Register 7.22)

0001_H

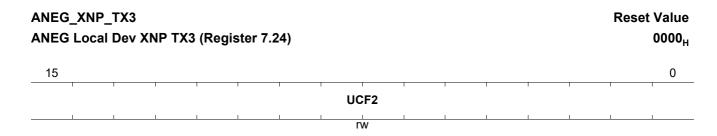
15	14	13	12	11	10							0
NP	RES	MP	ACK2	TOGG					MCF			
						1	1					
rw	ro	rw	rw	ro					rw			


Field	Bits	Type	Description
NP	15	RW	Next Page When the NP bit is set, the GPY requests to transmit one additional page. next page transmission ends when both ends of a link segment set their next page bits to logic 0, indicating that neither has anything additional to transmit. Refer to IEEE 802.3 28.2.3.4. 0 _B INACTIVE No next page to follow. 1 _B ACTIVE Additional next page(s) to follow.
RES	14	RO	Reserved Write as zero, ignore on read.
MP	13	RW	Message Page Message Page (MP) is used by the next page function to differentiate a Message Page from an Unformatted Page. Only message pages are used by the GPY. 0 _B UNFOR Unformatted Page 1 _B MESSG Message Page
ACK2	12	RW	Acknowledge 2 Not used during GPY auto-negotiation. 0 _B INACTIVE Device does not comply with message. 1 _B ACTIVE Device complies with message.
TOGG	11	RO	Toggle The Toggle bit is used to ensure proper synchronization between the GPY and the link partner. Refer to IEEE 802.3 28.2.3.4. 0 _B ZERO Previous value of the Tx LCW was ONE. 1 _B ONE Previous value of the Tx LCW was ZERO.

Field	Bits	Туре	Description (cont'd)
MCF	10:0	RW	Message Code Field
			When the Message Page bit is set to 1 (7.16.1), this field is the Message
			Code Field of a message page used in a next page exchange. The
			message codes are described in IEEE802.3 Appendix 28C.
			This is used to indicate the type of message in UCF1 and UCF2.
		0x0 = Reserved	
		0x1 = Null message	
			0x2 = One Unformatted Page (UP) with TAF follows
			0x3 = Two UPs with TAF follows
			0x4 = Remote fault details message
			0x5 = OUI message
			0x6 = PHY ID message
			0x7 = 100BASE-T2 message
			0x8 = 1000BASE-T message
			0x9 = MULTIGBASE-T message
			0xA = EEE technology capability follows in next UP
			0xB = OUI XNP

ANEG Local Dev XNP TX2 (Register 7.23)

Unformatted Code field 1 contains Seed information and advertises support of 1GBT full duplex and half duplex. Refer to 28.2.3.4.


Field	Bits	Туре	Description
UCF1	15:0	RW	Unformatted Code Field 1 Transmits Master-Slave Seed bit to facilitate auto-negotiation resolution, port type and duplex capability.

ANEG Local Dev XNP TX3 (Register 7.24)

Unformatted Code field 2 - Register 7.24 Refer to 28.2.3.4.

IEEE Standard Register=7.24

Field	Bits	Туре	Description
UCF2	15:0	RW	Unformatted Code Field 2
			2.5 GBASE-T ability is advertised by default

ANEG Link Partner XNP RX (Register 7.25)

IEEE Standard Register=7.25

Reset Value ANEG_LP_XNP_AB1 **ANEG Link Partner XNP RX (Register 7.25)** 0000_H 0 15 14 12 11 10 13 MCF NP **ACK** MP ACK2 TOGG ro ro ro ro ro ro

Field	Bits	Туре	Description
NP	15	RO	Link Partner Next Page Refer to 28.2.3.4.3. The next page (NP) bit is used by the next page function to indicate whether or not this is the last next page to be transmitted. 0 _B INACTIVE Last page 1 _B ACTIVE Additional next page(s) to follow.
ACK	14	RO	Link Partner Acknowledge As defined in 28.2.1.2.5. The Acknowledge (Ack) bit is used by the auto-negotiation function to indicate that the GPY has successfully received its link partner's link codeword.
MP	13	RO	Link Partner Message Page Indicates that the content of MCF is either an unformatted page or a formatted message. Refer to IEEE 802.3 28.2.3.4. 0 _B UNFOR Unformatted page 1 _B MESSG Message page

Field	Bits	Туре	Description (cont'd)
ACK2	12	RO	Link Partner Acknowledge 2 Refer to IEEE 802.3 28.2.3.4. 0 _B INACTIVE Device not able to comply with message. 1 _B ACTIVE Device complies with message.
TOGG	11	RO	Link Partner Toggle Refer to IEEE 802.3 28.2.3.4. This bit is set to the opposite of the TOGG bit in the previous page. 0 _B ZERO Previous value of the TX LCW was ONE. 1 _B ONE Previous value of the TX LCW was ZERO.
MCF	10:0	RO	Link Partner Message Code Field This field indicates the type of Message Code. Refer to IEEE802.3 28.2.3.4. 009 _H MC_2G5BT Message Code for 2.5GBASE-T

ANEG Link Partner XNP RX (Register 7.26)

IEEE Standard Register=7.26

ANEG_LP_XNP_AB2
ANEG Link Partner XNP RX (Register 7.26)

0

UCF1

Field	Bits	Туре	Description
UCF1	15:0	RO	Unformatted Code Field 1
			Refer to 28.2.3.4.

ANEG Link Partner XNP RX (Register 7.27)

	ANEG_LP_XNP_AB3 ANEG Link Partner XNP RX (Register 7.27)													Reset	Value 0000 _H
15															0
	UCF2														
	1	1		1	1		r	0	1	1	1	1	I	I	

Field	Bits	Type	Description
UCF2	15:0	RO	Unformatted Code Field 2 Refer to 28.2.3.4.

MULTI GBT AN Control Register (Register 7.32)

This register advertises the GPY capabilities.

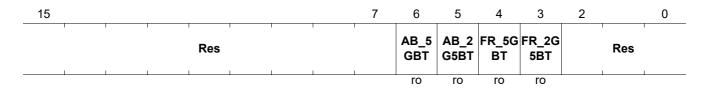
IEEE Standard Register=7.32

ANEG_MGBT_AN_CTRL MULTI GBT AN Control Register (Register 7.32)

Reset Value 0082_H

15	14	13	12	11		9	8	7	6	5	4	3	2	1	0
MS_M AN_*	MSCV	PT	AB_10 GBT		RES2		AB_5 GBT	AB_2 G5BT	FR_5G BT	FR_2G 5BT	RE	S1	LDPM A	FR	LDL
rw	rw	rw	ro		ro		ro	rw	ro	rw	r	0	rw	rw	rw

Field	Bits	Type	Description
MS_MAN_EN	15	RW	Master Slave Manual Config Enable 0 _B ANEG ANEG is used to determine the Master-Slave selection. 1 _B MAN Manual configuration. The MSCV bit determines the Master-Slave selection.
MSCV	14	RW	Master Slave Config Value 0 _B SLAVE Manual set to SLAVE. 1 _B MASTER Manual set to MASTER.
PT	13	RW	Port Type 0 _B MASTER Preference as Master - single port device. 1 _B SLAVE Preference as Slave - multiport device.
AB_10GBT	12	RO	10GBASE-T Ability Not supported. Value always zero.
RES2	11:9	RO	Reserved Value always zero, writes ignored.
AB_5GBT	8	RO	5GBASE-T Ability Not supported by the GPY. 0 _B UNABLE Do not advertise PHY as 5GBASE-T capable. 1 _B ABLE Advertise PHY as 5GBASE-T capable. Not supported.
AB_2G5BT	7	RW	2.5GBASE-T Ability 0 _B UNABLE Do not advertise PHY as 2.5GBASE-T capable. 1 _B ABLE Advertise PHY as 2.5GBASE-T capable.
FR_5GBT	6	RO	5GBASE-T Fast Retrain Ability Not supported by GPY. Refer to 45.2.7.10 bz. 0 _B UNABLE Do not advertise PHY as 5GBASE-T fast retrain able. 1 _B ABLE Advertise PHY as 5GBASE-T fast retrain capable. Not supported.
FR_2G5BT	5	RW	2.5GBASE-T Fast Retrain Ability 0 _B UNABLE Do not advertise PHY as 2.5G fast retrain able. 1 _B ABLE Advertise PHY as 2.5G fast retrain able.
RES1	4:3	RO	Reserved Value always zero, writes ignored.


Field	Bits	Туре	Description (cont'd)
LDPMA	2	RW	GPY PMA Training Reset Request When this bit is set to 1, the GPY expects the link partner to reset the PMA training PRBS for every PMA training frame. When this bit is set to 0, the GPY expects the link partner to run the PMA training PRBS continuously through every PMA training frame.
FR	1	RW	Fast Retrain Ability
LDL	0	RW	GPY Loop Timing Ability

MultiGBASE-T AN Status register (Register 7.33)

IEEE Standard Register=7.33

ANEG_MGBT_AN_STA MultiGBASE-T AN Status register (Register 7.33)

Reset Value 0000_H

Field	Bits	Туре	Description
AB_5GBT	6	RO	5GBASE-T Ability of Link Partner This bit is only valid when the link is established and ANEG completed. 0 _B UNABLE Link partner is not capable of 5GBASE-T. 1 _B ABLE Link partner is capable of 5GBASE-T.
AB_2G5BT	5	RO	 2.5GBASE-T Ability of Link Partner This bit is only valid when the link is established and ANEG completed (bit 7.1.5 is set to 1). 0_B UNABLE Link partner is not capable of 2.5GBASE-T. 1_B ABLE Link partner is capable of 2.5GBASE-T.
FR_5GBT	4	RO	5GBASE-T Fast Retrain Ability of Link Partner This bit is only valid when the link is established and ANEG completed. 0 _B UNABLE Link partner is not capable of 5GBASE-T fast retrain. 1 _B ABLE Link partner is capable of 5GBASE-T fast retrain
FR_2G5BT	3	RO	 2.5GBASE-T Fast Retrain Ability of Link Partner This bit is only valid when the link is established and ANEG completed (bit 7.1.5 is set to 1). 0_B UNABLE Link partner is not capable of 2.5GBASE-T fast retrain. 1_B ABLE Link partner is capable of 2.5GBASE-T fast retrain.

EEE Advertisement 1 (Register 7.60)

IEEE Standard Register=7.60

ANEG_EEE_AN_ADV1 EEE Advertisement 1 (Register 7.60)

Reset Value 0006_H

15		7	6	5	4	3	2	1	0
	Res		EEE_1 0G*	EEE_1 0G*	EEE_1 00*	EEE_1 0G*	EEE_1 00*	EEE_1 00*	Res
			ro	ro	ro	ro	rw	rw	

Field	Bits	Туре	Description
EEE_10GBKR	6	RO	Support of 10GBASE-KR EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.
EEE_10GBKX 4	5	RO	Support of 10GBASE-KX4 EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.
EEE_1000BKX	4	RO	Support of 1000BASE-KX EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.
EEE_10GBT	3	RO	Support of 10GBASE-T EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.
EEE_1000BT	2	RW	Support of 1000BASE-T EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.
EEE_100BTX	1	RW	Support of 100BASE-TX EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.

EEE Link Partner Ability 1 (Register 7.61)

After the AN process is completed, this register reflects the contents of the link partner's EEE advertisement register. The definitions are the same as for the EEE AN advertisement 1 register.

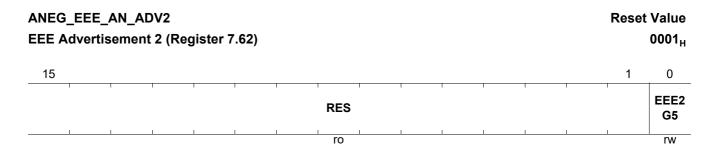
IEEE Standard Register=7.61

All of the bits in the EEE LP ability 1 register are read only. A write operation to the EEE LP advertisement register has no effect.

ANEG_EEE_AN_LPAB1 EEE Link Partner Ability 1 (Register 7.61)

Reset Value 0000_H

15				7	6	5	4	3	2	1	0
		Res			EEE_1 0G*	EEE_1 0G*	EEE_1 00*	EEE_1 0G*	EEE_1 00*	EEE_1 00*	Res
		1			ro	ro	ro	ro	ro	ro	


Field	Bits	Туре	Description
EEE_10GBKR	6	RO	Support of 10GBASE-KR EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.
EEE_10GBKX 4	5	RO	Support of 10GBASE-KX4 EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.
EEE_1000BKX	4	RO	Support of 1000BASE-KX EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.
EEE_10GBT	3	RO	Support of 10GBASE-T EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.
EEE_1000BT	2	RO	Support of 1000BASE-T EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.
EEE_100BTX	1	RO	Support of 100BASE-TX EEE 0 _B DISABLED This PHY mode is not supported for EEE. 1 _B ENABLE This PHY mode is supported for EEE.

EEE Advertisement 2 (Register 7.62)

EEE advertisement 2 register is a continuation of EEE advertisement 1 register.

IEEE Standard Register=7.62

Field	Bits	Туре	Description
RES	15:1	RO	Reserved
EEE2G5	0	RW	Advertise 2.5GBASE-T EEE Capability 0 _B DISABLED This PHY mode does not advertise 2.5GBASE-T EEE. 1 _B ENABLE This PHY mode advertises 2.5GBASE-T EEE.

EEE Link Partner Ability 2 (Register 7.63)

When the AN and training processes are complete, this register reflects the contents of the link partner's EEE advertisement 2 register.

IEEE Standard Register=7.63

All the bits in the EEE LP Ability 2 register are read-only. A write to the EEE LP Ability 2 register has no effect.

_											Value 0001 _H				
15														1	0
					ı		RES	ı	ı		ı	ı	ı		EEE2 G5
	1	1	1		1		ro	1	1	1	1	1		1	ro

Field	Bits	Type	Description
RES	15:1	RO	Reserved
EEE2G5	0	RO	Link Partner Advertised 2.5GBASE-T EEE Capability 0 _B DISABLED LP not 2.5GBASE-T EEE capable. 1 _B ENABLE LP 2.5GBASE-T EEE capable.

MGBT ANEG Control 2 (Register 7.64)

This register is an extension of the ANEG Control Register for Multi GBT. It is used for 2.5 G ANEG configuration. IEEE Standard Register=7.64

Bit 7.64.3 is valid only when 7.32.5 is set to 1 advertising fast retrain ability, and is used to request the link partner whether to initially reset the THP during fast retrain. THP Bypass Request is exchanged during link training, refer to 126.4.2.5.10. When bit 7.64.3 is set to 0, the GPY requests the link partner not to reset THP during fast retrain. When bit 7.64.3 is set to 1, the GPY requests the ink partner to initially reset THP during fast retrain.

ANEG_MGBT_AN_CTRL2 MGBT ANEG Control 2 (Register 7.64)

Reset Value 0008_H

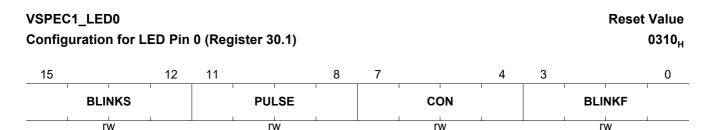
Field	Bits	Туре	Description
RES	14:4	RO	Reserved
THPBYP2G5	3	RW	THP Bypass During Fast Retrain The GPY requests a THP bypass during fast retrain. 0 _B NORST GPY requests partner NOT to initially reset THP during fast retrain. 1 _B RST GPY requests partner to initially reset THP during fast retrain.

6.4 Vendor Specific 1 Device for MMD=0x1E

This register file contains GPY-specific registers for MMD=30 (decimal).

Table 30 Registers Overview

Register Short Name	Register Long Name	Reset Value
VSPEC1_LED0	Configuration for LED Pin 0 (Register 30.1)	0310 _H
VSPEC1_LED1	Configuration for LED Pin 1 (Register 30.2)	0320 _H
VSPEC1_LED2	Configuration for LED Pin 2 (Register 30.3)	0340 _H
VSPEC1_SGMII_CTRL	Chip Level SGMII Control Register (Register 30.8)	30DA _H
VSPEC1_SGMII_STAT	Chip Level SGMII Status Register (Register 30.9)	8008 _H
VSPEC1_NBT_DS_CTRL	NBASE-T Downshift Control Register (Register 30.10)	0400 _H
VSPEC1_NBT_DS_STA	NBASE-T Downshift Status Register (Register 30.11)	0000 _H
VSPEC1_PM_CTRL	Packet Manager Control (Register 30.12)	0083 _H
VSPEC1_TEMP_STA	Temperature Code (Register 30.14)	0000 _H
VSPEC1_LANE_ASP_MA P	ASP Mapping to Physical Lanes (Register 30.20)	00E4 _H
VSPEC1_LOW_POWER_ ENTRY_TIME	Time to Enter Low Power (Register 30.21)	0001 _H


6.4.1 Vendor Specific 1 Device for MMD=0x1E

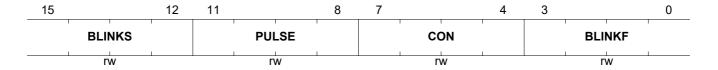
This section describes all the VSPEC1 registers in detail.

Configuration for LED Pin 0 (Register 30.1)

This register configures the behavior of the LED0 pin depending on predefined states or events the PHY has entered into or raised. Since more than one event/state may be active at the same time, more than one function may apply at the same time. The priority from highest to lowest is given by the order: PULSE, BLINKS, BLINKF, and CON. The LED PULSE for the selected activity is only displayed for the link speed selected in CON. When CON is selected as NONE, no PULSE is displayed on the LED for any activity. To avoid the LED being constantly on when it is configured for pulsing alone, set the NO_CON bit in the PULSE field (bit 11).

IEEE Standard Register=30.1

Field	Bits	Type	Description
BLINKS	15:12	RW	Slow Blinking Configuration The BLINKS field selects the PHY states where the LED blinks with the predefined slow frequency. Each bit mask indicates a link speed. Combinations of these bit masks are used to provide a combination of link speed states to enable the behavior. 0000 _B NONE Not active 0001 _B LINK10 Blink when link is 10 Mbps. 0010 _B LINK100 Blink when link is 100 Mbps. 0100 _B LINK1000 Blink when link is 1000 Mbps. 1000 _B LINK2500 Blink when link is 2500 Mbps.
PULSE	11:8	RW	Pulsing Configuration The PULSE field is a mask field that combines certain events, e.g., TXACT RXACT, to generate a pulse on the LED when such an event is detected. 0000 _B NONE No pulsing 0001 _B TXACT Transmit activity 0010 _B RXACT Receive activity 0100 _B COL Collision 1000 _B NO_CON Constant on behavior is switched off.
CON	7:4	RW	Constant On Configuration The CON field selects the PHY states where the LED is constantly on. Each bit mask indicates a link speed. Combinations of these bit masks are used to provide a combination of link speed states to enable the behavior. 0000 _B NONE Not active 0001 _B LINK10 On when link is 10 Mbps. 0010 _B LINK100 On when link is 100 Mbps. 0100 _B LINK1000 On when link is 1000 Mbps. 1000 _B LINK2500 On when link is 2500 Mbps.
BLINKF	3:0	RW	Fast Blinking Configuration The BLINKF field selects the PHY states where the LED blinks with the predefined fast frequency. Each bit mask indicates a link speed. Combinations of these bit masks are used to provide a combination of link speed states to enable the behavior. 0000 _B NONE No active 0001 _B LINK10 Blink when Link is 10 Mbps. 0100 _B LINK100 Blink when Link is 100 Mbps. 1000 _B LINK1000 Blink when Link is 2500 Mbps.


Configuration for LED Pin 1 (Register 30.2)

Configuration register for LED pin 1.

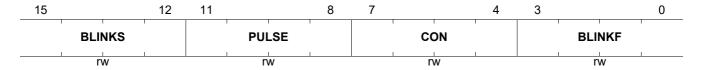
IEEE Standard Register=30.2

VSPEC1_LED1 Configuration for LED Pin 1 (Register 30.2)

Reset Value 0320_H

Field	Bits	Туре	Description
BLINKS	15:12	RW	Slow Blinking Configuration The BLINKS field selects the PHY states where the LED blinks with the predefined slow frequency. Each bit mask indicates a link speed. Combinations of these bit masks are used to provide a combination of link speed states to enable the behavior. 0000 _B NONE Not active 0001 _B LINK10 Blink when link is 10 Mbps. 0010 _B LINK100 Blink when link is 100 Mbps. 0100 _B LINK1000 Blink when link is 1000 Mbps. 1000 _B LINK2500 Blink when link is 2500 Mbps.
PULSE	11:8	RW	Pulsing Configuration The PULSE field is a mask field that combines certain events, e.g., TXACT RXACT, to generate a pulse on the LED when such an event is detected. 0000 _B NONE No pulsing 0001 _B TXACT Transmit activity 0010 _B RXACT Receive activity 0100 _B COL Collision 1000 _B NO_CON Constant on behavior is switched off.
CON	7:4	RW	Constant On Configuration The CON field selects the PHY states where the LED is constantly on. Each bit mask indicates a link speed. Combinations of these bit masks are used to provide a combination of link speed states to enable the behavior. 0000 _B NONE Not active 0001 _B LINK10 On when link is 10 Mbps. 0100 _B LINK100 On when link is 100 Mbps. 1000 _B LINK1000 On when link is 1000 Mbps.

Field	Bits	Type	Description (cont'd)
BLINKF	3:0	RW	Fast Blinking Configuration The BLINKF field selects the PHY states where the LED blinks with the predefined fast frequency. Each bit mask indicates a link speed. Combinations of these bit masks are used to provide a combination of link speed states to enable the behavior. 0000 _B NONE Not active 0001 _B LINK10 Blink when link is 10 Mbps. 0100 _B LINK100 Blink when link is 100 Mbps. 1000 _B LINK1000 Blink when link is 2500 Mbps.


Configuration for LED Pin 2 (Register 30.3)

Configuration register for LED pin 2.

IEEE Standard Register=30.3

VSPEC1_LED2 Configuration for LED Pin 2 (Register 30.3)

Reset Value 0340_H

Field	Bits	Type	Description
BLINKS	15:12	RW	Slow Blinking Configuration The Blink-S field selects the PHY states where the LED blinks with the predefined slow frequency. Each bit mask indicates a link speed. Combinations of these bit masks are used to provide a combination of link speed states to enable the behavior. 0000 _B NONE Not active 0001 _B LINK10 Blink when link is 10 Mbps. 0100 _B LINK100 Blink when link is 100 Mbps. 1000 _B LINK1000 Blink when link is 2500 Mbps.
PULSE	11:8	RW	Pulsing Configuration The PULSE field is a mask field that combines certain events, e.g., TXACT RXACT, to generate a pulse on the LED when such an event is detected. 0000 _B NONE No pulsing 0001 _B TXACT Transmit activity 0100 _B RXACT Receive activity 0100 _B COL Collision 1000 _B NO_CON Constant on behavior is switched off.

Field	Bits	Type	Description (cont'd)
CON	7:4	RW	Constant On Configuration The CON field selects the PHY states where the LED is constantly on. Each bit mask indicates a link speed. Combinations of these bit masks are used to provide a combination of link speed states to enable the behavior. 0000 _B NONE Not active 0001 _B LINK10 On when link is 10 Mbps. 0100 _B LINK100 On when link is 100 Mbps. 1000 _B LINK1000 On when link is 2500 Mbps.
BLINKF	3:0	RW	Fast Blinking Configuration The BLINKF field selects the PHY states where the LED blinks with the predefined fast frequency. Each bit mask indicates a link speed. Combinations of these bit masks are used to provide a combination of link speed states to enable the behavior. 0000 _B NONE Not Active 0001 _B LINK10 Blink when link is 10 Mbps. 0010 _B LINK100 Blink when link is 100 Mbps. 1000 _B LINK1000 Blink when link is 1000 Mbps.

Chip Level SGMII Control Register (Register 30.8)

SGMII control register to set up SGMII modes.

IEEE Standard Register=30.8

VSPEC1_SGMII_CTRL Chip Level SGMII Control Register (Register 30.8)

Reset Value

30DA_H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RST	LB	Res	ANEN	PD	RXINV	ANRS	Res	EEE_ CAP	Res	SGMII _F*		MII_RE	Res	ANM	IODE
rw	rw		rw	rw	rw	rw		rw		rw	r	W		r	W

Field	Bits	Type	Description
RST	15	RW	Reset SGMII This bit configures a self-clearing reset of the SGMII Interface. 0 _B NORM Normal operation SGMII 1 _B RST Reset SGMII
LB	14	RW	Loopback SGMII loopback 0 _B OFF SGMII loopback is disabled. 1 _B ON SGMII loopback is enabled.

Field	Bits	Туре	Description (cont'd)
ANEN	12	RW	ANEG Enable When this bit is set to 1, the ANMODE field determines the autonegotiation protocol. When this bit is set to 0, the speed is set to maximum in full duplex mode. Once the TPI link is up, the SGMII speed is automatically forced to match the TPI speed. This bit must be set to 0 when the SGMII_FIXED2G5 field is 1. The MAC SoC is able to access the actual TPI speed via the MDIO registers. OB OFF SGMII ANEG Disabled The speed is set to the maximum in full duplex mode for the initial link configuration (forced mode), until the TPI link is up. 1B ON SGMII ANEG Enabled The negotiation style is configured by the ANMODE field.
PD	11	RW	Power Down SGMII power down 0 _B OFF Normal operation SGMII 1 _B ON SGMII power down
RXINV	10	RW	Inversion of RX0_M and RX0_P The purpose of inverting RxM and RxP is to simplify the PCB layout (not crossing lanes, allows 1 layer). 0 _B NORMAL No inversion. Pin 28 is RX0_M, and pin 27 is RX0_P. 1 _B INVERT Invert RX SGMII. Pin 28 is RX0_P, and pin 27 is RX0_M.
ANRS	9	RW	Restart SGMII ANEG This is a self-clearing bit once the ANEG process has been initiated. 0 _B NORMAL Normal operation SGMII 1 _B RESTART Restart SGMII ANEG
EEE_CAP	7	RW	EEE SGMII ANEG The EEE SGMII capability is advertised in ANEG. Used only when ANMODE = AN_CIS_PHY. 0 _B OFF EEE is not advertised. 1 _B ON EEE is advertised.
SGMII_FIXED 2G5	5	RW	Force SGMII Interface to Remain in 2.5G Speed or TPI Link Speed Irrespective of the TPI link speed, the SGMII operates at 2.5G speed when this bit is enabled. The GPY packet manager performs the rate adaptation, and Flow Control is used to backpressure the MAC SoC when required. 0 _B NO_FORCE The SGMII speed is reconfigured by the GPY based on the TPI link speed. 1 _B FORCE The SGMII speed is forced to the 2.5G speed.

Field	Bits	Type	Description (cont'd)
USXGMII_RE ACH	4:3	RW	USXGMII Tx and Rx Configuration This is based on the loop length between the GPY and the STA connected via the USXGMII interface. No action is taken when the USXGMII interface is not available in the GPY. 100 SHORT Short Reach Configuration Short Reach Configuration of USXGMII Tx and Rx Equalization by firmware. 110 MEDIUM Medium Reach Configuration Medium Reach Configuration of USXGMII Tx and Rx Equalization by firmware. 110 LONG Long Reach Configuration Long Reach Configuration of USXGMII Tx and Rx Equalization by firmware. 111 CUSTOM Custom Configuration At start-up, default settings are available after boot. When custom configuration of the USXGMII Tx and Rx Equalization is required, the parameters are configured by the GPY API using custom values.
ANMODE	1:0	rw	SGMII ANEG Mode This field defines the type of ANEG protocol when ANEG is enabled. 00 _B RES Reserved. Do not use, defaults to AN_CIS_PHY. 01 _B AN_1000BX IEEE 1000Bx SGMII ANEG Clause 37 SGMII 1000Bx ANEG is used. 10 _B AN_CIS_PHY Cisco* SGMII ANEG mode with the GPY acting as a PHY. ANEG is implemented as defined by the Cisco* SGMII standard, as a PHY-side SGMII.This is the default configuration. 11 _B AN_CIS_MAC Cisco* SGMII ANEG mode with the GPY acting as a MAC. ANEG is implemented as defined by the Cisco* SGMII standard, as a MAC-side SGMII.

Chip Level SGMII Status Register (Register 30.9)

This is the SGMII status register.

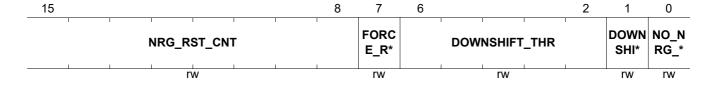
All the bits in this status register are read only. A write has no effect.

IEEE Standard Register=30.9

VSPEC1_SGMII_STAT **Reset Value** Chip Level SGMII Status Register (Register 30.9) 15 6 5 3 14 2

8008_H

Field	Bits	Туре	Description
MACSEC_CA P	15	RO	MACsec Capability 0 _B DISABLED Product is not MACsec capable. 1 _B ENABLED Product is MACsec capable.
ANOK	5	RO	Auto-Negotiation Completed Indicates whether the auto-negotiation process is completed or not. 0 _B RUNNING Auto-negotiation process is in progress or not started. 1 _B COMPLETED Auto-negotiation process is completed.
ANAB	3	RO	Auto-Negotiation Ability Specifies the auto-negotiation ability. 0 _B DISABLED PHY is not able to perform auto-negotiation. 1 _B ENABLED PHY is able to perform auto-negotiation.
LS	2	ROLL	Link Status Indicates the link status of the SGMII. 0 _B INACTIVE The link is down. No communication with link partner possible. 1 _B ACTIVE The link is up. Data communication with link partner is possible.
DR	1:0	RO	SGMII Data Rate This field indicates the operating data rate of SGMII when the link is up. 00 _B DR_10 SGMII link rate is 10 Mbps. 01 _B DR_100 SGMII link rate is 100 Mbps. 10 _B DR_1G SGMII link rate is 1000 Mbps. 11 _B DR_2G5 SGMII link rate is 2500 Mbps.


NBASE-T Downshift Control Register (Register 30.10)

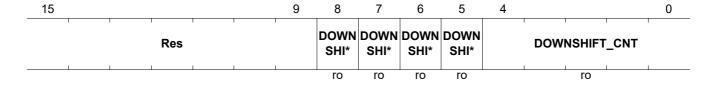
IEEE Standard Register=30.10

VSPEC1_NBT_DS_CTRL NBASE-T Downshift Control Register (Register 30.10)

Reset Value

0400_H

Field	Bits	Type	Description
NRG_RST_CN T	15:8	RW	Timer to Reset the Downshift Process When the energy is zero for a duration equal to NRG_RST_CNT seconds, the ANEG advertised capabilities are reset to the maximum GPY capabilities. When NRG_RST_CNT is lower than 2, the ADS feature cannot be enabled. Default is 4 seconds. Note: This timer only takes effect when NO_NRG_RST is set.


Field	Bits	Туре	Description (cont'd)
FORCE_RST	7	RW	Force Reset of Downwshift Process Setting this bit to 1 immediately resets the ANEG advertised capabilities to the maximum GPY capabilities.
DOWNSHIFT_ THR	6:2	RW	NBASE-T Downshift Training Counter Threshold dsh_thr variable in NBASE-T specification This is a 4-bit counter from 0 to 15 used to control the number of training cycles allowed for linkup, otherwise downshift.
DOWNSHIFT_ EN	1	RW	NBASE-T Downshift Enable dsh_en variable in NBASE-T specification 0 _B DISABLE Disable NBT downshift. 1 _B ENABLE Enable NBT downshift.
NO_NRG_RS T	0	RW	Advertise All Speeds if No Energy Detected When no energy is detected, this resets to advertise all speeds. Energy variable in NBASE-T specification 0 _B DISABLE Do not reset speeds advertised when no energy is detected. 1 _B ENABLE Reset speeds advertised when no energy is detected.

NBASE-T Downshift Status Register (Register 30.11)

IEEE Standard Register=30.11

VSPEC1_NBT_DS_STA NBASE-T Downshift Status Register (Register 30.11)

Reset Value 0000_H

Field	Bits	Туре	Description
DOWNSHIFT_ 1G	8	RO	Downshift from 1G to Lower Speed
DOWNSHIFT_ 2G5	7	RO	Downshift from 2.5 G to Lower Speed
DOWNSHIFT_ 5G	6	RO	Downshift 5G to Lower Speed Not supported by the GPY.
DOWNSHIFT_ 10G	5	RO	Downshift 10G to Lower Speed Not supported by the GPY.
DOWNSHIFT_ CNT	4:0	RO	Training Attempt Counter Counts training attempts to select the operating speed. dsh_cnt state variable in NBASE-T specification

Packet Manager Control (Register 30.12)

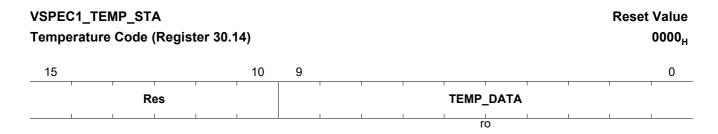
IEEE Standard Register=30.12

Control the Packet Manager Configuration

VSPEC1_PM_CTRL Packet Manager Control (Register 30.12)

Reset Value 0083_H

15			11		8	7	6	5	4	3	2	1	0
	Res	1	MDINT _MOD E	Res		MAC_ FRE*	SYNCI	E_CLK	SYNC E_EN	PTP_1 58*	PTP_1 58*	MACS EC_*	RES
			rw			rw	r	N	rw	rw	rw	rw	rw


Field	Bits	Туре	Description
MDINT_MODE	11	RW	MDIO Interrupt Mode Sets the mode of the MDIO interrupt signal. 0 _B TRI Tristate mode MDIO interrupt signal is tristate when interrupt inactive. It will be driven only when interrupt is active. 1 _B PP Push-pull mode MDIO interrupt signal is constantly driven.
MAC_FREQ_T UNE	7	RW	Control Bit to Tune Frequency of MACs In USXGMII Mode During the stress test of 100% bi-directional traffic for longer duration, the recommendation is to run the MACs at a slightly higher frequency to avoid packet drops in USXGMII mode. It is recommended to call the API for the correct programming sequence. In non-USXGMII mode, this bit has no effect. O _B PPM_0 MACs operate at frequency corresponding to line rate. 1 _B PPM_100 Long Duration Stress Test condition. MACs operate at frequency +100 ppm corresponding to line rate.
SYNCE_CLK	6:5	RW	Configure the SyncE Clock Frequency Class It is recommended to configure SyncE through the API. Write access to these bits are blocked in devices that do not support SyncE. 00 _B PSTN SyncE clock frequency is PSTN class: 8 kHz. 01 _B EEC1 SyncE clock frequency is EEC-1 class: 2.048 MHz. 10 _B EEC2 SyncE clock frequency is EEC-2 class: 1.544 MHz. 11 _B RES Reserved
SYNCE_EN	4	RW	Enable SyncE Feature Applicable to SyncE capable devices only. SyncE is disabled by default and it is recommended to enable SyncE through the API. Write access to this bit is blocked in devices that do not support SyncE. 0 _B DISABLE Disable SyncE. 1 _B ENABLE Enable SyncE.

Field	Bits	Туре	Description (cont'd)
PTP_1588_ST EP	3	RW	Configure 1588 Time Stamping Mode 0 _B TWO_STEP Two step time stamping 1 _B ONE_STEP One step time stamping
PTP_1588_EN	2	RW	Enable Sync 1588 PTP Feature 0 _B DISABLE Disable 1 _B ENABLE Enable
MACSEC_EN	1	RW	Disable MACsec Applicable to MACsec capable devices only. On MACsec capable products, the MACsec feature is enabled at power up. This option allows the MACsec feature to be disabled by programming. On non-MACsec capable products, this option has no effect and is always DISABLE. The MACsec capability is indicated at power up in VSPEC1_SGMII_STAT.MACSEC_CAP. 0 _B DISABLE Disable 1 _B ENABLE Enable. No effect on the GPY.
RES	0	RW	Reserved

Temperature Code (Register 30.14)

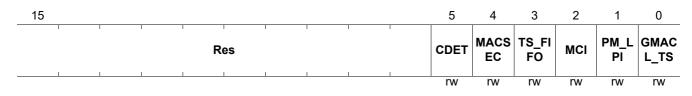
The junction temperature code that is converted by the GPYAPI into a temperature in degrees Celsius. IEEE Standard Register=30.14

Field	Bits	Туре	Description
TEMP_DATA	9:0	RO	Code for Junction Temperature
_			This code is converted to the equivalent temperature in degrees Celsius
			by the GPY API driver. The STA must take thermal mitigation measures
			when the junction temperature exceeds the normal operating range.
			The code is invalid when the value is 0x0000.
			Conversion formula: T in Celsius = (-2.5761E-11)*N^4 + (9.7332E-
			8)*N^3+ (-1.9165E-04)*N^2+(3.0762E-1)*N +(-5.2156E+1), with N =
			decimal value of the code TEMP_DATA
			For Tj = -40 degC, TEMP_DATA = 40.5 (decimal)
			For Tj= +125 degC, TEMP_DATA = 912 (decimal)

MACsec Interrupt Mask Register (Register 30.17)

This register defines the mask for the Interrupt Status Register (ISTAT), which contains the event source for the MDINT interrupt sent from the GPY to an external chip.

The information about the interrupt source is indicated in the VSPEC1_ISTAT register.


IEEE Standard Register=30.17

VSPEC1_IMASK

MACsec Interrupt Mask Register (Register 30.17)

Reset Value

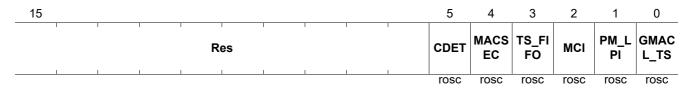
0000_H

Field	Bits	Type	Description
CDET	5	RW	Cable Detect Interrupt When active, MDINT is activated upon interrupt from detection of energy on the link. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.
MACSEC	4	RW	MACsec Egress/Ingress Interrupt When active, MDINT is activated upon interrupt from MACsec Egress/Ingress. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.
TS_FIFO	3	RW	Time Stamp FIFO Interrupt When active, MDINT is activated upon interrupt from either TX or RX Time Stamp FIFO. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.
MCI	2	RW	MCI Interrupt Request When active, MDINT is activated upon interrupt request from MCI. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.
PM_LPI	1	RW	PM LPI Interrupt Request When active, MDINT is activated upon LPI Interrupt Request from PM. 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.
GMACL_TS	0	RW	Status of Interrupt Request GMACL TS When active, MDINT is activated upon GMACL Time Stamp Valid Interrupt 0 _B INACTIVE Interrupt is masked out. 1 _B ACTIVE Interrupt is activated.

MACsec Interrupt Mask Register (Register 30.18)

This register defines the event source for the MDINT interrupt sent from the GPY to an external chip based on the mask settings in VSPEC1_IMASK register.

VSPEC1_ISTAT is a cleared on read by the STA.


IEEE Standard Register=30.18

VSPEC1_ISTAT

MACsec Interrupt Mask Register (Register 30.18)

Reset Value

0000_H

Field	Bits	Туре	Description
CDET	5	ROSC	Cable Detect Interrupt When bit is set, MDINT is activated upon interrupt from detection of energy on the link. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE Cable Detect Interrupt is the source of the interrupt.
MACSEC	4	ROSC	MACsec Egress/Ingress Interrupt When bit is set, MDINT is activated upon interrupt from MACsec Egress/Ingress. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE MACsec Egress/Ingress Interrupt is the source of the interrupt.
TS_FIFO	3	ROSC	Time Stamp FIFO Interrupt When bit is set, MDINT is activated upon interrupt from either TX or RX Time Stamp FIFO. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE Time Stamp FIFO Interrupt is the source of the interrupt.
MCI	2	ROSC	MCI Interrupt Request When bit is set, MDINT is activated upon interrupt request from MCI. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE MCI Interrupt Request is the source of the interrupt.
PM_LPI	1	ROSC	PM LPI Interrupt Request When bit is set, MDINT is activated upon LPI Interrupt Request from PM. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE LPI Interrupt Request from PM is the source of the interrupt.
GMACL_TS	0	ROSC	Status of Interrupt Request GMACL TS When bit is set, MDINT is activated upon interrupt from GMACL Time Stamp Valid Interrupt. 0 _B INACTIVE This event is not the interrupt source. 1 _B ACTIVE GMACL Time Stamp is the source of the interrupt.

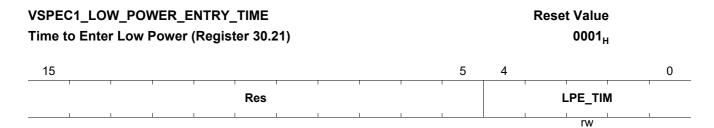

ASP Mapping to Physical Lanes (Register 30.20)

This register offers a programmable option to map physical lanes A, B, C, and D of the TPI to the ASPs. Each ASP must be mapped to each lane.

IEEE Standard Register=30.20

VSPEC1_LANE_ASP_MAP ASP Mapping to Physical Lanes (Register 30.20)

Reset Value 00E4_H


Field	Bits	Туре	Description
LANE_D	7:6	RW	Map Physical Lane-D to the ASP
			00 _B ASPA Map Physical Lane-D to the ASP-A.
			01 _B ASPB Map Physical Lane-D to the ASP-B.
			10 _B ASPC Map Physical Lane-D to the ASP-C.
			11 _B ASPD Map Physical Lane-D to the ASP-D.
LANE_C	5:4	RW	Map Physical Lane-C to the ASP
			00 _B ASPA Map Physical Lane-C to the ASP-A.
			01 _B ASPB Map Physical Lane-C to the ASP-B.
			10 _B ASPC Map Physical Lane-C to the ASP-C.
			11 _B ASPD Map Physical Lane-C to the ASP-D.
LANE_B	3:2	RW	Map Physical Lane-B to the ASP
			00 _B ASPA Map Physical Lane-B to the ASP-A.
			01 _B ASPB Map Physical Lane-B to the ASP-B.
			10 _B ASPC Map Physical Lane-B to the ASP-C.
			11 _B ASPD Map Physical Lane-B to the ASP-D.
LANE_A	1:0	RW	Map Physical Lane-A to the ASP
			00 _B ASPA Map Physical Lane-A to the ASP-A.
			01 _B ASPB Map Physical Lane-A to the ASP-B.
			10 _B ASPC Map Physical Lane-A to the ASP-C.
			11 _B ASPD Map Physical Lane-A to the ASP-D.

Time to Enter Low Power (Register 30.21)

Programmable option to delay the time taken to enter low power mode. This register has no effect on master port since it never enters low power mode.

IEEE Standard Register=30.21

Field	Bits	Type	Description
LPE_TIM	4:0	RW	Low Power Entry Time This is the time taken from detection of no activity on the line to the low power completion. The granularity is 4 seconds and adds on to the initial time 2.4 seconds to 5.6 seconds.

6.5 Vendor Specific 2 Device for MMD=0x1F

This register file contains the GPY-specific registers for MMD=31 (decimal).

Table 31 Registers Overview

Register Short Name	Register Long Name	Reset Value
VPSPEC2_WOL_CTL	Wake-on-LAN Control Register (Register 31.3590)	0000 _H
VPSPEC2_WOL_AD01	Wake-on-LAN Address Byte 0 and 1 (Register 31.3592)	0000 _H
VPSPEC2_WOL_AD23	Wake-on-LAN Address Byte 2 and 3 (Register 31.3593)	0000 _H
VPSPEC2_WOL_AD45	Wake-on-LAN Address Byte 4 and 5 (Register 31.3594)	0000 _H
VPSPEC2_WOL_PW01	Wake-on-LAN SecureON Password Byte 0 (Register 31.3595)	0000 _H
VPSPEC2_WOL_PW23	Wake-on-LAN SecureON Password Byte 2 and 3 (Register 31.3596)	0000 _H
VPSPEC2_WOL_PW45	Wake-on-LAN SecureON Password Byte 4 and 5 (Register 31.3597)	0000 _H

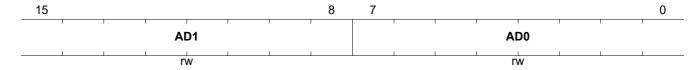
6.5.1 Vendor Specific 2 Device for MMD=0x1F

This section describes all the VSPEC2 registers in detail.

Wake-on-LAN Control Register (Register 31.3590)

This is the wake-on-LAN control register. Redirected to PCS_PDI_WOL_CTL. IEEE Standard Register=31.3590

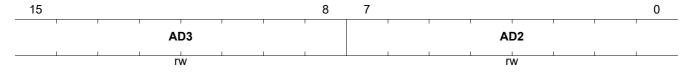
VPSPEC2_WOL_CTL Reset Value
Wake-on-LAN Control Register (Register 31.3590) 0000_H


Field	Bits	Type	Description
SPWD_EN	2	RW	Secure-ON Password Enable When this bit is set to enabled, the SecureON password is checked after 16 MAC address repetitions. 0 _B DISABLED SecureON password check is disabled. 1 _B ENABLED SecureON password check is enabled.
RES	1	RO	Reserved Must always be written to zero.
EN	0	RW	Enables the Wake-on-LAN Functionality When wake-on-LAN is enabled, the PHY scans for the configured magic packet and indicates its reception via the register bit ISTAT.WOL and optionally also via interrupt. O _B DISABLED Wake-on-LAN functionality is disabled, 1 _B ENABLED Wake-on-LAN functionality is enabled,

Wake-on-LAN Address Byte 0 and 1 (Register 31.3592)

Wake-on-LAN Address Byte 0 and 1. Redirected to PCS_PDI_WOL_AD01 IEEE Standard Register=31.3592

VPSPEC2_WOL_AD01 Reset Value Wake-on-LAN Address Byte 0 and 1 (Register 31.3592) 0000_H

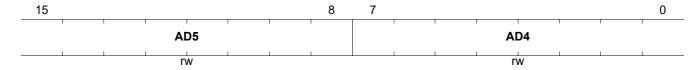


Field	Bits	Туре	Description
AD1	15:8	RW	Address Byte 1 Defines byte 1 of the WoL-designated MAC address to which the PHY is sensitive.
AD0	7:0	RW	Address Byte 0 Defines byte 0 of the WoL-designated MAC address to which the PHY is sensitive.

Wake-on-LAN Address Byte 2 and 3 (Register 31.3593)

Wake-on-LAN Address Byte 2 and 3. Redirected to PCS_PDI_WOL_AD23 IEEE Standard Register=31.3593

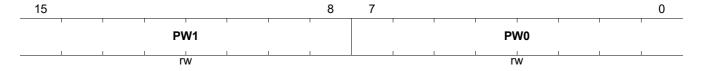
VPSPEC2_WOL_AD23 Reset Value
Wake-on-LAN Address Byte 2 and 3 (Register 31.3593) 0000_H


Field	Bits	Type	Description
AD3	15:8	RW	Address Byte 3 Defines byte 3 of the WoL-designated MAC address to which the PHY is sensitive.
AD2	7:0	RW	Address Byte 2 Defines byte 2 of the WoL-designated MAC address to which the PHY is sensitive.

Wake-on-LAN Address Byte 4 and 5 (Register 31.3594)

Wake-on-LAN Address Byte 4 and 5. Redirected to PCS_PDI_WOL_AD45 IEEE Standard Register=31.3594

VPSPEC2_WOL_AD45 Reset Value Wake-on-LAN Address Byte 4 and 5 (Register 31.3594) 0000_H

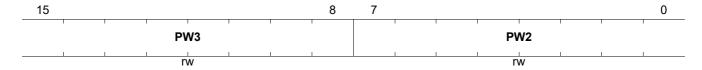


Field	Bits	Туре	Description
AD5	15:8	RW	Address Byte 5 Defines byte 5 of the WoL-designated MAC address to which the PHY is sensitive.
AD4	7:0	RW	Address Byte 4 Defines byte 4 of the WoL-designated MAC address to which the PHY is sensitive.

Wake-on-LAN SecureON Password Byte 0 (Register 31.3595)

Wake-on-LAN SecureON Password Byte 0. Redirected to PCS_PDI_WOL_PWD01 IEEE Standard Register=31.3595

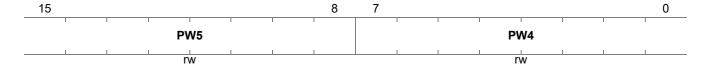
VPSPEC2_WOL_PW01 Reset Value
Wake-on-LAN SecureON Password Byte 0 (Register 0000_H
31.3595)


Field	Bits	Туре	Description
PW1	15:8	RW	SecureON Password Byte 1 Defines byte 1 of the WoL-designated SecureON password to which the PHY is sensitive.
PW0	7:0	RW	SecureON Password Byte 0 Defines byte 0 of the WoL-designated SecureON password to which the PHY is sensitive.

Wake-on-LAN SecureON Password Byte 2 and 3 (Register 31.3596)

Wake-on-LAN SecureON Password Byte 2 and 3. Redirected to PCS_PDI_WOL_PWD23 IEEE Standard Register=31.3596

VPSPEC2_WOL_PW23 Reset Value Wake-on-LAN SecureON Password Byte 2 and 3 (Register 0000_H 31.3596)


Field	Bits	Type	Description
PW3	15:8	RW	SecureON Password Byte 3 Defines byte 3 of the WoL-designated SecureON password to which the PHY is sensitive.
PW2	7:0	RW	SecureON Password Byte 2 Defines byte 2 of the WoL-designated SecureON password to which the PHY is sensitive.

Wake-on-LAN SecureON Password Byte 4 and 5 (Register 31.3597)

Wake-on-LAN SecureON Password Byte 4 and 5. Redirected to PCS_PDI_WOL_PWD45 IEEE Standard Register=31.3597

VPSPEC2_WOL_PW45

Wake-on-LAN SecureON Password Byte 4 and 5 (Register 0000_H 31.3597)

Field	Bits	Туре	Description
PW5	15:8	RW	SecureON Password Byte 5 Defines byte 5 of the WoL-designated SecureON password to which the PHY is sensitive.
PW4	7:0	RW	SecureON Password Byte 4 Defines byte 4 of the WoL-designated SecureON password to which the PHY is sensitive.

7 Chip Electrical Characteristics

This chapter defines the electrical characteristics of the Gigabit Ethernet PHY.

7.1 Absolute Maximum Ratings

Table 32 shows the absolute maximum ratings for the Gigabit Ethernet PHY.

Table 32 Absolute Maximum Ratings

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Storage Temperature Limits	T _{STG}	-55.0	_	125.0	°C	_
Soldering Temperature	T _{SOL}	_	-	260.0	°C	Compliance with Pb free re-flow soldering profile as J-STD-020D
Moisture Level 3 Temperature Limits	T _{ML3}	_	_	260.0	°C	According to IPS J- STD 020
Absolute Junction Temperature	T _{JABS}	-40.0		125	°C	Thermal solution must ensure that T _J never exceeds T _{JABS} max. The chip resets the device when T _J > T _{JABS} to prevent any damage occurring.
DC Voltage Limits on VDDP3V3_PAD Pins	V_{DDP3V3}	-0.5	_	+3.63	V	Generic PAD V _{HIGH} supply
DC Voltage Limits on VDDP_PAD Pins	V_{DDP}	-0.5	_	+3.63	V	Multi Voltage PAD V _{HIGH} supply
DC Voltage Limits on VDDA3V3_0, VDDA3V3_1, VDDA3V3_2, VDDA3V3_3 Pins	V _{DDA3V3}	-0.5	_	+3.63	V	Chip analog V _{HIGH} supply
DC Voltage Limits on VDDA3V3_XO, VDDA3V3_CDB, VDD3V3_LDO Pins	V _{DDA3V3XO} V _{DDA3V3CDB} V _{DD3V3LDO}	-0.5	-	+3.63	V	Chip clocking V _{HIGH} supply
DC Voltage Limits on SVPH3V3 Pins	V_{PH}	-0.5	_	+3.63	V	SGMII V _{HIGH} supply
DC Voltage Limits on UVPHA1V8, VDDA1V8_PLL Pins	V _{UPH} V _{DDA1V8PLL}	-0.5	_	+1.98	V	USXGMII, LJ PLL V _{HIGH} supply
DC Voltage Limits on VDDA0V9_0, VDDA0V9_1, VDDA0V9_2, VDDA0V9_3, VDDA0V9_CDB, VDDD0V9_PLL Pins	V _{DDA0V9} V _{DDA0V9CDB} V _{DDD0V9PLL}	-0.5	_	+1.05	V	Chip V _{LOW} supply, LJ PLL V _{LOW} supply
DC Voltage Limits on VDD0V9_COR Pins	V _{DD}	-0.5	_	+1.05	V	Chip core V _{LOW} supply
DC Voltage Limits on SVP0V9, UVP0V9 Pins	V _P V _{UP}	-0.5	-	+1.05	V	SGMII, USXGMII V _{LOW} supply

Table 32 Absolute Maximum Ratings (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
DC Voltage Limits on Any Other Pins ¹⁾ with Respect to Ground	V _{DC}	-0.5	_	V _{DDP3V3} + 0.5	V	Unless specified otherwise
XTAL1 Input Voltage	V _{XTAL1}	-0.30	1.8	2.0	V	_
ESD HBM Robustness	V _{ESD,HBM}	_	_	1000.0	V	According to ANSI/ESDA/JEDE C JS-001-2014
ESD CDM Robustness	V _{ESD,CDM}	_	_	250.0	V	According to ANSI/ESDA/JEDE C JS-002-2014

This means any pin which is not a supply pin out of one of the domains: V_{DDP}, V_{PH}, V_P, V_{DDA3V3}, V_{DDA3V3XO}, V_{DDA3V3CDB}, V_{DDA3V3AON}, V_{DDA3V3AON}, V_{DDA3V3LDO}.

Attention: Stresses above the maximum values listed in this table may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the device.

7.2 Operating Range

Table 33 defines the limit values of voltages and temperature which may be applied to guarantee proper operation of the Gigabit Ethernet PHY.

Table 33 Operating Range

Parameter	Symbol	Values			Unit	Note / Test Condition	
	†	Min. Typ. Max.					
Ambient Temperature under Bias	T _A	-40.0	_	85.0	°C	The thermal design must ensure that the maximum junction temperature is not exceeded. The use of a heat sink may be suitable.	
Junction Temperature	T _j	_	_	110.0	°C	Thermal solution must ensure that T _j remains within operating range and never exceeds maximum absolute ratings.	
Generic Pad Supply Voltage	V _{DDP3V3}	3.135	3.30	3.46	V	Generic PAD V _{HIGH} supply	
Multi Voltage Pad Supply Voltage	V_{DDP}	3.135	3.30	3.46	V	Multi Voltage PAD V _{HIGH} supply	
Analog High Supply Voltage	V_{DDA3V3}	3.135	3.30	3.46	V	Chip analog V _{HIGH} supply	
XO High Supply Voltage	$V_{\rm DDA3V3XO}$	3.135	3.30	3.46	V	Chip clocking V _{HIGH} supply	
CDB High Supply Voltage	$V_{\rm DDA3V3CDB}$	3.135	3.30	3.46	V	Chip clocking V _{HIGH} supply	
LDO High Supply Voltage	$V_{\rm DDA3V3LDO}$	3.135	3.30	3.46	V	Chip clocking V _{HIGH} supply	
SGMII High Supply Voltage	V_{PH}	3.135	3.30	3.46	V	SGMII V _{HIGH} supply	
USXGMII High Supply Voltage	V_{UPH}	1.71	1.80	1.89	V	USXGMII V _{HIGH} supply	
LJ PLL High Supply Voltage	V _{DDA1V8PLL}	1.71	1.80	1.89	V	LJ PLL V _{HIGH} supply	
Analog Low Supply Voltage	V_{DDA0V9}	0.922	0.95	0.979	V	Chip analog V_{LOW} supply	
CDB Low Supply Voltage	$V_{\rm DDA0V9CDB}$	0.922	0.95	0.979	V	Chip clocking V_{LOW} supply	
LJ PLL Low Supply Voltage	$V_{\rm DDD0V9PLL}$	0.922	0.95	0.979	V	LJ PLL V _{LOW} supply	
Chip Core Supply Voltage	V_{DD}	0.922	0.95	0.979	V	Chip core V _{LOW} supply	
SGMII Low Supply Voltage	V_P	0.922	0.95	0.979	V	SGMII V _{LOW} supply	
USXGMII Low Supply Voltage	V_{UP}	0.922	0.95	0.979	V	USXGMII V _{LOW} supply	
Ground	V _{SS}	0.00	0.00	0.00	V	_	

Attention: Operations above the maximum values listed here for extended periods may adversely affect long-term reliability of the device.

7.3 Typical Power Consumption

Table 34 and **Table 35** list the typical power consumption for different modes. Typical power is the power consumed by a nominal process device, nominal supply voltages, at 25°C ambient temperature and a CAT5e link segment.

The conditions for Link-up are full speed and bidirectional, full duplex traffic on all 4 ports.

Power numbers are given for the two SerDes configurations:

- SGMII Table 34
- USXGMII Table 35

Table 34 Typical Power Consumption in SGMII Configuration

	3.3 V V _{HIGH} Domain Current	0.95 V V _{LOW} Domain Current	Chip Power
Unit	mA	mA	w
2.5GBASE-T Link-Up, 100 m Cable	369	2189	3.30
2.5GBASE-T Link-Up, 30 m Cable	347	1796	2.85
2.5GBASE-T EEE	338	1437	2.48
1000BASE-T Link-Up, 100 m Cable	279	1067	1.93
1000BASE-T EEE	109	593	0.92
100BASE-TX Link-Up, 100 m Cable	145	516	0.97
100BASE-TX EEE	78	475	0.71
10BASE-Te Link-Up, 100 m Cable	103	449	0.77
Cable Unplugged - ANEG	110	473	0.81
Cable Unplugged - LP	42	206	0.33
Reset	6	26	0.04

Table 35 Typical Power Consumption in USXGMII Configuration

	3.3 V V _{HIGH} Domain Current	1.8 V V _{LOW} Domain Current	0.95 V V _{LOW} Domain Current	Chip Power
Unit	mA	mA	mA	w
2.5GBASE-T Link-Up, 100 m Cable	337	84	2291	3.44
2.5GBASE-T Link-Up, 30 m Cable	304	78	2050	3.09
2.5GBASE-T EEE	281	82	1500	2.50
1000BASE-T Link-Up, 100 m Cable	228	81	1098	1.94
1000BASE-T EEE	48	80	629	0.90
100BASE-TX Link-Up, 100 m Cable	95	80	542	0.97
100BASE-TX EEE	27	80	501	0.71
10BASE-Te Link-Up, 100 m Cable	53	80	476	0.77
Cable Unplugged - ANEG	50	78	455	0.74
Cable Unplugged - Low Power	29	78	289	0.51
Reset	6	0	26	0.04

7.4 Maximum Thermal Design Power

Table 36 lists the maximum Thermal Design Power (TDP). The TDP is the power consumption for a full traffic load and worst-case process, supply voltage, cable, and temperature conditions. This value is relevant to design the thermal solution.

Table 36 Maximum Power Consumption

	SGMII Mode	USXGMII Mode
Unit	W	W
Maximum Chip Power at Maximum Operating Range	6.06	6.06

Note: With a properly designed thermal solution (heat sink), it is unlikely that Tj exceeds the maximum operating junction temperature. An excess is reported in the MDIO register VSPEC1_TMP_STA and the STA can initiate a renegotiation to a lower link rate to get Tj back into the operating temperature range.

7.5 Peak Current

Table 37 provides the peak current to dimension the power supply. It is the maximum short term current consumption per rail for a full traffic load and worst-case process, supply voltage and temperature conditions that may occur in any operating state of the device. The peak current can be higher than the steady state current, for instance in training phases of the internal filters.

Table 37 Peak Current Per Rail

3.3 V V _{HIGH} Domain Current	1.8 V V _{LOW} Domain Current (UXSGMII only)	0.95 V V _{LOW} Domain Current		
mA	mA	mA		
600	100	5000		

7.6 DC Characteristics

These sections document the DC characteristics of the Gigabit Ethernet PHY external interfaces.

7.6.1 Digital Interfaces

This section defines the DC characteristics of the GPIO interface as follows:

- General Purpose IO
- MDIO
- SPI
- Interrupts
- · Clock Input and Outputs
- LED
- JTAG

Table 38 summarizes the DC characteristics for V_{DDP} =3.3 V.

Table 38 DC Characteristics of the GPIO Interfaces (VDDP=3.3 V)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input High Voltage	V _{IH}	0.7*V _{DDP}	_	V _{DDP} +0.3	V	_
Input Low Voltage	V _{IL}	-0.3	_	0.3*V _{DDP}	V	_
Output High Voltage	V _{OH}	V _{DDP} -0.4	_	_	V	I _{OH} = 2, 4, 8, 12 mA
Output Low Voltage	V _{OL}	_	_	0.4	V	I _{OL} = 2, 4, 8, 12 mA

7.6.2 Twisted Pair Interface

The TPI conforms to the specifications of 10BASE-Te (Clause 14), 100BASE-TX (Clause 25), 1000BASE-T (Clause 40) and 2.5GBASE-T (Clause 126) given in [4], [6], and [7].

7.6.3 Built-in Temperature Sensor

Table 39 lists the parameters of the integrated temperature sensor.

Table 39 Temperature Sensor Characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Temperature Range	T _{range}	-40		125	°C	Thermal mitigation measures must ensure that T _j remains within the operating range. When T _j exceeds the maximum ratings, the GPY performs a self-reset to prevent damage, and the next ANEG is re-started advertising a lower speed.	
Resolution		_	10	_	bits	-	
Accuracy		-5	_	+5	°C	-	

7.7 AC Characteristics

These sections investigate the AC characteristics of the external interfaces.

$$T_{A}$$
 = -40 to 85°C, V_{DDP} = 3.3 V \pm 5%, V_{SS} = 0 V

Timing measurements are made at minimum V_{IH} for a logical 1 and at maximum V_{IL} for a logical 0.

Figure 16 shows the AC testing input/output waveforms. The load capacitors are according to the specific interface standard, all non-specified interfaces use 30 pF as assumed loading.

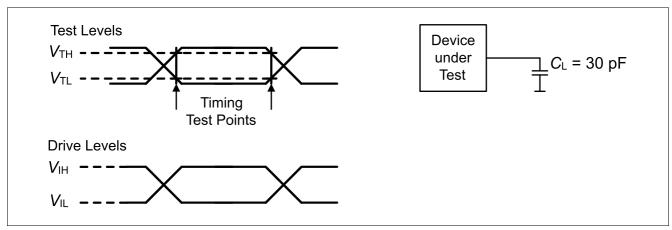


Figure 16 Input/Output Waveform for AC Tests

7.7.1 Power Up and Power Down Sequence

In this configuration, both V_{HIGH} , V_{UPH} , and V_{LOW} are supplied externally.

The High Voltage domain V_{HIGH} must always be at a higher voltage level than the Low Voltage Domain V_{LOW} . V_{HIGH} must always be at a higher voltage than V_{UPH} , and V_{UPH} must always be at a higher voltage than the Low Voltage Domain V_{LOW} .

 V_{HIGH} , V_{UPH} , and V_{LOW} ramp-up times (t_{vh_rampup} , t_{vuph_rampup} , and t_{vl_rampup}) must be above the minimum requirement.

All the supply domains V_{HIGH} , V_{UPH} , and V_{LOW} must be stabilized before releasing the reset HRSTN.

During the power-down sequence, V_{HIGH} ramp down time must not be shorter than the minimum requirement.

The device reset HRSTN must be held for a t_{reset} time after the stabilization of the power supplies and pin strap values. When reset is released, the integrated PLL locks and the device boots up.

The GPY245 supports an asynchronous hardware reset HRSTN. **Table 40** lists the timing requirements of the power supply pins. The timings refer to the signal sequence waveforms depicted in **Figure 17** in SGMII mode of operation, and **Figure 18** in USXGMII mode of operation.

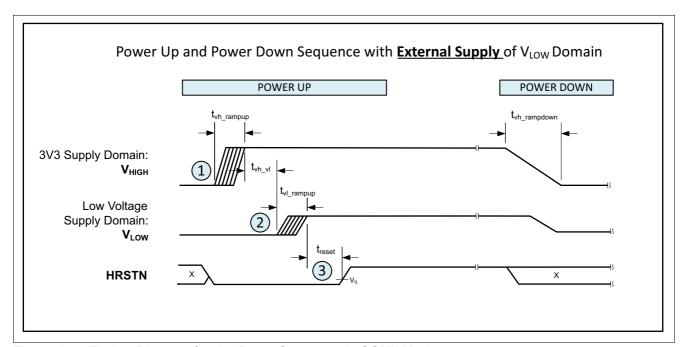


Figure 17 Timing Diagram for the Reset Sequence in SGMII Mode

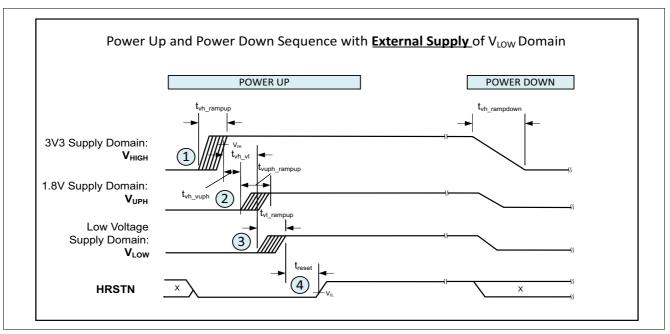


Figure 18 Timing Diagram for the Reset Sequence in USXGMII Mode

Table 40 Power Supply Timings

Parameter	Symbol		Value	s	Unit	Note /	
		Min. Typ.		Max.		Test Condition	
V _{HIGH} Domain Ramp Up	t _{vh_rampup}	50	_	_	μs	To avoid current surge.	
V _{UPH} Domain Ramp Up	t _{vuph_rampup}	50	-	-	μs	To avoid current surge.	
V _{LOW} Domain Ramp Up	t _{vl_rampup}	50	_	_	μs	To avoid current surge.	
Delay between V _{HIGH} and V _{LOW} Domains Voltage Ramp Up	t _{vh_vl}	100	-	-	μs	The V _{LOW} voltage must never be higher than V _{HIGH} voltage	
Delay between V _{HIGH} and V _{UPH} Domains Voltage Ramp Up	t _{vh_vuph}	50	-	-	μs	The V _{UPH} voltage must never be higher than V _{HIGH} voltage.	
V _{HIGH} Domain Ramp Down	t _{vh_rampdown}	1.0	_	_	ms	The V _{LOW} voltage must never be higher than V _{HIGH} voltage.	
Reset Time after V _{HIGH} and V _{LOW} Domains are Stabilized	t _{reset}	100	_	_	ns	HRSTN must be released after the power supplies have stabilized.	

Rise and ramp down times are from 10% to 90% marks for $\rm V_{HIGH},\,\rm V_{LOW},$ and HRSTN.

7.7.2 Input Clock

Table 41 lists the input clock requirements when not using a crystal, i.e., when an external reference clock is injected into the XTAL1 pin of the Gigabit Ethernet PHY. The requirements include the nominal frequency, frequency deviation, duty cycle, and signal characteristics. When a crystal is applied to generate the reference clock using the integrated XO, the clock requirements stated here are met explicitly as long as the specification for the crystal is satisfied.

Table 41 AC Characteristics of Input Clock on XTAL1 Pin

Parameter	Symbol		Value	Unit	Note /	
		Min.	Тур.	Max.		Test Condition
Frequency with 25 MHz Input	f _{clk25}	_	25.0	_	MHz	_
Frequency Deviation ¹⁾		-50.0	_	+50.0	ppm	_
Duty Cycle		40.0	50.0	60.0	%	_
Rise/Fall Times		_	_	10.0	ns	_
Input Long Term Jitter (Jrms)		_	4.0	7.0	ps	1 kHz10 MHz
Input High Voltage		0.6	_	2.0	V	_
Input Low Voltage		-0.3	_	0.2	V	_
Load Capacitance		_	15	_	pF	_

¹⁾ Including the frequency stability tolerance due to temperature, and aging effects over the product lifetime of 5 years

7.7.3 Power Supply Rail Requirements

Table 42 lists the required characteristics of the power supplies.

Table 42 AC Characteristics of the Power Supply

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Power Supply Ripple on VDDA0V9, VDDA0V9PLL, VDDA0V9CDB	R _{VDDA0V9} R _{VDDA0V9} R _{VDDA0V9}	_	_	60.0	mV	Peak to Peak value
Power Supply Ripple on VP, VUP	R _{VP} R _{VUP}	_	-	60.0	mV	Peak to Peak value
Power Supply Ripple on VDD	R_{VDD}	_	_	60.0	mV	Peak to Peak value
Power Supply Ripple on VDDP	R _{VDDP}	_	_	100.0	mV	Peak to Peak value
Power Supply Ripple on VDDA3V3	R _{VDDA3V3}	_	_	100.0	mV	Peak to Peak value
Power Supply Ripple on VDDA3V3XO	R _{VDDA3V3XO}	_	_	100.0	mV	Peak to Peak value
Power Supply Ripple on VDDA3V3CDB	R _{VDDA3V3CDB}	_	_	100.0	mV	Peak to Peak value
Power Supply Ripple on VPH	R _{VPH}	_	_	100.0	mV	Peak to Peak value
Power Supply Ripple on VDD3V3LDO	R _{VDD3V3LDO}	_	_	100.0	mV	Peak to Peak value

7.7.4 MDIO Interface

Figure 19 shows a timing diagram of the MDIO interface for a clock cycle in the read-, write- and turnaround-modus, respectively. The timing measures are annotated. Table 43 summarizes the defined absolute values.

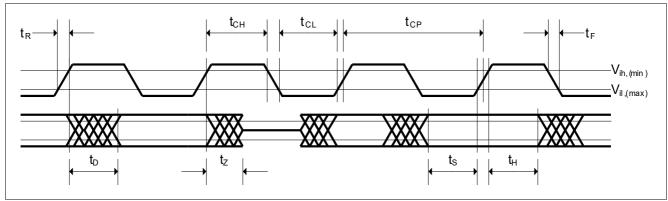


Figure 19 Timing Diagram for the MDIO Interface

Table 43 Timing Characteristics of the MDIO Interface

Parameter	Symbol		Values	Unit	Note / Test Condition		
		Min. Typ.				Max.	
MDC High Time	t _{CH}	10.0	_	_	ns	Given timings are all subject to the MDC at the pin of the GPY245.	
MDC Low Time	t _{CL}	10.0	_	_	ns		
MDC Clock Period	t _{CP}	40.0	400.0	_	ns		
MDC Clock Frequency ¹⁾	t _{CP}	_	2.5	25.0	MHz		
MDC Rise Time	t _R	_	_	5.0	ns		
MDC Fall Time	t _F	_	_	5.0	ns		
MDIO Input Setup Time subject to ↑ MDC	t _S	10.0	_	_	ns	GPY245 Receive	
MDIO Input Hold Time subject to ↑ MDC	t _H	10.0	_	_	ns	GPY245 Receive	
MDIO Output Delay Time subject to ↑ MDC	t _D	0.0	_	10	ns	GPY245 Transmit	
Standard at 2.5 MHz							
MDIO Output Delay subject to ↑ MDC	t _D	0.0	_	300.0	ns	PHY Transmit	

¹⁾ MDC clock supports range of frequencies, up to 25 MHz. Default/typical frequency is 2.5 MHz.

7.7.5 Serial Peripheral Interface (SPI)

Figure 20 shows the SPI master interface timing.

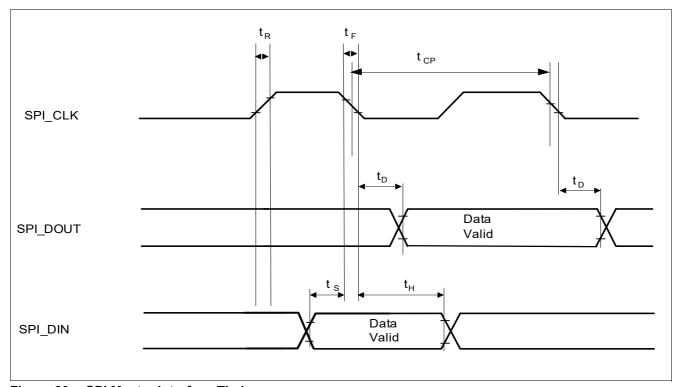


Figure 20 SPI Master Interface Timing

Table 44 SPI Interface Timing Parameters

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Master Mode	11	<u>'</u>	•	<u> </u>	"	
Tx Data Output Delay	t _D	0	_	4	ns	_
Rx Data Input Setup Time	t _S	7	_	_	ns	_
Rx Data Hold Time	t _H	0	_	_	ns	_
SPI Clock Period (Master Mode)	t _{CP}	20	_	50	ns	-
SPI Clock Rise Time	t _R	_	_	5.0	ns	10% - 90%
SPI Clock Fall Time	t _F	_	_	5.0	ns	10% - 90%
SPI Clock Duty Cycle	D	45	_	55	%	_

7.7.6 JTAG Interface

The JTAG test interface is used for debugging the GPHYCPU and boundary scan.

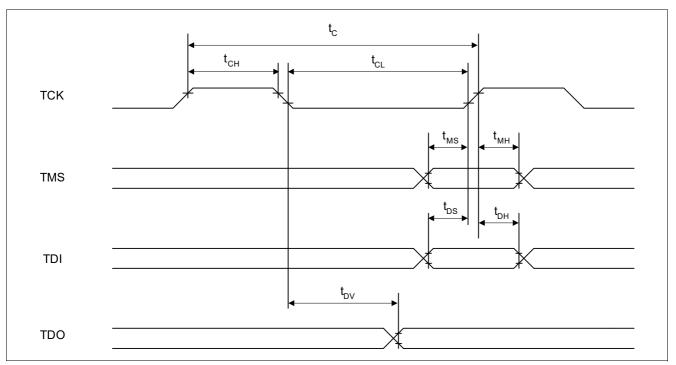


Figure 21 Test Interface Timing

Table 45 and Table 46 describe the timing values for the test interface.

Table 45 Test Interface Clock

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
TCK Clock Period	t _C	100	_	_	ns	_
TCK High Time	t_{CH}	40	_	_	ns	_
TCK Low Time	t_{CL}	40	_	_	ns	_

Table 46 JTAG Timing

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
TMS Setup Time	t_{MS}	40	_	_	ns	_
TMS Hold Time	t_{MH}	40	_	_	ns	_
TDI Setup Time	t_{DS}	40	_	_	ns	_
TDI Hold Time	t_{DH}	40	_	_	ns	_
Hold: TRST after TCK	t_{HD}	10	_	_	ns	_
TDO Valid Delay	$t_{\sf DV}$	_	_	60	ns	_

7.7.7 SGMII Interface Timing

This section describes the AC characteristics of the SGMII Interface on the GPY245.

The SGMII Interface timing characteristics are described below:

- SGMII Transmit timing characteristics (Section 7.7.7.1)
- SGMII Receive timing characteristics (Section 7.7.7.2)

7.7.7.1 SGMII Transmit Timing Characteristics

Figure 22 shows the timing diagram of the transmit SGMII interface on the GPY245. **Table 47** specifies the timing requirements.

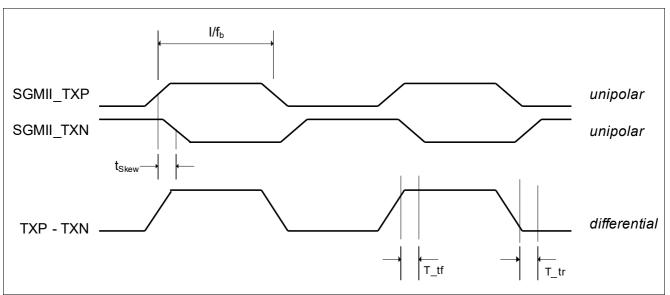


Figure 22 Transmit Timing Diagram of the SGMII (shows alternating data sequence)

Table 47 Transmit Timing Characteristics of the SGMII

Parameter	Symbol		Values	3	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Transmit Baud Rate	f _b	-100 ppm	f _b	+100 ppm	Mbaud	$f_b = 1.25/3.125$ Gbaud	
Differential Transmit Rise Time	T_t _r	30 ps	_	0.25 UI	_	20%→80%¹)	
Differential Transmit Fall Time	T_t _f	30 ps	_	0.25 UI	_	80%→20%	
Output Timing Jitter	T_T _J	_	_	0.30	UI _{pp} ²⁾		
Time Skew between Pairs	t _{Skew}	_	_	15	ps	_	
Output Differential Voltage	V _{OD}	400	_	1600	mV	Peak-peak amplitude	
Output Impedance (Differential)	R _o	80	100	120	Ω	_	

¹⁾ UI = $1/f_b$, Unit Interval.

²⁾ Refer to [3] for details. The p-p (peak to peak) measurement states the maximum to minimum amount of time deviation.

7.7.7.2 SGMII Receive Timing Characteristics

Figure 23 shows the timing diagram of the receive SGMII interface of the GPY245. **Table 48** specifies the timing requirements.

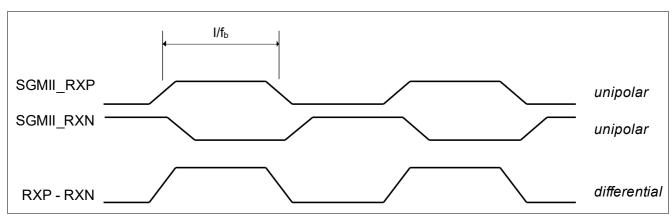


Figure 23 Receive Timing Diagram of the SGMII (alternating data input sequence)

Table 48 Receive Timing Characteristics of the SGMII

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Receive Baud Rate	f _b	-100 ppm	f _b	+100 ppm	Mbaud	f _b = 1.25/3.125 Gbaud	
Receive Data Jitter Tolerance	R_T _J	_	-	0.6	UI _{pp} ¹⁾	_	
Input Differential Voltage	V _{ID}	200	-	1600	mV	Peak-peak amplitude	
Input Impedance (Differential)	R _I	80	100	120	Ω	_	

¹⁾ Refer to [3] for details.

7.7.8 UXSGMII Interface Timing

This section describes the AC characteristics of the UXSGMII Interface on the GPY245.

The UXSGMII Interface timing characteristics are described below:

- UXSGMII Transmit timing characteristics (Section 7.7.8.1)
- UXSGMII Receive timing characteristics (Section 7.7.8.2)

7.7.8.1 UXSGMII Transmit Timing Characteristics

Table 49 shows timing requirements of the UXSGMII interface on the GPY245.

Table 49 Transmit Timing Characteristics of the UXSGMII

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Reference Differential Impedance	Z _d	_	100	_	Ω	_	
Termination Mismatch	R _M	_	_	5	%	_	
DC Common Mode Voltage	V_{cm}	0	_	3.6	V		
Output Rise and Fall Time	t _{RH} , t _{FH}	24 ps	_	_	ps	20%→80%	
Output AC Common Mode Voltage	_	_	_	15	mV	mV (RMS)	
Differential Output Return Loss ¹⁾	SDD22	20	_	_	dB	0.05-0.1 GHz	
		10	_	_	dB	0.1-7.5 GHz	
		_	_	_		7.5-15 GHz	
Common Mode Output Return Loss ²⁾	SCC22	6	_	_	dB	0.1-15 GHz	

¹⁾ Return loss given by equation SDD22(dB)=10 - 16.6 Log10(f/7.5), with f in GHz.

7.7.8.2 UXSGMII Receive Timing Characteristics

Table 50 shows timing requirements of the UXSGMII interface on the GPY245.

Table 50 Receive Timing Characteristics of the UXSGMII

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Reference Differential Impedance	Z _d	_	100	_	Ω	_
Termination Mismatch	Z_{M}	_	_	5	%	_
AC Common Mode Voltage	_	_	_	25	mV	mV (RMS)
Differential Output Return Loss ¹⁾	SDD11	20	_	_	dB	0.05-0.1 GHz
		10	_	_	dB	0.1-7.5 GHz
		_	_	_		7.5-15 GHz
Common Mode Input Return Loss ²⁾	SCC11	6	_	_	dB	0.1-15 GHz
Differential to Common Mode Input Conversion ²⁾	SCD11	12	_	_	dB	0.1-15 GHz

¹⁾ Return loss given by equation SDD11(dB)=10 - 16.6 Log10(f/7.5), with f in GHz.

²⁾ Common mode reference impedance is 25 Ω common mode return loss helps absorb reflections and noise for EMI.

²⁾ Common mode reference impedance is 25 Ω . SCD11 relates to conversion of differential to common mode and the associated generation of EMI.

7.7.9 Crystal Specification

The 25 MHz crystal must follow the specification given in Table 51.

Table 51 Specification of the Crystal

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Frequency with 25 MHz input	f _{clk25}	_	25.0	_	MHz	_
Total Frequency Stability	-	-50	-	+50	ppm	Refers to sum of all effects: e.g. general tolerance, aging, temperature dependency
Series Resonant Resistance	_	_	_	60	W	_
Drive Level	_	_	_	0.1	mW	_
Load Capacitance	C_{L}	_	18	_	pF	_
Shunt Capacitance	C_0	_	_	5	pF	_

7.8 External Circuitry

This section specifies the component characteristics of the external circuitry connected to the GPY245.

7.8.1 Twisted-Pair Common-Mode Rejection and Termination Circuitry

This section describes the external circuitry that is required to properly terminate the common mode of the Twisted Pair Interface (TPI). These external components are also required to perform proper rejection of alien disturbers injected into the common mode of the TPI. **Figure 24** shows a typical external circuit, and in particular the common-mode components. **Table 52** defines the component values and their supported tolerances.

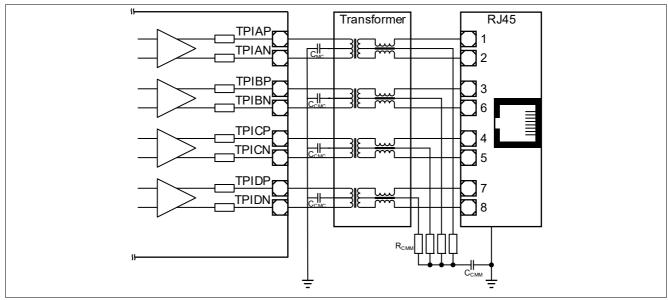


Figure 24 Twisted Pair Common-Mode Rejection and Termination Circuitry

Table 52 Electrical Characteristics for Common-Mode Rejection and Termination Circuitry

Parameter	Symbol	Values U				Note / Test Condition
		Min.	Тур.	Max.		
Common-Mode Decoupling Capacitance (Media End)	C _{CMM}	800	1000	1200	pF	±20%, 2 kV
Common-Mode Decoupling Capacitance (Chip End)	C _{CMC}	80	100	120	nF	±20%, 2 kV
Common-Mode Termination Resistance (Media End)	R _{CMM}	67.5	75	82.5	Ω	±10%

7.8.2 Transformer (Magnetics)

This section specifies the required electrical characteristics of the transformer devices, also referred to as magnetics, that are supported. The specifications listed here guarantee proper operation according to IEEE 802.3 [4].

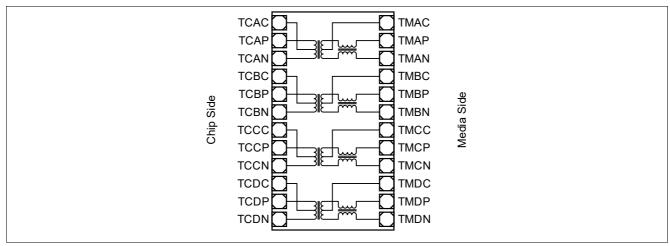


Figure 25 Schematic of an Ethernet Transformer Device

Figure 25 depicts a typical Gigabit Ethernet capable transformer device. **Table 53** lists the characteristics of the supported transformer devices. These characteristics represent the minimum for achieving standard performance. Since the transformer significantly impacts the link performance, it is possible to increase the loop reach by selecting transformers with improved parameters.

Table 53 Electrical Characteristics for Supported Transformers (Magnetics)

Parameter	Symbol	Va	lues		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Turns Ratio	1:tr	0.95	1.00	1.05		±5%	
Differential-to-Common- mode Rejection	DCMR	40	_	_	dB	30 MHz	
		35	_	_	dB	60 MHz	
		30	_	_	dB	100 MHz	
Crosstalk Attenuation	CTA	45	_	_	dB	30 MHz	
		40	_	_	dB	60 MHz	
		35	_	_	dB	100 MHz	
Insertion Loss	IL	_	_	1	dB	1 MHz ≤ f ≤ 250 MHz	
Return Loss	RL	16	_	_	dB	1 MHz ≤ f ≤ 40 MHz	
Return Loss	RL	16-10*log10(f/40)	_	_	dB	40 MHz ≤ f ≤ 250 MHz	

7.8.3 RJ45 Plug

Table 54 describes the electrical characteristics of the RJ45 plug to be used in conjunction with the GPY245.

Table 54 Electrical Characteristics for Supported RJ45 Plugs

Parameter	Symbol	Va	lues	Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Crosstalk Attenuation	СТА	45	_	_	dB	30 MHz
		40	_	_	dB	60 MHz
		35	_	_	dB	100 MHz
Insertion Loss	IL	_	_	1	dB	1 MHz ≤ f ≤ 250 MHz
Return Loss	RL	16	_	_	dB	1 MHz ≤ f ≤ 40 MHz
Return Loss	RL	16-10*log10(f/40)	_	_	dB	40 MHz ≤ f ≤ 250 MHz

7.8.4 Calibration Resistors

An external resistor R_{CAL} of 22 k Ω 1% must be connected between the RCAL pin and ground to calibrate the GPY245 Ethernet analog modules.

Additionally, an external resistor R_{RESREF} of 200 Ω 1% must be connected between the RESREF pin and ground in order to calibrate the GPY245 SGMII and USXGMII analog modules.

Table 55 indicates the resistor values.

Table 55 Calibration Resistors Values

Parameter Symbol			Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
GPY245 Calibration Resistor	R _{CAL}	21780	22000	22220	Ω	±1%
SGMII/USXGMII PHY Calibration Resistor	R _{RESREF}	198	200	202	Ω	±1%

7.9 Power Supply

The power supply scheme for GPY245 depends on the SerDes interface used to communicate with the MAC SoC. 3.3 V and 0.95 V external power supply is to be connected to the respective power rails in SGMII/USXGMII mode. When GPY245 operates in USXGMII mode instead of SGMII mode, additionally an external supply of 1.8 V is required. For more details, refer to [2].

Package Outline

8 Package Outline

The product is assembled in a PG-VF2BGA-260 package, which complies with regulations requiring lead free material. The following parameters are generated in accordance with JEDEC JESD51 standards [11]. Four models are provided:

- In natural convection environment, still air at 85°C (Table 56)
- In natural convection environment, still air at 70°C (Table 57)
- With a thermal solution setting chip top temperature at 70°C (Table 58)
- According to compact 2-R model (Table 59)

Table 56 JEDEC Thermal Resistance Package Parameter - Still air conditions at 85°C

Item	Name/Value
Environmental Conditions	The chip is mounted on a 4-layer PCB (2S2P) according to JESD51-7 [11], PCB size 101.5mm x 114.5 mm Natural convection: still air, according to JESD51-2 [11] Ambient temperature: 85°C
Thermal Resistance - Junction to Ambient	$R_{\text{th, JA}} = 18.4 \text{ K/W}$
Thermal Delta - Junction to Case Top	Psi _{JCTop} = 0.02 K/W

Table 57 JEDEC Thermal Resistance Package Parameter - Still air conditions at 70°C

Item	Name/Value
Environmental Conditions	The chip is mounted on a 2-layer PCB (1S1P) according to JESD51-7 [11], PCB size 101.5mm x 114.5 mm Natural convection: still air, according to JESD51-2 [11] Ambient temperature: 70°C
Thermal Resistance - Junction to Ambient	$R_{\text{th, JA}} = 26.4 \text{ K/W}$
Thermal Delta - Junction to Case Top	Psi _{JCTop} = 0.02 K/W

Table 58 JEDEC Thermal Resistance Package Parameter - With Thermal Solution Environment

Item	Name/Value	Environment
Thermal Resistance - Junction to Case Top	$R_{\rm th, JCtop} = 0.1 \text{ K/W}$	Cold plate on package top surface. Temp = 85°C. PCB with 16 thermal vias
Thermal Resistance - Junction to Board	$R_{\rm th, JB}$ = 12.8 K/W	According to JESD51-8 [11] Ring style cold plate on PCB around 3 mm from package edge. Temp = 85°C. 4L PCB (2S2P) with 16 thermal vias.

Table 59 JEDEC Thermal Resistance Package Parameter - Compact 2-R Model Network

Item	Name/Value
Thermal Resistance - Junction to Case Top	$R_{\text{th, JCtop}} = 0.1 \text{ K/W}$
Thermal Resistance - Junction to Case Bottom	$R_{\text{th, JCbottom}} = 7.76 \text{ K/W}$

Package Outline

Figure 26 shows the mechanical drawings for this package. The dimensions are in millimeters.

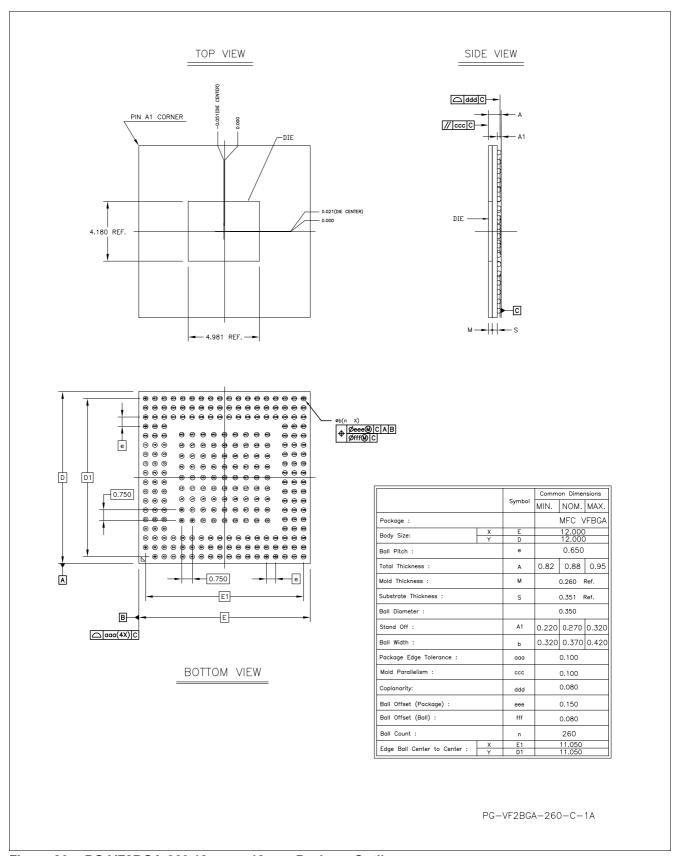


Figure 26 PG-VF2BGA-260 12 mm x 12 mm Package Outline

Package Outline

8.1 Chip Identification and Ordering Information

Figure 27 shows the marking pattern on the Gigabit Ethernet PHY GPY245 device. The actual chip marking may differ slightly from the illustration.

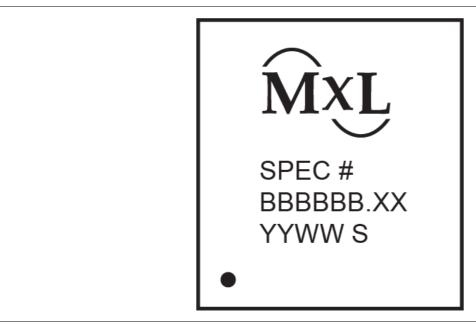


Figure 27 Chip Marking of GPY245

Table 60 explains the chip marking information and Table 61 provides sales ordering information.

Table 60 Chip Marking Pattern

Marking	Description
Text Line 1	MaxLinear logo
Text Line 2	Spec. Number - see Table 61 .
Text Line 3	Wafer Lot Number
Text Line 4	Date Code (YYWW) and Assembly Site Code (S)

Table 61 Product Naming

Marketing Part Number	Ordering Part Number	S-Spec#	MMID	OTP Firmware Version		Device Revision Number ²⁾	PHY Identifier ³⁾
GPY245	GPY245B0BI	SLNHL	999X6K	See footnote ⁴⁾	0x2C	0x1	0xDEC1

- 1) LDN field in CL22 and CL45 registers.
- 2) LDRN field in CL22 and CL45 registers.
- 3) PHY Identifier 2 register 16-bit value.
- 4) Refer to the Migration Guide for the up-to-date version number.

Literature References

Literature References

- [1] Ethernet Network Connection GPY API V2.7.1.1
- [2] Ethernet Network Connection EASY GPY241 LBB Reference Board V2.1.1 HDK HW6.1.02 Hardware Design Guide Rev. 1.0

Attention: Refer to the latest revisions of the documents.

Standards References

- [3] Common Electrical I/O (CEI) Electrical and Jitter Interoperability agreements for 6G+ bps and 11G+ bps I/O (IA # OIF-CEI-02.0), 28th February 2005

 https://www.oiforum.com/wp-content/uploads/OIF-CEI-5.0.pdf
- [4] IEEE 802.3-2005: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, IEEE Computer Society, December 2005 https://standards.ieee.org/ieee/802.3/3910/
- [5] IEEE 802.3-2018: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, IEEE Computer Society, May 2022 https://standards.ieee.org/ieee/802.3/10422/
- [6] IEEE 802.3bz-2016, Amendment 7: Media Access Control Parameters, Physical Layers, and Management Parameters for 2.5 Gbps and 5 Gbps Operation, Types 2.5GBASE-T and 5GBASE-T, IEEE Computer Society, October 2016 https://standards.ieee.org/ieee/8802-3_2017_Amd_7/10022/802.3bz/6130/
- [7] ANSI X3.263-1995: Fibre Distributed Data Interface (FDDI) Token Ring Twisted Pair Physical Layer Medium Dependent (TP-PMD), September 1995 https://webstore.ansi.org/Standards/INCITS/ansix32631995
- [8] Serial-GMII Specification: Revision 1.8, Cisco* Systems, April 2005 https://archive.org/details/sgmii
- [9] SyncE Jitter and Wander specification ITU-T G.8262: Timing characteristics of synchronous Ethernet equipment slave clock, Edition 4.0, November 2018 https://www.itu.int/rec/T-REC-G.8262-201811-l/en
- [10] IEEE 1588-2008: IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, July 2008 https://standards.ieee.org/ieee/1588/6825/
- [11] JEDEC standard, JESD 51: Methodology for the Thermal Measurement of Component Packages (Single Semiconductor Device), December 1995 https://www.jedec.org/standards-documents/docs/jesd-51

Attention: Refer to the latest revisions of the documents.

Terminology

Terminology

Α

ADS Auto-downspeed
AFE Analog Front End
ANEG Auto-negotiation

ANSI American National Standards Institute

ASP Analog Signal Processing

В

BER Bit Error Rate
BW Bandwidth

С

CAT5 Category 5 Cabling

CCR Configuration Content Record

CDB Clock Distribution Block
CDR Clock and Data Recovery
CRC Cyclic Redundancy Check

CRS Carrier Sense

D

DEC Digital Echo Canceler
DSP Digital Signal Processing

Ε

EEE Energy-Efficient Ethernet

EEPROM Electrically Erasable Programmable ROM

EMI Electromagnetic Interference

ESD Electrostatic Discharge

F

FLP Fast Link Pulse

G

GbE Gigabit Ethernet

GMII Gigabit Media-Independent Interface

GPIO General Purpose Input/Output

Н

HBM Human Body Model

I

IC Integrated Circuit
ICV Integrity Check Value

IEEE Institute of Electrical and Electronics Engineers

IPG Inter-Packet Gap

J

Terminology

JTAG Joined Test Action Group

L

LAN Local Area Network
LDO Load Drop Out
LED Light Emitting Diode

LJPLL Low Jitter Phase-Locked Loop

LPI Low Power Idle
LSB Least Significant Bit

M

MAC Media Access Controller

MDI Media-Dependent Interface

MDIO Management Data Input/Output

MDIX Media-Dependent Interface Crossover

MII Media-Independent Interface
MMD MDIO Manageable Device

MSB Most Significant Bit

Ν

NLP Normal Link Pulse

NP Next page

0

OSI Open Systems Interconnection
OUI Organizationally Unique Identifier

Ρ

PCB Printed Circuit Board
PCS Physical Coding Sublayer

PD Powered Device

PHY Physical Layer (device)
PLL Phase-Locked Loop

PMA Physical Media Attachment

PPS Pulse Per Second
PTS Precision Time Protocol
PSE Power-Sourcing Equipment

R

RX Receive

S

SA Secure Association
SC Secure Channel

SerDes Serializer-Deserializer
SFD Start-of-frame Delimiter

SGMII Serial Gigabit Media-Independent Interface

Terminology

SMD Surface Mounted Device

SoC System on Chip

STA Station Management Entity (MAC SoC)

T

TAP Test Access Port

TLE Transformerless Ethernet
TPI Twisted Pair Interface

TsSync Time Stamp Synchronization

TX Transmit

U

USXGMII Universal Serial Multi(x) Gigabit Media Independent Interface

W

Wi-Fi Wireless Local Area Network

WoL Wake-on-LAN

X

xMII Symbolic shortening which denotes the set of supported MII Interfaces, e.g. RGMII and SGMII

XO Crystal Oscillator