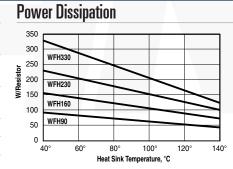
WFH Series

Aluminum Housed Wirewound Power

Ohmite's new flat core winding technology allows for wire wound heatsinkable resistors affording a very low profile, and superior thermal transfer characteristics when compared to conventional aluminum housed wirewound resistors. Close mounting of heat sensitive components is possible due to only a slight rise of the temperature on the aluminum profile. No heat sink compound is required because of large mounting surface.

FEATURES

- •Solder lug, wire, and "Fast-on" amp terminations
- •Multiple resistors in one profile possible
- •Custom wire lengths available


SERIES SPECIFICATIONS

Туре	Power Rating* (watts)	Resistance Range (Ω)
WFH90	90	0.22Ω – 6.8K
WFH160	160	0.47Ω-18K
WFH230	230	0.82Ω-27K
WFH330	330	1Ω - 39K

^{*}at 40°C base plate temperature

CHARACTERISTICS

	<u> </u>		
Power rating	90W-330W		
Resistance tolerance	±5%, ±10%		
Temperature Coefficients	Normal: 50ppm - 150ppm Low ohmic values: 400ppm		
Dielectric strength	2500 VAC peak		
Working voltage	1200 VAC		
Test voltage	6000 VAC		
Lead wire	(wire terminal version only): XLPE, 600V, 125C, 18 AWG stranded		
Insulation	Silicone Rubber & Mica. The Silicone is UL-recognised (UL 94 HB) to a working tem - perature of 220°C. Temperatures of up to 300°C can be endured for shorter periods. This may however cause an expansion of the silicone rubber with a possibility of reducing the dielectric strength.		
Min. Storage & Operating Temp.	-40°C		

This graph shows the maximum wattage rating for each possible resistor of standard size corresponding to the heat sink temperature. It is assumed that all resistors are equally loaded.

Thermal Resistances

Thermal Resistance (°C/W) between different measuring points

	WFH90	WFH160	WFH230	WFH330
R_{TH_1}	2	1	0.75	0.5
R_{TH_0}	6.8	3.9	2.75	2
R_{TH_3}	0.1	0.05	0.03	0.02
R _{TH₄}	0.3	0.17	0.1	0.085

THIS PRODUCT IS DESIGNED FOR USE WITH PROPER HEATSINKING.

Maximum base plate temperature of the resistor must be monitored and kept within specified limits to establish the power rating. Best technique is to attach a thermocouple to the side of the base plate of the resistor. Temperature of plastic housing or heat sink cannot be used to establish rating of the resistor.

(continued)

WFH Series

Aluminum Housed Wirewound Power

The following equations are

applied in the dimensioning of the resistors at stationary load.

If more information is required

please consult Ohmite. It is as-

sumed that the air around the

resistors is stationary (worst case). **See ohmite.com for more**

examples.

DESIGN INFORMATION

1. WFH is mounted on a heat sink:

A. The thermal resistance R TH of the heat sink is known,

 $T = W_{MAX} \times (R_{TH4} + R_{TH})$

Check that:

 $T_{MAX} = W_{MAX} \times (R_{TH} + R_{TH3} + R_{TH1}) + T_{AMB} < 220$ °C

B. The Temperature of the Heat Sink is known,

 $\dot{T} = W_{MAX} \times R_{TH4} + T_{H}$

Check that:

 $T_{MAX} = W_{MAX} \times (R_{TH1} + R_{TH3}) + T_{H} < 220^{\circ}C$

2. WFH is mounted without a heat sink:

Check that:

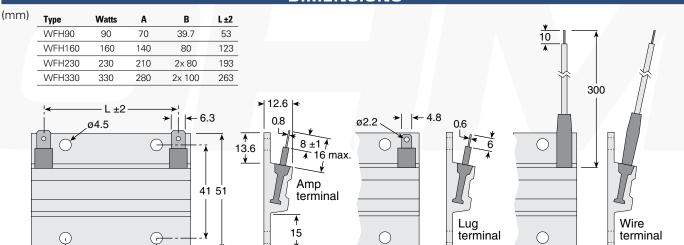
 $T_{MAX} = W_{MAX} \times (R_{TH1} + R_{TH2}) + T_{AMB} < 220^{\circ}C$

Where:

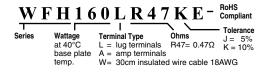
W_{MAX} = Maximum reguired load in resistor

T_{MAX} = Maximum hot spot temperature reguested in resistor (T_{MAX} <220°C)

The lower T_{MAX} the higher reliability and lifetime.


T_{AMB} = Ambient temperature

 R_{TH} = Thermal resistance. Refer to table Thermal resistances


 T_H = Heat sink temperature (chassis).

T = Temperature on top of the Aluminum profile.

DIMENSIONS

ORDERING INFORMATION

Standard part numbers

WFH90L4R7KE WFH160L7R0KE WFH160L5K0JE WFH230L100JE WFH330L50RJE WFH90L26RJE WFH160L2R0KE WFH160L10KJE WFH230L250JE WFH330L75RJE WFH90L50RJE WFH160L10RKE WFH230L1R0KE WFH230L270JE WFH30L10JE WFH30L27RJE WFH230L2R0KE WFH230L2R0KE WFH230L2R0KE WFH230L2R0JE WFH30L470JE WFH160L50RJE WFH230L180KE WFH230L180JE WFH30L1K0JE WFH30L160JE WFH230L2R0JE WFH330L180JE WFH30L1K0JE WFH30L160JE WFH230L2R0JE WFH330L2R0JE WFH330L2R0JE WFH330L2R0JE WFH330L10RJE WFH30L2K7JE WFH30L10RKE WFH330L2R0JE WFH330L10RJE WFH30L2K7JE WFH160L50JE WFH230L5R0JE WFH330L2R0JE WFH330L10RJE WFH30L5K0JE WFH30L5K0JE WFH330L5K0JE WFH30L5K0JE WFH30L5K0JE

