

DSA63XX

Ultra-Small, Ultra-Low Power MEMS Oscillator for Automotive with Spread Spectrum for Automotive

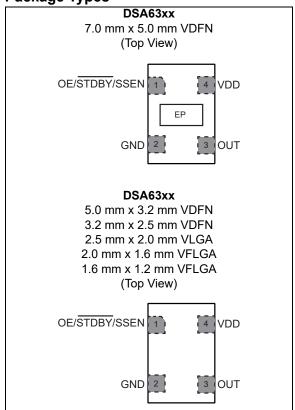
Features

- Automotive AEC-Q100 Qualified
- Output Frequency: 1 MHz to 100 MHz LVCMOS
- · Spread Spectrum Options:
 - Center-Spread: ±0.25%, ±0.5%, ±1.0%, ±1.5%, ±2.0%, ±2.5%
 - Down-Spread: -0.25%, -0.5%, -1.0%, -1.5%, -2.0%, -3.0%
- Ultra-Low Power Consumption: 3 mA (Active), 1µA (Standby)
- · Ultra-Small Package Sizes:
 - 1.6 mm x 1.2 mm VFLGA
 - 2.0 mm x 1.6 mm VFLGA
 - 2.5 mm x 2.0 mm VLGA
 - 3.2 mm x 2.5 mm VDFN
 - 5.0 mm x 3.2 mm VDFN
 - 7.0 mm x 5.0 mm VDFN
- · Excellent Shock and Vibration Immunity
 - Qualified to MIL-STD-883
- · High Reliability
 - 20x Better MTF Than Quartz Oscillators
- · Lead Free and RoHS Compliant

Applications

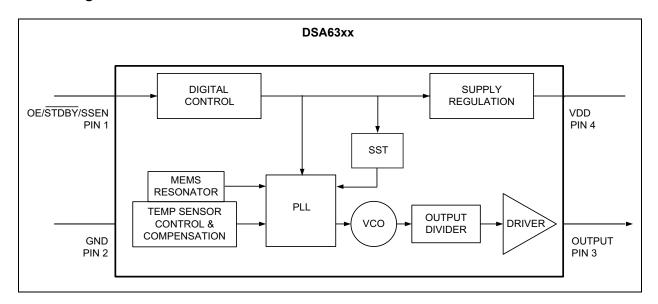
- · Automotive Infotainment
- Automotive ADAS
- · Automotive Camera Module

Benefits


 Replace High-Temperature Crystals and Quartz Oscillators

General Description

The DSA63xx series of clock generators uses a proven silicon MEMS technology to provide excellent frequency stability over a wide range of temperatures as well as small size. Available in three different package sizes with operating current as low as 3 mA, the smallest 4-pin package is a mere 1.6 mm x 1.2 mm in size. The devices support up to $\pm 2.5\%$ or -3% spread spectrum that can achieve up to 15 dB electromagnetic interference (EMI) reduction. Because of industry standard package and pin options, customers can solve last minute EMI problems simply by placing the new DSA63xx on their current board layout with no redesign required.


The DSA63xx family is available in 1.6 mm x 1.2 mm & 2.0 mm x 1.6 mm VFLGA, 7.0 mm x 5.0 mm, 5.0 mm x 3.2 mm & 3.2 mm x 2.5 mm VDFN, and 2.5 mm x 2.0 mm VLGA packages. These packages are "drop-in" replacements for standard 4-pin CMOS quartz crystal oscillators.

Package Types

DSA63XX

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Supply Voltage		١V
Input Voltage (V _{IN}) .	–0.3V to V _{DD} + 0.3	١V
ESD Protection		М

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, $V_{DD} = 1.8V - 5\%$ to $3.3V + 10\%$, $T_A = -40$ °C to $+125$ °C.									
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions			
Supply Voltage	V_{DD}	1.71	_	3.63	V	Note 1			
Power Supply Ramp	t _{PU}	0.1	_	100	ms	_			
Active Supply Current	I _{DD}		3.0	_	mA	f _{OUT} = 27 MHz, V _{DD} = 1.8V, No Load			
Ot Illian Committee Committee	1	_	1	_		V _{DD} = 1.8/2.5V Note 2			
Standby Supply Current	I _{STBY}	_	1.5	_	μA	V _{DD} = 3.3V Note 2			
Output Duty Cycle	SYM	45	_	55	%	_			
Frequency	f_0	1	_	100	MHz	_			
Frequency Stability	Δf	_	_	±20 ±25 ±50	ppm	All temp ranges, Note 3, Spread Spectrum is off.			
		_	_	±5		1st year @25°C			
Aging	Δf	_	_	±1	ppm	Per year after first year			
Startup Time	t _{SU}	_	_	1.5	ms	From 90% V _{DD} to valid clock output, T = 25°C			
lament I amin I aventa	V _{IH}	0.7 x V _{DD}	_	_	V	Input Logic High, Note 4			
Input Logic Levels	V _{IL}	_	_	0.3 x V _{DD}	V	Input Logic Low, Note 4			
Output Disable Time	t _{DA}	_	_	200 + 2 Periods	ns	Note 5			
Output Enable Time	t _{EN}	_	_	1	μs	Note 6			
OE/STDBY/SSEN Pull-Up Resistor	_	_	300	_	kΩ	If configured, Note 7			

- Note 1: Pin 4 V_{DD} should be filtered with 0.1 μF capacitor.
 - 2: Not including current through pull-up resistor on EN pin (if configured).
 - **3:** Includes frequency variations due to initial tolerance, temp. and power supply voltage.
 - 4: Input waveform must be monotonic with rise/fall time < 10 ms
 - **5:** Output Disable time takes up to two periods of the output waveform + 200 ns.
 - **6:** For parts configured with OE, not Standby.
 - **7:** Output is enabled if pad is floated or not connected.
 - 8: Time to reach 90% of target V_{DD} . Power ramp rise must be monotonic.

DSA63XX

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, $V_{DD} = 1.8V - 5\%$ to 3.3V +10%, $T_A = -40$ °C to +125°C.								
Parameters	Sym.	Min.	Тур.	Max.	Units	Con	ditions	
	.,	0.0 % \/			.,	Output Logic High, I = 3 mA, Std. Drive		
Output Lagia Layela	V _{OH}	0.8 x V _{DD}	_	_	V	Output Logic High, I = 6 mA, High Drive		
Output Logic Levels	V			0.2 v.V	V	Output Logic L Std. Drive	low, $I = -3 mA$,	
	V _{OL}	_	_	0.2 x V _{DD}	V	Output Logic L High Drive	_ow, I = −6 mA,	
	4 /4	_	1	1.5		DSA63x2 High Drive,	V _{DD} = 1.8V	
Output Transition Time	t _{RX} /t _{FX}	_	0.5	1.0	ns	20% to 80% C _L = 15 pF	V _{DD} = 2.5V/3.3V	
Rise Time/Fall Time	t _{RY} /t _{FY}	_	1.2	2.0	ns	DSA63x1 Std. Drive, 20% to 80% C _L = 10 pF	V _{DD} = 1.8V	
		_	0.6	1.2			V _{DD} = 2.5V/3.3V	
Davied litter DMC		_	8.5	_	ps _{RMS} 2	f _{OUT} = 27 MHz Spread Off	V _{DD} = 1.8V	
Period Jitter, RMS	J_PER	_	7	_			V _{DD} = 2.5V/3.3V	
Ovela to Ovela litter Deals		_	50	70		f _{OUT} = 27 MHz	V _{DD} = 1.8V	
Cycle-to-Cycle Jitter, Peak	J _{Cy–Cy}	_	35	60	ps	Spread Off	V _{DD} = 2.5V/3.3V	
Period Jitter,		_	70	_	ps	f _{OUT} = 27 MHz	V _{DD} = 1.8V	
Peak-to-Peak	J _{РР}	_	60	_		Spread Off	V _{DD} = 2.5V/3.3V	
Spread Spectrum Modulation Frequency	f _{SS}	_	33	_	kHz	_		

- Note 1: Pin 4 V_{DD} should be filtered with 0.1 μF capacitor.
 - 2: Not including current through pull-up resistor on EN pin (if configured).
 - 3: Includes frequency variations due to initial tolerance, temp. and power supply voltage.
 - 4: Input waveform must be monotonic with rise/fall time < 10 ms
 - **5:** Output Disable time takes up to two periods of the output waveform + 200 ns.
 - 6: For parts configured with OE, not Standby.
 - 7: Output is enabled if pad is floated or not connected.
 - 8: Time to reach 90% of target V_{DD} . Power ramp rise must be monotonic.

TEMPERATURE SPECIFICATIONS (Note 1)

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Junction Operating Temperature	TJ	-4 0	_	+150	°C	_
Storage Ambient Temperature Range	T _S	-55	_	+150	°C	_
Soldering Temperature	_	_	+260	_	°C	40 sec. max.

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.

SPREAD SPECTRUM

Ordering Code	Spread Percentage	Spread Type
A	±0.25%	Center-Spread
В	±0.5%	Center-Spread
С	±1.0%	Center-Spread
D	±1.5%	Center-Spread
E	±2.0%	Center-Spread
F	±2.5%	Center-Spread
G	-0.25%	Down-Spread
Н	-0.5%	Down-Spread
I	-1.0%	Down-Spread
J	-1.5%	Down-Spread
K	-2.0%	Down-Spread
L	-3.0% Down-Spread	
M	Custom	Center-Spread or Down-Spread

2.0 PIN DESCRIPTIONS

The DSA63xx is a highly configurable device and can be factory programmed in many different ways to meet the customer's needs. Microchip's ClockWorks[®] Configurator http://clockworks.microchip.com/Timing/ must be used to choose the necessary options, create the final part number, data sheet, and order samples. The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: DSA63XX PIN FUNCTION TABLE

Pin Number	Pin Name	Description
	OE	Output Enable: H = Active, L = Disabled (High Impedance).
1 (Note 1)	STDBY	Standby: H = Device is active, L = Device is in standby (Low Power Mode).
(11010-1)	SSEN	Spread Spectrum Enable: H = Enabled, L = Disabled.
2	GND	Ground.
3	OUTPUT	Oscillator clock output
4	VDD	Power Supply: 1.71V to 3.63V.

Note 1: DSA630x/1x/3x has a 300 kΩ internal pull-up resistor on Pin 1. DSA634x/5x/7x has no internal pull-up resistor on Pin 1 and needs an external pull-up or to be driven by another chip.

An explanation of the different options listed in Table 2-1 follows.

2.1 Pin 1

This is a control pin and may be configured to fulfill one of three different functions. If not actively driven, a 10 k Ω pull-up resistor is recommended.

2.1.1 OUTPUT ENABLE (OE)

Pin 1 may be configured as OE. Oscillator output may be turned on and off according to the state of this pin.

2.1.2 STDBY

Pin 1 may be configured as Standby. When the pin is low, both output buffer and PLL will be off and the device will enter a low power mode.

2.1.3 SPREAD SPECTRUM ENABLE (SSEN)

This pin, when high, enables spread spectrum modulation of the clock output. Various levels of center-spread and down-spread are available. For more details, see the Spread Spectrum section and the spread spectrum ordering codes in the Product Identification System.

2.2 Pins 2 through 4

Pins 2 and 4 are the supply terminals, GND and VDD respectively. Pin 3 is the clock output, programmable to Standard and High Drive strength settings. Visit ClockWorks[®] Configurator to customize your device.

2.3 Output Buffer Options

The DSA63xx family is available in multiple output driver configurations.

The standard-drive (63x1) and high-drive (63x2) deliver respective output currents of greater than 3 mA and 6 mA at 20%/80% of the supply voltage. For heavy loads of 15 pF or higher, the high-drive option is recommended.

3.0 DIAGRAMS

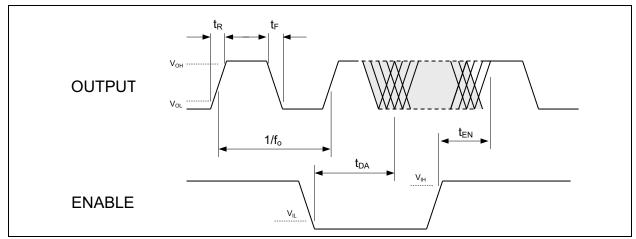


FIGURE 3-1: Output Waveform.

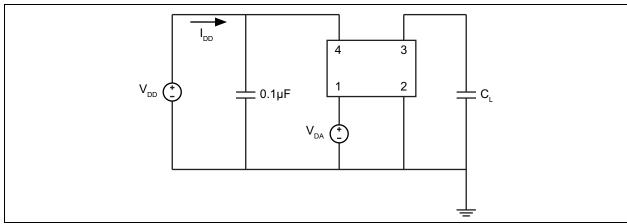


FIGURE 3-2: Test Circuit.

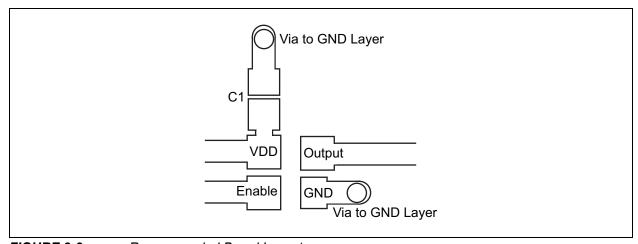


FIGURE 3-3: Recommended Board Layout.

4.0 SPREAD SPECTRUM

Spread spectrum is a slow modulation of the clock frequency over time. The PLL inside the MEMS oscillator is modulated with a triangular wave at 33 kHz. With such a slow modulation, the peak spectral energy of both the fundamental and all the harmonics is spread over a wider frequency range and such an energy is significantly reduced, thus providing an EMI reduction. The triangular wave is chosen because of its flat spectral density.

The DSA63xx MEMS oscillator family offers several modulation options: the spreading is either center-spread or down-spread with respect to the clock frequency. Center-spread ranges from $\pm 0.25\%$ to $\pm 2.5\%$, while down-spread ranges from -0.25% to -3%.

If the clock frequency is 100 MHz and center-spread with $\pm 1\%$ is chosen, the output clock will range from 99 MHz to 101 MHz. If down-spread with -2% is chosen, the output clock will range from 98 MHz to 100 MHz.

Figure 4-1 and Figure 4-2 show a spectrum example of the DSA6331 with a 33.333 MHz clock, modulated with center-spread of ±1%.

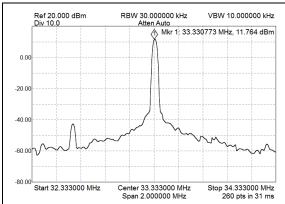


FIGURE 4-1: DSA6331 Spectrum at 33.333 MHz with Modulation Turned Off.

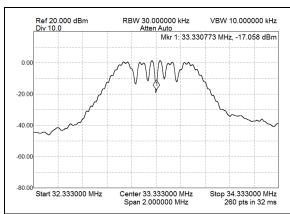


FIGURE 4-2: DSA6331 Spectrum at 33.333 MHz with Modulation Turned On.

It is noticeable that the spread spectrum provides a reduction of about 10 dB from the peak power. Such a reduction may also be estimated by the following equation:

EQUATION 4-1:

 $EMIReduction = 10 \times Log10(|S| \times fc \div RBW)$

Where:

S = Peak-to-peak spread percentage (0.01 in this example).

fc = Carrier frequency (33.333 MHz in this example). RBW = Resolution bandwidth of the spectrum analyzer (30 kHz in this example).

The theoretical calculation for this example provides 10.45 dB, which is consistent with the measurement.

Similarly to the fundamental frequency, all the harmonics are spread and attenuated in similar fashion. Figure 4-3 shows how the DSA6331 fundamental at 33.333 MHz and its odd harmonics are attenuated when various types of modulations are selected. For picture clarity, only the center-spread options are shown. However, down spread with corresponding percentage provides the same level of harmonic attenuation (e.g. center-spread of $\pm 1\%$ provides the same harmonics attenuation of down spread with -2%).

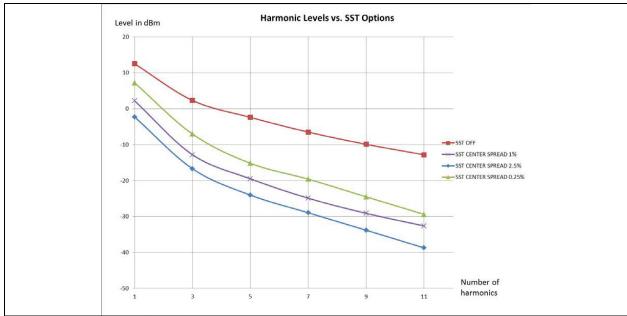


FIGURE 4-3: DSA6331 Harmonic Levels with Various Spread Spectrum Options.

DSA63XX

5.0 SOLDER REFLOW PROFILE

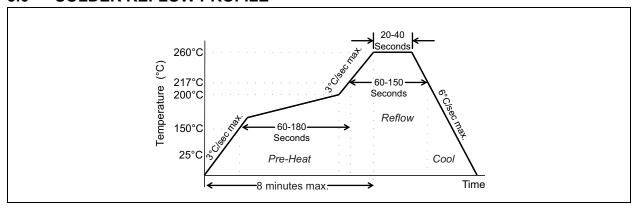


FIGURE 5-1: Solder Reflow Profile.

MSL 1 @ 260°C refer to JSTD-020C					
Ramp-Up Rate (200°C to Peak Temp)	3°C/sec. max.				
Preheat Time 150°C to 200°C	60 to 180 sec.				
Time maintained above 217°C	60 to 150 sec.				
Peak Temperature	255°C to 260°C				
Time within 5°C of actual Peak	20 to 40 sec.				
Ramp-Down Rate	6°C/sec. max.				
Time 25°C to Peak Temperature	8 minutes max.				

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

4-Lead 7.0mm x 5.0mm VDFN* 5.0mm x 3.2mm VDFN* 3.2mm x 2.5mm VDFN* 2.5mm x 2.0mm VLGA*

> XXXXXXX XXXYYWW 0SSS

4-Lead VFLGA* 2.0mm x 1.6mm 1.6mm x 1.2mm

XXXX SSS Example

0400000 DCP1834 0287

Example

011H 502

Legend: XX...X Product code or customer-specific information

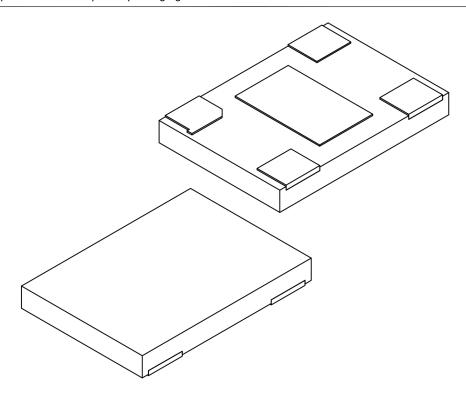
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)

WW Week code (week of January 1 is week '01')

SSS Alphanumeric traceability code

e3 Pb-free JEDEC® designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.


•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar () and/or Overbar () symbol may not be to scale.

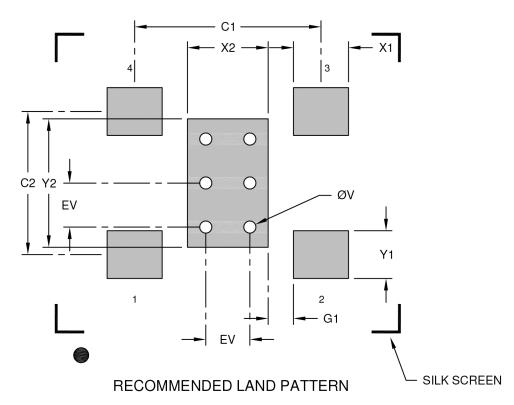
4-Lead Very Thin Dual Flatpack, No Lead Package (JZA) - 7x5x0.9 mm Body [VDFN] With 2.2x3.5 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	S	
Dimension	Dimension Limits		NOM	MAX
Number of Terminals	N		004	
Pitch	е		5.08 Ref	
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	-	0.05
Terminal Thickness	A3	0.203 Ref		
Overall Length	D	6.90	7.00	7.10
Exposed Pad Length	D2	2.10	2.20	2.30
Overall Width	Е	4.90	5.00	5.10
Exposed Pad Width	E2	3.40	3.50	3.60
Terminal Width	b	1.35	1.40	1.45
Terminal Length	L	1.10	1.20	1.30

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the pin 1 area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

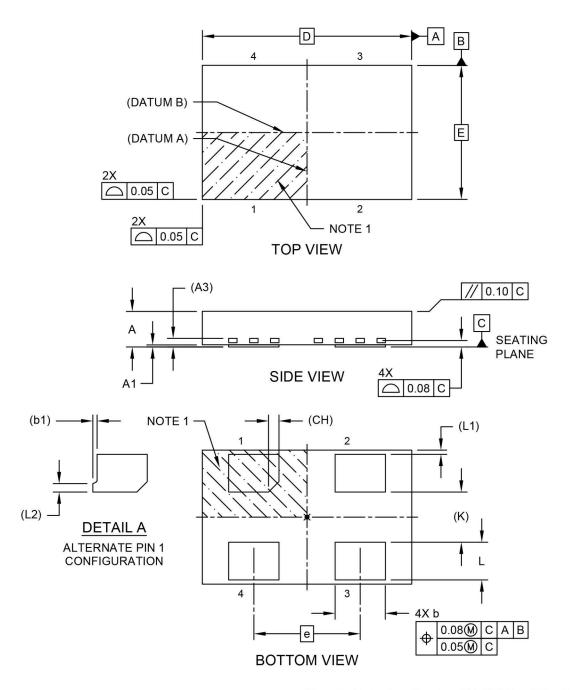
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1025 Rev A Sheet 2 of 2

4-Lead Very Thin Dual Flatpack, No Lead Package [JZA] - 7x5x0.9 mm Body [VDFN] With 2.2x3.5 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	٨	/ILLIMETER	S	
Dimension	Dimension Limits			
Optional Center Pad Width	X2			2.30
Optional Center Pad Length	Y2			3.60
Contact Pad Spacing	C1		5.08	
Contact Pad Spacing	C2		3.90	
Contact Pad Width (Xnn)	X1			1.50
Contact Pad Length (Xnn)	Y1			1.30
Contact Pad to Center Pad (Xnn)	G1	0.69		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

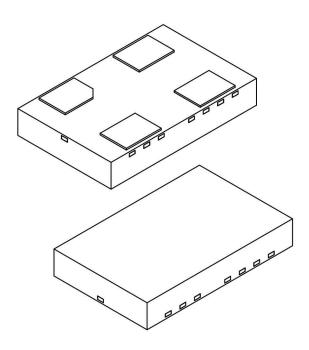

Notes:

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3025 Rev A

4-Lead Very Thin Plastic Dual Flat, No Lead Package (H6A) - 5x3.2 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-1008 Rev A Sheet 1 of 2

© 2021 Microchip Technology Inc.

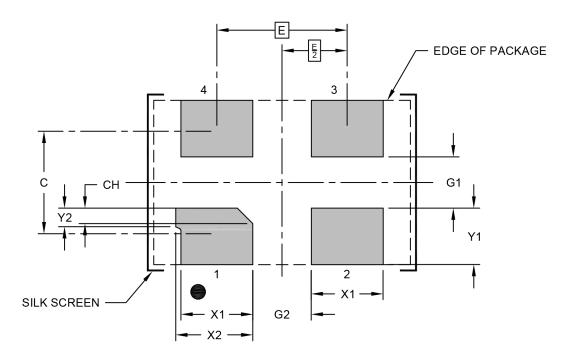
4-Lead Very Thin Plastic Dual Flat, No Lead Package (H6A) - 5x3.2 mm Body [VDFN]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S	
Dimension	Dimension Limits		NOM	MAX	
Number of Terminals	N	N 4			
Pitch	е		2.54 BSC		
Overall Height	Α	0.80	0.85	0.90	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Length	D	5.00 BSC			
Overall Width	E		3.20 BSC		
Terminal Width	b	1.15	1.20	1.25	
Terminal 1 Tab	b1		0.10 REF		
Terminal Length	L	0.80	0.90	1.00	
Terminal Pull Back	L1	0.10 REF			
Terminal 1 Tab	L2	0.20 REF			
Terminal 1 Chamfer	CH	0.25 REF			
Terminal Spacing	K		1.20 REF		

Notes

Note:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1008 Rev A Sheet 2 of 2

© 2021 Microchip Technology Inc.

4-Lead Very Thin Plastic Dual Flat, No Lead Package (H6A) - 5x3.2 mm Body [VDFN]

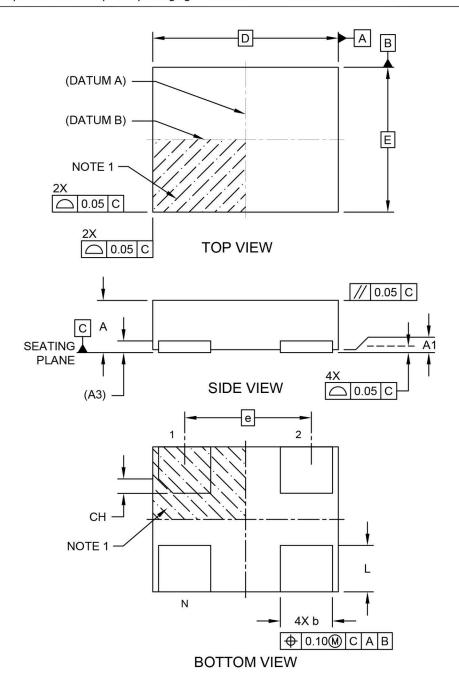
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E			
Contact Pad Spacing	С		2.00	
Contact Pad Width (X4)	X1			1.40
Contact Pad Width	X2			1.50
Contact Pad Length (X4)	Y1			1.10
Contact Pad Tab Length	Y2			0.36
Contact Pad to Center Pad (X2)	G1	1.00		
Contact Pad to Contact Pad (X2)	G2	1.14		
Terminal 1 Contact Pad Chamfer	СН		0.30	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M $\,$

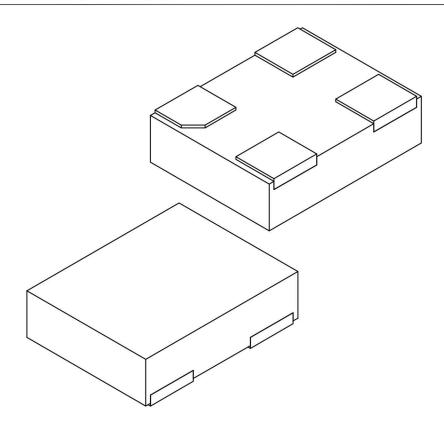

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3008 Rev A

© 2021 Microchip Technology Inc.

4-Lead Very Thin Plastic Dual Flatpack No-Lead (H4A) - 3.2x2.5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-1006 Rev B Sheet 1 of 2

© 2020 Microchip Technology Inc.

4-Lead Very Thin Plastic Dual Flatpack No-Lead (H4A) - 3.2x2.5 mm Body [VDFN]

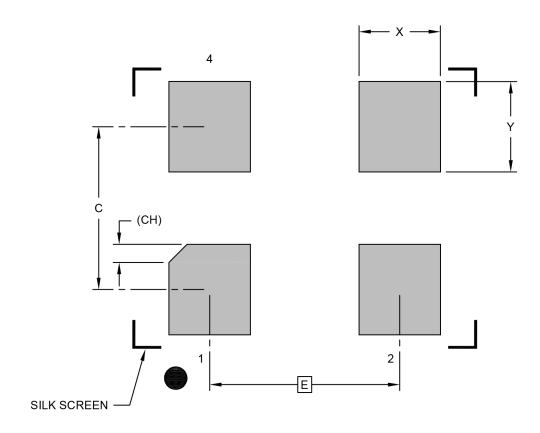
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S		
Dimension	Limits	MIN	NOM	MAX		
Number of Terminals	N		4			
Pitch	е		2.10 BSC			
Overall Height	Α	0.80 0.85 0.90				
Standoff	A1	0.00	0.02	0.05		
Overall Length	D	3.20 BSC				
Overall Width	E	2.50 BSC				
Terminal Width	b	0.85	0.90	0.95		
Terminal Length	Ĺ	0.70	0.80	0.90		
Terminal 1 Index Chamfer	CH	0.25 REF				

Notes

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1006 Rev B Sheet 2 of 2

© 2020 Microchip Technology Inc.

4-Lead Very Thin Plastic Dual Flatpack No-Lead (H4A) - 3.2x2.5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

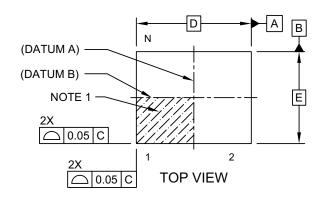
RECOMMENDED LAND PATTERN

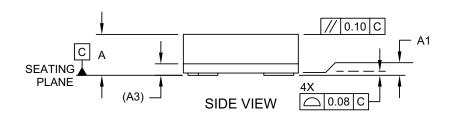
	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch		2.10 BSC		
Contact Pad Spacing	С			
Contact Pad Width (Xnn)	Х			0.90
Contact Pad Length (Xnn)	Υ			1.00
Contact Pad Length (Xnn)		0.20 REF		

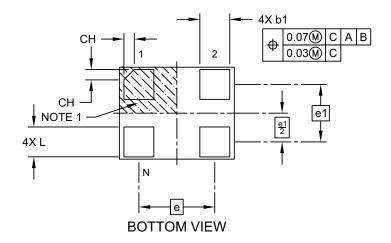
Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

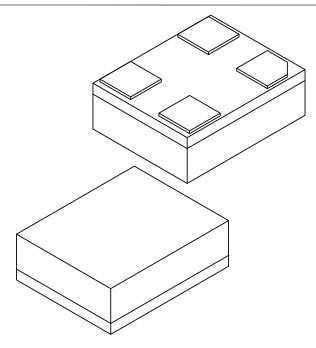

REF: Reference Dimension, usually without tolerance, for information purposes only.


Microchip Technology Drawing C04-3006 Rev B


© 2020 Microchip Technology Inc.

4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-1202B Sheet 1 of 2

4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA]

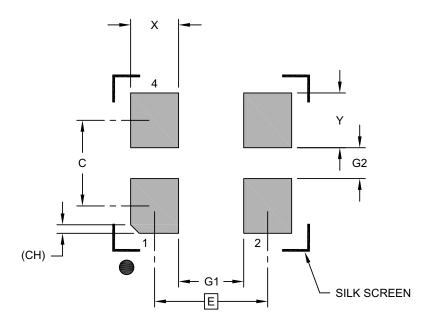
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Terminals	Ζ		4		
Terminal Pitch	е		1.65 BSC		
Terminal Pitch	e1		1.25 BSC		
Overall Height	Α	0.79 0.84 0.8			
Standoff	A1 0.00 0.02 0.05				
Substrate Thickness (with Terminals)	A3	0.20 REF			
Overall Length	D	2.50 BSC			
Overall Width	Е	2.00 BSC			
Terminal Width	b1 0.60 0.65			0.70	
Terminal Length	L	0.60 0.65 0.7			
Terminal 1 Index Chamfer	СН	-	0.225	-	

Notes:

Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1202B Sheet 2 of 2

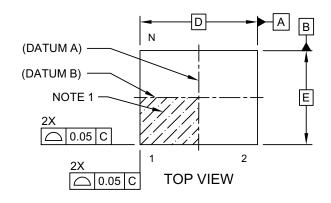
4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA]

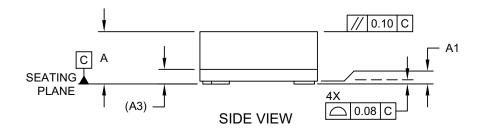
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

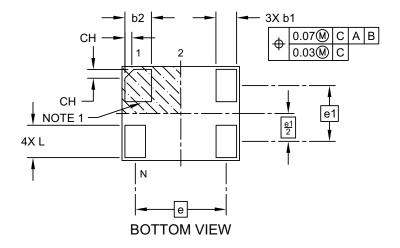
RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch E		1.65 BSC			
Contact Spacing	С		1.25		
Contact Width (X4)				0.70	
Contact Pad Length (X4)				0.80	
Space Between Contacts (X2)	G1	0.95			
Space Between Contacts (X2)	G2	0.45			
Contact 1 Index Chamfer	CH 0.13			F	

Notes:

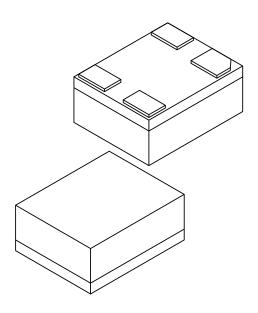

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-3202B

4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-1200 Rev D Sheet 1 of 2

4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA]

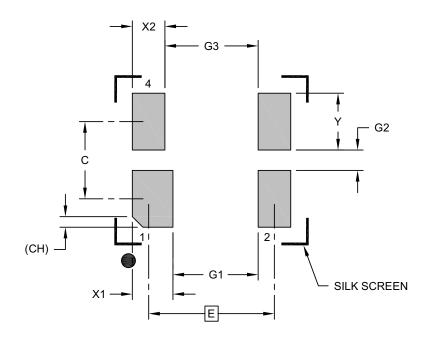
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Terminals	N		4		
Terminal Pitch	е		1.55 BSC		
Terminal Pitch	e1		0.95 BSC		
Overall Height	Α	0.79 0.84 0.			
Standoff	A1	0.00	0.02	0.05	
Substrate Thickness (with Terminals)	A3	0.20 REF			
Overall Length	D	2.00 BSC			
Overall Width	Е	1.60 BSC			
Terminal Width	b1	0.30	0.35	0.40	
Terminal Width	b2	0.40	0.45	0.50	
Terminal Length	L	0.50	0.55	0.60	
Terminal 1 Index Chamfer	CH	-	0.15	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M $\,$

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1200 Rev D Sheet 2 of 2

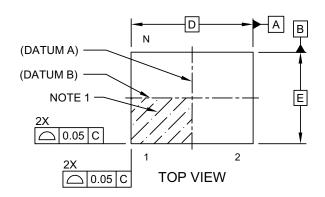
_

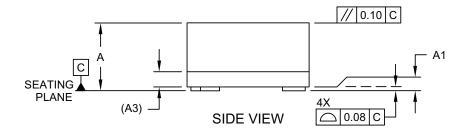
4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA]

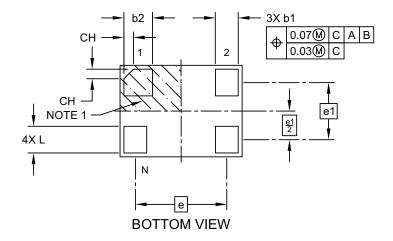
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits			
Contact Pitch	Е	1.55 BSC		
Contact Spacing	С			
Contact Width	X1		0.50	
Contact Width (X3)	X2			0.40
Contact Pad Length (X4)	Υ		0.70	
Space Between Contacts	G1	1.05		
Space Between Contacts (X2)	G2	0.25		
Space Between Contacts	G3	1.15		
Contact 1 Index Chamfer	CH	0.13 X 45° REF		

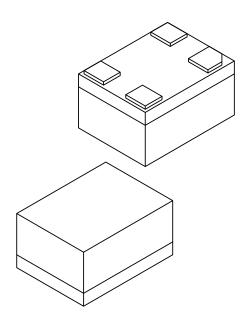

Notes:


- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. The value in parenthesis, next to the item description is a unit multiplier.


Microchip Technology Drawing C04-3200 Rev D

4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-1199B Sheet 1 of 2

4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

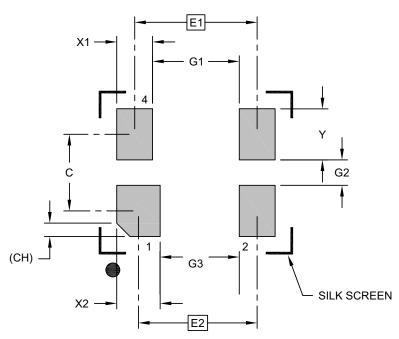
	MILLIMETERS				
Dimension	Dimension Limits				
Number of Terminals	Ν		4		
Terminal Pitch	е		1.20 BSC		
Terminal Pitch	e1		0.75 BSC		
Overall Height	Α	0.79	0.84	0.89	
Standoff	A1	0.00	0.02	0.05	
Substrate Thickness (with Terminals)	A3	0.20 REF			
Overall Length	D	1.60 BSC			
Overall Width	Е	1.20 BSC			
Terminal Width	b1	0.25	0.30	0.35	
Terminal Width	b2	0.325	0.375	0.425	
Terminal Length	L	0.30	0.35	0.40	
Terminal 1 Index Chamfer	СН	-	0.125	-	

Notes:

Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1199B Sheet 2 of 2

Note:

4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E1	1.20 BSC			
Contact Pitch	E2		1.16 BSC		
Contact Spacing	С		0.75		
Contact Width (X3)	X1			0.35	
Contact Width	X2			0.43	
Contact Pad Length (X4)	Υ			0.50	
Space Between Contacts	G1	0.85			
Space Between Contacts (X2)	G2	0.25			
Space Between Contacts	G3	0.77			
Contact 1 Index Chamfer	СН	0.13 X 45° REF			

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. The value in parenthesis, next to the item description is a unit multiplier.

Microchip Technology Drawing C04-3199B

APPENDIX A: REVISION HISTORY

Revision A (April 2019)

 Initial creation of DSA63xx Microchip data sheet DS20006189A.

Revision B (May 2019)

- Ensured part number of DSA63xx is correctly reflected across entire document.
- Clarified Conditions for Frequency Stability in Electrical Characteristics table.
- Revised the Product Identification System section to better reflect the current naming convention.

Revision C (November 2022)

 Added the 7.0 mm x 5.0 mm VDFN, 5.0 mm x 3.2 mm VDFN and 3.2 mm x 2.5 mm VDFN package options throughout the document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>x</u>	<u>x</u>	<u>x</u>	<u>x</u>	<u>x</u>	<u>x</u>	- <u>xxx.xxxx</u>	<u>x</u>	<u>xxx</u>
Device [Pin 1 Definition	Output Drive Strength	· ·	Temperature Range	Frequency Stability	Revision	Frequency	Media Type	Automotive Suffix
Device: Pin 1 Definition Output Drive Strength:		A60: ection	Pin 1 Ir OE P STDBY P FS P OE N STDBY N	Low Power MEM sternal Pull-Up Resull-up ull-up ull-up one one		b) DSA60 Ultra- Pin1: Stren Autor ±20 p 140/T b) DSA60 Ultra- Pin1: Stren Autor	013JI3B-080.0000\ -Small, Low Power = STDBY with Integth, 4-Lead 2.5 mmotive Grade 3 Teropm Stability, Revise	MEMS Oscil mal Pull-Up, n x 2.0 mm V nperature, ion B, 80 MH TVAO: MEMS Oscil Pull-Up, Stai n x 1.2 mm V nperature, ±5	Low Drive /LGA, /z Frequency, lator, ndard Drive /FLGA, 50 ppm Stability,
Package:	A B C J M H	= = = =	4-Lead 5.0 mi 4-Lead 3.2 mi 4-Lead 2.5 mi 4-Lead 2.0 mi	m x 5.0 mm VDFN m x 3.2 mm VDFN m x 2.5 mm VDFN m x 2.0 mm VLGA m x 1.6 mm VFLG m x 1.2 mm VFLG	I I K SA	Ultra- Pin1 : Stand VFLG ±25 p	021MA2B-0157VA0 Small, Low Power = Freq. Select with dard Drive Strength 6A, Automotive Gra pm Stability, Revis gured through Cloc	MEMS Oscill Internal Pull- , 4-Lead 2.0 de 1 Temper ion B, Two Fi	-Up, mm x 1.6 mm ature, requencies
Temperature Range: Frequency Stability:	A L I	= = =	-40°C to +105	5°C (Automotive C 5°C (Automotive C °C (Automotive Gr	Grade 2)	Note 1:	Tape and Reel ide catalog part numbe used for ordering the device packag Sales Office for pa and Reel option.	er description. ourposes and e. Check with	This identifier is is not printed on your Microchip
Revision:	В	=	Revision B						
Frequency:		:Kxxx = :x = F	001.0000 MH User-Defined l and 999.999 l Frequency con	Frequency between z and 80.0000 MF Frequency between kHz figuration code what part online through	Hz en 002.000 kHz nen pin 1 = FS.				
Media Type:	<bl> <br <="" td=""/><td>ank>= ank>= ank>= ank>= =</td><td>72/Tube, 144 110/Tube (C F 140/Tube (J F</td><td>pce. min. (A Pack pce. min. (B Pack Package Option) Package Option) H Package Optio</br></td><td>age Option)</td><td></td><td></td><td></td><td></td></bl>	ank>= ank>= ank>= ank>= =	72/Tube, 144 110/Tube (C F 140/Tube (J F	pce. min. (A Pack pce. min. (B Pack Package Option) 	age Option)				
Automotive Suf	fix: Vx	(=	The "xx" is as	signed by Microch	ip.				

Note 1: Please visit Microchip ClockWorks[®] Configurator Website to configure the part number for customized frequency. http://clockworks.microchip.com/timing/.

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach. Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019 - 2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-1637-5

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-961

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX

Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen

Tel: 86-755-8864-2200 China - Suzhou

Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820