

G2SB20-M3, G2SB60-M3, G2SB80-M3

Vishay General Semiconductor

Glass Passivated Single-Phase Bridge Rectifier

PRIMARY CHARACTERISTICS				
Package	GBL			
I _{F(AV)}	1.5 A			
V _{RRM}	200 V, 600 V, 800 V			
I _{FSM}	80 A			
I _R	5 μΑ			
V_F at I_F = 0.75 A	1.0 V			
T _J max.	150 °C			
Diode variations	In-line			

FEATURES

- UL recognition file number E54214
- Ideal for printed circuit boards
- High surge current capability
- Typical I_R less than 0.1 μA
- High case dielectric strength
- Solder dip 275 °C max. 10 s, per JESD 22-B106
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

General purpose use in AC/DC bridge full wave rectification for monitor, TV, printer, SMPS, adapter, audio equipment, and home appliances application.

MECHANICAL DATA

Case: GBL

Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS-compliant, and commercial grade

Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD 22-B102

M3 suffix meets JESD 201 class 1A whisker test

Polarity: As marked on body

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)					
PARAMETER	SYMBOL	G2SB20	G2SB60	G2SB80	UNIT
Maximum repetitive peak reverse voltage	V _{RRM}	200	600	800	V
Maximum RMS voltage	V _{RMS}	140	420	560	V
Maximum DC blocking voltage	V _{DC}	200	600	800	V
Maximum average forward rectified output current at $T_A = 25 \text{ °C}$	I _{F(AV)}	1.5		А	
Peak forward surge current single sine-wave superimposed on rated load	I _{FSM}	80		А	
Rating for fusing (t < 8.3 ms)	l ² t	27		A ² s	
Operating junction and storage temperature range	T _J , T _{STG}		-55 to +150		°C

ELECTRICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$ unless otherwise noted)						
PARAMETER	TEST CONDITIONS	SYMBOL	G2SB20	G2SB60	G2SB80	UNIT
Maximum instantaneous forward voltage drop per diode	0.75 A	V _F		1.00		V
Maximum DC reverse current at	T _A = 25 °C	5.0				
rated DC blocking voltage per diode	T _A = 125 °C	IR		300		μA

COMPLIANT HALOGEN

Vishay General Semiconductor

THERMAL CHARACTERISTICS ($T_A = 25 \text{ °C}$ unless otherwise noted)				
PARAMETER	SYMBOL G2SB20 G2SB60 G2SB80 UNIT			UNIT
Typical thermal resistance	$R_{\theta JA}$	40		°C/W
	$R_{\theta JC}$	R _{0JC} 12		0/10

Note

• Unit mounted on PCB with 0.5" x 0.5" (12 mm x 12 mm) copper pads and 0.375" (9.5 mm) lead length

ORDERING INFORMATION (Example)				
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE
G2SB60-M3/45	2.045	45	20	Tube
G2SB60-M3/51	2.045	51	400	Anti-static PVC tray

RATINGS AND CHARACTERISTICS CURVES (T_A = 25 °C unless otherwise noted)

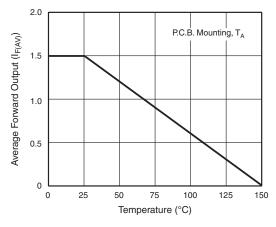


Fig. 1 - Derating Curve Output Rectified Current

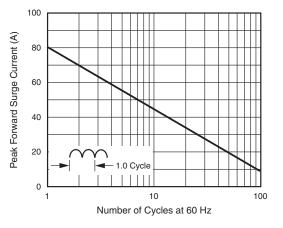


Fig. 2 - Maximum Non-Repetitive Peak Forward Surge Current Per Diode

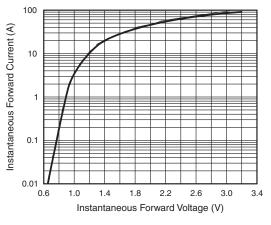


Fig. 3 - Typical Forward Characteristics Per Diode

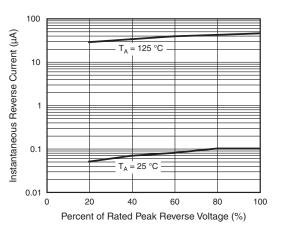


Fig. 4 - Typical Reverse Characteristics Per Diode

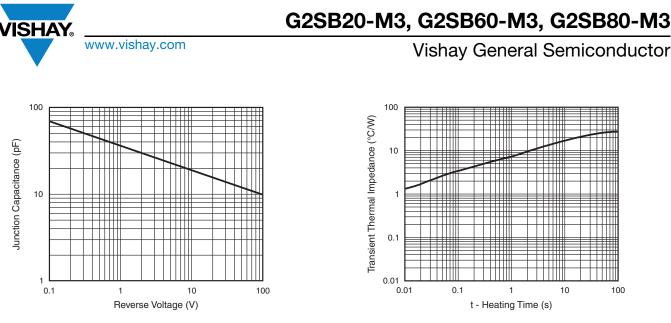
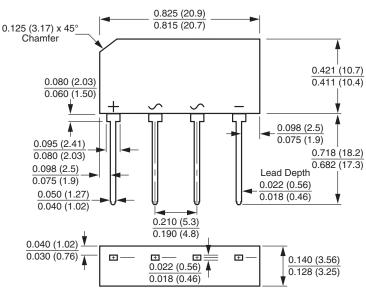
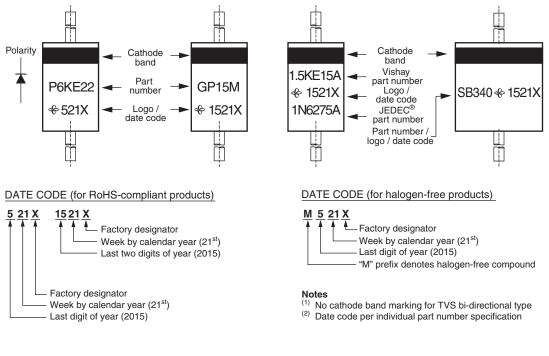



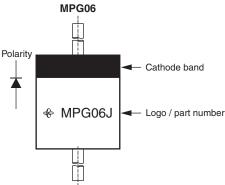
Fig. 5 - Typical Junction Capacitance Per Diode

Fig. 6 - Typical Transient Thermal Impedance

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Case Type GBL


Polarity shown on front side of case, positive lead beveled corner



Vishay General Semiconductor

AXIAL MARKING

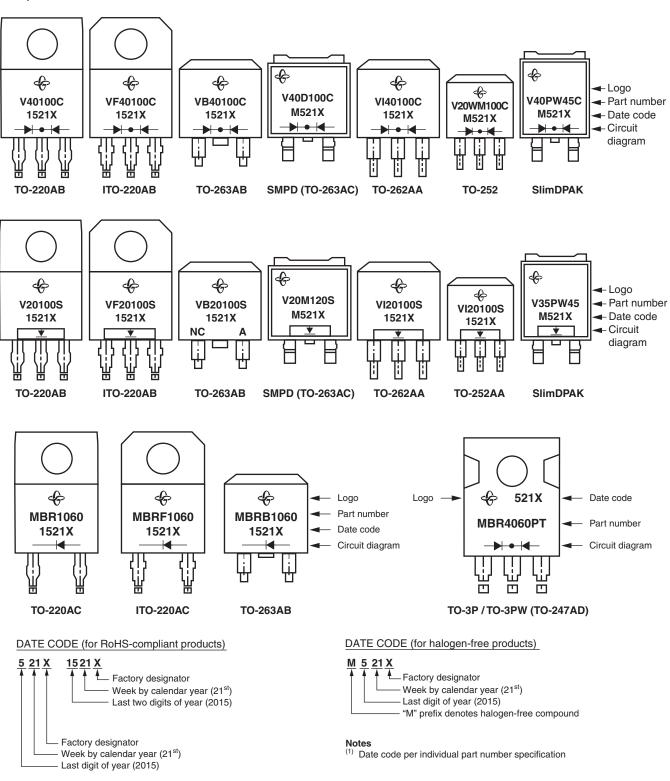
Package: DO-41 (DO-204AL), DO-15 (DO-204AC), DO-201AD, GP20, 1.5KE, P600 Examples:

PART NUMBER MARKING CODE				
ТҮРЕ	RoHS-COMPLIANT	HALOGEN-FREE		
MPG06 series	MPG06x	M06x		
RMPG06 series	RMPG06x	MR06x		
UG06 series	UG06x	MUG06x		
SB0x series	SB0x0	MSB0x0		
TPMP06 series	T-x	MT-x		

Note

• x - type code

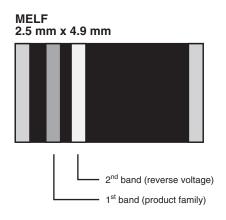
 Revision: 11-Jan-18
 1
 Document Number: 88912


 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

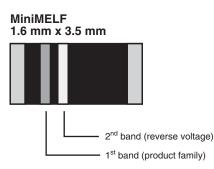
Vishay

POWER PACK MARKING

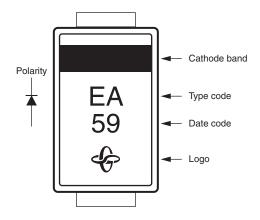
Examples:

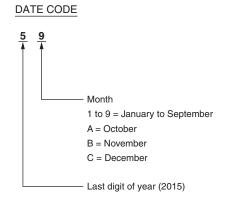


Document Number: 88912


PLASTIC MELF AND MiniMELF MARKING

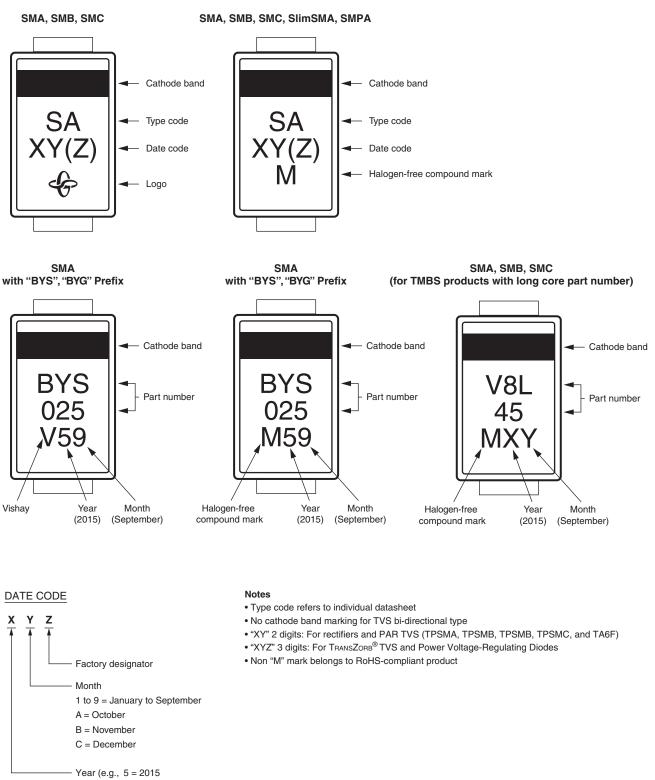
1. Package: GL41 (DO-213AB)


TYPE	1 st BAND	2 nd BAND		
BYM10 series	white	gray: 50 V	violet: 1000 V	
GL41 series	white	red: 100 V	white: 1300 V	
BYM11 series	red	orange: 200 V	brown: 1600 V	
RGL41 series	red	yellow: 400 V		
BYM12 series	green	green: 600 V		
EGL41 series	green	blue: 800 V		
BYM13 series	orange	gray: 20 V orang	e: 40 V green: 60 V	
SGL41 series	orange	red: 30 V yellow:	: 50 V	
TGL41-xx	blue			
ZGL41-xx	red			


2. Package: GL34 (DO-213AA)

TYPE	1 st BAND	2 nd E	BAND
BYM07 series	white	gray: 50 V	brown: 300 V
GL34 series	white	red: 100 V	yellow: 400 V
EGL34 series	green	pink: 150 V	green: 600 V
RGL34 series	red	orange: 200 V	blue: 800 V

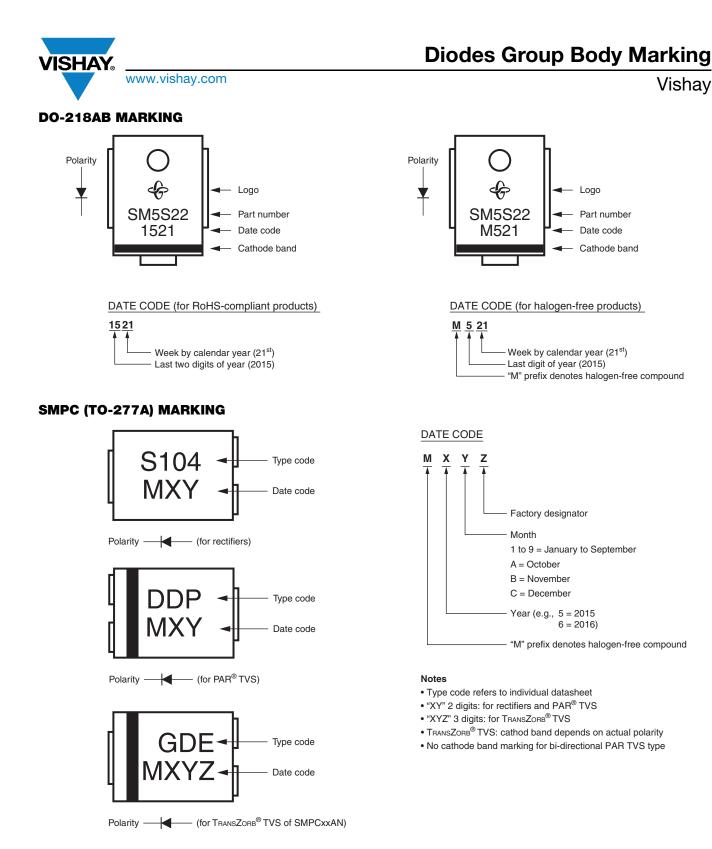
GF1 (DO-214BA) MARKING


Note

• Type code refers to individual datasheet

Revision: 11-Jan-18 **3** Document Number: 88912

SMA (DO-214AC), SMB (DO-214AA), SMC (DO-214AB), SlimSMA (DO-221AC), AND SMPA (DO-221BC) MARKING



(e.g., 5 = 2015)6 = 2016)

Revision: 11-Jan-18

4

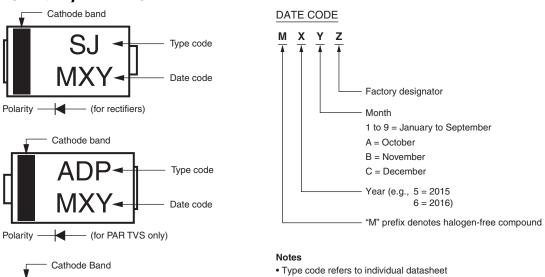
Document Number: 88912

Revision: 11-Jan-18

5

Type code

Date code

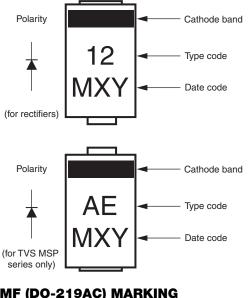

Polarity (for TRANSZORB® TVS of SMPCxxA)

Document Number: 88912

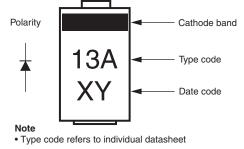
Vishay

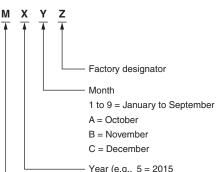
www.vishay.com

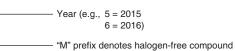
SMP (DO-220AA) MARKING


- Δ` Type code Date code
- "XY" 2 digits: for rectifiers and PAR TVS

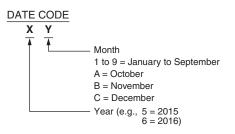
DATE CODE


• "XYZ" 3 digits: for TRANSZORB® TVS and power voltage-regulating diodes

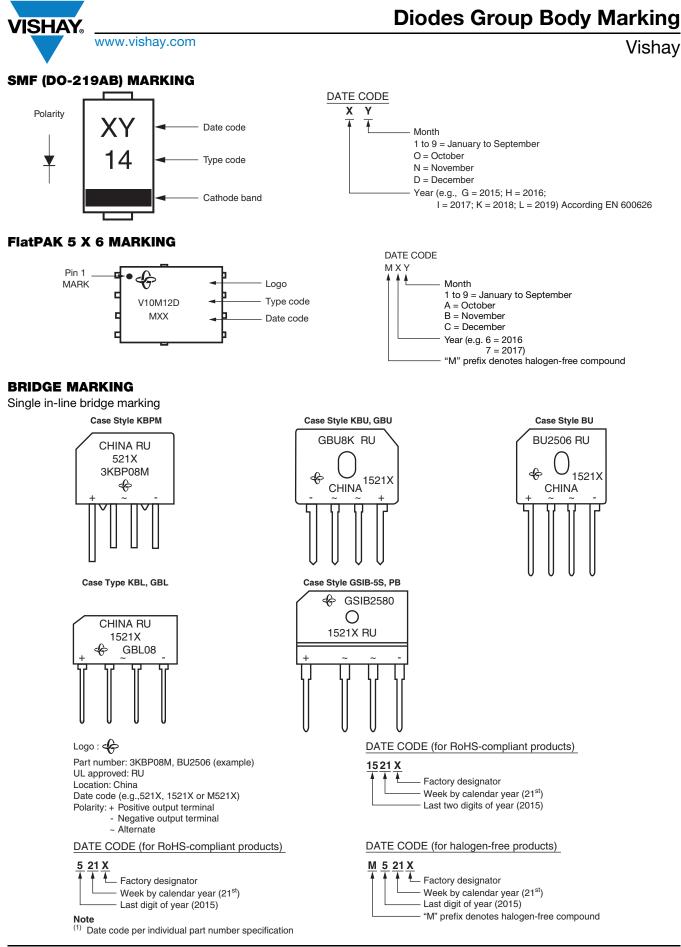

Polarity (for TRANSZORB® TVS and power voltage-regulating diodes)


MicroSMP (DO-219AD) MARKING

MicroSMF (DO-219AC) MARKING



Note

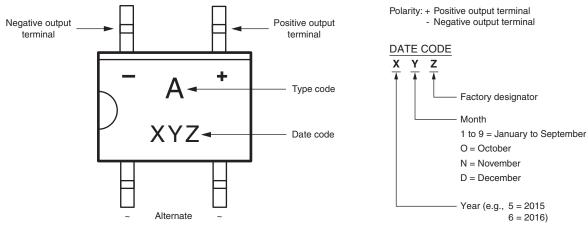

• Type code refers to individual datasheet

Revision: 11-Jan-18

6

Document Number: 88912

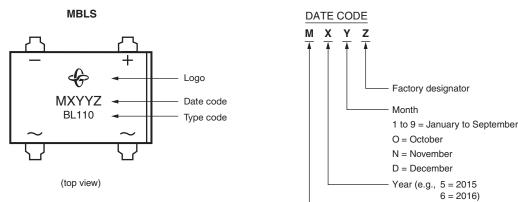
Revision: 11-Jan-18


7

Document Number: 88912

www.vishay.com

DUAL IN-LINE BRIDGE MARKING


MBS (TO-269AA) and MBM Mini-Bridge

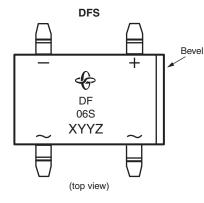
ТҮРЕ	TYPE CODE	ТҮРЕ	TYPE CODE
B2S, B2M	B2	MB4S, MB4M	4
B4S, B4M	B4	MB6S, MB6M	6
B6S, B6M	B6	RMB2S	2R
MB2S, MB2M	2	RMB4S	4R

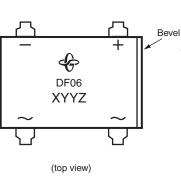
Note

- For halogen-free: add "Underline" below type code (e.g., 6)
- RMB2S and RMB4S only has type code without date code

"M" prefix denotes halogen-free compound

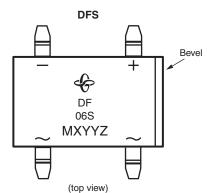
ТҮРЕ	TYPE CODE
MBL104S	BL104
MBL106S	BL106
MBL108S	BL108
MBL110S	BL110


Revision: 11-Jan-18 8 Document Number: 88912 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>


Vishay

Vishay

DFS, DFM, and WOG



DFM

WOG

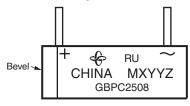
(top view)

DFM

¢

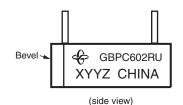
DF06

MXYYZ


(top view)

(top view)

Case Style GBPC/GBPC-W



(side view)

Logo: 🚓

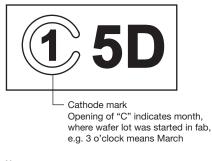
Part number: GBPC2508 (example) UL approved: RU Location: China Date code: (M)XYYZ Polarity: + Positive output terminal - Negative output terminal ~ Alternate Case Style GBPC1/GBPC6

Bevel

DATE CODE

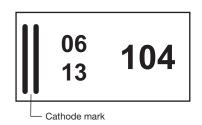
– Factory designator – Week by calendar year (21st) – Last digit of year (2015) – "M" prefix denotes halogen-free compound

Notes


- ⁽¹⁾ Date code per individual part number specification
- ⁽²⁾ Non "M" mark belongs to RoHS-compliant product
- ⁽³⁾ "M" prefix denotes halogen-free compound

Vishay Semiconductors (Small Signal Products)

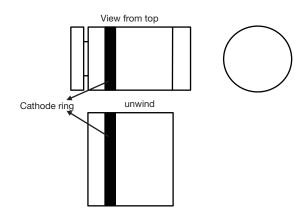
SMD MARKING


CLP0603 MARKING

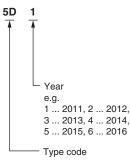
Note

Type code refers to individual datasheet

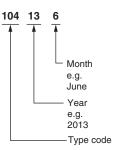
CLP1608 MARKING



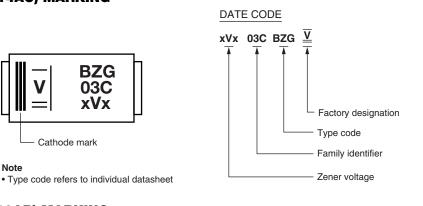
Note

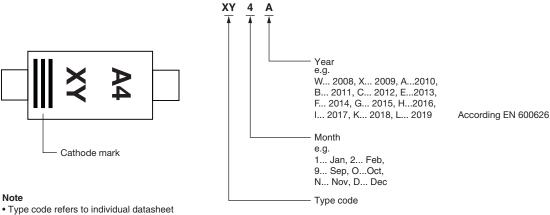

• Type code refers to individual datasheet

DO-213 MARKING

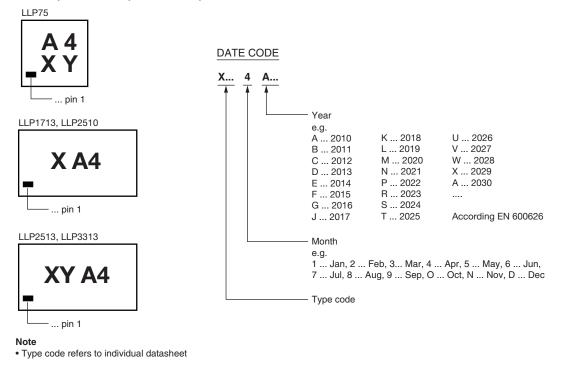

Marking: cathode

DATE CODE


DATE CODE

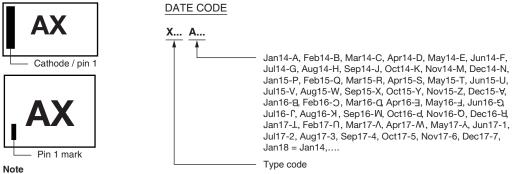

SMA (DO-214AC) MARKING

Vishay



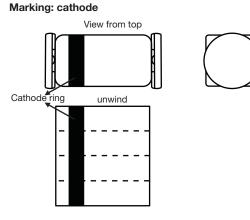
SMF (DO-219AB) MARKING

LLP75, LLP1713, LLP2510, LLP2513, LLP3313 MARKING

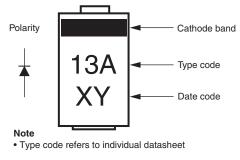

Revision: 11-Jan-18

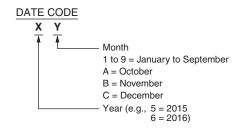
11

Document Number: 88912

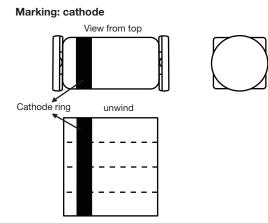


LLP1006, LLP1010 MARKING




• Type code refers to individual datasheet

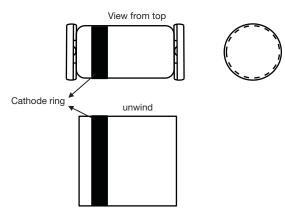
MicroMELF MARKING



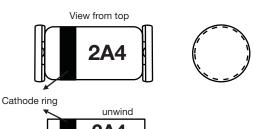
MicroSMF (DO-219AC) MARKING

QuadroMELF (SOD-80) MARKING

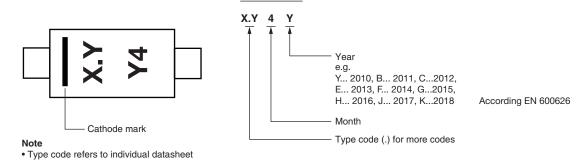
Revision: 11-Jan-18


12

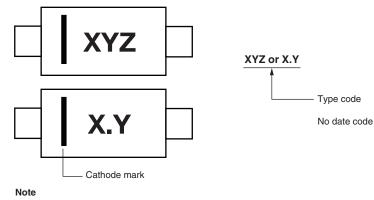
Document Number: 88912


MiniMELF (SOD-80) MARKING

Marking: cathode


MiniMELF (SOD-80) TLZ MARKING

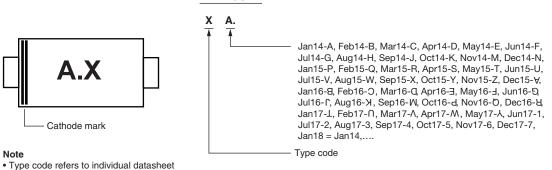
Marking: type and cathode



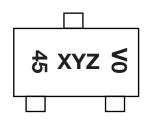
SOD-123 MARKING

DATE CODE

SOD-323 MARKING

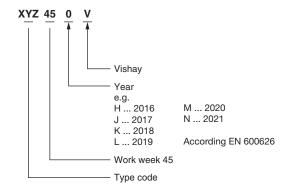


Type code refers to individual datasheet

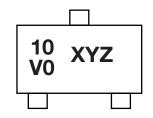


SOD-523 MARKING

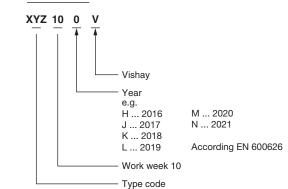
DATE CODE



SOT-23 MARKING


Type code refers to individual datasheet

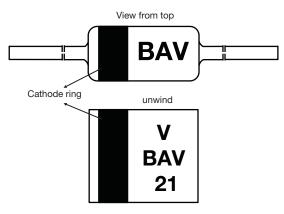
DATE CODE


SOT-3xx MARKING

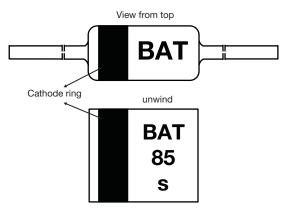
Note

Note
• Type code refers to individual datasheet

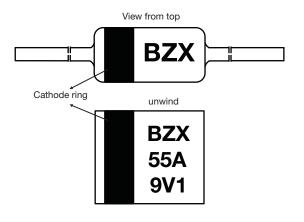
DATE CODE



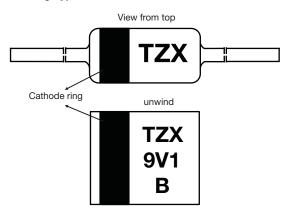
AXIAL MARKING


DO-35 (DO-204AH) BAV, BAW, BAS MARKING

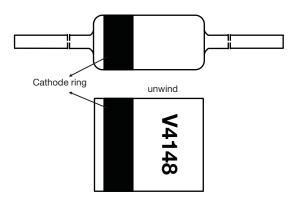
Marking: type and cathode


DO-35 (DO-204AH) SCHOTTKY BAT, SD MARKING

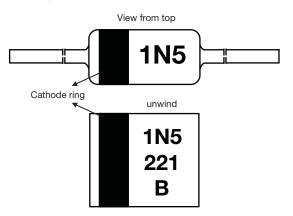
Marking: type and cathode


DO-35 (DO-204AH) ZENER BZX55 MARKING

Marking: type and cathode

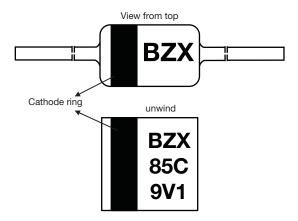

DO-35 (DO-204AH) ZENER TZX MARKING

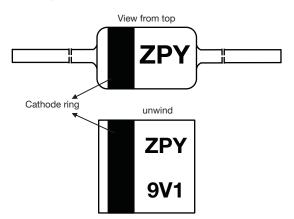
Marking: type and cathode


DO-35 (DO-204AH) 1N4148 MARKING

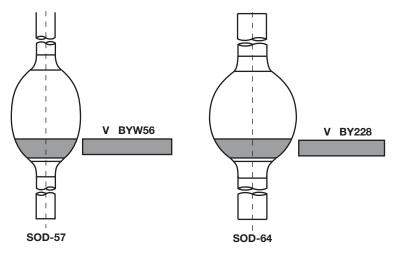
Marking: type and cathode

DO-35 (DO-204AH) ZENER 1N52 MARKING


Marking: type and cathode

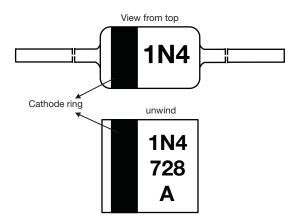

DO-41 (DO-204AL) BZX85 MARKING

Marking: type and cathode



DO-41 (DO-204AL) ZPY MARKING

Marking: type and cathode



SOD-57, SOD-64 MARKING CODE

DO-41 (DO-204AL) 1N47xx MARKING

Marking: type and cathode

SOD-57 and SOD-64 Avalanche diodes

The unique part number is followed by letter "V", means Vishay e.g. BYT62 V; SF1600 V or BYW83 V

SOD-57 Zener diodes

BZT03Cxx - where "xx" means the Zener voltage (no "V" after the part number)

SOD-64 Zener diodes

BZW03Cxx - where "xx" means the Zener voltage (no "V" after the part number)

Revision: 11-Jan-18

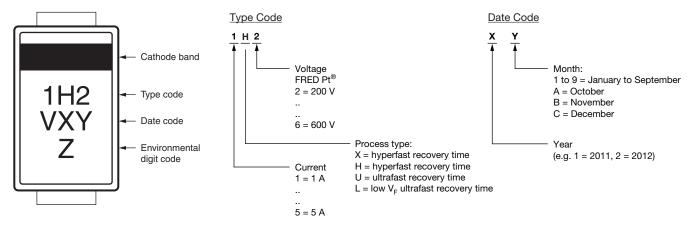
16

Document Number: 88912

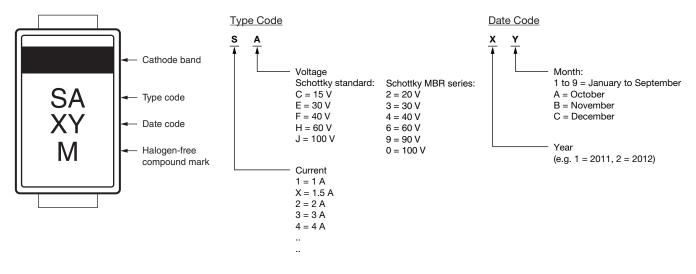
Vishay

Vishay Semiconductors (High Power Products)

SMF (DO-219AB) MARKING



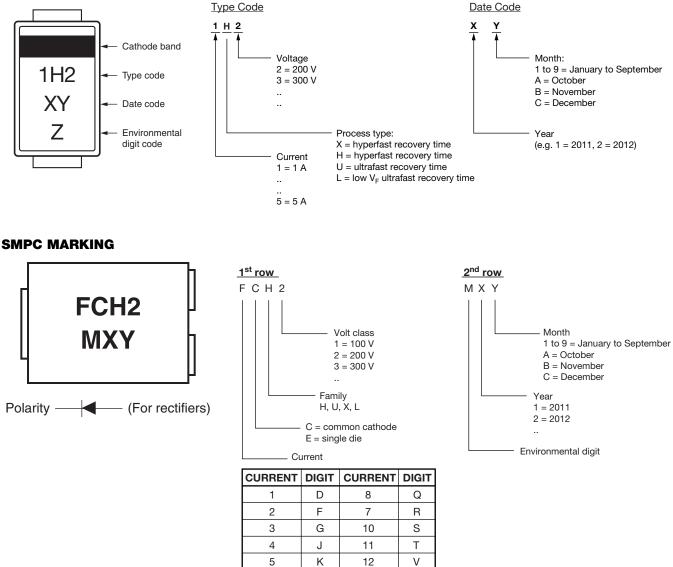
1st row


First digit: year (E = 2013; F = 2014; G = 2015; H = 2016; I = 2017; K = 2018; L = 2019....) According EN 600626 Second digit: month (1 = Jan; 2 = Feb; ... O = Oct; N = Nov; D = Dec)

2nd row First digit: environmental digit Second digit: current / voltage rating

SMA (DO-214AC), SMB (DO-214AA), SMC (DO-214AB) (FRED Pt®) MARKING

SMA (DO-214AC), SMB (DO-214AA), SMC (DO-214AB) (Schottky) MARKING


Date Code

www.vishay.com

SlimSMA (DO-221AC) MARKING

'ISHA'

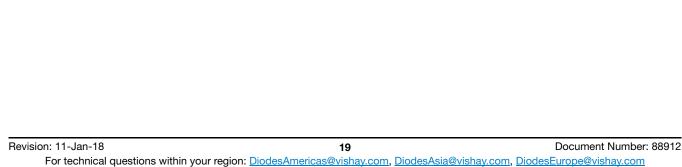
Revision: 11-Jan-18

6

7

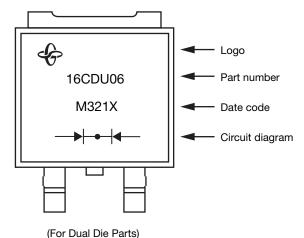
Ν

Ρ


13

14

Υ


Ζ

Vishay

SMPD MARKING

VISHAY

1st row

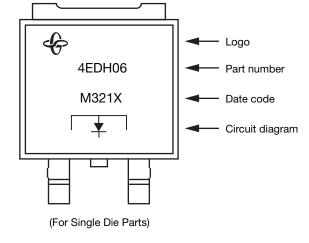
16 C D U 06

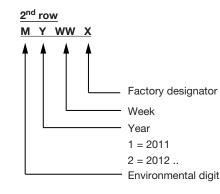
Volt class 1 = 100 V

2 = 200 V

3 = 300 V

Family


H, U, X, L

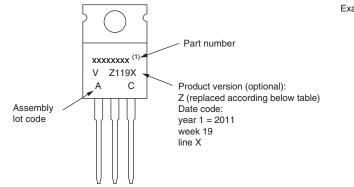

D = SMPD package

C = common cathode E = single die

Current 10 = 10 A 20 = 20 A ..

www.vishay.com

www.vishay.com

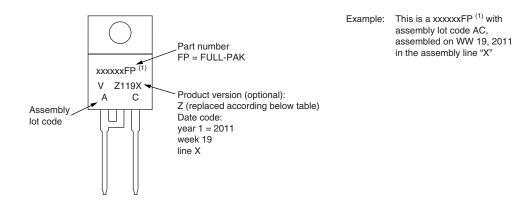

Diodes Group Body Marking

Vishay

TO-220 MARKING

Examples: TO-220AB, TO-220FP, TO-220AC E, TO-220AC-N3

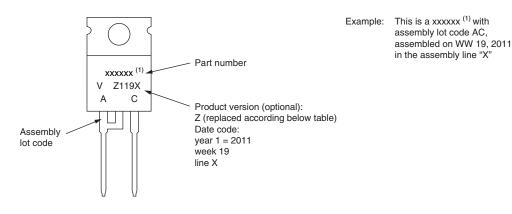
TO-220AB E



Example: This is a xxxxxxxx ⁽¹⁾ with assembly lot code AC, assembled on WW 19, 2011 in the assembly line "X"

Note

⁽¹⁾ If part number contains "H" as last digit, product is AEC-Q101 qualified


TO-220FP-N3

Note

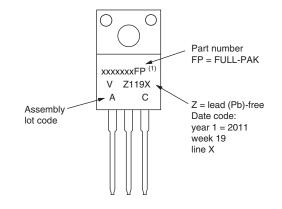
(1) If part number contains "H" as last digit, product is AEC-Q101 qualified

TO-220AC E, TO-220AC-N3

Note

(1) If part number contains "H" as last digit, product is AEC-Q101 qualified

Revision: 11-Jan-18

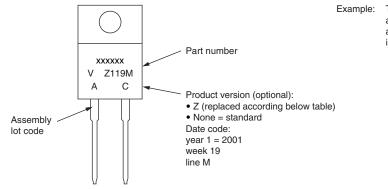

20

www.vishay.com

Diodes Group Body Marking

Vishay

TO-220FP 2L



Example: This is a xxxxxxFP ⁽¹⁾ with assembly lot code AC, assembled on WW 19, 2011 in the assembly line "X"

Note

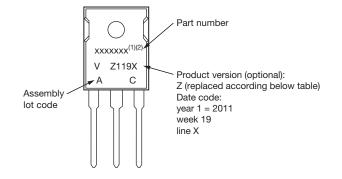
⁽¹⁾ If part number contains "H" as last digit, product is AEC-Q101 qualified

TO-220AC 2L

Example: This is a xxxxx with assembly lot code AC, assembled on WW 19, 2001 in the assembly line "M"

Note

⁽¹⁾ If part number contains "H" as last digit, product is AEC-Q101 qualified

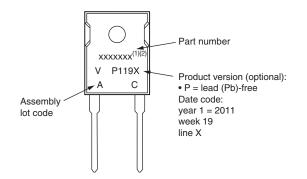


Vishay

TO-247 MARKING

Examples:

TO-247, 3 pins long-lead

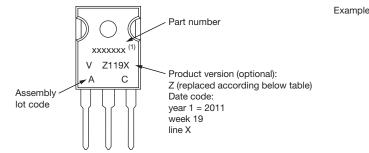


Example: This is a xxxxxx ⁽¹⁾ with assembly lot code AC, assembled on WW 19, 2011 in the assembly line "X"

Notes

- ⁽¹⁾ If part number contains "H" as last digit, product is AEC-Q101 qualified
- ⁽²⁾ If part number contains "L", product is long-lead

TO-247, 2 pins long-lead



Example: This is a xxxxxx with assembly lot code AC, assembled on WW 19, 2011 in the assembly line "X"

Notes

- ⁽¹⁾ If part number contains "H" as last digit, product is AEC-Q101 qualified
- ⁽²⁾ If part number contains "L", product is long-lead

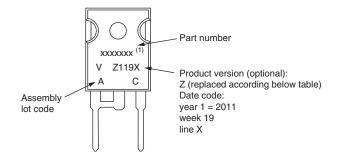
TO-247AC-N3

Example: This is a xxxxxx ⁽¹⁾ with assembly lot code AC, assembled on WW 19, 2011 in the assembly line "X"

Note

(1) If part number contains "H" as last digit, product is AEC-Q101 qualified

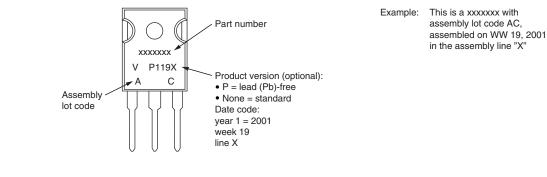
Revision: 11-Jan-18


22

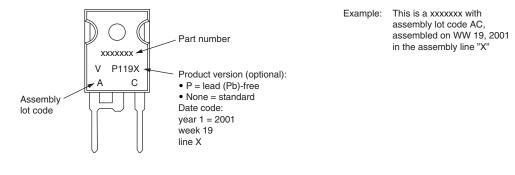
Document Number: 88912

Vishay

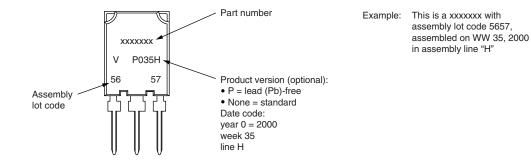
TO-247AC-N3 modified



Example: This is a xxxxxxx⁽¹⁾ with assembly lot code AC, assembled on WW 19, 2011 in the assembly line "X"


Note

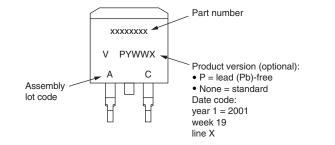
(1) If part number contains "H" as last digit, product is AEC-Q101 qualified


TO-247 PbF

TO-247 PbF modified

Super TO-247

Revision: 11-Jan-18 For technical questions within



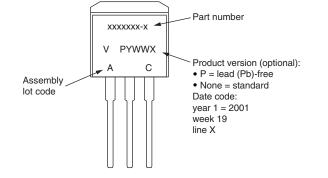
Vishay

D²PAK (TO-263AA), TO-262 MARKING

Examples:

D²PAK E (TO-263AA)

Example: This is a xxxxxx-x with assembly lot code AC,


assembled on WW 19, 2001 in the assembly line "X"

Example: This is a xxxxxxx with

assembly lot code AC,

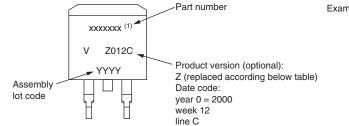
assembled on WW 19, 2001 in the assembly line "X"

TO-262AA

D²PAK (TO-263AA)

 Revision: 11-Jan-18
 24
 Document Number: 88912

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

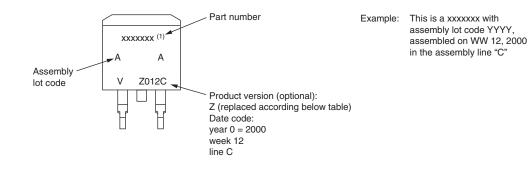


Vishay

DPAK (TO-252AA) MARKING

Examples:

DPAK E

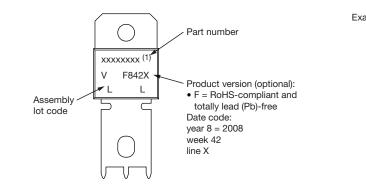


Example: This is a xxxxxx with assembly lot code YYYY, assembled on WW 12, 2000 in the assembly line "C"

Note

(1) If part number contains "H" as last digit, product is AEC-Q101 qualified

DPAK


Note

⁽¹⁾ If part number contains "H" as last digit, product is AEC-Q101 qualified

PowerTab[®] MARKING

Examples:

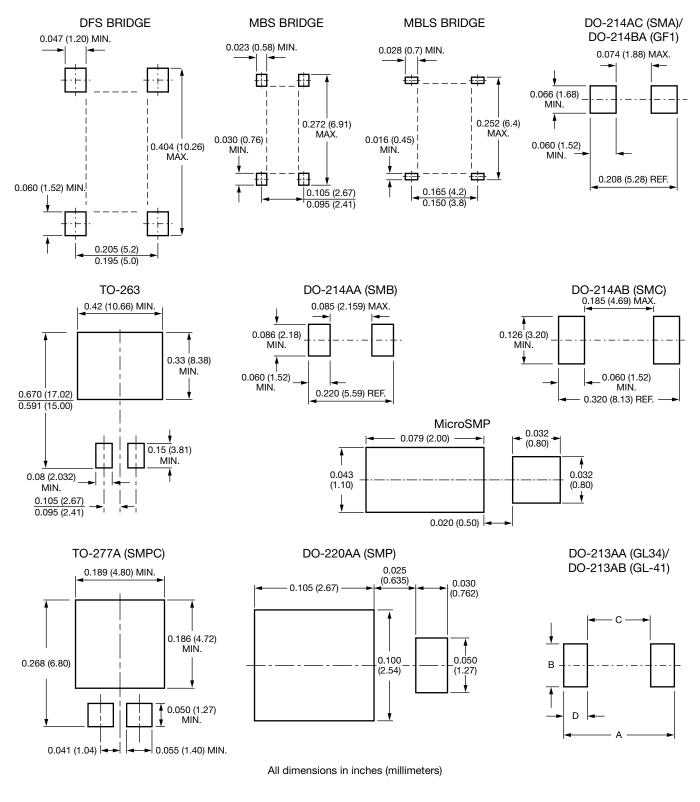
PowerTab[®]

Example: This is a xxxxxxx ⁽¹⁾ with assembly lot code LL, assembled on WW 42, 2008 in the assembly line "X"

Note

⁽¹⁾ If part number contains "H" as last digit, product is AEC-Q101 qualified

Revision: 11-Jan-18

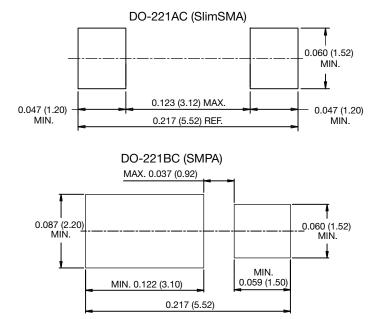

Pad Layouts/Soldering Process

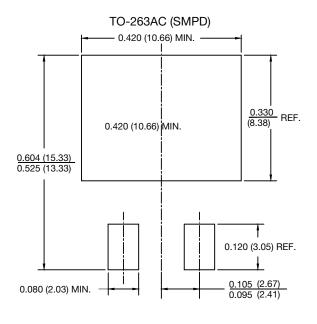
Vishay General Semiconductor

Pad Layouts/Soldering Process

VISHAY GENERAL SEMICONDUCTOR RECOMMENDED MINIMUM MOUNTING PAD LAYOUT SIZES FOR THE SURFACE MOUNT RECTIFIER

Revision: 12-Sep-13


For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>


1

Pad Layouts/Soldering Process

Vishay General Semiconductor

DIMENSIONS in inches (millimeters)			
	DO-213AA (GL34)	DO-213AB (GL41)	
A	0.177 (4.5) ref.	0.236 (6.0) ref.	
В	0.079 (2.0) min.	0.118 (3.0) min.	
С	0.079 (2.0) max.	0.138 (3.5) max.	
D	0.050 (1.25) min.	0.050 (1.25) min.	

VISHAY GENERAL SEMICONDUCTOR RECOMMENDED SOLDERING PROCESS

Through hole device (THD) and surface mount device (SMD) imply different soldering technologies leading to different constraints.

In THD, the package body is exposed to relatively low temperatures (< 150 °C) because the lead extremeties are only dipped in the soldering alloy, whereas in SMD the whole package body is exposed to a very high temperature (> 240 °C) during reflow soldering process.

In addition, molding compounds used for encapsulation absorb moisture from the ambient medium. During rapid heating in solder reflow process; this absorded moisture can vaporize, generating pressure at lead frame pad/silicon to plastic interfaces in the package, with a risk of package cracking and potential degradation of device reliability.

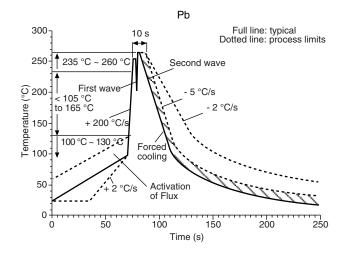
Wave soldering with SMD packages is not recommended because the thermal shock associated with package body solder dipping may induce internal structural damage to the package (interface delamination) that may affect long term reliability.

SMD package characterizations performed as a standard by Vishay only induce Solder Reflow Resistance assessment.

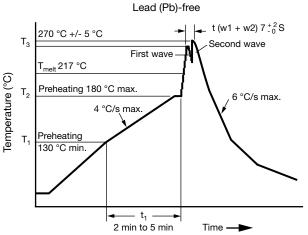
JEDEC JESD A111 recommends that wave soldering of SMD packages should be evaluated by the USER, because the stress induced inside the package is very dependant of solder process parameters.

Due to the higher melting point of lead (Pb)-free alloys, the temperature of the solder pot will also increase to improve solderability and shorten contact times. For AgSnCu with melting point of 217 °C, the solder pot temperature will be between 250 °C to 270 °C or as high as 260 °C to 280 °C for SnCu.

Revision: 12-Sep-13


2

Document Number: 88854



Vishay General Semiconductor

RECOMMENDED WAVE SOLDERING PROFILE FOR THROUGH HOLE COMPONENTS

www.vishay.com

Notes

• Temperature jump from T₂ to T₃ (w1): 150 °C max.

• Time from 25 °C to T₃ (wave temp.): 8 min max.

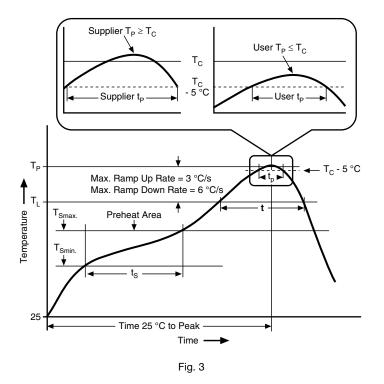
Fig. 2

REFLOW FOR SURFACE MOUNTED COMPONENTS

Fig. 1

TABLE 1 - CLASSIFICATION REFLOW PROFILE				
PROFILE FEATURE	Sn-Pb EUTECTIC ASSEMBLY	LEAD (Pb)-FREE ASSEMBLY		
Preheat and soak				
Temperature min. (T _{Smin.})	100 °C	150 °C		
Temperature max. (T _{Smax.})	150 °C	200 °C		
Time ($T_{Smin.}$ to $T_{Smax.}$) (t_S)	60 s to 120 s	60 s to 120 s		
Average ramp-up rate ($T_{Smax.}$ to T_p)	3 °C/s maximum			
Liquidous temperature (TL)	183 °C	217 °C		
Time to liquidous (t _L)	60 s to 150 s	60 s to 150 s		
Peak package temperature $(T_p)^{(1)}$	See classification temperature in table 2	See classification temperature in table 3		
Time (tp) $^{(2)}$ with 5 °C of the specified classification temperature (Tc)	20 s ⁽²⁾	30 s ⁽²⁾		
Average ramp-down rate (T_p to $T_{Smax.}$)	6 °C/s maximum			
Time 25 °C to peak temperature	6 min maximum 8 min maximum			

Notes


⁽¹⁾ Tolerance for peak profile temperature (T_{o}) is defined as a supplier minimum and user maximum

 $^{(2)}$ Tolerance for time at peak profile temperature ($T_{\rm p}$) is defined as a supplier minimum and user maximum

Vishay General Semiconductor

REFLOW PROFILE

TABLE 2 - Sn-Pb EUTECTIC PROCESS PACKAGE PEAK REFLOW TEMPERATURES				
PACKAGE THICKNESS	VOLUME mm ³ < 350	VOLUME mm ³ ≥ 350		
< 2.5 mm	235 °C	220 °C		
≥ 2.5 mm	220 °C	220 °C		

TABLE 3 - LEAD (Pb) - FREE PROCESS PACKAGE CLASSIFICATION REFLOW TEMPERATURES				
PACKAGE THICKNESS	VOLUME mm ³ < 350	VOLUME mm ³ 350 TO 2000	VOLUME mm ³ > 2000	
< 1.6 mm	260 °C	260 °C	260 °C	
1.6 mm to 2.5 mm	260 °C	250 °C	245 °C	
≥ 2.5 mm	250 °C	245 °C	245 °C	

Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature at the rated MSL level.

Notes

- Package volume excludes external terminals (balls, bumps, lands, leads) and/or non-integral heatsinks.
- The maximum component temperature reached during reflow depends on package thickness and volume. The use of convection reflow processes reduces the thermal gradients between packages. However, thermal gradients due to differences in thermal mass of SMD packages may still exist.
- Recommended soldering process is accordance with J-STD-020D.

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.