

MHP8565A SINGLE 3 Amp POINT-OF-LOAD REGULATOR MIL-PRF- 38534 Certified

<u>Levels Available</u> COTS MILITARY SPACE

DESCRIPTION

The MHP series are non-isolated Point of Load switching regulators for high reliability Military and Space distributed power applications. Fully integrated, these include a buck controller, inductor, and input / output capacitors combined in a single package. They operate from an input voltage of +4.5V to +12V (See Note 1), providing step down power conversion to output voltages as low as 0.5V or lower (See Note 2). Operating features include output voltage adjust, output current limit, and output enable/disable. Careful design and layout ensure excellent stability, transient response, and low noise operation. Packaged in a compact metal case, it operates over the full -55°C to +125°C temperature range.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Now available as SMD: 5962R-13236
- Single 3 Amp product (Note 2)
- Efficiencies to 87%, see Figure 8
- Radiation Hard to 100K rad TID
- Single- Event results show no significant output transients through an LET of 58 MeV/(mg/cm²)
- Optimized for 5V input. Consult factory for higher input voltages. (Note 1)
- Operates down to 4.5 Volts input
- Current Mode Control
- Adjustable output Voltage between 0.5V and 4V (depends on model, see table 3) (Note 2)
- Enable function available
- Operates at a nominal frequency of 500KHz

APPLICATIONS / BENEFITS

- More efficient than competitive POLs (See Figure 7).
- FPGA power supply satellite
- ASIC power supply satellite

MO-078 (MHP8565)

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

Website:

www.microsemi.com

Table 1 – ABSOLUTE MAXIMUM RATINGS ($Tc = +25^{\circ}C$ unless otherwise note)

Parameters / Test Conditions	Symbol	Value	Unit
Input Voltage (Note 1)	V _{in}	16	Vdc
Output Current (note 2)	lo	4	Α
Enable Input Voltage	V _{en}	7	Vdc
Approximate Weight	MO-078	10	Grams
Operating Temperature Range, Base of Package	T _c	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Value	Unit
Series Switch Thermal Resistance, Junction-to-Case, MO-78 package	$R_{ heta JC}$	2.5	°C/W

MECHANICAL and PACKAGING

• See Figures 2 through 5, and Table 6.

Table 2 – ELECTRICAL CHARACTERISTICS (See Note 5) $(T_A = -55^{\circ}C \text{ to } +125^{\circ}C \text{ unless otherwise noted})$

Parameters / Test Conditions		Symbol	Value			Unit
		Syllibol	Min.	Nom	Max.	Oiiit
Minimum input Voltage	(Note 8)	Vin(min)	4.5			V
Output Voltage Accuracy Vo = 1.21V		Vout	1.19		1.23	V
Post 100K Irradiation, 25°C		Vout	1.17		1.24	V
Line regulation 4.5V < Vin < 5.5V Vo = 1.21V		Kvi	-0.5		+0.5	%
Load regulation 1A < lout < 2A		Kvo	-1		+1	%
Current Limit Vo = 2.5V		ICL	3.5	5		Α
Post 100K Irradiation, 25°C		ICL	3.0			
Input Voltage on Enable pin to guarantee s Io = 0A	hutdown (Note 4)	Vshdn	0.13	0.40	0.60	V

Table 3 - MODEL NUMBER FUNCTIONALITY CHART

		PACKAGE TYPE	OUTPUT TYPE	OTHER FUNCTIONALLTY			FORMER P/N		
MODEL NUMBER	NOTES	MO-078	Adj	Enable Pin	Parallelable Note A	Output Voltage Range Note 2 Note 8	Package Body	Internal Compensation	
MHP8565A\$&*	3 Amp Series	✓	✓	✓	NO	0.5 – 4V	Isolated	√	SAT8565A-3\$T-ADJ

Replace "\$" with letter to denote required screening level

C = COTS

M = MIL-PRF-38534, Class H

S = MIL-PRF-38534, Class K

H = MIL-PRF-38534, Class H

K = MIL-PRF-38534, Class K

Replace "&" with lead lend option

Blank = No lead bend

-1 = SMT lead bend

-2 = lead bend down

-3 = lead bend up

Replace "*" with lead finish option

C = Gold plate

A = Solder dipped

NOTE: See DSCC SMD 5962R13236 for DSCC part number options.

Table 4 - SCREENING OPTIONS

TEST	COMMERCIAL	MILITARY= Class H MIL-PR	SPACE= Class K F-38534	MIL-STD-883 Method
Element Evaluation	N/A	Military	Space	Note 9
Non-Destruct Wirebond Pull	N/A	Sample	100%	2023
Pre-Cap Visual	N/A	100%	100%	2017
Temperature Cycle	N/A	100%	100%	1010
Constant Acceleration	N/A	100%	100%	2001
PIND	N/A	N/A	100%	2020
Pre-Burn In Electrical	N/A	100%	100%	
Burn-In	N/A	100% (160 Hours)	100% (320 Hours)	1015
Final Electrical Tests	100% (25°C)	100%	100%	Note 9
Hermeticity (Fine and Gross Leak)	100%	100%	100%	1014
X-Ray (Note 10)	N/A	N/A	Yes	2012
External Visual	Sample	100%	100%	2009

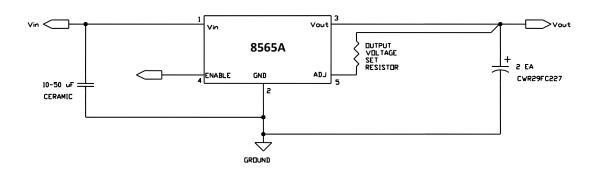
NOTES:

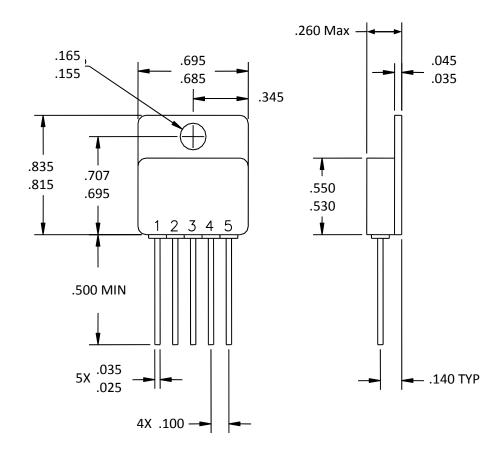
- 1. Most internal components are rated at +16 Volts maximum, and are therefore properly de-rated for operation at a nominal input of +5 Volts. Operation at +12V will decrease that de-rating.
- 2. Internal series switch is self- protected and is rated to conduct 4.0 Amps minimum. However, limitations on internal components plus the characteristics of PWM operation conspire to reduce further the minimum available output current, especially at output Voltages above Vin/2. Minimum available output current is guaranteed to be as specified at output Voltage of 2.5 V down to 1.21 V, assuming a clean layout. At output Voltages below 1.21 V, maximum output current may reduce by up to 1 Amp, depending on actual output Voltage, and load regulation may degrade slightly (up to 1%). At 3.3 V output with a 5 V input, output current reduces by 0.5 A from the value specified at 2.5 V out.
- Microsemi has a MIL-PRF-38534 qualified radiation hardness assurance program.
- 4. If not used, or when on, Enable pin should be pulled up to a logic one (2.5V min, 7V max) through a resistor of no more than 5K Ohms. Voltage on this pin to disable operation needs to be less than 0.13V.
- 5. Testing is accomplished at an output load of 1A, and at an output Voltage of 2.5V and an input of 5V unless otherwise specified. Only the specifications with post irradiation limits are tested after radiation exposure.
- 6. All package outline dimensions are in inches.
- 7. Consult factory for operation at output voltages below 1.0V. Also see Figure 6.
- 8. Minimum input voltage is guaranteed by line regulation test.
- 9. Microsemi is a DLA approved facility. Testing is performed per MIL-PRF-38534.
- 10. Maximum solder reflow temperature = 180 °C. Do not exceed
- 11. The internal case temperature must not exceed 175 °C.

APPLICATION CIRCUITS, 3 Amp PRODUCT

Figure 1 – <u>3A Adjustable Configuration</u>

Vout = Vref x (1+Radj / 2490), with Vref ~ 1.21 Volts

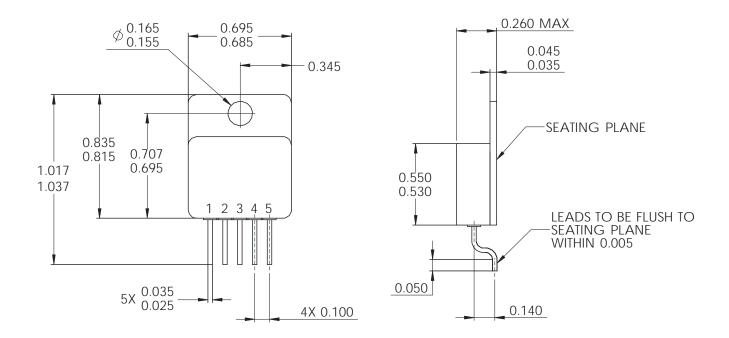



Table 5 - Commonly Available 1% Resistor Values for Various Output Voltage for 3A Product

V _{out} (V)	R _{adj} (Ω)	V _{out} (V)	$R_{adj}(\Omega)$
1.21	0	2.8	3240
1.5	590	3.0	3650
1.8	1210	3.3	4320
2.0	1620	3.5	4750
2.2	2050	3.8	5360
2.5	2670	4.0	5760

PACKAGE OUTLINES, 3 Amp PRODUCT (8565A)

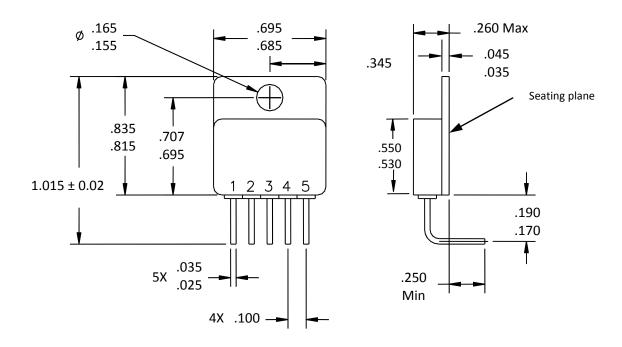
Figure 2 - Standard Straight Package



Dimensions are in inches Tolerances .XXX = \pm .005" .XX = \pm .010"

PACKAGE OUTLINES, 3 Amp PRODUCT (8565A)

Figure 3 - Surface Mount Lead-Bend (-1 option)



Dimensions are in inches Tolerances .XXX=±.005' .XX=±.010'

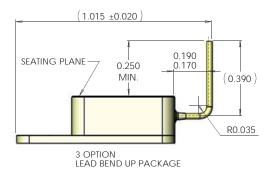
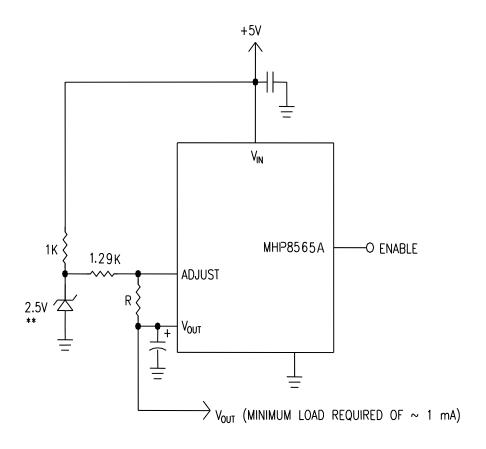

PACKAGE OUTLINES, 3 Amp PRODUCT (8565A)

Figure 4 – Right angle Lead-Bend (-2 option Lead Bend Down)

Dimensions are in inches Tolerances .XXX = \pm .005" .XX = \pm .010"

Figure 5 – (-3 option Lead Bend Up)


Table 6 - Pin Assignments for 3 Amp Product

Pin No	8565A			
PIII NO	Pin Name	Pin Description		
1	Vin	Input Voltage		
2	GND	Current Ground		
3	Vout	Output Voltage		
4	Enable	Enable Output		
5	Adjust	Output Voltage Adjust		
Case	N/C	Isolated		

PACKAGE OUTLINES, 3 Amp PRODUCT (8565)

Figure 6 - Circuit for Creating Regulated Output Voltages below 1.21 Volts

Vout = 1.21 - R (K-Ohms)

Example: If R = 0.21K Ohms (210 Ohms), Vout = 1.21 - 0.21 = 1.0V, within the limits of the tolerances of the components used.

** RAD Hard Zener or other fixed voltage >2V may be used. For any voltage other than 2.5V, resistor values would have to be adjusted accordingly.

Figure 7 - MHP8565 Typical Efficiency vs Typical Competitive POL (Vin = 5V, Vout = 3.3)

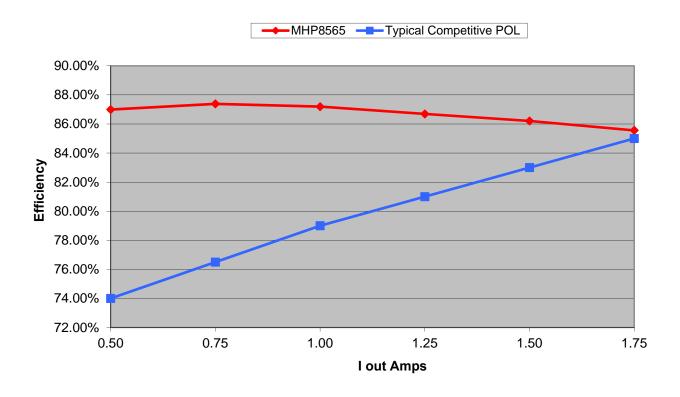
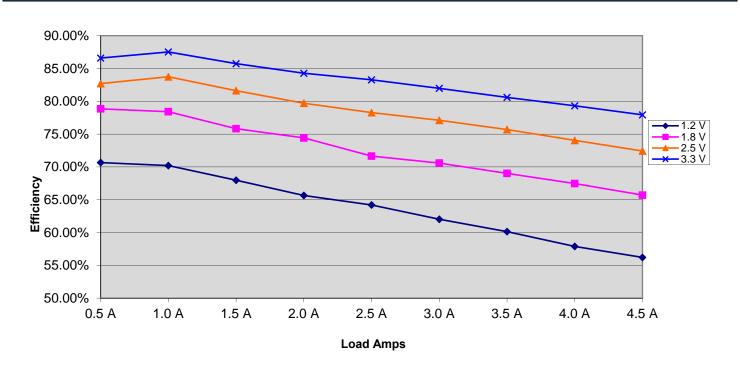



Figure 8- Typical Efficiency Curves (Vin = 5V)

