RailClamp®

ESD and EOS Protection for High-speed Interfaces

Description

RClamp1201H-RClamp3601H series is a low capacitance ESD protection device specifically designed to protect high-speed Ethernet lines. They offer desirable characteristics for board-level protection, including fast response time, low operating and clamping voltage, and no device degradation. These devices feature a large cross-sectional area for conducting high surge capability of 14A-35A (t_p = 8/20 μ s). RClamp1201H-RClamp3601H series has a typical capacitance of only 3.1pF-3.3pF which is ideal for high speed lines. Each device will protect one high-speed data line.

RClamp1201H-RClamp3601H is in a 2-pin SOD-323 package; leads are finished with lead-free Matte tin. They may be used to protect 12V, 15V, 24V and 36V systems. The combination of small size, low capacitance, and high ESD, surge capability makes them ideal for use in industrial and telecom applications.

Applications

- Telecom
- Industrial
- 10/100/1000 Ethernet
- DOCSIS modems
- USB 2.0

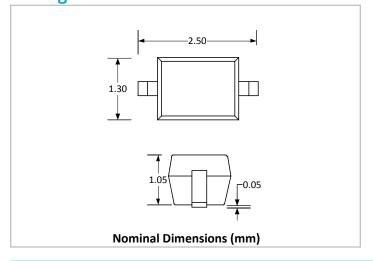
Features

- · High ESD withstand Voltage
- IEC 61000-4-2 (ESD): ±30kV (Contact), ±30kV (Air)
- IEC 61000-4-5 (Lightning): 14A-35A ($t_p = 8/20\mu s$)
- Protects one high-speed data line
- Working voltage options: 12V, 15V, 24V, and 36V
- Low capacitance: 3.1pF-3.3pF typical
- Solid-state silicon-avalanche technology

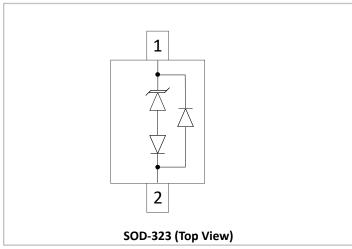
Mechanical Characteristics

• Package: SOD-323

• Pb-free, Halogen Free, RoHS/WEEE compliant


• Molding compound flammability rating: UL 94V-0

• Lead Finish: Pb-Free


• Marking: Marking Code

· Packaging: Tape and Reel

Package Dimension

Functional Schematic

Absolute Maximum Rating

RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power ($t_p = 8/20\mu s$)	P _{PK}	800 - 1100	W
ESD per IEC 61000-4-2 (Contact) ⁽¹⁾	V	±30	LA /
ESD per IEC 61000-4-2 (Air) ⁽¹⁾	V_{ESD}	±30	kV
Operating Temperature	T_{OP}	-40 to +125	°C
Storage Temperature	T _{STG}	-55 to +150	°C

Electrical Characteristics

T=25°C unless otherwise specified

All data taken from Pin 1 to 2 unless otherwise specified.

RCLAMP1201H

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Reverse Stand-Off Voltage	$V_{_{RWM}}$				12	V
Reverse Breakdown Voltage	$V_{_{\mathrm{BR}}}$	$I_t = 1mA$	14.5	15.5	18.2	V
Reverse Leakage Current	I _R	V _{RWM} = 12V			1	μΑ
Peak Pulse Current	l _{PP}	t _p = 8/20μs			35	А
Clamping Voltage		$I_{pp} = 1A$, $t_p = 8/20 \mu s$		15.8	18.5	
	V _c	$I_{pp} = 35 \text{ A}, t_{p} = 8/20 \mu \text{s}$		22.3	25.7	V
Dynamic Resistance ^{(2),(3)}	R _{DYN}	t _p = 0.2/100ns (TLP)		0.14		Ω
Junction Capacitance	C _J	V _R = 0V, f = 1MHz		3.3	5	pF

Notes:

- (1): ESD Gun return path to Ground Reference Plane (GRP)
- (2): Transmission Line Pulse Test (TLP) Settings: tp = 100ns, tr = 0.2ns, I_{TLP} and V_{TLP} averaging window: t_1 = 70ns to t_2 = 90ns.
- (3): Dynamic resistance calculated from $I_{TLP} = 4A$ to $I_{TLP} = 16A$

Electrical Characteristics

T=25°C unless otherwise specified

All data taken from Pin 1 to 2 unless otherwise specified.

RCLAMP1501H

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Reverse Stand-Off Voltage	$V_{_{\mathrm{RWM}}}$				15	V
Reverse Breakdown Voltage	$V_{_{BR}}$	I _t = 1mA	16	17.2	20	V
Reverse Leakage Current	I _R	V _{RWM} = 15V			1	μΑ
Peak Pulse Current	l _{PP}	t _p = 8/20μs			34	А
Clamping Voltage		$I_{pp} = 1A$, $t_p = 8/20 \mu s$		17.5	21	
	V _c	$I_{pp} = 34A, t_{p} = 8/20 \mu s$		24.5	28	V
Dynamic Resistance ^{(2),(3)}	R _{DYN}	t _p = 0.2/100ns (TLP)		0.14		Ω
Junction Capacitance	C,	V _R = 0V, f = 1MHz		3.1	5	pF

DCI	AMP240	01H
KLL	AIVIPZ41	חוט

NCLAIM 240 III						
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Reverse Stand-Off Voltage	$V_{_{\mathrm{RWM}}}$				24	V
Reverse Breakdown Voltage	$V_{_{\mathrm{BR}}}$	$I_t = 1mA$	26	28.8	32	V
Reverse Leakage Current	I _R	$V_{RWM} = 24V$			1	μΑ
Peak Pulse Current	l _{PP}	t _p = 8/20μs			24	Α
Clamping Voltage V _c		$I_{pp} = 1A, t_{p} = 8/20 \mu s$		29.5	34	
	v _c	$I_{pp} = 24A$, $t_{p} = 8/20 \mu s$		40	46	V
Dynamic Resistance ^{(2),(3)}	R _{DYN}	t _p = 0.2/100ns (TLP)		0.17		Ω
Junction Capacitance	C _J	$V_R = 0V$, $f = 1MHz$		3.2	5	pF

Notes:

^{(1):} ESD Gun return path to Ground Reference Plane (GRP)

^{(2):} Transmission Line Pulse Test (TLP) Settings: tp = 100ns, tr = 0.2ns, $I_{_{TLP}}$ and $V_{_{TLP}}$ averaging window: $t_{_1}$ = 70ns to $t_{_2}$ = 90ns.

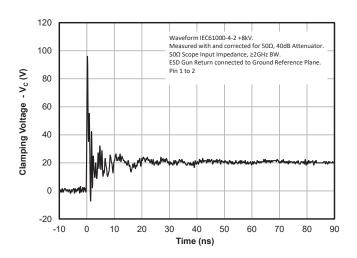
^{(3):} Dynamic resistance calculated from $\rm I_{\rm TLP}$ = 4A to $\rm I_{\rm TLP}$ = 16A

Electrical Characteristics

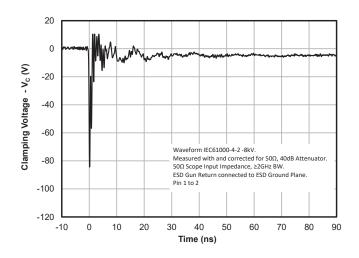
T=25°C unless otherwise specified

All data taken from Pin 1 to 2 unless otherwise specified.

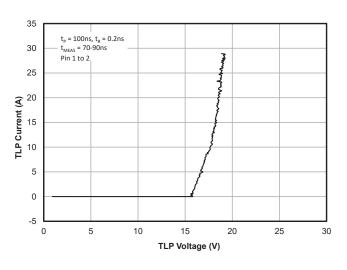
RCLAMP3601H

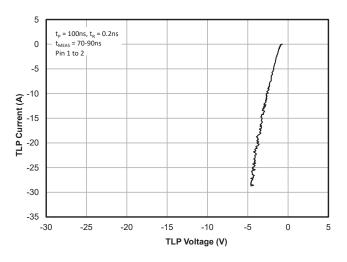

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Reverse Stand-Off Voltage	$V_{_{RWM}}$				36	V
Reverse Breakdown Voltage	$V_{_{\mathrm{BR}}}$	$I_t = 1mA$	37	40	43	V
Reverse Leakage Current	I _R	V _{RWM} = 36V			1	μΑ
Peak Pulse Current	l _{PP}	t _p = 8/20μs			14	А
Clamping Voltage V _c		$I_{pp} = 1A, t_{p} = 8/20 \mu s$		41	47	M
	v _c	$I_{pp} = 14A$, $t_{p} = 8/20 \mu s$		52	59	V
Dynamic Resistance ^{(2),(3)}	R _{DYN}	t _p = 0.2/100ns (TLP)		0.24		Ω
Junction Capacitance	C_{J}	$V_R = 0V$, $f = 1MHz$		3.3	5	pF

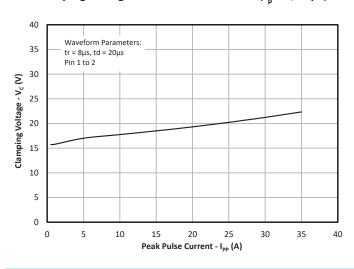
Notes:

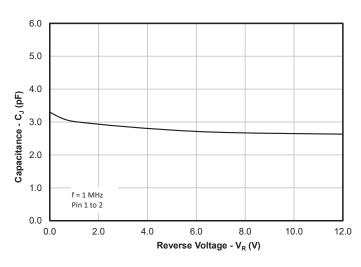

- (1): ESD Gun return path to Ground Reference Plane (GRP)
- (2): Transmission Line Pulse Test (TLP) Settings: tp = 100ns, tr = 0.2ns, I_{TLP} and V_{TLP} averaging window: t_1 = 70ns to t_2 = 90ns.
- (3): Dynamic resistance calculated from $I_{_{\rm TLP}}$ = 4A to $I_{_{\rm TLP}}$ = 16A

Typical Characteristics-RClamp1201H

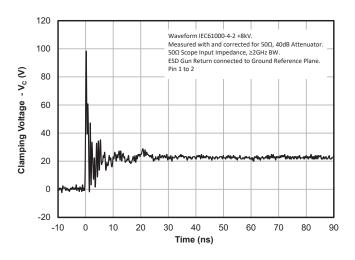

ESD Clamping (+8kV Contact per IEC 61000-4-2)


ESD Clamping (-8kV Contact per IEC 61000-4-2)


TLP Characteristics (Positive Pulse)

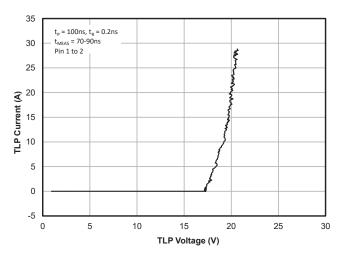

TLP Characteristics (Negative Pulse)

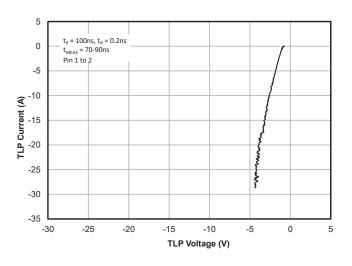
Clamping Voltage vs. Peak Pulse Current (t_n = 8/20µs)

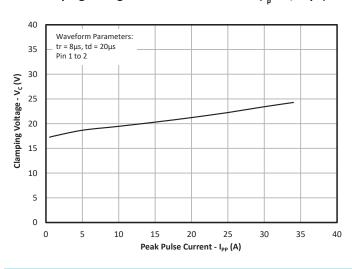


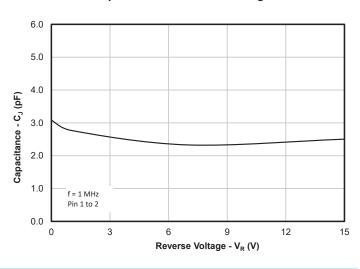
Capacitance vs. Reverse Voltage

Typical Characteristics-RClamp1501H

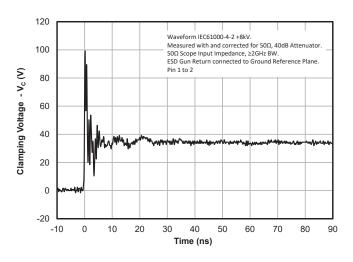

ESD Clamping (+8kV Contact per IEC 61000-4-2)


ESD Clamping (-8kV Contact per IEC 61000-4-2)

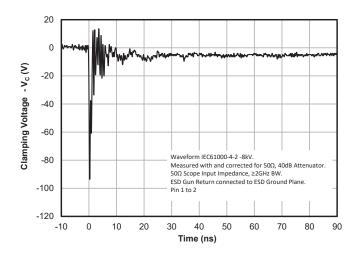

TLP Characteristics (Positive Pulse)


TLP Characteristics (Negative Pulse)

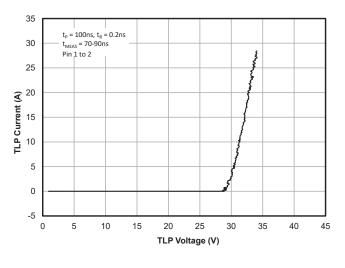
Clamping Voltage vs. Peak Pulse Current (t_n = 8/20µs)

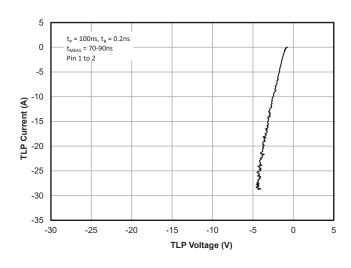


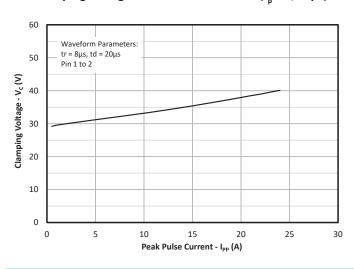
Capacitance vs. Reverse Voltage

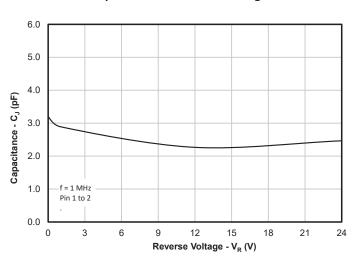


Typical Characteristics-RClamp2401H

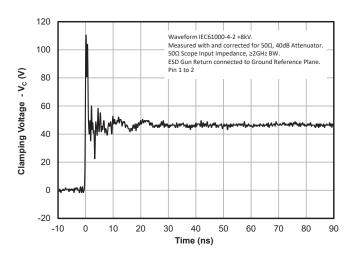

ESD Clamping (+8kV Contact per IEC 61000-4-2)

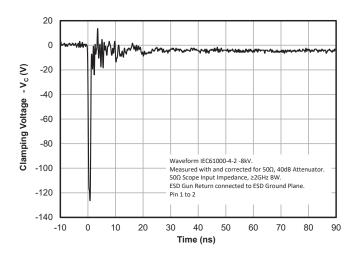

ESD Clamping (-8kV Contact per IEC 61000-4-2)


TLP Characteristics (Positive Pulse)

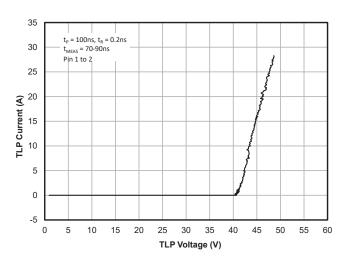

TLP Characteristics (Negative Pulse)

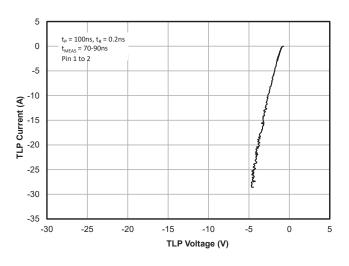
Clamping Voltage vs. Peak Pulse Current (t_n = 8/20µs)

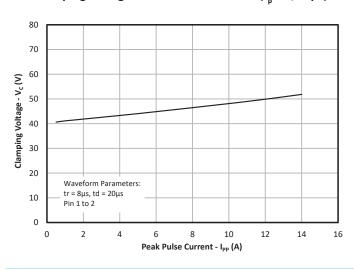

Capacitance vs. Reverse Voltage

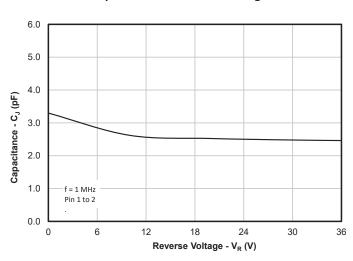

RClamp1201H-RClamp3601H Final Datasheet: Rev. 2.1 Revision Date: 1/17/2025

Typical Characteristics-RClamp3601H

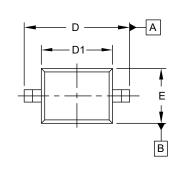

ESD Clamping (+8kV Contact per IEC 61000-4-2)


ESD Clamping (-8kV Contact per IEC 61000-4-2)

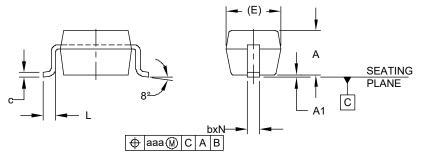

TLP Characteristics (Positive Pulse)


TLP Characteristics (Negative Pulse)

Clamping Voltage vs. Peak Pulse Current (t_n = 8/20µs)

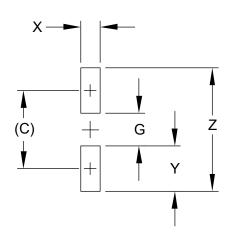


Capacitance vs. Reverse Voltage



RClamp1201H-RClamp3601H Final Datasheet: Rev. 2.1 Revision Date: 1/17/2025

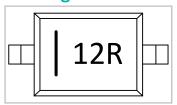
Outline Drawing - SOD-323


	DIMENSIONS				
DIM	MIL	LIME	ΓERS		
ווועו	MIN	NOM	MAX		
Α	1.00	1.05	1.10		
A1	0.00	0.05	0.10		
b	0.25	0.30	0.35		
O	0.10	0.11	0.15		
D	2.30	2.50	2.70		
D1	1.60	1.70	1.80		
Е	1.20	1.30	1.40		
L	0.20	0.30	0.40		
N	2				
aaa	0.20				

NOTES:

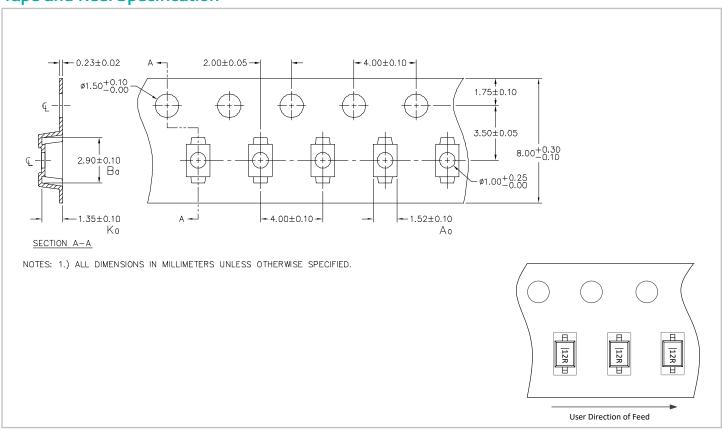
- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- DIMENSIONS "D1" AND "E" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

Landing Pattern - SOD-323



DIMENSIONS				
DIM	MILLIMETERS			
C	(2.15)			
G	0.90			
Χ	0.53			
Υ	1.25			
Ζ	3.40			

NOTES:


- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.
 CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR
 COMPANY'S MANUFACTURING GUIDELINES ARE MET.

Marking Code

Note: Bar indicates Pin 1 location.

Tape and Reel Specification

Order Information

PART NUMBER	MARKING CODE	WORKING VOLTAGE	QTY PER REEL	REEL SIZE
RClamp1201H.C	12R	12V	3,000	7"
RClamp1501H.C	15R	15V	3,000	7"
RClamp2401H.C	24R	24V	3,000	7"
RClamp3601H.C	36R	36V	3,000	7"
RailClamp and RClamp are registered trademarks of Semtech Corporation.				

Datasheet Identification Definitions

Datasheet Identification	Product Status	Definition
Preliminary	Formative or In Design	This data sheet contains the design specifications for product development. Semtech reserves the right to change the product or this document without notice.
Engineering	First Production	This datasheet contains initial specifications. The product has passed Semtech's reliability testing. Changes to fit, form, or function are not expected however, Semtech reserves the right to change the product or this document at any time without notice.
Final	Full Production	This datasheet contains final specifications. Further product changes are not expected however, Semtech reserves the right to change the product or this document at any time without notice.

Important Notice

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

Product features listed in this datasheet may be suitable for "non-safety" applications in Automotive use cases. Information in this datasheet for such applications is provided as a guide only. No safety claim is made in respect of the product described in this datasheet when used in Automotive safety systems or security devices, including systems for controlling vehicles and other transportation equipment; responsibility for achieving safety goals belongs solely to the buyer and/or integrators. Semtech is under no obligation to provide any data regarding safety integration to the buyer or any integrator.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN AUTOMOTIVE SAFETY OR SECURITY DEVICES, INCLUDING SYSTEMS FOR CONTROLLING VEHICLES AND OTHER TRANSPORTATION EQUIPMENT, LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

© Semtech 2025