

400 W, 2.9 - 3.5 GHz, 50-Ohm Input/Output Matched, GaN HEMT for S-Band Radar Systems

Description

Wolfspeed's CGHV35400F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain, and wide bandwidth capabilities, which makes the CGHV35400F ideal for 2.9 - 3.5 GHz S-Band radar amplifier applications. The transistor is matched to 50-ohms on the input and 50-ohms on the output. The CGHV35400 is based on Wolfspeed's high power density 50 V, 0.4 μm GaN on silicon carbide (SiC) foundry process. The transistor is supplied in a ceramic/metal flange package, type 440225.

Package Types: 440225 PN's: CGHV35400F

Features

- 2.9 3.5 GHz operation
- 500 W typical output power
- 11 dB power gain
- 70% typical drain efficiency
- 50 Ohm internally matched
- <0.3 dB pulsed amplitude droop

Typical Performance Over 2.9-3.5 GHz ($T_c = 25$ °C) of Demonstration Amplifier

Parameter	2.9 GHz	3.2 GHz	3.5 GHz	Units
Output Power	500	535	480	W
Gain	11.0	11.3	10.8	dB
Drain Efficiency	74	69	64	%

Note

Measured in the CGHV35400F-AMP application circuit, under 500 μs pulse width, 10% duty cycle, $P_{_{IN}}$ = 46 dBm.

Absolute Maximum Ratings (Not Simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Pulse Width	PW	500	μs	
Duty Cycle	DC	10	%	
Drain-Source Voltage	V _{DSS}	150	Volts	25 °C
Gate-to-Source Voltage	V _{GS}	-10, +2	Volts	25 °C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T _J	225	°C	
Maximum Forward Gate Current	I _{GMAX}	80	mA	25 °C
Maximum Drain Current ¹	I _{DMAX}	24	А	25 °C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Pulsed Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.22	°C/W	100 μsec, 10%, 85 °C , P _{DISS} = 418 W
Pulsed Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.30	°C/W	500 μsec, 10%, 85 °C , P _{DISS} = 418 W
Case Operating Temperature	T _c	-40, +125	°C	

Notes:

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics¹(T _c = 25 °C)						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	V _{DC}	V _{DS} = 10 V, I _D = 83.6 mA
Gate Quiescent Voltage	V _{GS(Q)}	-	-2.7	-	V _{DC}	$V_{DS} = 50 \text{ V, I}_{D} = 0.5 \text{ A}$
Saturated Drain Current ²	I _{DS}	62.7	75.5	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BR}	125	-	-	V _{DC}	V _{GS} = -8 V, I _D = 83.6 mA

Notes:

¹ Current limit for long term, reliable operation.

² Refer to the Application Note on soldering at wolfspeed.com/rf/document-library

¹ Measured on wafer prior to packaging.

² Scaled from PCM data.

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
RF Characteristics³ (T _c = 25 °C, F ₀ = 2.9 - 3.5 GHz Unless Otherwise Noted)							
Output Power at 2.9 GHz	P _{OUT1}	445	500	-	W	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Output Power at 3.2 GHz	P _{OUT2}	475	535	-	W	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Output Power at 3.5 GHz	Роитз	410	480	-	W	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Gain at 2.9 GHz	G _{P1}	10.5	11	-	dB	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Gain at 3.2 GHz	G _{P2}	10.75	11.3	-	dB	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Gain at 3.5 GHz	G _{P3}	10.1	10.8	-	dB	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Drain Efficiency at 2.9 GHz	D _{E1}	60	70	-	%	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Drain Efficiency at 3.2 GHz	D _{E2}	60	70	-	%	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Drain Efficiency at 3.5 GHz	D _{E3}	54	64	-	%	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Small Signal Gain	S21	10.5	12	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = -10 \text{ dBm}$	
Input Return Loss	S11	-	-8	-3.0	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = -10 \text{ dBm}$	
Output Return Loss	S22	-	-8	-4.0	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = -10 \text{ dBm}$	
Amplitude Droop	D	-	-0.3	-	dB	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Output Stress Match	VSWR	-	5:1	-	Ψ	No Damage at All Phase Angles, $V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm Pulsed}$	

Note:

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1 A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C

 $^{^3}$ Measured in CGHV35400F-AMP. Pulse width = 500 μS , duty cycle = 10%.

Typical Performance

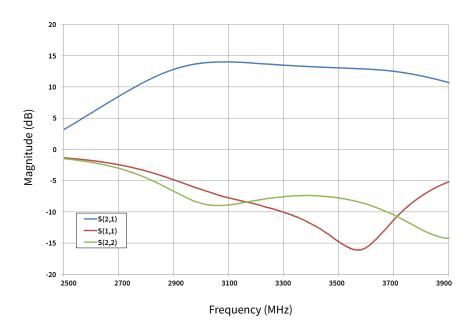


Figure 1. CGHV35400F Typical S Parameters $V_{\rm DD}$ = 50 V, $I_{\rm DQ}$ = 0.5 A

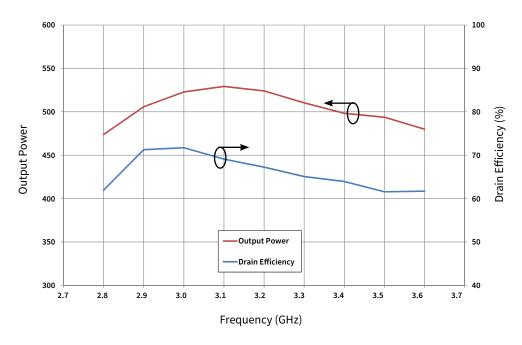


Figure 2. CGHV35400F P_{OUT} and Drain Efficiency vs Frequency at T_{case} = 25 °C V_{DD} = 50 V, I_{DQ} = 0.5 A, P_{IN} = 46 dBm, Pulse Width = 500 μ s, Duty Cycle = 10%

Typical Performance

Figure 3. CGHV35400F Output Power vs Input Power V $_{DD}$ = 50 V, I $_{DQ}$ = 500 mA, Pulse Width = 500 μs , Duty = 10%, T $_{case}$ = 25 °C

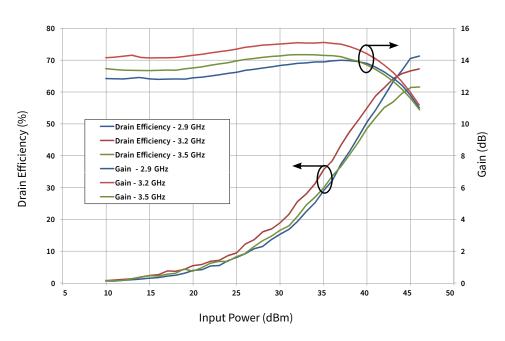
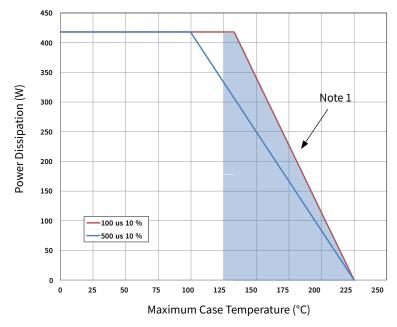
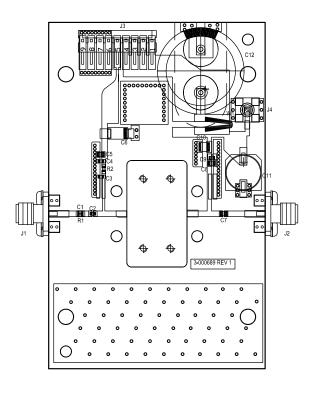
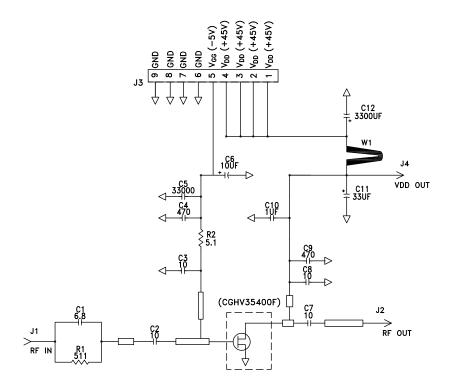



Figure 4. CGHV35400F Drain Efficiency & Gain vs Input Power $V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 500 mA, Pulse Width = 500 μ s, Duty Cycle = 10%, $T_{_{Case}}$ = 25 °C

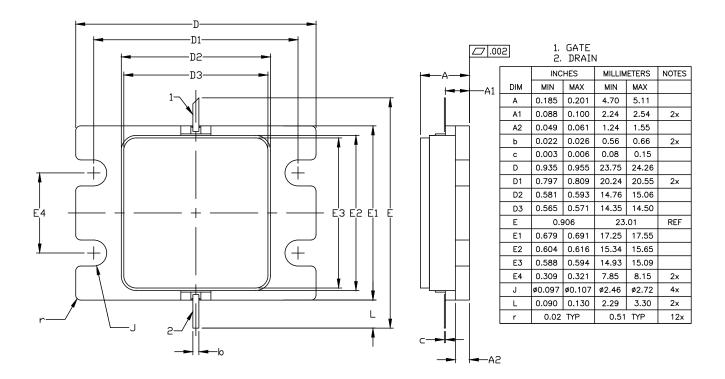
CGHV35400F-AMP Application Circuit Bill of Materials


Designator	Description	Qty
R1	RES, 511, OHM, +/- 1%, 1/16 W, 0603	1
R2	RES, 5.1, OHM, +/- 1%, 1/16 W, 0603	1
C1	CAP, 6.8 pF, +/-0.25%, 250 V, 0603	1
C2, C7, C8	CAP, 10.0 pF, +/-1%, 250 V, 0805	3
С3	CAP, 10.0 pF, +/-5%, 250 V, 0603	1
C4, C9	CAP, 470 pF, 5%, 100 V, 0603, X	2
C5	CAP, 33000 pF, 0805, 100 V, X7R	1
C6	CAP, 10 uF 16 V TANTALUM	1
C10	CAP, 1.0 uF, 100 V, 10%, X7R, 1210	1
C11	CAP, 33 uF, 20%, G CASE	1
C12	CAP, 3300 uF, +/-20%, 100 V, ELECTROLYTIC	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER, RT>PLZ, 0.1 CEN LK 9POS	1
J4	CONNECTOR; SMB, Straight, JACK, SMD	1
W1	CABLE, 18 AWG, 4.2	1
-	PCB, RO4350, 2.5 X 4.0 X 0.030	1
Q1	CGHV35400F	1

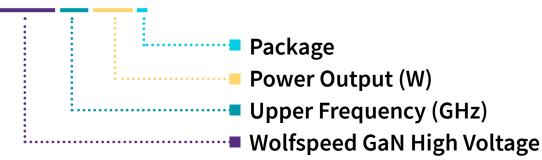
CGHV35400F Power Dissipation De-Rating Curve



Notes 1: Area exceeds maximum case operating temperature (see page 2).


CGHV35400F-AMP Application Circuit Outline

CGHV35400F-AMP Application Circuit Schematic



Product Dimensions CGHV35400F (Package Type — 440225)

Part Number System

CGHV35400F

Table 1.

Parameter	Value	Units
Upper Frequency ¹	3.5	GHz
Power Output	400	W
Package	Flange	-

Note:

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
Е	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz

 $^{^{\}rm 1}$ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Order Number	Description	Unit of Measure	Image
CGHV35400F	GaN HEMT	Each	COMPAGNATION
CGHV35400F-AMP	Test Board with GaN HEMT Installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2013-2023 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.