


| Project Number: Design Qualification Test Report       | Tracking Code: 2410700_Report_Rev_2 |
|--------------------------------------------------------|-------------------------------------|
| Requested by: Leo Lee                                  | Date: 8/11/2022                     |
| Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR | Tech: Peter Chen                    |
| Part description: UMPS/UMPT                            | Qty to test: 32                     |
| Test Start: 05/20/2020                                 | Test Completed: 06/15/2020          |





# DESIGN QUALIFICATION TEST REPORT

UMPS / UMPT UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR

| Tracking Code: 2410700_Report_Rev_2 | Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR |  |  |  |
|-------------------------------------|--------------------------------------------------------|--|--|--|
| Part description: UMPS / UMPT       |                                                        |  |  |  |

# **REVISION HISTORY**

| DATA       | REV.NUM. | DESCRIPTION             | ENG |
|------------|----------|-------------------------|-----|
| 08/06/2020 | 1        | Initial Issue           | PC  |
| 08/11/2022 | 2        | Updated the part number | PC  |

| Tracking Code: 2410700_Report_Rev_2 | Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR |  |  |  |
|-------------------------------------|--------------------------------------------------------|--|--|--|
| Part description: UMPS / UMPT       |                                                        |  |  |  |

#### CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

### **SCOPE**

To perform the following tests: Design Qualification test. Please see test plan.

### APPLICABLE DOCUMENTS

Standards: EIA Publication 364

### TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead free
- 9) Samtec Test PCBs used: PCB-110876-TST. PCB-110859-TST.

### **FLOWCHARTS**

# Mating/Unmating/Durability

#### Group 1

UMPS-04-05.5-G-V-S-W-TR UMPT-04-01-L-RA-WT-TR 8 Assemblies

#### Step Description

- Contact Gaps
- LLCR (2)
- 3. Mating/Unmating Force (3)
- Cycles
   Quantity = 25 Cycles
- 5. Mating/Unmating Force (3)
- Cycles
   Quantity = 25 Cycles
- 7. Mating/Unmating Force (3)
- Cycles
   Quantity = 25 Cycles
- 9. Mating/Unmating Force (3)
- Cycles
   Quantity = 25 Cycles
- 11. Mating/Unmating Force (3)
- Contact Gaps
- LLCR (2) Max Delta = 15 mOhm
- 14. Thermal Shock (4)
- LLCR (2) Max Delta = 15 mOhm
- 16. Humidity (1)
- 17. LLCR (2) Max Delta = 15 mOhm
- 18. Mating/Unmating Force (3)

#### Group 2

UMPS-02-05.5-G-V-S-W-TR UMPT-02-01-L-RA-WT-TR 8 Assemblies

#### Step Description

- Contact Gaps
- Mating/Unmating Force (3)
- Cycles
   Quantity = 25 Cycles
- 4. Mating/Unmating Force (3)
- 5. Cycles
- Quantity = 25 Cycles
- Mating/Unmating Force (3)
- Cycles
   Quantity = 25 Cycles
- 8. Mating/Unmating Force (3)
- Cycles
  - Quantity = 25 Cycles
- 10. Mating/Unmating Force (3)

#### Group 3

UMPS-10-05.5-G-V-S-W-TR UMPT-10-01-L-RA-WT-TR 8 Assemblies

#### Step Description

- Contact Gaps
- Mating/Unmating Force (3)
- Cycles
   Quantity = 25 Cycles
- Mating/Unmating Force (3)
- Cycles
   Quantity = 25 Cycles
- Mating/Unmating Force (3)
- Cycles
   Quantity = 25 Cycles
- 8. Mating/Unmating Force (3)
- Cycles
   Quantity = 25 Cycles
- 10. Mating/Unmating Force (3)

(1) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

- (3) Mating/Unmating Force = EIA-364-13
- (4) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

Tracking Code: 2410700\_Report\_Rev\_2

Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR

Part description: UMPS / UMPT

### **FLOWCHARTS Continued**

## **Current Carrying Capacity**

Group 1

UMPS-10-05.5-G-V-S-W-TR UMPT-10-01-L-RA-WT-TR

> 1 Pins Powered Power

Step Description

1. CCC<sub>(1)</sub>

Number of Positions = 1

Group 2 UMPS-10-05.5-G-V-S-W-TR UMPT-10-01-L-RA-WT-TR

2 Pins Powered Power

Step Description

1. CCC (1) Rows = 1

Number of Positions = 2

Group 3

UMPS-10-05.5-G-V-S-W-TR UMPT-10-01-L-RA-WT-TR

> 3 Pins Powered Power

Step Description

1. CCC (1) Rows = 1

Number of Positions = 3

Group 4

UMPS-10-05.5-G-V-S-W-TR UMPT-10-01-L-RA-WT-TR

> 4 Pins Powered Power

Step Description

1. CCC (1) Rows = 1

Number of Positions = 4

Group 5

UMPS-10-05.5-G-V-S-W-TR

UMPT-10-01-L-RA-WT-TR 10 Pins Powered

Power

Step Description

CCC (1)

Rows = 1 Number of Positions = 10

(1) CCC = EIA-364-70

Method 2, Temperature Rise Versus Current Curve

(TIN PLATING) - Tabulate calculated current at RT, 65°C, 75°C and 95°C after derating 20% and based on 105°C (GOLD PLATING) - Tabulate calculated current at RT, 85°C, 95°C and 115°C after derating 20% and based on 125°C

| Tracking Code: 2410700_Report_Rev_2 | Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR |  |  |  |
|-------------------------------------|--------------------------------------------------------|--|--|--|
| Part description: UMPS / UMPT       |                                                        |  |  |  |

## ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

### THERMAL SHOCK:

- 1) EIA-364-32, Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.
- 2) Test Condition 1:  $-55^{\circ}$ C to  $+85^{\circ}$ C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

### **HUMIDITY:**

- 1) Reference document: EIA-364-31, Humidity Test Procedure for Electrical Connectors.
- 2) Test Condition B, 240 Hours.
- 3) Method III,  $+25^{\circ}$  C to  $+65^{\circ}$  C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

### MATING/UNMATING:

- 1) Reference document: EIA-364-13, Mating and Unmating Forces Test Procedure for Electrical Connectors.
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

| Tracking Code: 2410700_Report_Rev_2 | Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR |
|-------------------------------------|--------------------------------------------------------|
| •                                   | Part description: UMPS / UMPT                          |

### **ATTRIBUTE DEFINITIONS Continued**

The following is a brief, simplified description of attributes.

## **TEMPERATURE RISE (Current Carrying Capacity, CCC):**

- 1) EIA-364-70, Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets.
- 2) When current passes through a contact, the temperature of the contact increases as a result of  $I^2R$  (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
  - a. Self heating (resistive)
  - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at four temperature points are reported:
  - a. Ambient
  - b. 85° C
  - c. 95° C
  - d. 115° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, TR 803.exe, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

#### LLCR:

- 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing

| Part description: UMPS / UMPT                                                      |
|------------------------------------------------------------------------------------|
| RESULTS                                                                            |
|                                                                                    |
| Temperature Rise, CCC at a 20% de-rating                                           |
| • CCC for a 30°C Temperature Rise18.1 A per contact with 1 contacts (1x1) powered  |
| • CCC for a 30°C Temperature Rise16.6 A per contact with 2 contacts (1x2) powered  |
| • CCC for a 30°C Temperature Rise14.0 A per contact with 3 contacts (1x3) powered  |
| • CCC for a 30°C Temperature Rise13.5 A per contact with 4 contacts (1x4) powered  |
| • CCC for a 30°C Temperature Rise8.9 A per contact with 10 contacts (1x10) powered |
| Mating – Unmating Forces                                                           |
| Mating-Unmating Durability Group                                                   |
| Initial                                                                            |
| o Mating                                                                           |
| • Min 3.17 Lbs                                                                     |
| ■ Max4.01 Lbs                                                                      |
| o Unmating                                                                         |
| ■ Min1.84 Lbs                                                                      |
| ■ Max2.27 Lbs                                                                      |
| • After 25 Cycles                                                                  |
| o Mating                                                                           |
| ■ Min 3.10 Lbs                                                                     |
| ■ Max3.78 Lbs                                                                      |
| o Unmating                                                                         |
| ■ Min2.35 Lbs                                                                      |
| ■ Max2.67 Lbs                                                                      |
| After 50 Cycles                                                                    |
| <ul> <li>Mating</li> </ul>                                                         |
| ■ Min 2.68 Lbs                                                                     |
| ■ Max3.01 Lbs                                                                      |
| o Unmating                                                                         |
| • Min2.51 Lbs                                                                      |
| ■ Max2.72 Lbs                                                                      |
| • After 75 Cycles                                                                  |
| o Mating                                                                           |
| ■ Min2.68 Lbs                                                                      |
| Max2.93 Lbs                                                                        |
| o Unmating                                                                         |
| • Min 2.54 Lbs                                                                     |
| Max2.78 Lbs                                                                        |
| After 100 Cycles                                                                   |
| o Mating                                                                           |
| <ul> <li>Min 2.56 Lbs</li> <li>Max 3.01 Lbs</li> </ul>                             |
|                                                                                    |
| O Unmating                                                                         |

Min ------ 2.39 Lbs Max------ 2.77 Lbs

Min ------ 1.54 Lbs Max------ 1.85 Lbs

Min ------ 1.44 Lbs Max----- 1.69 Lbs

Humidity

Mating

Unmating

Tracking Code: 2410700\_Report\_Rev\_2 Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR

Part description: UMPS / UMPT

### **RESULTS Continued**

Mating-Unmating Basic (UMPS-10-05.5-G-V-S-W-TR/ UMPT-10-01-L-RA-WT-TR)

• Initial

- Mating
  - Min ----- 9.24 Lbs
  - Max-----10.94 Lbs
- Unmating
  - Min ----- 5.73 Lbs
  - Max-----6.14 Lbs
- After 25 Cycles
  - o Mating
    - Min ----- 8.57 Lbs
    - Max-----9.91 Lbs
  - Unmating
    - Min ----- 6.26 Lbs
    - Max------6.79 Lbs
- After 50 Cycles
  - o Mating
    - Min ----- 7.36 Lbs
      - Max------8.31 Lbs
  - Unmating
    - Min ----- 6.46 Lbs
    - Max-----7.13 Lbs
- After 75 Cycles
  - Mating
    - Min ----- 3.72 Lbs
      - Max-----7.51 Lbs
  - Unmating
    - Min ----- 6.56 Lbs
    - Max-----7.15 Lbs
- After 100 Cycles
  - Mating
    - Min ----- 7.10 Lbs
    - Max-----7.67 Lbs
  - Unmating
    - Min ----- 6.73 Lbs
    - Max-----7.23 Lbs

Tracking Code: 2410700\_Report\_Rev\_2 Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR

Part description: UMPS / UMPT

### **RESULTS Continued**

Mating-Unmating Basic (UMPS-02-05.5-G-V-S-W-TR/ UMPT-02-01-L-RA-WT-TR)

• Initial

- Mating
  - Min ----- 1.82 Lbs
  - Max-----2.41 Lbs
- Unmating
  - Min ------ 1.25 Lbs
  - Max-----1.63 Lbs
- After 25 Cycles
  - o Mating
    - Min ----- 2.02 Lbs
    - Max-----2.41 Lbs
  - Unmating
    - Min ----- 1.47 Lbs
    - Max------1.79 Lbs
- After 50 Cycles
  - o Mating
    - Min ------ 1.74 Lbs
    - Max------2.25 Lbs
  - Unmating
    - Min ------ 1.63 Lbs
    - Max----- 2.00 Lbs
- After 75 Cycles
  - Mating
    - Min ----- 1.75 Lbs
    - Max----- 2.18 Lbs
  - Unmating
    - Min ------ 1.73 Lbs
    - Max-----2.10 Lbs
- After 100 Cycles
  - Mating
    - Min ----- 1.84 Lbs
    - Max-----2.25 Lbs
  - Unmating
    - Min ----- 1.78 Lbs
    - Max-----2.13 Lbs

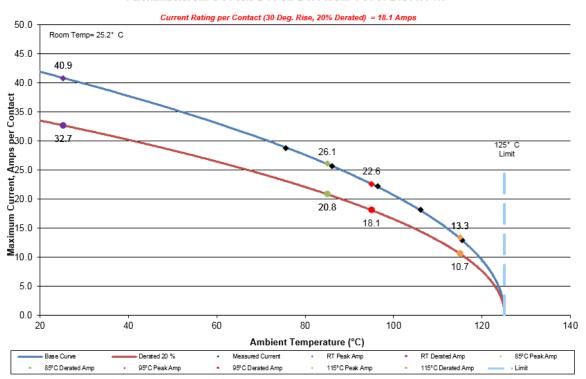
Tracking Code: 2410700\_Report\_Rev\_2 Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR
Part description: UMPS / UMPT

## RESULTS Continued

|      |       | RESULTS Continued                                   |
|------|-------|-----------------------------------------------------|
| LLCR | Mati  | ing/Unmating Durability Group (32 LLCR test points) |
|      |       |                                                     |
|      |       | ility, 100 Cycles                                   |
|      | 0     | <= +0.33 mOhms Stable                               |
|      | 0     | +0.34 to +0.66 mOhms Minor                          |
|      | 0     | +0.67 to +1.00 mOhms Acceptable                     |
|      | 0     | +1.01 to +50.0 mOhms Marginal                       |
|      | 0     | +50.1 to +1000 mOhms Unstable                       |
|      | 0     | >+1000 mOhms Open Failure                           |
| • T  | 'herm | al Shock                                            |
|      | 0     | <= +0.33 mOhms Stable                               |
|      | 0     | +0.34 to +0.66 mOhms Minor                          |
|      | 0     | +0.67 to +1.00 mOhms Acceptable                     |
|      | 0     | +1.01 to +50.0 mOhms Marginal                       |
|      | 0     | +50.1 to +1000 mOhms Unstable                       |
|      | 0     | >+1000 mOhms Open Failure                           |
| • H  | lumid |                                                     |
|      | 0     | <= +0.33 mOhms Stable                               |
|      | 0     | +0.34 to +0.66 mOhms Minor                          |
|      | 0     | +0.67 to +1.00 mOhms Acceptable                     |
|      | 0     | +1.01 to +50.0 mOhms Marginal                       |
|      | 0     | +50.1 to +1000 mOhms Unstable                       |
|      | 0     | >+1000 mOhms Open Failure                           |

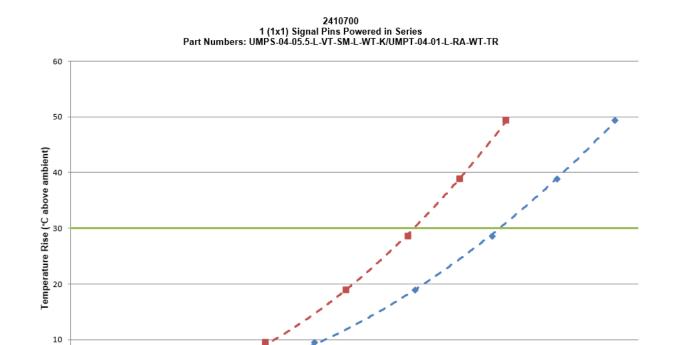
| Tracking Code: 2410700_Report_Rev_2 | Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR |  |  |  |  |
|-------------------------------------|--------------------------------------------------------|--|--|--|--|
| Part description: UMPS / UMPT       |                                                        |  |  |  |  |

### **DATA SUMMARIES**


# **TEMPERATURE RISE (Current Carrying Capacity, CCC):**

- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer controlled data acquisition).
- 4) Adjacent contacts were powered:

### Without Lube


a. Linear configuration with 1 adjacent conductors/contacts powered

2410700 1 (1x1) Signal Pins Powered in Series Part Numbers: UMPS-04-05.5-L-VT-SM-L-WT-K/UMPT-04-01-L-RA-WT-TR



Tracking Code: 2410700\_Report\_Rev\_2 Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR

Part description: UMPS / UMPT



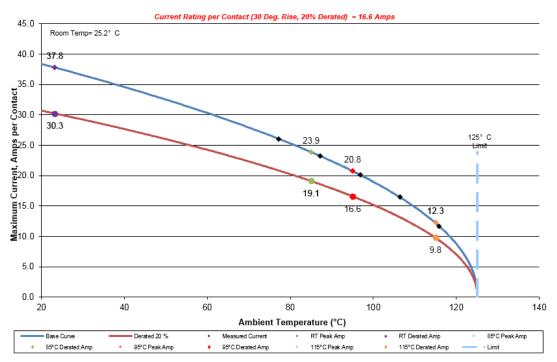
15 Current (Amps)

◆ Actual ■ 20% Derated

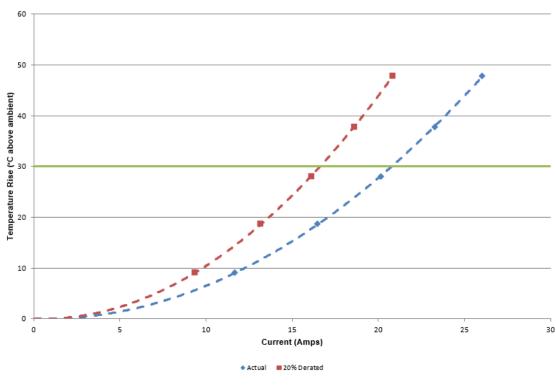
10

20

25

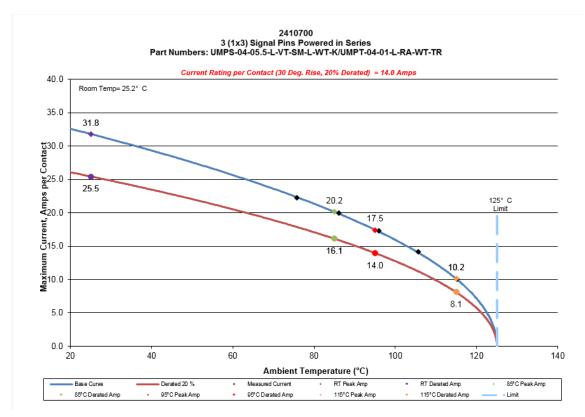

30

0

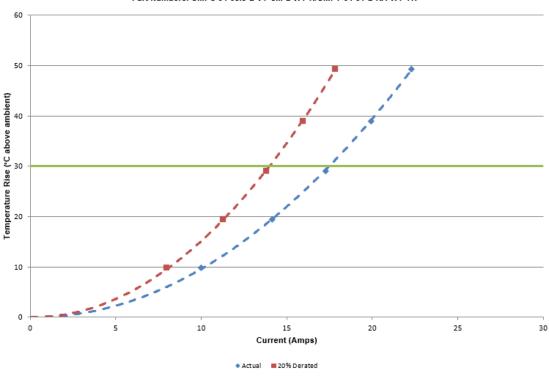

### **DATA SUMMARIES Continued**

b. Linear configuration with 2 adjacent conductors/contacts powered

2410700
2 (1x2) Signal Pins Powered in Series
Part Numbers: UMPS-04-05.5-L-VT-SM-L-WT-K/UMPT-04-01-L-RA-WT-TR



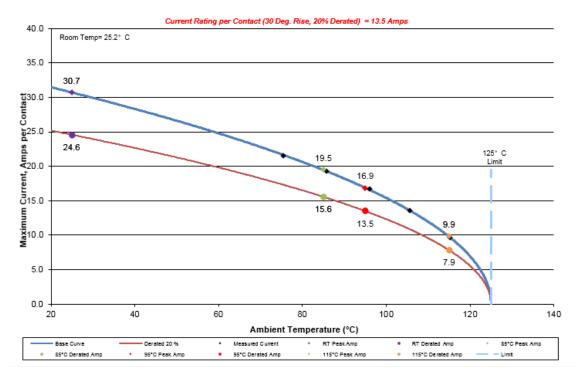

2410700
2 (1x2) Signal Pins Powered in Series
Part Numbers: UMPS-04-05.5-L-VT-SM-L-WT-K/UMPT-04-01-L-RA-WT-TR



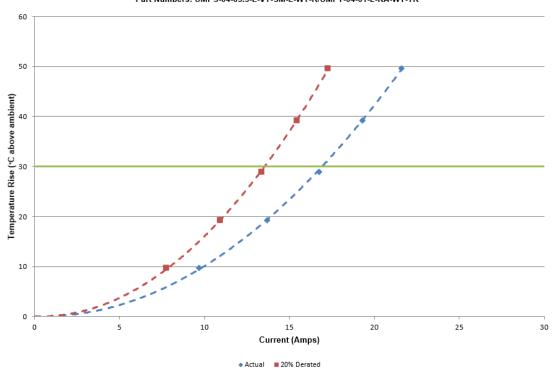

# **DATA SUMMARIES Continued**

c. Linear configuration with 3 adjacent conductors/contacts powered




2410700
3 (1x3) Signal Pins Powered in Series
Part Numbers: UMPS-04-05.5-L-VT-SM-L-WT-K/UMPT-04-01-L-RA-WT-TR

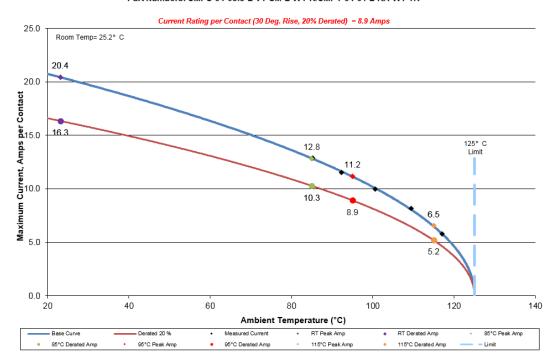



## **DATA SUMMARIES Continued**

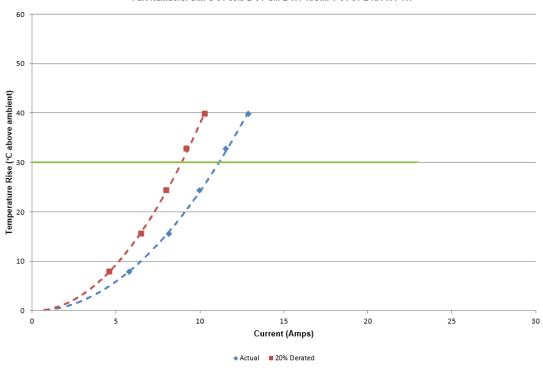
d. Linear configuration with 4 adjacent conductors/contacts powered

2410700 4 (1x4) Signal Pins Powered in Series Part Numbers: UMPS-04-05.5-L-VT-SM-L-WT-K/UMPT-04-01-L-RA-WT-TR




2410700 4 (1x4) Signal Pins Powered in Series Part Numbers: UMPS-04-05.5-L-VT-SM-L-WT-K/UMPT-04-01-L-RA-WT-TR




# **DATA SUMMARIES Continued**

e. Linear configuration with all adjacent conductors/contacts powered

2410700 10 (1x10) Signal Pins Powered in Series Part Numbers: UMPS-04-05.5-L-VT-SM-L-WT-K/UMPT-04-01-L-RA-WT-TR



2410700 10 (1x10) Signal Pins Powered in Series Part Numbers: UMPS-04-05.5-L-VT-SM-L-WT-K/UMPT-04-01-L-RA-WT-TR



Tracking Code: 2410700\_Report\_Rev\_2 Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR Part description: UMPS / UMPT

# **DATA SUMMARIES Continued**

## MATING-UNMATING FORCE:

Count

8

8

8

| Mating-Unmating Durability Group |         |             |         |             |                |             |         |             |  |
|----------------------------------|---------|-------------|---------|-------------|----------------|-------------|---------|-------------|--|
|                                  |         | Ini         | tial    |             | 25 Cycles      |             |         |             |  |
|                                  | М       | ating       | Uni     | Unmating    |                | Mating      |         | Unmating    |  |
|                                  | Newtons | Force (Lbs) | Newtons | Force (Lbs) | Newtons        | Force (Lbs) | Newtons | Force (Lbs) |  |
| Minimum                          | 14.10   | 3.17        | 8.18    | 1.84        | 13.79          | 3.10        | 10.45   | 2.35        |  |
| Maximum                          | 17.84   | 4.01        | 10.10   | 2.27        | 16.81          | 3.78        | 11.88   | 2.67        |  |
| Average                          | 15.56   | 3.50        | 9.11    | 2.05        | 15.02          | 3.38        | 11.20   | 2.52        |  |
| St Dev                           | 1.38    | 0.31        | 0.71    | 0.16        | 1.11           | 0.25        | 0.47    | 0.11        |  |
| Count                            | 8       | 8           | 8       | 8           | 8              | 8           | 8       | 8           |  |
|                                  |         | 50 C        | ycles   |             |                | 75 C        | ycles   |             |  |
|                                  | М       | ating       | Uni     | mating      | М              | ating       | Uni     | mating      |  |
|                                  | Newtons | Force (Lbs) | Newtons | Force (Lbs) | Newtons        | Force (Lbs) | Newtons | Force (Lbs) |  |
| Minimum                          | 11.92   | 2.68        | 11.16   | 2.51        | 11.92          | 2.68        | 11.30   | 2.54        |  |
| Maximum                          | 13.39   | 3.01        | 12.10   | 2.72        | 13.03          | 2.93        | 12.37   | 2.78        |  |
| Average                          | 12.63   | 2.84        | 11.63   | 2.61        | 12.45          | 2.80        | 11.75   | 2.64        |  |
| St Dev                           | 0.56    | 0.12        | 0.39    | 0.09        | 0.50           | 0.11        | 0.35    | 0.08        |  |
| Count                            | 8       | 8           | 8       | 8           | 8              | 8           | 8       | 8           |  |
|                                  |         | 100 C       | Cycles  |             | After Humidity |             |         |             |  |
|                                  | М       | ating       | Uni     | mating      | М              | ating       | Uni     | mating      |  |
|                                  | Newtons | Force (Lbs) | Newtons | Force (Lbs) | Newtons        | Force (Lbs) | Newtons | Force (Lbs) |  |
| Minimum                          | 11.39   | 2.56        | 10.63   | 2.39        | 6.85           | 1.54        | 6.41    | 1.44        |  |
| Maximum                          | 13.39   | 3.01        | 12.32   | 2.77        | 8.23           | 1.85        | 7.52    | 1.69        |  |
| Average                          | 12.54   | 2.82        | 11.73   | 2.64        | 7.54           | 1.70        | 6.89    | 1.55        |  |
| St Dev                           | 0.63    | 0.14        | 0.52    | 0.12        | 0.46           | 0.10        | 0.37    | 0.08        |  |
|                                  |         |             |         |             |                |             |         |             |  |

8

8

8

8

8

Tracking Code: 2410700\_Report\_Rev\_2 Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR

Part description: UMPS / UMPT

# **DATA SUMMARIES Continued**

 $\textbf{Mating-Unmating basic} \hspace{0.2cm} \textbf{(UMPS-10-05.5-G-V-S-W-TR/UMPT-10-01-L-RA-WT-TR)} \\$ 

|         |         | Ini         | tial     |             | After 25 Cycles |             |          |             |
|---------|---------|-------------|----------|-------------|-----------------|-------------|----------|-------------|
|         | Mating  |             | Unmating |             | Mating          |             | Unmating |             |
|         | Newtons | Force (Lbs) | Newtons  | Force (Lbs) | Newtons         | Force (Lbs) | Newtons  | Force (Lbs) |
| Minimum | 41.10   | 9.24        | 25.49    | 5.73        | 38.12           | 8.57        | 27.84    | 6.26        |
| Maximum | 48.66   | 10.94       | 27.31    | 6.14        | 44.08           | 9.91        | 30.20    | 6.79        |
| Average | 44.89   | 10.09       | 26.19    | 5.89        | 41.51           | 9.33        | 29.16    | 6.56        |
| St Dev  | 2.29    | 0.51        | 0.59     | 0.13        | 2.09            | 0.47        | 0.73     | 0.16        |
| Count   | 8       | 8           | 8        | 8           | 8               | 8           | 8        | 8           |
|         |         | After 50    | ) Cycles |             | After 75 Cycles |             |          |             |
|         | M       | ating       | Uni      | mating      | Mating Unmating |             |          | mating      |
|         | Newtons | Force (Lbs) | Newtons  | Force (Lbs) | Newtons         | Force (Lbs) | Newtons  | Force (Lbs) |
| Minimum | 32.74   | 7.36        | 28.73    | 6.46        | 16.55           | 3.72        | 29.18    | 6.56        |
| Maximum | 36.96   | 8.31        | 31.71    | 7.13        | 33.40           | 7.51        | 31.80    | 7.15        |
| Average | 33.87   | 7.61        | 30.22    | 6.80        | 30.54           | 6.87        | 30.41    | 6.84        |
| St Dev  | 1.40    | 0.32        | 1.04     | 0.23        | 5.68            | 1.28        | 0.92     | 0.21        |
| Count   | 8       | 8           | 8        | 8           | 8               | 8           | 8        | 8           |

|         | After 100 Cycles |             |          |             |  |  |  |
|---------|------------------|-------------|----------|-------------|--|--|--|
|         | М                | ating       | Unmating |             |  |  |  |
|         | Newtons          | Force (Lbs) | Newtons  | Force (Lbs) |  |  |  |
| Minimum | 31.58            | 7.10        | 29.94    | 6.73        |  |  |  |
| Maximum | 34.12 7.67       |             | 32.16    | 7.23        |  |  |  |
| Average | 32.91            | 7.40        | 30.60    | 6.88        |  |  |  |
| St Dev  | 0.72             | 0.16        | 0.81     | 0.18        |  |  |  |
| Count   | 8                | 8           | 8        | 8           |  |  |  |

Tracking Code: 2410700\_Report\_Rev\_2 Part #: U

Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR

Part description: UMPS / UMPT

# **DATA SUMMARIES Continued**

Mating-Unmating Basic (UMPS-02-05.5-G-V-S-W-TR/ UMPT-02-01-L-RA-WT-TR)

|         | Initial             |      |          |             | After 25 Cycles |             |          |             |
|---------|---------------------|------|----------|-------------|-----------------|-------------|----------|-------------|
|         | Mating              |      | Unmating |             | Mating          |             | Unmating |             |
|         | Newtons Force (Lbs) |      | Newtons  | Force (Lbs) | Newtons         | Force (Lbs) | Newtons  | Force (Lbs) |
| Minimum | 8.10                | 1.82 | 5.56     | 1.25        | 8.98            | 2.02        | 6.54     | 1.47        |
| Maximum | 10.72               | 2.41 | 7.25     | 1.63        | 10.72           | 2.41        | 7.96     | 1.79        |
| Average | 9.36                | 2.11 | 6.52     | 1.47        | 9.95            | 2.24        | 7.26     | 1.63        |
| St Dev  | 0.80                | 0.18 | 0.58     | 0.13        | 0.55            | 0.12        | 0.52     | 0.12        |
| Count   | 8                   | 8    | 8        | 8           | 8               | 8           | 8        | 8           |

|         | After 50 Cycles |             |          |             | After 75 Cycles |             |          |             |
|---------|-----------------|-------------|----------|-------------|-----------------|-------------|----------|-------------|
|         | Mating          |             | Unmating |             | Mating          |             | Unmating |             |
|         | Newtons         | Force (Lbs) | Newtons  | Force (Lbs) | Newtons         | Force (Lbs) | Newtons  | Force (Lbs) |
| Minimum | 7.74            | 1.74        | 7.25     | 1.63        | 7.78            | 1.75        | 7.70     | 1.73        |
| Maximum | 10.01           | 2.25        | 8.90     | 2.00        | 9.70            | 2.18        | 9.34     | 2.10        |
| Average | 8.68            | 1.95        | 8.30     | 1.87        | 8.82            | 1.98        | 8.73     | 1.96        |
| St Dev  | 0.70            | 0.16        | 0.65     | 0.15        | 0.68            | 0.15        | 0.55     | 0.12        |
| Count   | 8               | 8           | 8        | 8           | 8               | 8           | 8        | 8           |

|         | After 100 Cycles |             |          |             |  |  |  |
|---------|------------------|-------------|----------|-------------|--|--|--|
|         | М                | ating       | Unmating |             |  |  |  |
|         | Newtons          | Force (Lbs) | Newtons  | Force (Lbs) |  |  |  |
| Minimum | 8.18             | 1.84        | 7.92     | 1.78        |  |  |  |
| Maximum | 10.01            | 2.25        | 9.47     | 2.13        |  |  |  |
| Average | 8.96             | 2.02        | 8.89     | 2.00        |  |  |  |
| St Dev  | 0.62             | 0.14        | 0.61     | 0.14        |  |  |  |
| Count   | 8                | 8           | 8        | 8           |  |  |  |

Tracking Code: 2410700\_Report\_Rev\_2 Part #: UMPS-04-05.5-G-V-S-W-TR/ UMPT-04-01-T-RA-WT-TR
Part description: UMPS / UMPT

## **DATA SUMMARIES Continued**

## **LLCR Mating/Unmating Durability Group**

- 1). A total of 40 points were measured.
- 2). EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing.
  - a. <= +0.33 mOhms: -----Stable b. +0.34 to +0.66 mOhms: -----Minor c. +0.67 to +1.00 mOhms: ------Acceptable d. +1.01 to +50.0 mOhms: ------Marginal
  - e. +50.1 to +1000 mOhms: ------Unstable
  - f. >+1000 mOhms:-----Open Failure

|                     | LLCR Measurement Summaries by Pin Type |                                |                       |                      |  |  |
|---------------------|----------------------------------------|--------------------------------|-----------------------|----------------------|--|--|
| Date                | 5/26/2020                              | 5/29/2020                      | 6/4/2020              | 6/15/2020            |  |  |
| Room Temp (Deg      |                                        |                                |                       |                      |  |  |
| C)                  | 23                                     | 23                             | 23                    | 23                   |  |  |
| Rel Humidity (%)    | 51                                     | 54                             | 54                    | 54                   |  |  |
|                     | Peter                                  |                                |                       | Peter                |  |  |
| Technician          | Chen                                   | Peter Chen                     | Peter Chen            | Chen                 |  |  |
| mOhm values         | Actual                                 | Delta                          | Delta                 | Delta                |  |  |
|                     |                                        | 100                            |                       |                      |  |  |
|                     |                                        | 100                            |                       |                      |  |  |
|                     | Initial                                | Cycles                         | Therm Shck            | Humidity             |  |  |
|                     | Initial                                | Cycles                         | Therm Shck            | Humidity             |  |  |
| Average             | Initial<br>1.09                        | Cycles                         |                       | Humidity<br>0.09     |  |  |
| Average<br>St. Dev. |                                        | Cycles Pin Type                | 1: Signal             |                      |  |  |
| •                   | 1.09                                   | Cycles Pin Type 0.03           | <b>1: Signal</b> 0.03 | 0.09                 |  |  |
| St. Dev.            | 1.09<br>0.06                           | O.03 0.02                      | 0.03<br>0.02          | 0.09<br>0.08         |  |  |
| St. Dev.<br>Min     | 1.09<br>0.06<br>1.00                   | Cycles Pin Type 0.03 0.02 0.00 | 0.03<br>0.02<br>0.00  | 0.09<br>0.08<br>0.00 |  |  |

| LLCR Delta Count by Category |        |           |            |            |              |       |  |  |  |
|------------------------------|--------|-----------|------------|------------|--------------|-------|--|--|--|
|                              | Stable | Minor     | Marginal   | Unstable   | Open         |       |  |  |  |
| mOhms                        | <=5    | >5 & <=10 | >10 & <=15 | >15 & <=50 | >50 & <=1000 | >1000 |  |  |  |
| 100 Cycles                   | 32     | 0         | 0          | 0          | 0            | 0     |  |  |  |
| Therm Shck                   | 32     | 0         | 0          | 0          | 0            | 0     |  |  |  |
| Humidity                     | 32     | 0         | 0          | 0          | 0            | 0     |  |  |  |

## **EQUIPMENT AND CALIBRATION SCHEDULES**

Equipment #: HZ-MO-03

Description: Micro-ohmmeter

Manufacturer: Keithley

**Model:** 580 **Serial #:** 297288

**Accuracy:** Last Cal: 2019-8-06, Next Cal: 2020-8-05

**Equipment #:** HZ-TCT-01

**Description:** Normal force analyzer **Manufacturer:** Mecmesin Multitester **Model:** Mecmesin Multitester 2.5-i

**Serial #:** 08-1049-04

**Accuracy:** Last Cal: 2019-4-28, Next Cal: 2020-4-27

**Equipment #:** HZ-THC-01

**Description:** Humidity transmitter

Manufacturer: Thermtron

Model: HMM30C Serial #: D0240037

**Accuracy:** Last Cal: 2019-3-3, Next Cal: 2020-3-2

Equipment #: HZ-MO-01
Description: Micro-ohmmeter
Manufacturer: Keithley

**Model:** 2700 **Serial #:** 1199807

**Accuracy:** Last Cal: 2019-4-28, Next Cal: 2020-4-27

Equipment #: HZ-PS-01
Description: Power Supply
Manufacturer: Agilent

**Model:** 6031A

Serial #: MY41000982

**Accuracy:** Last Cal: 2019-4-28, Next Cal: 2020-4-27

**Equipment #:** HZ-TSC-01

**Description:** Thermal Shock transmitter

**Manufacturer:** Keithley **Model:** 10-VT14994

Serial #: VTS-3-6-6-SC/AC

**Accuracy:** Last Cal: 2019-11-1, Next Cal: 2020-11-1