

Project Number: Design Qualification Test Report	Tracking Code: 2410699_Report_Rev_2
Requested by: Leo Lee	Date: 6/30/2021
Part #: UMPT-04-01-T-RA-WT-TR/UMPS-04-05.5-T-V-S-W-TR	
Part description: UMPS/UMPT	Tech: Kason He
Test Start: 5/26/2020	Test Completed: 6/28/2020

DESIGN QUALIFICATION TEST REPORT

UMPS/UMPT UMPT-04-01-T-RA-WT-TR/UMPS-04-05.5-T-V-S-W-TR

Tracking Code:2410699_Report_Rev_2	Part #: UMPT-04-01-T-RA-WT-TR/UMPS-04-05.5-T-V-S-W-TR				
Part description: UMPS/UMPT					

REVISION HISTORY

DATA	REV.NUM.	DESCRIPTION	ENG
8/13/2020	1	Initial Issue	КН
6/29/2021	2	Updated the part number	КН

Tracking Code:2410699_Report_Rev_2 Part #: UMPT-04-01-T-RA-WT-TR/UMPS-04-05.5-T-V-S-W-TR
--

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Design Qualification test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead free
- 9) Samtec Test PCBs used: PCB-110858-TST/PCB-110859-TST/PCB-110860-TST/PCB-110876-TST

FLOWCHARTS

Group 2

UMPS-02-05.5-T-V-S-W-TR

UMPT-02-01-T-RA-WT-TR

Mating/Unmating/Durability

Group 1

UMPS-04-05.5-T-V-S-W-TR UMPT-04-01-T-RA-WT-TR 8 Assemblies

8 Assemblies

Description

1. Contact Gaps

Step

2. Mating/Unmating Force(3)

Cycles
 Quantity = 25 Cycles

4. Mating/Unmating Force(3)

Cycles
 Quantity = 25 Cycles

6. Mating/Unmating Force(3)

Cycles
 Quantity = 25 Cycles

8. Mating/Unmating Force(3)

Cycles Quantity = 25 Cycles

10. Mating/Unmating Force(3)

Group 3 UMPS-10-05.5-T-V-S-W-TR UMPT-10-01-T-RA-WT-TR

8 Assemblies

Step Description

- 1. Contact Gaps
- LLCR (2)
- 3. Mating/Unmating Force(3)
- Cycles
 Quantity = 25 Cycles
- 5. Mating/Unmating Force(3)
- Cycles Quantity = 25 Cycles
- Mating/Unmating Force(3)
- Cycles
 Quantity = 25 Cycles
- 9. Mating/Unmating Force(3)
- Cycles
 Quantity = 25 Cycles
- 11. Mating/Unmating Force(3)
- Contact Gaps
- 13. LLCR (2) Max Delta = 15 mOhm
- 14. Thermal Shock (4)
- 15. LLCR (2) Max Delta = 15 mOhm
- 16. Humidity (1)
- 17. LLCR (2)
 Max Delta = 15 mOhm
- 18. Mating/Unmating Force(3)

Step Description

- 1. Contact Gaps
- Mating/Unmating Force (3)
- Cycles
 Quantity = 25 Cycles
- Mating/Unmating Force (3)
- 5. Cycles Quantity = 25 Cycles
- 6. Mating/Unmating Force (3)
- Cycles
 Quantity = 25 Cycles
- 8. Mating/Unmating Force (3)
- 9. Cycles Quantity = 25 Cycles
- 10. Mating/Unmating Force (3)

(1) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max

- (3) Mating/Unmating Force = EIA-364-13
- (4) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes =1/2 Hour Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

FLOWCHARTS Continued

IR/DWV

Pin-to-Pin

Group 1 UMPS-04-05.5-T-V-S-W-TR UMPT-04-01-T-RA-WT-TR

2 Assemblies

Step Description

DWV Breakdown(2)

Group 2 UMPS-04-05.5-T-V-S-W-TR

2 Assemblies

Description Step

1. DWV Breakdown(2) Group 3

UMPT-04-01-T-RA-WT-TR 2 Assemblies

Description

1. DWV Breakdown (2) Group 4

UMPS-04-05.5-T-V-S-W-TR UMPT-04-01-T-RA-WT-TR

2 Assemblies

Description Step

1. IR (4)

2. DWV at Test Voltage(1)

3. Thermal Shock (5)

4.

5. DWV at Test Voltage(1)

6. Humidity (3)

7.

8. DWV at Test Voltage(1)

(1) DWV at Test Voltage = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage Test voltage applied for 60 seconds

(2) DWV Breakdown = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(3) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(4) IR = EIA-364-21

Test Condition = 500 Vdc, 2 Minutes Max

(5) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes =1/2 Hour Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

FLOWCHARTS Continued

Current Carrying Capacity

<u>Group 1</u> UMPS-10-05.5-T-V-S-W-TR UMPT-10-01-T-RA-WT-TR

> 1 Pins Powered Power

Step Description

 CCC (1)
 Rows = 1
 Number of Positions = 1 Group 2 UMPS-10-05.5-T-V-S-W-TR UMPT-10-01-T-RA-WT-TR

> 2 Pins Powered Power

Step Description

1. CCC (1)

Rows = 1

Number of Positions = 2

Group 3 UMPS-10-05.5-T-V-S-W-TR

UMPT-10-03.3-1-V-3-W-TR 3 Pins Powered Power

Step Description

1. CCC₍₁₎

Rows = 1

Number of Positions = 3

<u>Group 4</u> UMPS-10-05.5-T-V-S-W-TR

UMPT-10-01-T-RA-WT-TR 4 Pins Powered

Power

Step Description

1. CCC (1)

Rows = 1

Number of Positions = 4

Group 5

UMPS-10-05.5-T-V-S-W-TR UMPT-10-01-T-RA-WT-TR 10 Pins Powered

Power

Step Description

. CCC (1)

Rows = 1

Number of Positions = 10

(1) CCC = EIA-364-70

Method 2, Temperature Rise Versus Current Curve

(TIN PLATING) - Tabulate calculated current at RT,65°C, 75°C and 95°C after derating 20% and based on 105°C (GOLD PLATING) - Tabulate calculated current at RT,85°C, 95°C and 115°C after derating 20% and based on 125°C after derating 20% and based 20% and based on 125°C after derating 20% and based 20% after derating 20% and based 20% after derating 20% and based 20% afte

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) EIA-364-32, Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.
- 2) Test Condition 1: -55° C to $+85^{\circ}$ C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, Humidity Test Procedure for Electrical Connectors.
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to +65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MATING/UNMATING:

- 1) Reference document: EIA-364-13, Mating and Unmating Forces Test Procedure for Electrical Connectors.
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets.
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a. Self-heating (resistive)
 - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at four temperature points are reported:
 - a. Ambient
 - b. 85° C
 - c. 95° C
 - d. 115° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat buildup) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, TR 803.exe, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

LLCR:

- 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms: -----Stable
 - b. +5.1 to +10.0 mOhms:------Minor
 - c. +10.1 to +15.0 mOhms: ------Acceptable
 - d. +15.1 to +50.0 mOhms: ------Marginal
 - e. +50.1 to +1000 mOhms: ------Unstable
 - f. >+1000 mOhms:-----Open Failure

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, Insulation Resistance Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 5000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-20, Withstanding Voltage Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs
- 2) MEASUREMENTS/CALCULATIONS
 - a. The breakdown voltage shall be measured and recorded.
 - b. The dielectric withstanding voltage shall be recorded as 75% of the minimum breakdown voltage.
 - c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstanding voltage (one-fourth of the breakdown voltage).

RESULTS

RESULTS
Temperature Rise, CCC at a 20% de-rating
• CCC for a 30°C Temperature Rise18.4 A per contact with 1 contact (1x1) powered
• CCC for a 30°C Temperature Rise17.2 A per contact with 2 contacts (1x2) powered
GGG 1 200G T
 CCC for a 30°C Temperature Rise14.0 A per contact with 4 contacts (1x4) powered CCC for a 30°C Temperature Rise8.9 A per contact with 10 contacts (1x10) powered
• CCC for a 50 C Temperature Rise
Mating – Unmating Forces
Mating-Unmating Durability Group (UMPS-04-05.5-T-V-S-W-TR/UMPT-04-01-T-RA-WT-TR)
• Initial
o Mating
■ Min 5.43 Lbs
• Max 6.49 Lbs
o Unmating
• Min 4.37 Lbs
Max5.71 Lbs
After 25 Cycles Meting
 Mating ■ Min 5.06 Lbs
■ Max
O Unmating
• Min 3.41 Lbs
■ Max4.64 Lbs
• After 50 Cycles
o Mating
■ Min 5.02 Lbs
■ Max5.54 Lbs
o Unmating
■ Min 2.84 Lbs
■ Max4.09 Lbs
• After 75 Cycles
o Mating
 Min
• Wax 5.55 Lbs • Unmating
■ Min 2.90 Lbs
■ Max
• After 100 Cycles
o Mating
■ Min 4.76 Lbs
■ Max5.50 Lbs
o Unmating
■ Min 3.01 Lbs
■ Max4.14 Lbs
• Humidity
o Mating
 Min
 Unmating ■ Min 2.16 Lbs
171111 2,1V L/US

Max----- 3.45 Lbs

RESULTS Continued

Mating-Unmating Basic (UMPS-02-05.5-T-V-S-W-TR/UMPT-02-01-T-RA-WT-TR)

- Initial
 - Mating
 - Min ----- 3.19 Lbs
 - Max-----3.82 Lbs
 - o Unmating
 - Min ----- 2.71 Lbs
 - Max----- 3.41 Lbs
- After 25 Cycles
 - Mating
 - Min ----- 2.72 Lbs
 - Max-----3.46 Lbs
 - Unmating
 - Min ----- 2.03 Lbs
 - Max------2.69 Lbs
- After 50 Cycles
 - Mating
 - Min ------2.62 Lbs
 - Max----- 3.44 Lbs
 - Unmating
 - Min ------ 1.94 Lbs
 - Max-----2.59 Lbs
- After 75 Cycles
 - Mating
 - Min ----- 2.69 Lbs
 - Max----- 3.46 Lbs
 - Unmating
 - Min ----- 2.05 Lbs
 - Max-----2.74 Lbs
- After 100 Cycles
 - Mating
 - Min ------ 2.62 Lbs
 - Max------3.62 Lbs
 - Unmating
 - Min ----- 2.05 Lbs
 - Max-----2.68 Lbs

RESULTS Continued

Mating-Unmating Basic (UMPS-10-05.5-T-V-S-W-TR/UMPT-10-01-T-RA-WT-TR)

- Initial
 - o Mating
 - Min ------12.60 Lbs
 - Max-----14.48 Lbs
 - Unmating
 - Min ------11.21 Lbs
 - Max-----14.03 Lbs
- After 25 Cycles
 - Mating
 - Min ------13.31 Lbs
 - Max-----14.20 Lbs
 - Unmating
 - Min -----10.39 Lbs
 - Max-----11.61 Lbs
- After 50 Cycles
 - Mating
 - Min ------13.27 Lbs
 - Max-----14.40 Lbs
 - o **Unmating**
 - Min ------10.21 Lbs
 - Max-----10.95 Lbs
- After 75 Cycles
 - Mating
 - Min -----13.13 Lbs
 - Max-----14.56 Lbs
 - Unmating
 - Min ------10.38 Lbs
 - Max-----10.86 Lbs
- After 100 Cycles
 - o Mating
 - Min ------13.13 Lbs
 - Max-----14.28 Lbs
 - Unmating
 - Min ------10.46 Lbs
 - Max-----11.22 Lbs

RESULTS Continued

Insulation Resistance minimums, IR

Pin to Pin

- Initial
 - Mated ------ Passed
 - \circ Unmated ------ Passed
- Thermal Shock
 - \circ Mated ------ Passed
 - \circ Unmated ------ Passed
- Humidity
 - \circ Mated ------ Passed
 - \circ Unmated ------ Passed

Dielectric Withstanding Voltage minimums, DWV

- Minimums
 - o Breakdown Voltage------ 1932 VAC
 - o Test Voltage ------ 1450 VAC
 - O Working Voltage ------480 VAC

Pin to Pin

- Initial DWV ------Passed
- Thermal DWV------Passed
- Humidity DWV------Passed

RESULTS Continued

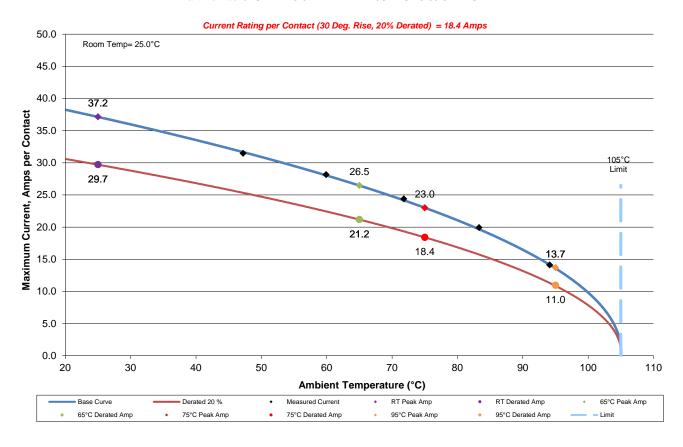
LLCR Mating/Unmating Durability Group (32 LLCR test points) Initial ------1.08 mOhms Max **Durability, 100 Cycles** <= +5.0 mOhms------ Stable +5.1 to +10.0 mOhms------ Minor +10.1 to +15.0 mOhms ------ Acceptable +15.1 to +50.0 mOhms ------ Marginal +50.1 to +1000 mOhms------ Unstable >+1000 mOhms------ Open Failure **Thermal Shock** <= +5.0 mOhms------ Stable +5.1 to +10.0 mOhms------ Minor

	0	>+1000 mOhms
•	Humidit	tv

0

0	>+1000 mOhms	0 Points	Open Failure
umid	ity		•
0	<= +5.0 mOhms	32 Points	Stable
0	+5.1 to +10.0 mOhms	0 Points	Minor
0	+10.1 to +15.0 mOhms	0 Points	Acceptable
0	+15.1 to +50.0 mOhms	0 Points	Marginal
0	+50.1 to +1000 mOhms	0 Points	Unstable
0	>+1000 mOhms	0 Points	Open Failure

+10.1 to +15.0 mOhms ------ Acceptable +15.1 to +50.0 mOhms ------ Marginal

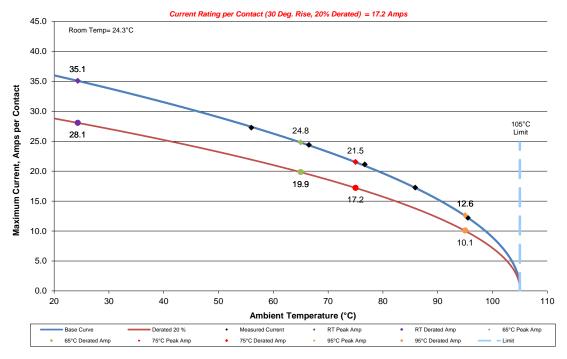

+50.1 to +1000 mOhms------ Unstable

DATA SUMMARIES

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer-controlled data acquisition).
- 4) Adjacent contacts were powered:
 - a. Linear configuration with 1 adjacent conductors/contacts powered

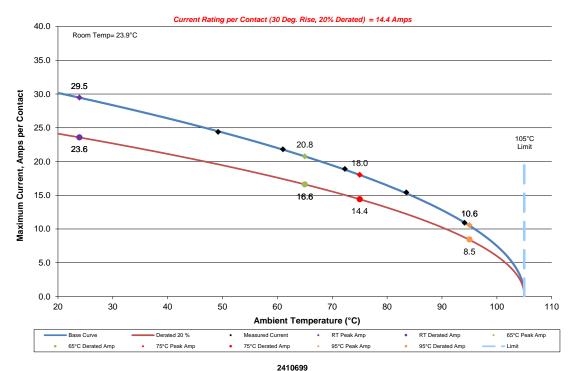
2410699 1(1X1) Contacts in Series Part Numbers: UMPT-10-01-T-RA-WT-TR/UMPS-10-05.5-T-V-S-W-TR



DATA SUMMARIES Continued

b. Linear configuration with 2 adjacent conductors/contacts powered

2410699 2(1X2) Contacts in Series Part Numbers: UMPT-10-01-T-RA-WT-TR/UMPS-10-05.5-T-V-S-W-TR



2410699 2(1X2) Contacts in Series
Part Numbers: UMPT-10-01-T-RA-WT-TR/UMPS-10-05.5-T-V-S-W-TR 55 50 45 C above ambient) 40 35 Temperature Rise (* 25 20 10 0 10 15 20 25 30 Current (Amps) ◆Actual ■20% Derated

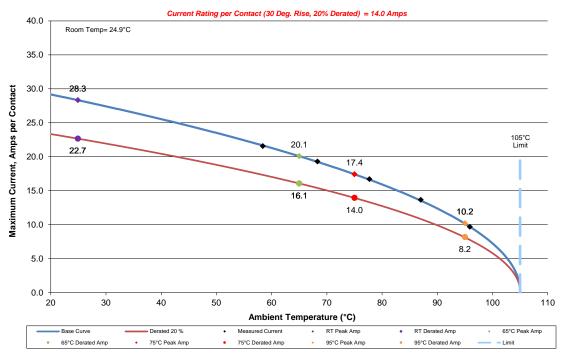
DATA SUMMARIES Continued

c. Linear configuration with 3 adjacent conductors/contacts powered

2410699 3(1X3) Contacts in Series Part Numbers: UMPT-10-01-T-RA-WT-TR/UMPS-10-05.5-T-V-S-W-TR

Part Numbers: UMPT-10-01-T-RA-WT-TR/UMPS-10-05.5-T-V-S-W-TR

Part Numbers: UMPT-10-01-T-RA-WT-TR/UMPS-10-05.5-T-V-S-W-TR

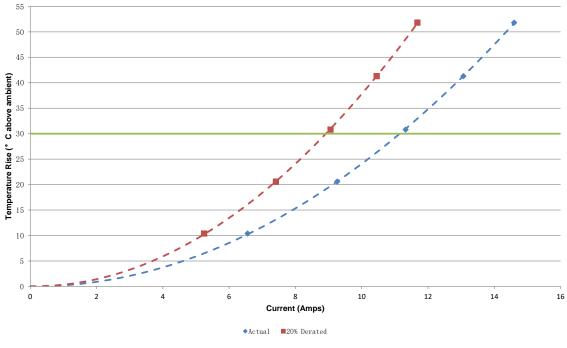

Current (Amps)

◆Actual ■20% Derated

DATA SUMMARIES Continued

d. Linear configuration with 4 adjacent conductors/contacts powered

2410699 4(1X4) Contacts in Series Part Numbers: UMPT-10-01-T-RA-WT-TR/UMPS-10-05.5-T-V-S-W-TR


DATA SUMMARIES Continued

e. Linear configuration with all adjacent conductors/contacts powered

2410699 10(1X10) Contacts in Series Part Numbers: UMPT-10-01-T-RA-WT-TR/UMPS-10-05.5-T-V-S-W-TR

10(1X10) Contacts in Series
Part Numbers: UMPT-10-01-T-RA-WT-TR/UMPS-10-05.5-T-V-S-W-TR

Tracking Code:2410699_Report_Rev_2

Part description: UMPS/UMPT

DATA SUMMARIES Continued

MATING-UNMATING FORCE:

Mating-Unmating Durability Group (UMPS-04-05.5-T-V-S-W-TR/UMPT-04-01-T-RA-WT-TR)

		Ini	tial		25 Cycles			
	M	ating	Unmating		М	ating	Uni	nating
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	24.15	5.43	19.44	4.37	22.51	5.06	15.17	3.41
Maximum	28.87	6.49	25.40	5.71	28.07	6.31	20.64	4.64
Average	25.76	5.79	23.15	5.21	23.79	5.35	19.02	4.28
St Dev	1.61	0.36	1.92	0.43	1.83	0.41	1.69	0.38
Count	8	8	8	8	8	8	8	8
	50 Cycles				75 C	ycles		
	Mating		Unmating		Mating		Unmating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	22.33	5.02	12.63	2.84	21.75	4.89	12.90	2.90
Maximum	24.64	5.54	18.19	4.09	24.60	5.53	18.19	4.09
Average	23.34	5.25	17.16	3.86	23.26	5.23	17.11	3.85
St Dev	0.92	0.21	1.85	0.42	0.94	0.21	1.73	0.39
Count	8	8	8	8	8	8	8	8
		100 C	cycles		After Humidity			
	Mating Unmating		mating	Mating		Unmating		
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	21.17	4.76	13.39	3.01	9.74	2.19	9.61	2.16
Maximum	24.46	5.50	18.41	4.14	14.77	3.32	15.35	3.45
Average	22.80	5.13	17.11	3.85	11.69	2.63	12.41	2.79
St Dev	1.04	0.23	1.68	0.38	1.52	0.34	1.60	0.36
Count	8	8	8	8	8	8	8	8

Tracking Code:2410699_Report_Rev_2

Part description: UMPS/UMPT

DATA SUMMARIES Continued

Mating-Unmating Basic (UMPS-02-05.5-T-V-S-W-TR/UMPT-02-01-T-RA-WT-TR)

		Ini	tial		After 25 Cycles			
	M	ating	Unmating		Mating		Unmating	
	Newtons Force (Lbs)		Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	14.19	3.19	12.05	2.71	12.10	2.72	9.03	2.03
Maximum	16.99	3.82	15.17	3.41	15.39	3.46	11.97	2.69
Average	15.56	3.50	13.56	3.05	14.11	3.17	10.83	2.44
St Dev	1.14	0.26	0.97	0.22	0.97	0.22	1.08	0.24
Count	8	8	8	8	8	8	8	8

		After 50	Cycles		After 75 Cycles			
	Mating		Unmating		М	Mating		mating
	Newtons Force (Lbs)		Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	11.65	2.62	8.63	1.94	11.97	2.69	9.12	2.05
Maximum	15.30	3.44	11.52	2.59	15.39	3.46	12.19	2.74
Average	13.92	3.13	10.20	2.29	14.38	3.23	10.41	2.34
St Dev	1.23	0.28	1.02	0.23	1.17	0.26	1.01	0.23
Count	8	8	8	8	8	8	8	8

	After 100 Cycles							
	M	ating	Unmating					
	Newtons	Force (Lbs)	Newtons	Force (Lbs)				
Minimum	11.65	2.62	9.12	2.05				
Maximum	16.10	3.62	11.92	2.68				
Average	14.23	3.20	10.48	2.36				
St Dev	1.41	.41 0.32 0.99		0.22				
Count	8	8 8 8		8				

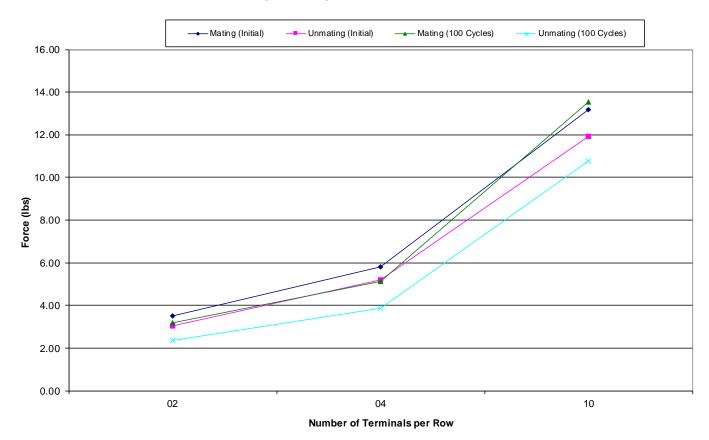
Tracking Code:2410699_Report_Rev_2

Part description: UMPS/UMPT

DATA SUMMARIES Continued

Mating-Unmating Basic (UMPS-10-05.5-T-V-S-W-TR/UMPT-10-01-T-RA-WT-TR)

		Ini	tial		After 25 Cycles			
	M	ating	Unmating		М	ating	Unmating	
	Newtons Force (Lbs)		Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	56.04	12.60	49.86	11.21	59.20	13.31	46.21	10.39
Maximum	64.41	14.48	62.41	14.03	63.16	14.20	51.64	11.61
Average	58.51	13.16	53.01	11.92	61.07	13.73	49.30	11.08
St Dev	2.71	0.61	3.98	0.90	1.43	0.32	1.73	0.39
Count	8	8	8	8	8	8	8	8


	After 50 Cycles				After 75 Cycles			
	Mating		Unmating		Mating		Unmating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	59.02	13.27	45.41	10.21	58.40	13.13	46.17	10.38
Maximum	64.05	14.40	48.71	10.95	64.76	14.56	48.31	10.86
Average	61.78	13.89	46.99	10.57	61.57	13.84	47.29	10.63
St Dev	1.66	0.37	1.25	0.28	2.37	0.53	0.76	0.17
Count	8	8	8	8	8	8	8	8

	After 100 Cycles						
	M	ating	Unmating				
	Newtons	Force (Lbs)	Newtons	Force (Lbs)			
Minimum	58.40	13.13	46.53	10.46			
Maximum	63.52	14.28	49.91	11.22			
Average	60.23	13.54	47.85	10.76			
St Dev	1.72	0.39	1.25	0.28			
Count	8	8	8	8			

DATA SUMMARIES Continued

Mating-Unmating Comparison

Mating/Unmating Data for 02, 04 and 10 Position UMPT/UMPS

Tracking Code:2410699_Report_Rev_2	Part #: UMPT-04-01-T-RA-WT-TR/UMPS-04-05.5-T-V-S-W-TR

DATA SUMMARIES Continued

INSULATION RESISTANCE (IR):

	Pin to Pin			
	Mated	Unmated	Unmated	
Minimum	UMPS/UMPT	UMPS	UMPT	
Initial	45000	45000	45000	
Thermal	45000	45000	45000	
Humidity	45000	45000	45000	

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary				
Minimum	UMPS/UMPT			
Break Down Voltage	1932			
Test Voltage	1450			
Working Voltage	480			

Pin to Pin					
Initial Test Voltage	Passed				
After Thermal Test Voltage	Passed				
After Humidity Test Voltage	Passed				

DATA SUMMARIES Continued

LLCR Mating/Unmating Durability Group

- 1). A total of 32 points were measured.
- 2). EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: -----Stable
 - b. +5.1 to +10.0 mOhms: ------Minor
 - c. +10.1 to +15.0 mOhms:------Acceptable
 - d. +15.1 to +50.0 mOhms:------Marginal
 - e. +50.1 to +1000 mOhms------Unstable
 - f. > +1000 mOhms: -----Open Failure

İ						
	LLCR Measurement Summaries by Pin Type					
Date	6/8/2020	6/11/2020	6/16/2020	6/28/2020		
Room Temp (Deg C)	22	22	22	22		
Rel Humidity (%)	52	50	52	50		
Technician	Kason He	Kason He	Kason He	Kason He		
mOhm values	Actual	Delta	Delta Delta			
	Initial	100 Cycles	Therm Shck	Humidity		
		Pin Type	1: Signal			
Average	0.94	Pin Type 0.28	1: Signal 0.24	0.62		
Average St. Dev.	0.94 0.05			0.62 0.29		
•		0.28	0.24			
St. Dev.	0.05	0.28 0.10	0.24 0.10	0.29		
St. Dev. Min	0.05 0.86	0.28 0.10 0.13	0.24 0.10 0.05	0.29 0.20		

LLCR Delta Count by Category								
	Stable	Minor	Unstable	Open				
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000		
100 Cycles	32	0	0	0	0	0		
Therm Shck	32	0	0	0	0	0		
Humidity	32	0	0	0	0	0		

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: HZ-TCT-01

Description: Normal force analyzer **Manufacturer:** Mecmesin Multitester **Model:** Mecmesin Multitester 2.5-i

Serial #: 08-1049-04

Accuracy: Last Cal: 3/5/2020, Next Cal: 3/4/2021

Equipment #: DG-THC-01
Description: Humidity transmitter
Manufacturer: Thermtron

Model: SM-8-8200 **Serial #:** 50613

Accuracy: Last Cal: 12/4/2019, Next Cal: 12/3/2020

Equipment #: HZ-TSC-01

Description: Vertical Thermal Shock Chamber

Manufacturer: Cincinnatti Sub Zero

Model: VTS-3-6-6-SC/AC Serial #: 10-VT14994 Accuracy: See Manual

... Last Cal: 04/16/2020, Next Cal: 04/15/2021

Equipment #: DG-HPT-01 **Description:** Hipot Safety Tester

Manufacturer: Vitrek

Model: V73 **Serial #:** 025866

Accuracy:

... Last Cal: 04/16/2020, Next Cal: 04/15/2021

Equipment #: HZ-MO-05 Description: Micro-ohmmeter Manufacturer: Keithley

Model: 3706 **Serial #:** 1285188

Accuracy: Last Cal: 1/2/2020, Next Cal: 1/1/2021

Equipment #: HZ-MO-01
Description: Micro-ohmmeter
Manufacturer: Keithley

Model: 2700 **Serial #:** 1199807

Accuracy: Last Cal: 05/19/2020, Next Cal: 05/18/2021

Equipment #: HZ-PS-01
Description: Power Supply
Manufacturer: Agilent

Model: 6031A

Serial #: MY41000982

Accuracy: Last Cal: 04/16/2020, Next Cal: 04/15/2021