

Project Number: 21253		Т	Tracking Code: TC09102306_ReportRev4				
Requested by: Joe Smallwood I		Dat	te: 1/27/2015	Product Rev: 3			
Part #: ERCD-020-06.00-STL-TTR-1-D			Lot #: 2275753	Tech: Gary Lomax, Rodney Riley, & Tony Wagoner Eng: Troy Co		Eng: Troy Cook	
Part description: ERCD						Qty to	test: 50
Test Start: 9/4/2008	Test Completed: 04/	10/20	009				

STANDARD HDR DVT REPORT PART DESCRIPTION ERCD-020-06.00-STL-TTR-1-D

Tracking Code: TC09102306_ReportRev4	Part #: ERCD-020-06.00-STL-TTR-1-D			
Part description: FRCD				

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

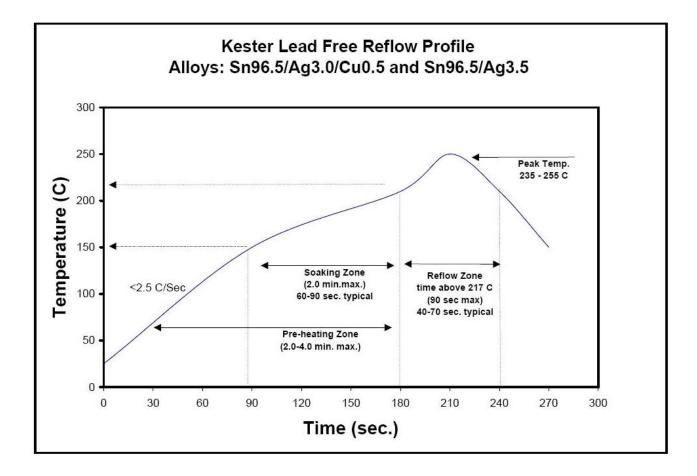
All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Standard HDR DVT

APPLICABLE DOCUMENTS

Standards: EIA Publication 364


TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead Free
- 9) Re-Flow Time/Temp: See accompanying profile.
- 10) Samtec Test PCBs used: PCB-101424-TST-XX, PCB-101425-TST-XX

Tracking Code: TC0910--2306_ReportRev4 Part #: ERCD-020-06.00-STL-TTR-1-D

Part description: ERCD

TYPICAL OVEN PROFILE (Soldering Parts to Test Boards)

FLOWCHARTS

Current Carrying Capacity 3 Mated Assemblies Each

TEST	GROUP A	GROUP B	GROUP C	GROUP D	GROUP E
STEP	3 Mated Assembies	3 Mated Assembies	3 Mated Assembies	3 Mated Assembies	3 Mated Assembies
	2 CONTACT POWERED	4 CONTACTS POWERED	6 CONTACTS POWERED	8 CONTACTS POWERED	ALL CONTACTS POWERED
01	CCC	CCC	CCC	CCC	CCC

(TIN PLATING) - Tabulate calculated current at RT, 65° C, 75° C and 95° C

after derating 20% and based on 105° C

(GOLD PLATING) - Tabulate calculated current at RT, 85° C, 95° C and 115° C

after derating 20% and based on 125° C

CCC, Temp rise = EIA-364-70

IR / DWV

TEST	GROUP A	GROUP B1	GROUP B2	GROUP B3
STEP	2 Boards	2 Boards	2 Boards	2 Boards
	Ambient	Ambient	Thermal	Humidity
01	IR	DWV/Working Voltage	Thermal Aging	Humidity
02	Data Review		DWV/Working Voltage	DWV/Working Voltage
03	Thermal Aging			
04	IR			
05	Data Review			
06	Humidity			
07	IR			

Thermal Aging = EIA-364-17, Test Condition 4, 105 deg C;

Time Condition 'B' (250 hours)

Humidity =EIA-364-31, Test Condition B (240 Hours)

and Method III (+25 ° C to +65 ° C @ 90%RH to 98% RH)

ambient pre-condition and delete steps 7a and 7b

IR = EIA-364-21

DWV = EIA-364-20

Tracking Code: TC0910--2306_ReportRev4

Part description: ERCD

FLOWCHARTS Continued

Connector Pull

	5 Pieces	5 Pieces	
TEST	GROUP 1	GROUP 2	
STEP			
	DV	DV	
	SIG 0°	SIG 90°	
01	Pull test, Continuity	Pull test, Continuity	

Secure both cables in the center Monitor continuity and pull record forces when continuity fails.

Resistance, SIG Contiinuity

	10 Pieces	10 Pieces
TEST	GROUP 1	GROUP 1A
STEP	DV End 90°	DV End 35°
	SIG	SIG
01	Resistance	Resistance
02	1000 Cycles	1000 Cycles
03	Resistance	Resistance
04	Data Review	Data Review
05	2000 Cycles	2000 Cycles
06	Resistance	Resistance
07	Data Review	Data Review
08	3000 Cycles	3000 Cycles
09	Resistance	Resistance
10	Data Review	Data Review
11	4000 Cycles	4000 Cycles
12	Resistance	Resistance
13	Data Review	Data Review
14	5000 Cycles	5000 Cycles
15	Resistance	Resistance

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL:

- 1) EIA-364-17, Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors.
- 2) Test Condition 4 at 105° C.
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, Humidity Test Procedure for Electrical Connectors.
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to +65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets.
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a. Self heating (resistive)
 - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at four temperature points are reported:
 - a. Ambient
 - b. 65° C
 - c. 75° C
 - d. 95° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, TR 803.exe, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

Tracking Code: TC09102306_ReportRev4	Part #: ERCD-020-06.00-STL-TTR-1-D			
Part description: ERCD				

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, Insulation Resistance Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 5000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-20, Withstanding Voltage Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Rate of Application 500 V/Sec
 - iii. Test Voltage (VAC) until breakdown occurs
- 2) MEASUREMENTS/CALCULATIONS
 - a. The breakdown voltage shall be measured and recorded.
 - b. The dielectric withstanding voltage shall be recorded as 75% of the minimum breakdown voltage.
 - c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstanding voltage (one-fourth of the breakdown voltage).

SUPPLEMENTAL TESTS

CONNECTOR PULL:

- 1) Secure cable near center and pull on connector
 - a. At 90°, right angle to cable
 - b. At 0°, in-line with cable

Fig. 1 (Typical set-up, actual part depicted.) 0° Connector pull, notice the electrical continuity hook-up wires.

CABLE DURABILITY:

- 1) Oscillate and monitor electrical continuity for open circuit indication.
 - a. $\pm 35^{\circ}$ Pendulum Mode, bend up to 5,000 cycles with 4 oz. load on cable end.

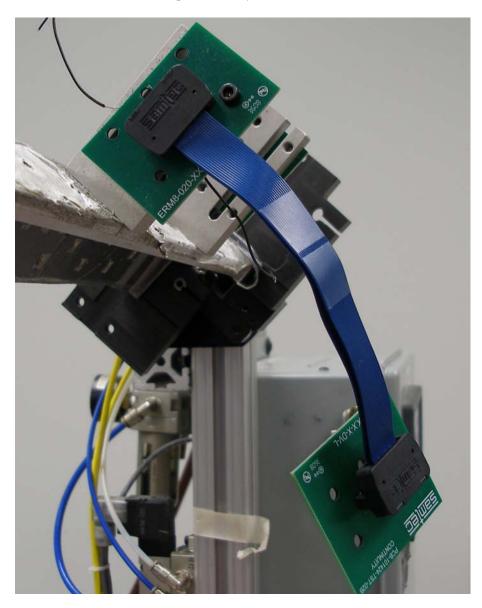


Fig. 2 (Typical set-up, actual part depicted.)

b. $\pm 90^{\circ}$ Flex Mode, bend up to 5,000 cycles with 8 oz. load on cable end.

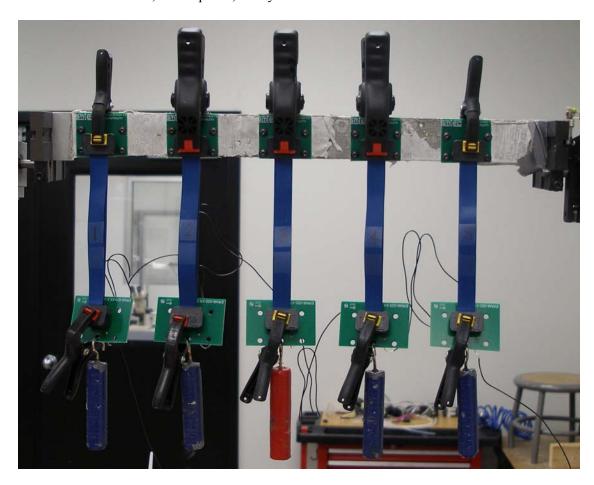


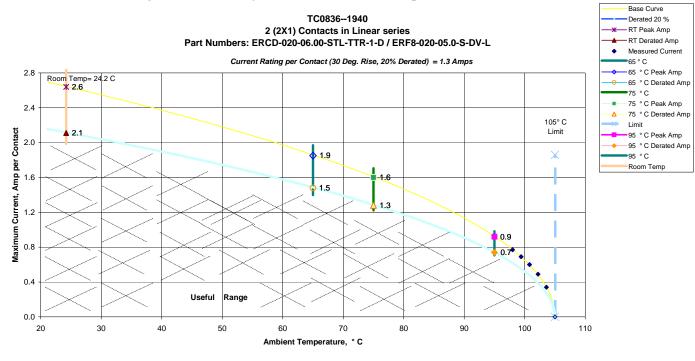
Fig. 3 (Typical set-up, actual part depicted.)

Part #: ERCD-020-06.00-STL-TTR-1-D

Tracking Code: TC0910--2306_ReportRev4

Part description: ERCD

RESULTS


Temperature Rise, CCC at a 20% de-rating	
•	1.3A per contact with 2 adjacent contacts powered
<u>-</u>	1.2A per contact with 4 adjacent contacts powered
	9A per contact with 6 adjacent contacts powered
<u> •</u>	85A per contact with 8 adjacent contacts powered
<u>-</u>	5A per contact with all adjacent contacts powered
cec isi u es e remperature ruse	1011 per contact with an adjacent contacts powered
Insulation Resistance minimums, IR	
 Initial 	
 Mated 	Pass Ω Pass
 Thermal 	
 Mated 	100,000 Meg Ω
 Humidity 	
o Mated	7,000 Meg Ω
Dielectric Withstanding Voltage minimums DWV	
Dielectric Withstanding Voltage minimums, DWV	
InitialBreakdown	
 ○ Breakdown ■ Mated 	640 VAC
o DWV	040 VAC
■ Mated	480 VA <i>C</i>
 Working voltage 	100 1110
■ Mated	213 VAC
• Thermal	
o Breakdown	
 Mated 	820 VAC
\circ DWV	
 Mated 	615 VAC
 Working voltage 	
 Mated 	273 VAC
• Humidity	
o Breakdown	
• Mated	880 VAC
o DWV	CONAC
Mated Working voltage	00U VAC
 Working voltage Mated 	293 VAC
- Mated	293 VAC
SUPPLEMENTAL TESTING	
Supplemental – Connector/Cable Pull	
• 0°	151.43 lbs min
• 90°	39.06 lbs min
Cable Bend 5,000 Cycles	
• ±35° Pendulum Mode	No Electrical Failures
Cable Bend 1,000 Cycles	
• ±90°Flex Mode	No Electrical Failures
	110 Diverseur I unures

Tracking Code: TC09102306_ReportRev4	Part #: ERCD-020-06.00-STL-TTR-1-D		
Part description: ERCD			

DATA SUMMARIES

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer controlled data acquisition).
- 4) Adjacent contacts were powered:
 - a. Linear configuration with 2 adjacent conductors/contacts powered

Tracking Code: TC0910--2306_ReportRev4 Part #: ERCD-020-06.00-STL-TTR-1-D

Base Curve

Derated 20 %

RT Peak Amp

65 ° C

RT Derated Amp Measured Current

65 ° C Peak Amp

-65 ° C Derated Amp -75 ° C -75 ° C Peak Amp

75 ° C Derated Amp Limit

95 ° C Peak Amp

95 ° C Room Temp

95 ° C Derated Amp

Part description: ERCD

DATA SUMMARIES Continued

b. Linear configuration with 4 adjacent conductors/contacts powered

TC0836--1940 4 (2X2) Contacts in Linear series Part Numbers: ERCD-020-06.00-STL-TTR-1-D / ERF8-020-05.0-S-DV-L

Current Rating per Contact (30 Deg. Rise, 20% Derated) = 1.2 Amps 3.0 Room Temp= 24.2 C 2.5 Maximum Current, Amp per Contact 105° C 2.0 <u>2.0</u> 1.7 1.4 1.2 0.9 0.5 Useful Range 20 30 40 80 90 100 110 Ambient Temperature, ° C

Tracking Code: TC0910--2306_ReportRev4 Part #: ERCD-020-06.00-STL-TTR-1-D
Part description: ERCD

DATA SUMMARIES Continued

c. Linear configuration with 6 adjacent conductors/contacts powered

TC0836--1940 6 (2X3) Contacts in Linear series Part Numbers: ERCD-020-06.00-STL-TTR-1-D / ERF8-020-05.0-S-DV-L

Base Curve

Derated 20 %

RT Peak Amp

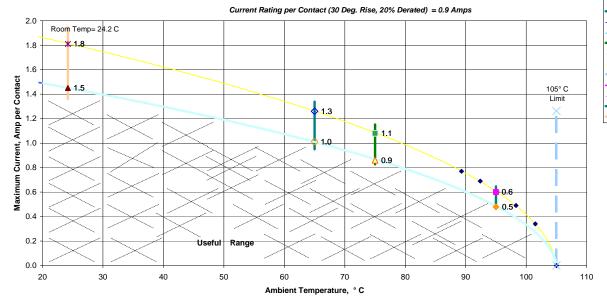
65 ° C

Limit

95 ° C

Room Temp

Measured Current


65 ° C Peak Amp

- 75 ° C Peak Amp - 75 ° C Derated Amp

95 ° C Peak Amp

95 ° C Derated Amp

-65 ° C Derated Amp -75 ° C

Tracking Code: TC0910--2306_ReportRev4 Part #: ERCD-020-06.00-STL-TTR-1-D Part description: ERCD

Base Curve

Derated 20 %

-RT Peak Amp

DATA SUMMARIES Continued

d. Linear configuration with 8 adjacent conductors/contacts powered

Useful Range

50

0.2 0.0 20

30

40

8 (2X4) Contacts in Linear series -RT Derated Amp Part Numbers: ERCD-020-06.00-STL-TTR-1-D / ERF8-020-05.0-S-DV-L Measured Current Current Rating per Contact (30 Deg. Rise, 20% Derated) = 0.85 Amps 65 ° C 65 ° C Peak Amp 2.0 Room Temp= 24.2 C -65 ° C Derated Amp 75 ° C 1.8 -75 ° C Peak Amp **X** 1.8 -75 ° C Derated Amp Limit 1.6 Maximum Current, Amp per Contact 95 ° C Peak Amp 95 ° C Derated Amp 105° C 95 ° C Room Temp 1.2 1.0 0.85 0.6 0.5 0.4

Ambient Temperature, ° C

80

90

100

TC0836--1940

Base Curve

Derated 20 %

RT Peak Amp

65 ° C

75 ° C

Limit

95 ° C

Room Temp

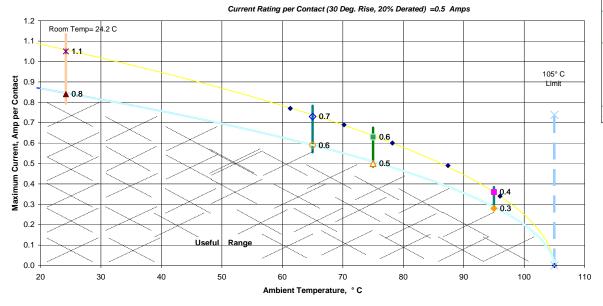
Measured Current

65 ° C Peak Amp

-75 ° C Peak Amp

- 75 ° C Derated Amp

95 ° C Peak Amp


95 ° C Derated Amp

-65 ° C Derated Amp

DATA SUMMARIES Continued

e. Linear configuration with all adjacent conductors/contacts powered

TC0836--1940 40 (All Power) Contacts in Linear series Part Numbers: ERCD-020-06.00-STL-TTR-1-D / ERF8-020-05.0-S-DV-L

DATA SUMMARIES Continued

INSULATION RESISTANCE (IR):

	Pin Pin		
	Mated		
Minimum	ERCD/ERX8		
Initial	100,000		
Thermal	100,000		
Humidity	7,000		

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

		Pin-Pin
		Mated
Minimum		ERCD/ERX8
Breakdown	Initial	640
	Thermal	820
Voltage	Humidity	880
	Initial	480
DWV	Thermal	615
	Humidity	660
Working	Initial	213
	Thermal	273
Voltage	Humidity	293

Tracking Code: TC0910--2306_ReportRev4

Part description: ERCD

DATA SUMMARIES Continued

SUPPLEMENTAL TEST

PULL:

	0 Deg.	90 Deg.
Pull DV	Force (Lbs)	Force (Lbs)
Minimum	151.43	39.06
Maximum	185.17	58.50
Average	168.4	46.8

35 DEGREE FLEX:

	Resistance, Ohms							
	Initial	Initial After 1000 After 2000 After 3000 After 4000 After 5000						
Avg	7.2800	7.2800	7.2800	7.2000	7.1600	7.2200		
Min	7.2000	7.2000	7.2000	7.2000	7.1000	7.2000		
Max	7.3000	7.4000	7.3000	7.2000	7.2000	7.3000		
St. Dev.	0.0447	0.0837	0.0447	0.0000	0.0548	0.0447		
Count	5	5	5	5	5	5		

90 DEGREE FLEX:

Resistance, Ohms							
Initial After 1000 After 2000							
Avg	7.2800	7.2800	7.2333				
Min	7.2000	7.2000	7.2000				
Max	7.3000	7.4000	7.3000				
St. Dev.	0.0447	0.0837	0.0577				
Count	5	5	3				

DATA

INSULATION RESISTANCE (IR):

	Mated
	INITIAL
Sample#	ERCD/ERX8
1A	100,000
1B	100,000
2A	100,000
2B	100,000

Top Cable Bottom Cable Top Cable Bottom Cable

	Mated	
	THERMALS	
Sample#	ERCD/ERX8	
1A	100,000	
1B	100,000	
2A	100,000	
2B	100,000	

Top Cable
Bottom Cable
Top Cable
Bottom Cable

	Mated	
	HUMIDITY	
Sample#	ERCD/ERX8	
1A	10,000	
1B	15,000	
2A	9,000	
2B	7,000	

Top Cable
Bottom Cable
Top Cable
Bottom Cable

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

	Mated
	X
Sample#	ERCD/ERX8
1A	640
1B	680
2A	860
2B	870

Top Cable Bottom Cable Top Cable Bottom Cable

	Mated	
	X	
Sample#	ERCD/ERX8	
1A	920	
1B	940	
2A	820	
2B	920	

Top Cable
Bottom Cable
Top Cable
Bottom Cable

	Mated	
	X	
Sample#	ERCD/ERX8	
1A	970	
1B	880	
2A	960	
2B	920	

Top Cable
Bottom Cable
Top Cable
Bottom Cable

DATA Continued

SUPPLEMENTAL TEST

PULL:

Pull DV	0 Deg.	90 Deg.	
Sample#	Maximum Force (Lbs)	Maximum Force (Lbs)	
1	185.17	47.96	
2	153.26	46.25	
3	151.43	39.06	
4	171.46	58.50	
5	180.91	42.42	

35 DEGREE FLEX:

Resistance, Ohms						
Cable	Initial	After 1000 Cycles	After 2000 Cycles	After 3000 Cycles	After 4000 Cycles	After 5000 Cycles
1	7.2	7.4	7.2	7.2	7.1	7.2
2	7.3	7.3	7.3	7.2	7.2	7.2
3	7.3	7.3	7.3	7.2	7.1	7.3
4	7.3	7.2	7.3	7.2	7.2	7.2
5	7.3	7.2	7.3	7.2	7.2	7.2

90 DEGREE FLEX:

Resistance, Ohms					
Cable	Initial	After 1000 Cycles	After 2000 Cycles	After 3000 Cycles	
1	7.2	7.4	7.2	Failed @ 2665	
2	7.3	7.3	7.2	Failed @ 2068	
3	7.3	7.3	Failed @ 1354	N/A	
4	7.3	7.2	Failed @ 1775	N/A	
5	7.3	7.2	7.3	Failed @ 2934	

Tracking Code: TC0910--2306 ReportRev4

Part description: ERCD

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: MO-04

Description: Multimeter /Data Acquisition System

Manufacturer: Keithley

Model: 2700 Serial #: 0798688 Accuracy: See Manual

... Last Cal: 02/10/2009, Next Cal: 02/10/2010

Equipment #: PS-07

Description: 20 V, 120 A DC Power Supply - AutoRanging SO/HPIB

Manufacturer: Hewlett Packard / Agilent

Model: AT-6031A **Serial #:** 2721A00648

Accuracy: See Manual Current Carrying Capacity (CCC) Chamber

... Last Cal: 10/25/2008, Next Cal: 10/25/2009

Equipment #: HPM-01

Description: Hipot Megommeter **Manufacturer:** Hipotronics

Model: H306B-A **Serial #:** M9905004

Accuracy: 2 % Full Scale Accuracy

... Last Cal: 06/22/08, Next Cal: 06/22/09

Equipment #: STG-01

Description: Hipot Megomter Safety Test Cage

Manufacturer: Hipotronics

Model: TC-25 Serial #: M9910141 Accuracy: N/A

... Last Cal: No Calibration Required, Next Cal:

Equipment #: HDR - 01
Description: HDR Flex Tester
Manufacturer: Samtec Inc.

Model: AT-1440-000 **Serial #:** AT-1440-000

Accuracy: N/A

... Last Cal: No Calibration Required, Next Cal:

Equipment #: CM-01

Description: Continuity Monitor

Manufacturer: Samtec

Model: Serial #: NA

Accuracy: 1 mS to 10 mS window

... Last Cal: No Calibration Required, Next Cal:

Tracking Code: TC0910--2306 ReportRev4

Part description: ERCD

Equipment #: TCT-01 **Description:** Test Stand **Manufacturer:** Chatillon

Model: TCD-1000 Serial #: 05 23 00 02

Accuracy: Speed Accuracy: +/-5% of max speed; Speed Accuracy: +/-5% of max speed;

... Last Cal: 5/24/08, Next Cal: 5/31/09

Equipment #: TC111307-(001 - 017)

Description: CCC Chamber Thermocouples

Manufacturer: Samtec

Model:

Serial #: TC111307-(001 - 017)

Accuracy: +/- 1 Deg.

... Last Cal: 11/30/2008, Next Cal: 11/30/2009

Equipment #: LC-100

Description: 100 Lb. Load Cell

Manufacturer: Chatillon

Model: CISB Serial #: 60596 Accuracy: +/-.01 Lb

... Last Cal: 5/24/2008, Next Cal: 5/31/2009

Equipment #: OV-03

Description: Cascade Tek Forced Air Oven

Manufacturer: Cascade Tek

Model: TFO-5 **Serial #:** 0500100

Accuracy: Temp. Stability: +/-.1C/C change in ambient

... Last Cal: 06/17/08, Next Cal: 06/17/09

Equipment #: THC-04

Description: Temperature/Humidity Chamber

Manufacturer: Thermotron

Model: SM-8-3800 Serial #: 0798688 Accuracy: See Manual

... Last Cal: 04/07/2009, Next Cal: 04/07/2010