MRE Series Reed Relays

$>$ Features: Special Series focused on High Voltage, High Current and High Insulation Resistance
> Two switches as Dual-Channel, in Series or in Parallel connection
> Compact size, High Creepage Distance Pinout
$>$ Integrated Magnetic Shield
> Applications: Insulation Measurement, ARC Testers
> Markets: Test \& Measurement, Automated Test Equipment, Medical

Customer Options	Switch Model			Unit
Contact Data (@ $20^{\circ} \mathrm{C}$)	1A85-HV (A-Dry) Two contacts in series	1A85-HC (A-Dry) Two contacts in parallel	2A85-P (A-Dry) Dual-Channel	
Contact Material	Rhodium	Rhodium	Rhodium	
Rated Power (max.) Any DC combination of V\&A not to exceed max. rated power	100	100	100	W
Switching Voltage (max.) DC or peak AC	1000	1000	1000	V
Switching Current (max.) DC or peak AC	1.0	1.0	1.0	A
Carry Current (max.) DC or peak AC	2.5	5	2.5	A
Contact Resistance (max.) @ 0.5V \& 10mA, Measured with 40\% Pull-In Overdrive	200	150	150	mOhm
Breakdown Voltage (min.) According to EN60255-27	7	2.5	3	kVDC
Operating Time (max.) Including Bouncing, Measured with 40\% Pull-In Overdrive	1.5	1.5	1.1	ms
Release Time (max.) Measured without Coil Suppression	0.6	0.6	0.4	ms
Insulation Resistance (min./typ.) Rh<45\%, 100V Test Voltage	$10^{12} / 10^{13}$	$10^{11} / 10^{12}$	$10^{11} / 10^{12}$	Ohm
Capacitance (typ.) @ 10kHz across open Switch	0.5	1	0.5	pF

[^0]
MRE Series Reed Relays

Coil Data (at $20^{\circ} \mathrm{C}$)		Coil Voltage (VDC)		Coil Resistance	Pull-In Voltage	Drop-Out Voltage	Coil Power
Contact Form	Switch Model	Nominal	Max.	Typical (± 10 \%)	Max.	Min.	Nominal
1A85-HV	85	5	7.5	150	3.75	0.7	166
		12	16	400	8.8	1.2	360
		24	30	1400	18	2.4	360
1A85-HC	85	5	7.5	150	3.75	0.7	166
		12	16	400	8.8	1.2	360
		24	30	1400	18	2.4	360
2A85-P	85	5	7.5	150	3.75	0.7	166
		12	16	400	8.8	1.2	360
		24	30	1400	18	2.4	360

The Pull-In, Drop-Out Voltage and Coil Resistance will change at rate of 0.4% per ${ }^{\circ} \mathrm{C}$

Relay Data (@ 200 $)$	Unit	
Dielectric Strength Coil/Contact (min.) According to EN60255-27	7	kVDC
Insulation Resistance Coil/Contact (min.) Rh<45\%, 200V Test Voltage	10^{13}	Ohm
Capacitance Coil/Contact (typ.) @ 10 kHz	1.2	pF
Shock Resistance (max.) $1 / 2$ sine wave, 6 md, 3-axis	50	g
Vibration Resistance (max.) $10-2,000 \mathrm{~Hz}$	20	g
Operating Temperature (max.) Surrounding of the relay's housing	-20 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature (max.) Surrounding of the relay's housing	-35 to 95	${ }^{\circ} \mathrm{C}$
Soldering Temperature (max.) 5 sec. max.	260	${ }^{\circ} \mathrm{C}$
Washability Aqueous rinse suitable. Proper drying necessary.	Fully Sealed	

Life Test Data (With resistive load, for general information only)

Glossary Options	
1A85-HV	High Voltage version
1A85-HC	High Current version
2A85-P	Dual Channel version

[^1]RoHS
Compliant
REACH

MRE Series Reed Relays

Pin-Out (Top View)

1A85-HV

Dimensions (in mm [inch]) Tolerances acc. to ISO 2768-m

Handling \& Assembly Instructions
$>$ Switching inductive and/or capacitive loads create voltage and/or current peaks, which may damage the relay. Protective circuits need to be used - see our website or contact our sales office.
> External magnetic fields and magnetic effects, due to adjacent relays in high density matrices that may influence the relays' electrical characteristics, must be taken into consideration.
> Mechanical shock impacts, e.g. dropping the relays, may cause immediate or post-installation failure.
> Suppressing coil diode can have a negative influence on total number of switching cycles, especially by switching high voltage. Zener diode in series with the suppression diode is recommended.
> Wave soldering: maximum $260^{\circ} \mathrm{C} / 5$ seconds.

[^2]```
Version 0126 May 2023
\(\begin{array}{ll}\text { Page } 3 \text { of } 3 & \text { D. Stastny }\end{array}\)
```


[^0]:    Version 0126 May 2023
    Page 1 of 3 D. Stastny

[^1]:    Version 01
    26 May 2023

[^2]:    Please note: All technical specifications on this series datasheet refer to the standard product range. Modifications in the sense of technical progress are reserved. For general information only. For more specific information, please consult the product datasheet, available upon request.

    This series datasheet could contain technical inaccuracies or typographical errors. Changes are periodically made to the information herein. These change will be incorporated in future revisions.
    For deviating values, most current specifications and products please contact your nearest sales office.

