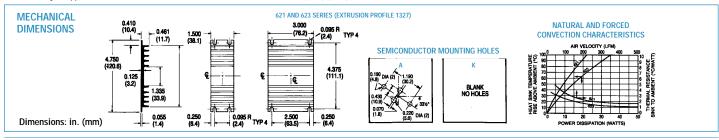


EXTRUDED HEAT SINKS FOR POWER SEMICONDUCTORS



621 AND 623 SERIES Low-Profile Heat Sinks for All Metal-Case Power Semiconductors

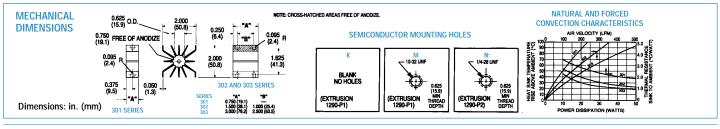
100		Footprint			Thermal Perform	ance at Typical Load	nce at Typical Load				
	Standard P/N	Dimensions in. (mm)	Height in. (mm)	Mounting Hole Pattern	Natural Convection	Forced Convection	Weight Ibs. (grams)				
	621A	4.750 (120.6) x 1.500 (38.1)	0.461 (11.7)	(1) TO-3	75°C @ 15W	2.0°C/W @ 250 LFM	0.1000 (45.36)				
	621K	4.750 (120.6) x 1.500 (38.1)	0.461 (11.7)	None	75°C @ 15W	2.0°C/W @ 250 LFM	0.1000 (45.36)				
	623A	4.750 (120.6) x 3.000 (76.2)	0.461 (11.7)	(1) TO-3	52°C @ 15W	1.5°C/W @ 250 LFM	0.2100 (95.26)				
	623K	4.750 (120.6) x 3.000 (76.2)	0.461 (11.7)	None	52°C @ 15W	1.5°C/W @ 250 LFM	0.2100 (95.26)				

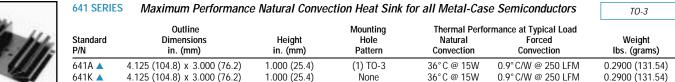
A general purpose yet efficient heat dissipator for TO-3 and virtually all other styles of metal case power semiconductor package types, the 621 and 623 Series low-profile flat back heat sinks find a wide variety of applications. The central channel between fins measures 1.300 in. (33.0) (min.)

in width, accommodating many types of packages. Mounting hole pattern "A" is predrilled for the standard TO-3 package. Material: Aluminum Alloy, Black Anodized.

100

301/302/303 SERIES Compact Heat Sinks for Dual Stud-Mounted Semiconductor Cases


STUD-MOUNT

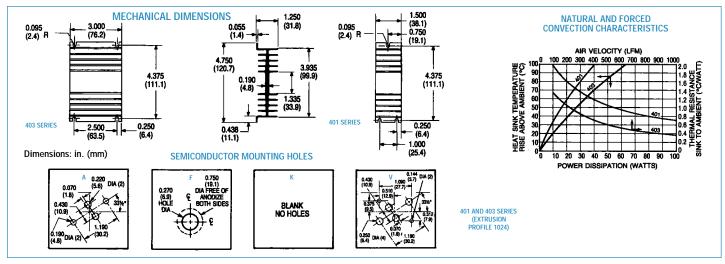

TO-3

Standard P/N			Mounting Hole (s) Pattern and Number	Thermal Perforr Natural Convection	nance at Typical Load Forced Convection	Weight Ibs. (grams)
301K	2.000 (50.8) x 2.000 (50.8)	0.750 (19.1)	None	70°C @ 15W	2.5° C/W @ 250 LFM	0.0580 (26.31)
301M	2.000 (50.8) x 2.000 (50.8)	0.750 (19.1)	(1) 10-32UNF, 0.625 in. thread depth	70°C @ 15W	2.5° C/W @ 250 LFM	0.0580 (26.31)
301N	2.000 (50.8) x 2.000 (50.8)	0.750 (19.1)	(1) 1/4 -28UNF, 0.625 in. thread depth	70°C @ 15W	2.5° C/W @ 250 LFM	0.0580 (26.31)
302M	2.000 (50.8) x 2.000 (50.8)	1.500 (38.1)	(1) 10-32UNF, 0.625 in. thread depth	50°C @ 15W	1.8°C/W @ 250 LFM	0.1330 (60.33)
302MM	2.000 (50.8) x 2.000 (50.8)	1.500 (38.1)	(2) 10-32UNF, 0.625 in. thread depth	50°C @ 15W	1.8°C/W @ 250 LFM	0.1330 (6033)
302N	2.000 (50.8) x 2.000 (50.8)	1.500 (38.1)	(1) 1/4 -28UNF, 0.625 in. thread depth	50°C @ 15W	1.8° C/W @ 250 LFM	0.1330 (60.33)
302NN 🔺	2.000 (50.8) x 2.000 (50.8)	1.500 (38.1)	(2) 1/4 -28UNF, 0.625 in. thread depth	50°C @ 15W	1.8°C/W @ 250 LFM	0.1330 (60.33)
303M	2.000 (50.8) x 2.000 (50.8)	3.000 (76.2)	(1) 10-32UNF, 0.625 in. thread depth	37°C @ 15W	1.3°C/W @ 250 LFM	0.2680 (121.56)
303MM	2.000 (50.8) x 2.000 (50.8)	3.000 (76.2)	(2) 10-32UNF, 0.625 in. thread depth	37°C @ 15W	1.3°C/W @ 250 LFM	0.2680 (121.56)
303N 🔺	2.000 (50.8) x 2.000 (50.8)	3.000 (76.2)	(1) 1/4 -28UNF, 0.625 in. thread depth	37°C @ 15W	1.3°C/W @ 250 LFM	0.2680 (121.56)
303NN	2.000 (50.8) x 2.000 (50.8)	3.000 (76.2)	(2) 1/4 - 28UNF, 0.625 in. thread depth	37°C @ 15W	1.3° C/W @ 250 LFM	0.2680 (121.56)


The large fin area in minimum total volume provided by the radial design of the 301/302/303 Series offers maximum heat transfer efficiency in natural convection. All types are available with one tapped mounting hole for rectifiers and other stud-mounting semiconductors; the

302 and 303 Series offer maximum cost savings with dual mounting locations ("MM" and "NN" mounting hole patterns) for two stud-mount devices. Material: Aluminum Alloy, Black Anodized

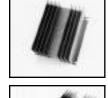
Available with a standard TO-3 mounting hole pattern predrilled for cost-effective mounting in limited-height applications, the 641 Series provides maximum performance in natural convection with an optimized heat sink surface area. The 641K type with an open channel area of 1.300 in. (33.0) and no predrilled mounting holes can be adapted to meet mounting requirements for most metal case power semiconductor types. Material: Aluminum Alloy, Black Anodized.


TO-3; Stud-Mount

EXTRUDED HEAT SINKS FOR POWER SEMICONDUCTORS

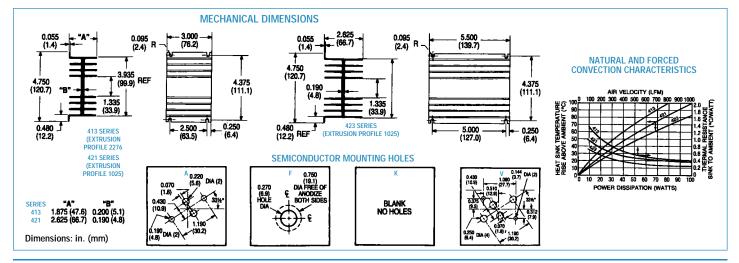
Alen,	Standard P/N	Width in. (mm)	Overall Dimensions in. (mm)	Height in. (mm)	Semiconductor Mounting Hole Pattem	Thermal Performar Natural Convection	nce at Typical Load Forced Convection	Weight Ibs. (grams)
	401A 🔺	4.750 (120.7)	1.500 (38.1)	1.250 (31.8)	(1) TO-3	80°C @ 30W	1.5° C/W @ 250 LFM	0.1500 (68.04)
7	401F	4.750 (120.7)	1.500 (38.1)	1.250 (31.8)	0.270 in. (6.9)-Dia Hole	80°C @ 30W	1.5° C/W @ 250 LFM	0.1500 (68.04)
W	401K 🔺	4.750 (120.7)	1.500 (38.1)	1.250 (31.8)	None	80°C @ 30W	1.5° C/W @ 250 LFM	0.1500 (68.04)
	403A 🔺	4.750 (120.7)	3.000 (76.2)	1.250 (31.8)	(1) TO-3	55°C @ 30W	0.9° C/W @ 250 LFM	0.3500 (158.76)
	403F 🔺	4.750 (120.7)	3.000 (76.2)	1.250 (31.8)	0.270 in. (6.9)-Dia Hole	55°C @ 30W	0.9°C/W @ 250 LFM	0.3500 (158.76
	403K 🔺	4.750 (120.7)	3.000 (76.2)	1.250 (31.8)	None	55°C @ 30W	0.9°C/W @ 250 LFM	0.3500 (158.76)

With fins oriented vertically in cabinet sidewall applications, 401 and 403 Series heat sinks are recommended for critical space applications where maximum heat dissipation is required for high-power TO-3 case styles. Forced convection performance is also exemplary with these double surface fin types. Semiconductor mounting hole style "F" offers a single centered


0.270 in. (6.9)-diameter mounting hole (with a 0.750 in. (19.1)-diameter area free of anodize) for mounting stud-type diodes and rectifiers. Hole pattern "V" available upon request. Material: Aluminum Alloy, Black Anodized.

413/421/423 SERIES

S Low-Height Double-Surface Heat Sinks for TO-3 Case Styles and Diodes


TO-3; DO-5; Stud-Mount

Standard	N Width	lominal Dimension Length	s Height "A"	Semiconductor	Thermal Performa	nce at Typical Load	Weight
P/N	in. (mm)	in. (mm)	in. (mm)	Mounting Hole Pattern	Natural Convection	Forced Convection	lbs. (grams)
413A	4.750 (120.7)	3.000 (76.2)	1.875 (47.6)	(1) TO-3	72°C @ 50W	0.85° C/W @ 250 LFM	0.6300 (285.77)
413F	4.750 (120.7)	3.000 (76.2)	1.875 (47.6)	0.270 in. (6.9)-Dia Hole	72°C @ 50W	0.85° C/W @ 250 LFM	0.6300 (285.77)
413K 🔺	4.750 (120.7)	3.000 (76.2)	1.875 (47.6)	None	72°C @ 50W	0.85° C/W @ 250 LFM	0.6300 (285.77)
421A	4.750 (120.7)	3.000 (76.2)	2.625 (66.7)	(1) TO-3	58°C @ 50W	0.7°C/W @ 250 LFM	0.6300 (285.77)
421F	4.750 (120.7)	3.000 (76.2)	2.625 (66.7)	0.270 in. (6.9)-Dia Hole	58°C @ 50W	0.7°C/W @ 250 LFM	0.6300 (285.77)
421K 🔺	4.750 (120.7)	3.000 (76.2)	2.625 (66.7)	None	58°C @ 50W	0.7° C/W @ 250 LFM	0.6300 (285.77)
423A	4.750 (120.7)	5.500 (140.2)	2.625 (66.7)	(1) TO-3	47°C @ 50W	0.5° C/W @ 250 LFM	1.1700 (530.71)
423K 🔺	4.750 (120.7)	5.500 (140.2)	2.625 (66.7)	None	47°C @ 50W	0.5° C/W @ 250 LFM	1.1700 (530.71)

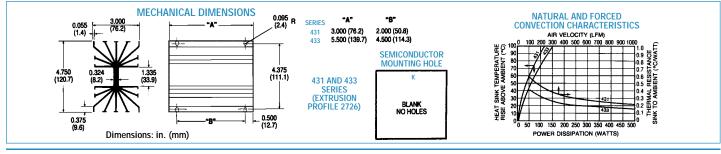
Space-saving double surface 413, 421, and 423 Series utilize finned surface area on both sides of the power semiconductor mounting surface to provide maximum heat dissipation in a compact profile. Ready to install on popular power components in natural and forced convection applications. Apply

Wakefield Type 126 silicone-free thermal compound or Wakefield DeltaPad[™] interface materials for maximum performance. Material: Aluminum Alloy, Black Anodized.

EXTRUDED HEAT SINKS FOR POWER SEMICONDUCTORS

431 AND 433 SERIES High-Performance Heat Sinks for 30-100W Metal Power Semiconductors

TO-3; Stud-Mount

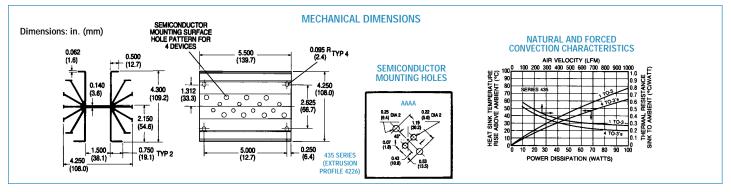

AL	
. Moth	Ę
	1

Standard P/N	N Width in. (mm)	ominal Dimension Length "A" in. (mm)	Height	Semiconductor Mounting Hole Pattern	Thermal Performa Natural Convection	nce at Typical Load Forced Convection	Weight Ibs. (grams)
431K	4.750 (120.7)	3.000 (76.2)	3.000 (76.2)		55°C @ 50W	0.40°C/W @ 250 LFM	0.7800 (353.81)
433K 🔺	4.750 (120.7)	5.500 (139.7)	3.000 (76.2)		42°C @ 50W	0.28°C/W @ 250 LFM	1.4900 (675.86)

Need maximum heat dissipation from a TO-3 rectifier heat sink in minimum space? The Wakefield 431 and 433 Series center chan-

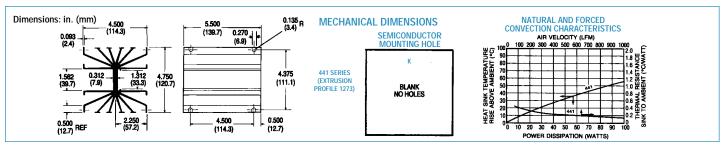
nel double-surface heat sinks offer the highest performance-to-weight ratio for minimum volume occupied for TO-3, diode, and stud-mount metal power semiconductors in the 30- to

 100-watt operating range. Additional interface resistance reduction for maximized overall performance can be achieved with proper application of Wakefield Type 126 silicone-free thermal compound. Material: Aluminum Alloy, Black Anodized.



1	435 SERIE	S Lightwe	ight Quadruple	Mount Heat S	Sink for TO-3 Case St	yles		TO-3
	Standard P/N	No Width in. (mm)	ominal Dimensior Length in. (mm)	is Height in. (mm)	Semiconductor Mounting Hole Pattern		nce at Typical Load Forced Convection	Weight Ibs. (grams)
	435AAAA	4.250(108.0)	5.500(139.7)	4.300(109.2)	(4) TO-3	37°C @ 50W 54°C @ 80W	0.38°C/W @ 250 LFM 0.24°C/W @ 600 LFM	1.1500 (521.64)

This lightweight high-performance heat sink is designed to

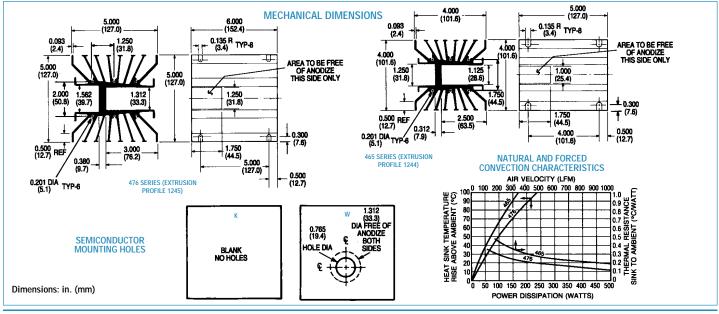

mount and cool efficiently one to four TO-3 style metal case power semiconductors. The Type 435AAAA is the standard configuration available from stock, predrilled for mounting four TO-3 style devices. Increased performance can be achieved with the proper selection and installation of a Wakefield Type 175 DeltaPad Kapton[™] interface material for each power semiconductor or, for maximum reduction of case-to-sink interface loss, the application of Wakefield Type 126 silicone-free thermal compound. Material: Aluminum Alloy, Black Anodized.

All in	441 SERIES High-Performance Natural Convection Heat Sinks for Rectifiers and Diodes									
Set 1	Nominal Dimensions Standard Width Length Height Semiconductor Thermal Performance at Typical Load P/N in. (mm) in. (mm) Mounting Hole Pattern Natural Convection Forced Convection									
553/	441K 🔺	4.750 (120.7)	5.500 (139.7)	4.500 (114.3)	None	34°C @ SOW 47°C @ 80W	0.30°C/W @ 250 LFM 0.19°C/W @ 600 LFM	1.9700 (893.59)		

Designed for vertical mounting within a power supply enclosure

or equipment cabinet without forced airflow available. This Wakefield 441 Series heat sink will dissipate up to 100 watts efficiently in natural convection with a maximum 55°C heat sink temperature rise above ambient. When applied in a forced convection environment, the 441K Type will achieve thermal resistance of 0.18°C/W (sink to ambient) at 1000 LFM. Supplied with no predrilled device mounting hole pattern. Material: Aluminum Alloy, Black Anodized.

Stud-Mount

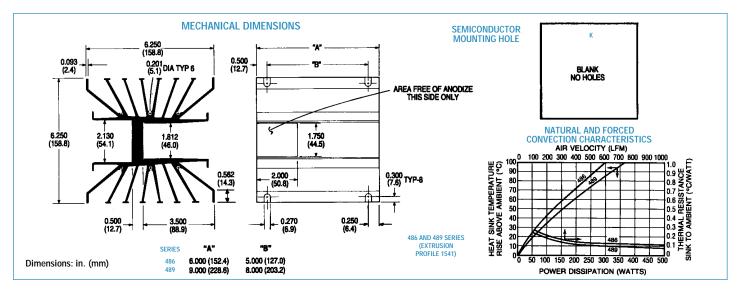

EXTRUDED HEAT SINKS FOR POWER SEMICONDUCTORS

465 AND 476 SERIES High-Power Heat Sinks for Medium Hex-Type Rectifiers and Diodes
--

11 (14)	Standard P/N	Width in. (mm)	Nominal Dimensions Length in. (mm)	Height in. (mm)	Hex Style Type	Mounting Hole Pattern	Thermal Performan	nce at Typical Load Forced Convection	Weight Ibs. (grams)
	465K	4.000 (101.6)	5.000 (127.0)	4.000 (101.6)	1.060 in. Hex	None	38°C @ 50W	0.27°C/W @500 LFM	1.9300 (875.45)
1 20 20	476K	5.000 (127.0)	6.000 (152.4)	5.000 (127.0)	1.250 in. Hex	None	25°C @ 50W	0.19°C/W @500 LFM	2.8200(1279.15)
22. J. 22.	476W	5.000 (127.0)	6.000 (152.4)	5.000 (127.0)	1.250 in. Hex	0.765 in.	25°C @ 50W	0.19°C/W @500 LFM	2.8000(1270.08)
						(19.4)Dia.			
						Center Mount			

Wakefield Engineering has designed four standard heat sink types for ease of installation and efficient heat dissipation for industry standard hex-type rectifiers and similar stud-mount power devices: 465, 476, 486, and 489 Series. The 465 and 476 Series shown here are

designed for 1.060 in. Hex (465 Type) and 1.250 in. Hex (476 Type). The 476W Type is available predrilled for an 0.765 in. (19.4) dia, mounting hole, Material: Aluminum Alloy, Black anodized.



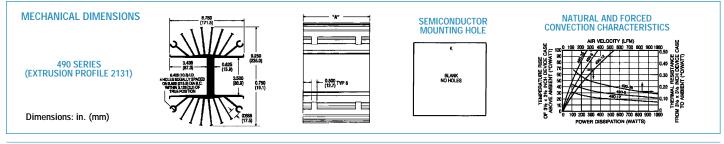
486 AND	489 SERIES	Heat Sinks fo	or High-Powe	r Hex-Type R	ectifiers and	d Diodes		Stud-Mount
Standard P/N	Width in. (mm)	Nominal Dimension Length in. (mm)	s Height in. (mm)	Hex Style Type	Mounting Hole Pattern	Thermal Performa Natural Convection	nce at Typical Load Forced Convection	Weight Ibs. (grams)
486K 🔺	6.250 (158.8)	6.000 (152.4)	6.250 (158.8)	1.750 in. Hex	None	24°C @ 50W 86°C @ 250W	0.20° C/W @250 LFM 0.13° C/W @500 LFM	4.2100 (1909.66)
489K 🔺	6.250 (158.8)	9.000 (228.6)	6.250 (158.8)	1.750 in. Hex	None	19°C @ 50W 75°C @ 250W	0.15° C/W @250 LFM 0.10° C/W @500 LFM	6.1400 (2785.10)

These two heat sink types accept industry standard 1.750 in. (44.5) hex-type devices for mounting and efficient heat dissipation. Each type is provided with a 1.750 in. (44.5) x 2.000

in. (50.8) area on the semiconductor base mounting surface which is free of anodize. Material: Aluminum Alloy, Black Anodized.

Wakefield Engineering

GENERAL PURPOSE

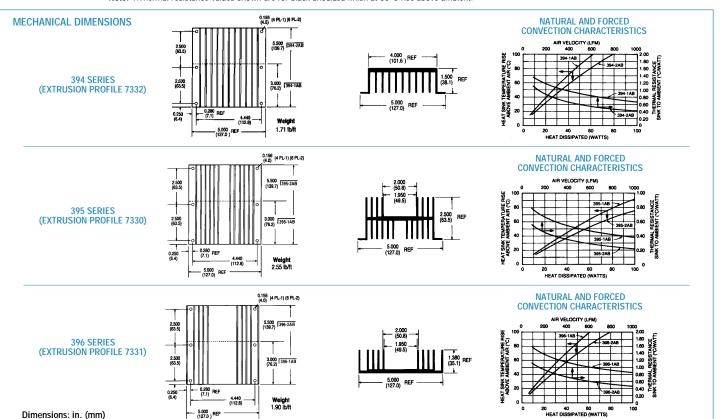

EXTRUDED HEAT SINKS FOR POWER SEMICONDUCTORS

490 SERIES King Size Heat Sinks for High-Power Rectifiers

16	Standard P/N	Width in. (mm)	Nominal Dimensions Length "A" in. (mm)	Height in. (mm)	Semiconductor Mounting Hole Pattern	Thermal Perform Natural Convection	ance at Typical Load Forced Convection	Weight Ibs. (grams)
-	490-35K	9.250 (235.0)	3.500 (88.9)	6.750 (171.5)	None	84°C @ 200W	0.18°C/W @ 600 LFM	3.2400(1469.66)
	490-6K 🔺	9.250 (235.0)	6.000 (152.4)	6.750 (171.5)	None	60°C@200W	0.13° C/W @ 600 LFM	5.4700(2481.19)
	490-12K 🔺	9.250 (235.0)	12.000 (304.8)	6.750 (171.5)	None	45°C @ 200W	0.09° C/W @ 600 LFM	10.62 (4817.23)

The 490 Series can be used to mount a single high-power rectifier or a grouping of smaller power devices. The semiconductor device mounting surface is free of anodize on the entire surface on one side only; finish overall is black anodize. Use Type 109 mounting brackets (see accessories section) for mounting to enclosure wall and for electrical isolation. The

anodize-free mounting surface is milled for maximum contact area. The 490 Series Can also be drilled for mounting and cooling IGBTs and other isolated power modules. Material: Aluminum Alloy, Black Anodized.


PERFORMANCE, LOW PROFILE HEAT SINKS FOR POWER MODULES & IGBT'S

		6	
		1	
-	P	1	
		×.	and the second

394, 395, 396 SERIES

		rall Dimensions: in. (r		Device Base		Thermal Resistant Natural	Forced
Standard P/N	Length in. (mm)	Height in. (mm)	Width in. (mm)	Mounting Area (mm)	Base Mounting Holes	Convection (Øsa) ⁽¹⁾ (°C/W)	Convection (Øsa) (°C/W @ 500 LFM)
394-1AB	3.000 (76.2)	1.500 (38.1)	5.000 (127.0)	101 x 76	4	1.85	0.90
394-2AB	5.500 (139.7)	1.500 (38.1)	5.000 (127.0)	101 x 139	6	1.51	0.60
395-1AB	3.000 (76.2)	2.500 (63.5)	5.000 (127.0)	50 x 76	4	1.10	0.50
395-2AB	5.500 (139.7)	2.500 (63.5)	5.000 (127.0)	50 x 139	6	0.90	0.32
396-1AB	3.000 (76.2)	1.380 (35.1)	5.000 (127.0)	50 x 76	4	1.85	1.07
396-2AB	5.500 (139.7)	1.380 (35.1)	5.000 (127.0)	50 x 139	6	1.51	0.64

Note: 1. Thermal resistance values shown are for black anodized finish at 50°C rise above ambient.

All other products, please contact factory for price, delivery, and minimums.

EXTRUDED HEAT SINKS FOR POWER SEMICONDUCTORS

517, 527, 518 AND 528 SERIES

MECHANICAL DIMENSIONS

SERIES 517, 527, 518 AND 528 Heat Sinks for "Half Brick" DC/DC Converters

					Thermal Performance		
Standard P/N	Footprint Dimensions in. (mm)	Height in. (mm)	Fin Orientation	Number of Fins	Natural Convection Power Dissipation (Watts) 60°C Rise Heat Sink to Ambient	Forced Convection Thermal Resistance at 300 ft/min	
517-95AB	2.28 (57.9) x 2.40 (61.0)	0.95 (24.1)	Horizontal	8	11W	2.0 °C/W	
527-45AB	2.28 (57.9) x 2.40 (61.0)	0.45 (11.4)	Horizontal	11	7W	3.2 °C/W	
527-24AB	2.28 (57.9) x 2.40 (61.0)	0.24 (6.1)	Horizontal	11	5W	5.8 °C/W	
518-95AB	2.40 (61.0) x 2.28 (57.9)	0.95 (24.1)	Vertical	8	11W	2.0 °C/W	
528-45AB	2.40 (61.0) x 2.28 (57.9)	0.45 (11.4)	Vertical	11	7W	3.2 °C/W	
528-24AB	2.40 (61.0) x 2.28 (57.9)	0.24 (6.1)	Vertical	11	5W	5.8 °C/W	

Material: Aluminum, Black Anodized.

Keep your "half brick" size AT&T and Computer Products power modules cool with these efficient black anodized aluminum heat sinks made for natural or forced convection applications. To include four M3 x 8mm Phillips head SEM attachment screws, add an "M" suffix to standard part number. To specify factory applied Deltalink IV thermal interface material, add an "S4" suffix to standard part number. Deltalink IV is a non-insulating graphite based material used as a clean, thermally efficient alternative to thermal grease.

PRODUCT DESIGNATION 517/527 SERIES DIMENSIONS **518/528 SERIES DIMENSIONS** 517-95-AB-MS4 4XØ.125 (3.18) THRU XØ.125 (3.18) THRU SERIES NUMBER THERMAL INTERRUCE OF THOM 517 527 090 (1 52 S4 » DELTALINK M 91 BLANK + NO THERMAL PAD 518 HARDWARE KIT ΩY. AL-MER BRAN PHELIPS HEIGHT 4 BEM FASTENERS .190 (4.83) 190 (4.83) 95×0.95 .200 (5.0) H = 4-40X S 16' PHALIPS SEM BASTNERS 45 ± 0.45 4 - .005 (.13) 2,000 (50,80) 200 -290 (7.11) 24 + 0.24BLANK + NO FASTENER OPTION D неюнт WATERIAL RIVER .005 (.13) BLACKARODIZED OPTIONAL THE OPTIONAL THERM/ INTERFACE PAD .090 (2.29) -4 5 (11.43) F^{.24 (6.10)} .95 (24.13) Dimensions: in. (mm) ______ Ŧ

MOUNTING HARDWARE FOR EXTRUDED HEAT SINKS

100 SERIES PTFE Mounting Insulators

Standard P/N	Description	For Use with Series	Mounting Hardware	Material	Hipot Rating (VAC)	Weight Ibs. (grams)	
1 03	Spool-shaped insulator	300, 400, 600, 111, 113	#6-32 screw	PTFE	1500	0.00012 (0.05)
107	Spool-shaped insulator	300, 400, 600, 111, 113	#6-32 screw, nut	PTFE	5000	0.0034	(1.54)

▲ Normally stocked

HIGH FIN DENSITY HEAT SINKS FOR POWER MODULES, IGBTs, RELAYS

	510, 511 ANE	0 512 SERIES			Не	ight	Thermal Resistance ⁽⁵⁾ (Øsa) at Typical Load		
	Standard Cata Milled Base ⁽¹⁾	alog P/N ⁽⁵⁾ Nonmilled Base ⁽²⁾	Base Width in. (mm)	Length in. (mm)	Milled Base ⁽¹⁾ ("M Series") in. (mm)	Nonmilled Base ⁽²⁾ ("U" Series) in. (mm)		Forced	
1000	510-3M	510-3U	7.380 (187.452)	3.000 (76.2)	3.106 (78.9)	3.136 (79.7)	0.56	0.088	
	510-6M	510-6U	7.380 (187.452)	6.000 (152.4)	3.106 (78.9)	3.136 (79.7)	0.38	0.070	
	510-9M	510-9U	7.380 (187.452)	9.000 (228.6)	3.106 (78.9)	3.136 (79.7)	0.29	0.066	
100	510-12M 🔺	510-12U 🔺	7.380 (187.452)	12.000 (304.8)	3.106 (78.9)	3.136 (79.7)	0.24	0.062	
	510-14M 🔺	510-14U 🔺	7.380 (187.452)	14.000 (355.6)	3.106 (78.9)	3.136 (79.7)	0.21	0.059	
	511-3M	511-3U	5.210 (132.33)	3.000 (76.2)	2.350 (59.7)	2.410 (61.2)	0.90	0.120	
	511-6M	511-6U	5.210 (132.33)	6.000 (152.4)	2,350 (59.7)	2.410 (61.2)	0.65	0.068	
	511-9M	511-9U	5.210 (132.33)	9.000 (228.6)	2.350 (59.7)	2.410 (61.2)	0.56	0.060	
	511-12M	511-12U	5.210 (132.33)	12.000 (304.8)	2.350 (59.7)	2.410 (61.2)	0.45	0.045	
	512-3M	512-3U	7.200 (182.88)	3.000 (76.2)	2.350 (59.7)	2.410 (61.2)	0.90	0.120	
	512-6M	512-6U	7.200 (182.88)	6.000 (152.4)	2.350 (59.7)	2.410 (61.2)	0.65	0.068	
	512-9M	512-9U	7.200 (182.88)	9.000 (228.6)	2.350 (59.7)	2.410 (61.2)	0.56	0.060	
	512-12M	512-12U	7.200 (182.88)	12.000 (304.8)	2.350 (59.7)	2.410 (61.2)	0.45	0.045	

Notes:

1. Precision-milled base for maximum heat transfer performance (flatness 0.002 in./in.)

2. Nonmilled base flatness: 0.006 in./in. 3. Natural convection heat dissipation for distributed heat sources at 50°C rise.

4. Forced convection heat dissipation for distributed heat sources at 100 cubic feet per minute, shrouded condition. 5. Standard models are provided without finish.

MECHANICAL DIMENSIONS

510 SEI	RIES	510 Series (Extrusion Profile 5113			
Series	Α	В	Flatness		
510-U	0.216 (5.5)	3.136 (79.7)	0.006 in./in. (0.15 mm/mm)		
510-M	0.165 (4.2)	3.106 (78.9)	0.002 in./in. (0.05 mm/mm)		

В

2.350 (59.7

511 Series (Extrusion Profile 6438-1)

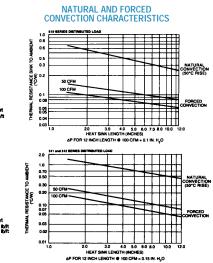
512 Series (Extrusion Profile 6438-2)

0.372 (9.4) 0.006 in./in. (0.15 mm/mm)

0.342 (8.7) 0.002 in./in. (0.05 mm/mm)

С

Flatness


5.210 (132.3

4,125 (104.8)

5.200 (132.1

7.200 (182.9)

- 0.312 (7.0)

Dimensions: in. (mm)

511 AND 512 SERIES

511-M 512-M 0.220 (5.6)

Α

511-U 512-U 0.250 (6.4) 2.410 (61.2)

Series

392 SERIES HIGH PERFORMANCE HEAT SINKS FOR POWER MODULES, IGBTs AND SOLID STATE RELAYS

FOR SER

		Thermal Resista	ance at Typical Load	
nish Gold Iridite	Length in. (mm)	Natural Convection (Øsa) (°CW)	Forced Convection (Øsa) (°CW)	Weight Ibs. (grams)
392-120AG 392-180AG ▲ 392-300AG ▲	4.725 (120.0) 7.087 (180.0) 11.811 (300.0)	0.50 0.43 0.33	0.16 @ 100 CFM 0.11 @ 100 CFM 0.08 @ 100 CFM	4.452 (2019.43) 6.636 (3010.09) 10.420 (4726.51)
IMENSIONS 0.094 (2.4) 0.116 DIA (2.9) DIA (2.9) DIA (3.8) 0.206 (3.8) 0.206	4.921 (125.0) (104.8) 3.150 (8.2) x (3.8) (8.2) x (3.8) 0.326 (8.3) 4.331	0.167 (4.2) (4.2) (2.285 x 0.125 (7.2) x (3.2) 5.346 (135.8)	CONVECTION AIR FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AND FORCED CHARACTERISTICS
	Gold Iridite 392-120AG 392-180AG ▲ 392-300AG ▲ IMENSIONS IMENSIONS (2.4) 0.116 0.328 (8.3) 0.150 ↓ ↓ (3.8)	Gold Iridite Length in. (mm) $392-120AG$ 4.725 (120.0) $392-180AG$ 7.087 (180.0) $392-300AG$ 11.811 (300.0) IMENSIONS 4.125 (125.0) (8.2) x (3.8) 0.084 $(8.2) \times (3.8)$ (2.4) 0.116 DIA (2.4) 0.150 (6.3) (3.8) 0.150 (6.3) (5.2) 0.206 (6.3) (3.8)	lish Natural Gold Length Convection (Øsa) Iridite in. (mm) (°CW) 392-120AG 4.725 (120.0) 0.50 392-180AG ▲ 7.087 (180.0) 0.43 392-300AG ▲ 11.811 (300.0) 0.33 IMENSIONS 4.125 (125.0) 4.125 (125.0) 0.326×0.150 $(8.2) \times (3.8)$ 4.528 (15.0) 0.326 (8.3) (8.3) (8.3) (8.3) (8.3) (8.3) (8.3) (8.3) (8.3) (8.3) (8.3) (8.3) (8.3) (8.3) (104.6) (8.3) (104.6) (8.3) (105.6) (104.6) (104.6) (104.6) (105.6) (104.6) (105.6) (Inish Natural Forced Gold Length Convection (Øsa) Convection (Øsa) Iridite in. (mm) (°CW) (°CW) 392-120AG 4.725 (120.0) 0.50 0.16 @ 100 CFM 392-300AG 11.811 (300.0) 0.43 0.11 @ 100 CFM 392-300AG 11.811 (300.0) 0.33 0.08 @ 100 CFM IMENSIONS 4.921 (104.8) 0.167 (42) 0.167 (42) 0.167 (42) 0.094 0.326 x 0.150 (2.2) x (3.8) 0.167 (35.8) 0.167 (42) 0.167 (42) 0.150 0.326 (8.3) 0.326 (8.3) 0.326 (135.8) 0.167 (35.8) 0.167 (35.8) 0.150 0.326 (8.3) 0.326 (8.3) 0.326 (135.8) 0.167 (135.8) 0.167 (135.8)

POWER DISSIPATION (WATTS)

All other products, please contact factory for price, delivery, and minimums.