



QLUV07J5GEP 5W Flat UVA LED





## **Product Outline:**

The high output ceramic type of 3535 UV LEDs with flat quartz glass lens. High power UV LED series are designed for high current operation and high power output applications. Quelighting UV LED is ideal UV light source for curing, printing, and detecting applications

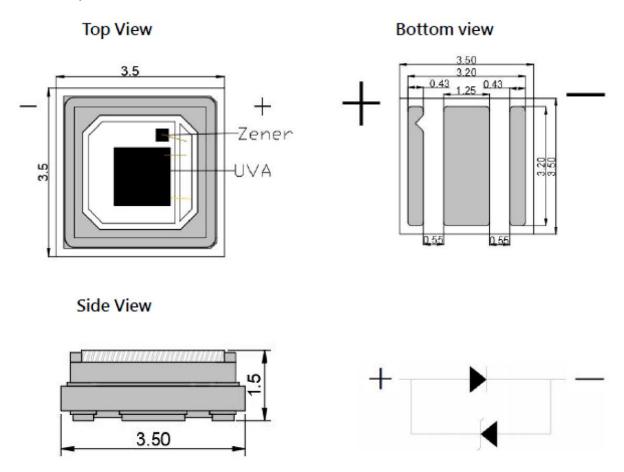
### **Features:**

- 405nm
- High Power UV LED
- Quartz glass lens
- Max. current = 1500mA
- Package Dimension = 3.5mm X 3.5mm X 1.5mm
- Ceramic subtract
- Low thermal resistance
- View angle = 120 degree
- RoHS compliant
- ESD 4KV
- Custom Bin available upon special request

# **Application:**

- UV gluing, UV curing, UV marking
- Printing and Coating
- Adhesive
- Medical applications
- Industrial facility applications

# **Compliance and Certification:**



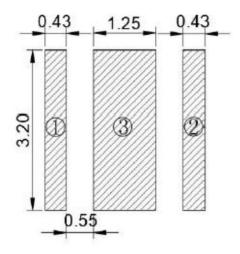







# Mechanical Property: (Dimension)




### Note:

- 1. All dimension in millimeters
- 2. tolerance is ±0.2mm
- 3. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.





# **Recommended Solder footprint:**



#### Note:

- 1. All dimension in millimeters
- 2. Pad ① is the positive pole, pad ② is the negative pole,, and pad ③ is the heat dissipation pad.
- 3. The drawing without tolerances is  $\pm 0.2$ mm for reference only
- 4. Suggest stencil T=0.12 mm

**Electrical / Optical Characteristic** 

(T=25 °C)

| Product              | View  | I <sub>F</sub> (mA) | V <sub>F</sub> | (V)     | Wavelength |     | adiant<br>ver(mW) |
|----------------------|-------|---------------------|----------------|---------|------------|-----|-------------------|
|                      | angle | ,                   | Тур.           | max     | (nm)       | min | typ.              |
| OLLIVOZ ISOSED 120   | 500   | 3.3                 | 3.6            | 400-410 | 700        | 850 |                   |
| QLUV07 <b>J</b> 5GEP | 120   | 1500                | 3.6            | 4       | 400-410    |     | 1900              |

- (1) The Forward Voltage tolerance is ±0.1V
- (2) The Peak wavelength tolerance is ±2
- (3) The Radiant power is  $\pm 7\%$



**Absolute Maximum Rating** 

(T=25 °C)

| Part #      | P <sub>d</sub> (mW) | I <sub>F</sub> (mA) | I <sub>FP</sub> (mA)* | V <sub>R</sub> (V) | T <sub>OP</sub> (°C) | T <sub>ST</sub> (°C) | Tj (°C)** | T <sub>SOL</sub> (°C)** | R <sub>th(J-S)</sub><br>(C/W)*** |
|-------------|---------------------|---------------------|-----------------------|--------------------|----------------------|----------------------|-----------|-------------------------|----------------------------------|
| QLUV07J5GEP | 5000                | 1500                | 1600                  | -5                 | -40 – 60             | -40 - 100            | 125       | 260                     | 8                                |

<sup>\*</sup>Duty 1/10 @ 10Khz

**Peak Wavelength Binning** 

| Wavelength Rank @ 500mA |     |      |       |
|-------------------------|-----|------|-------|
| Code name               | Low | High | Units |
| U400                    | 400 | 405  |       |
| U405                    | 405 | 410  | nm    |

Forward Voltage (V<sub>F</sub>) Bin:

| VF rank @ 500mA |     |      |       |  |
|-----------------|-----|------|-------|--|
| Code name       | Low | High | Units |  |
| 45              | 3.2 | 3.4  |       |  |
| 67              | 3.4 | 3.6  | V     |  |
| 89              | 3.6 | 3.8  | V     |  |
| AB              | 3.8 | 4.0  |       |  |

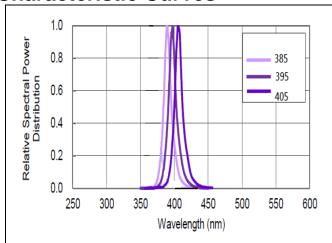
The forward voltage tolerance is  $\pm 0.1V$ 

**Radiant Power Binning:** 

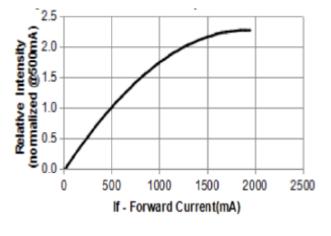
| Radiant Power rank (mW) @ 500mA |     |      |       |
|---------------------------------|-----|------|-------|
| Code name                       | Low | High | Units |
| P07                             | 700 | 800  |       |
| P08                             | 800 | 900  | mW    |
| P09                             | 900 | 1000 |       |

luminous flux tolerance is ± 7%

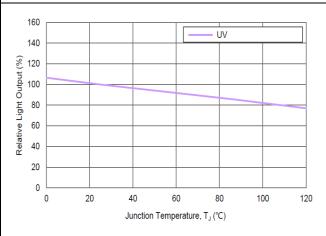



<sup>\*\*</sup> Junction Temperature

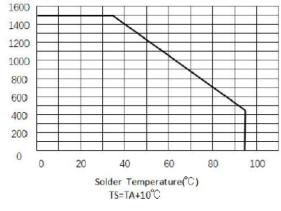
<sup>\*\*\*</sup> IR Reflow for no more than 10 sec @ 260 °C


<sup>\*\*\*\*</sup> Thermal resistance is calculated from junction to solder

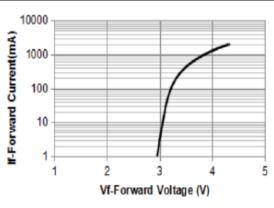



# **Characteristic Curves**

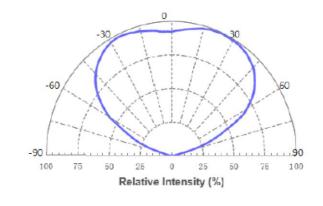



Spectral Distribution vs. Wavelength




Forward current vs. Relative luminous intensity




Relative Intensity vs. Junction Temperature



Forward current vs. Ambient Temperature



Forward Current vs. Forward Voltage



Radiation Pattern for 120 degree

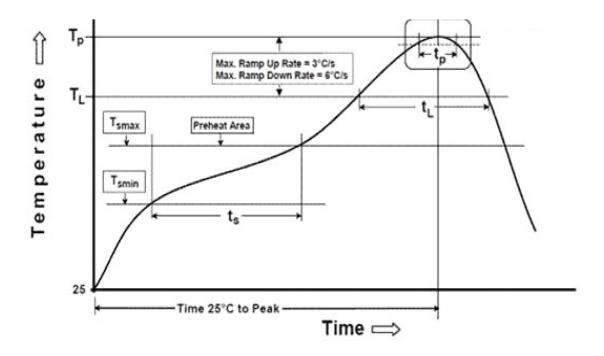




■ Reliability test:

|    | xenability test:                                                        |                                                        |            | 0              |
|----|-------------------------------------------------------------------------|--------------------------------------------------------|------------|----------------|
| No | Item                                                                    | Condition                                              | Time/Cycle | Sample<br>size |
| 1  | Steady State Operating Life of Room Temperature                         | 25°C Operating                                         | 1000 Hrs   | 20 pcs         |
| 2  | Steady State Operating Life of Low Temperature -40°C                    | -40°C Operating                                        | 1000 Hrs   | 20 pcs         |
| 3  | Steady State Operating Life of Low Temperature $60^{\circ}\mathbb{C}$   | 60°C Operating                                         | 1000 Hrs   | 20 pcs         |
| 4  | Steady State Operating Life of Low Temperature $85^{\circ}\!\mathbb{C}$ | 85°C Operating                                         | 1000 Hrs   | 20 pcs         |
| 5  | Low temperature storage -40°C                                           | -40°C Storage                                          | 1000 Hrs   | 20 pcs         |
| 6  | High temperature storage 100°C                                          | 100°C Storage                                          | 1000 Hrs   | 20 pcs         |
| 7  | Steady State Operating Life of High Humidity Heat 60°C 90%              | 60°C/90% Operating                                     | 1000 Hrs   | 20 pcs         |
| 8  | Steady State Pulse Operating Life Condition                             | 25°C 10Hz duty=1/10 Operating                          | 200 Cycle  | 20 pcs         |
| 9  | Resistance to soldering heat on PCB (JEDEC MSL3)                        | pre-store@60°C, 60%RH for 52hrs<br>Tsld max.=260 10sec | 3 Times    | 20 pcs         |
| 10 | Heat Cycle Test (JEDEC MRC)                                             | 25°C ~65°C ~-10°C, 90%RH,<br>24hr/1cycle               | 10 Cycle   | 20 pcs         |
| 11 | Thermal shock                                                           | -40°C/ 20minr~ 5minr~125°C/20min                       | 100 Cycle  | 20 pcs         |

**■** Judgment Criteria:


| Item            | Symbol | Test Condition | Judgment<br>Criteria |
|-----------------|--------|----------------|----------------------|
| Forward Voltage | Vf     | 500 mA         | △Vf< 10%             |
| Luminous Flux   | lv     | 500 mA         | ∆lv< 30%             |





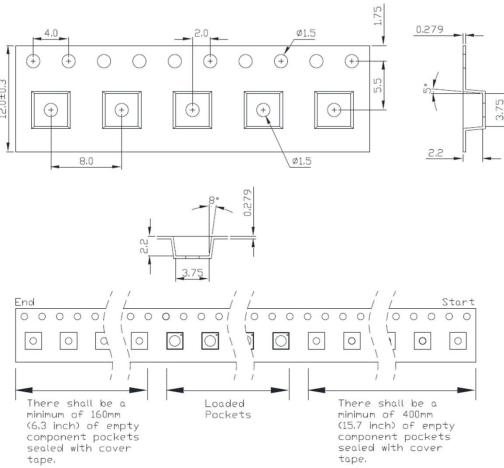
# **Solder Profile:**

-The recommended reflow soldering profile is as follows (temperatures indicated are as measured on the surface of the LED resin):



| Profile Feature                                                      | Sn-Pb Eutectic Assembly | Pb-Free Assembly |
|----------------------------------------------------------------------|-------------------------|------------------|
| Temperature Min(T <sub>smin</sub> )                                  | 100℃                    | 150℃             |
| Temperature Max(T <sub>smax</sub> )                                  | 150℃                    | 200℃             |
| Time(t <sub>a</sub> ) from (T <sub>smin</sub> to T <sub>smax</sub> ) | 60-120 seconds          | 60-120 seconds   |
| Ramp-up rate( $T_L$ to $T_P$ )                                       | 3℃/second max.          | 3°C/second max.  |
| Liquidous Temperature(T <sub>L</sub> )                               | 183℃                    | 217℃             |
| $Time(t_L)$ maintained above $T_L$                                   | 60-150 seconds          | 60-150 seconds   |
| Peak package body temperature(T <sub>P</sub> )                       | 235℃                    | 260℃             |
| Time within 5°C of Actual Peak temperature (tp)                      | 20seconds*              | 30 seconds*      |
| Ramp-down rate(T <sub>P</sub> to T <sub>L</sub> )                    | 6℃/second max.          | 6℃/second max.   |
| Time 25℃ to peak temperature                                         | 6 minutes max.          | 8 minutes max.   |

 $<sup>^*</sup>$  Tolerance for peak profile temperature ( $T_P$ ) is defined as a supplier minimum and a user maximum.

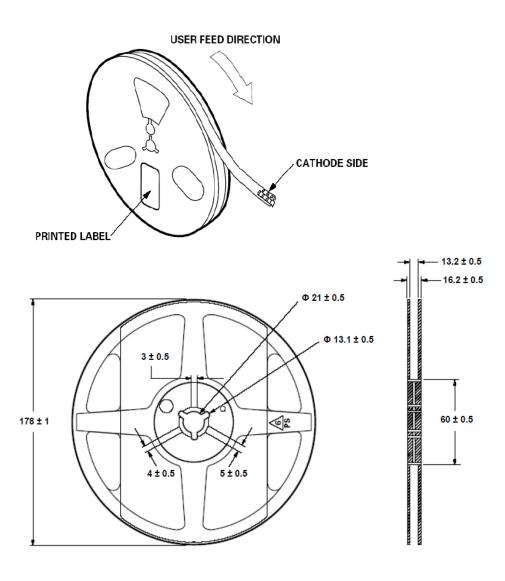





#### Notes:

- •We recommend using the M705-S101-S4 solder paste from SMIC (SenjuMetal Industry Co., Ltd.) for lead-free soldering.
- •Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED
- •All temperatures refer to topside of the package, measured on the package body surface.
- •Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- •Reflow soldering should not be done more than three times
- •When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

# Taping & Packing:




#### Notes:

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are  $\pm$  0.10mm.







#### Notes:

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are  $\pm 0.10$ mm.





# **Handling Precautions**

- LEDs are ESD (electrostatic discharge) sensitive; static electricity and surge voltages seriously damage UV
   LEDs and can result in product failure
- Use proper ESD protection, including grounded wrist straps, ESD footwear and clothes
- Ensure that tools, jigs and machines being used are properly grounded
- LED mounting equipment should include protection against voltage surge

•

- The UV LED is not protected by a lens and requires careful handling
- Do not handle the LED with bare hands as it may contaminate the LED surface and affect the optical characteristics.
- Avoid touching the LED die
- Do not use adhesives that outgas organic vapor
- Dropping the product may cause damage
- If handling the product with tweezers, use only the side of the package and be careful not to apply excessive force
- Proper thermal management is required to prevent warpage and damage to the modules and its components.
- Do not apply mechanical force or excess vibration during handling or normal operation

## Storage Precautions

Please do not open the moisture proof package (with silica desiccant).more than one week.

This may cause the leads of LED discoloration.

We recommend storing LEDs in a dry box once moisture proof bag is opened.

The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH.

It is also recommended to restore the LEDs into the moisture proof bag and reseal it.

# **Notes for handling Quartz lens LEDs**

- Avoid touching the quartz lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the quartz lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- Under SMT production, please avoid the mechanical pressure on the guartz lens.
- Please do not mold over the quartz lens with another resin. (epoxy, urethane, etc)

# **Eye Safety Guidelines**

The LED emits high intensity ultraviolet (UV) light, which is harmful to skin and eyes. UV light is hazardous to skin and may cause cancer.

- 1) Avoid looking directly at the UV light: Wear protective glasses/goggle with ANSI Z87 rated.
- 2) Wear facial shield / Lab Coat with long sleeve / Gloves to cover skin may exposed to UV LEDs.
- 3) Attach warning labels on products/systems that is composed with UV LEDs.



QueLighting



# **Samples of Warning label:**



High intensity ultraviolet light
Eye and skin hazard—avoid exposure to eyes/skin
Do not look directly at light—use eye protection
Use warning labels on systems containing UV LEDs

# Labeling

Quantity: XXXX

Quelighting P/N: XXXXXX

Lot number: XXXXX

Iv Bin: XX Color Bin: XX Vf Bin: XX Date Code: XXXX

**Ordering Information:** 

| Part #      | Multiple Quantities | Quantity per Reel |
|-------------|---------------------|-------------------|
| QLUV07J5GEP |                     | 500 pcs           |
|             |                     |                   |
|             |                     |                   |
|             |                     |                   |





Revision History:

| Revision Date: | Changes:        | Version #: |
|----------------|-----------------|------------|
| 01-01-2024     | Initial release | 1.0        |
|                |                 |            |
|                |                 |            |
|                |                 |            |
|                |                 |            |

