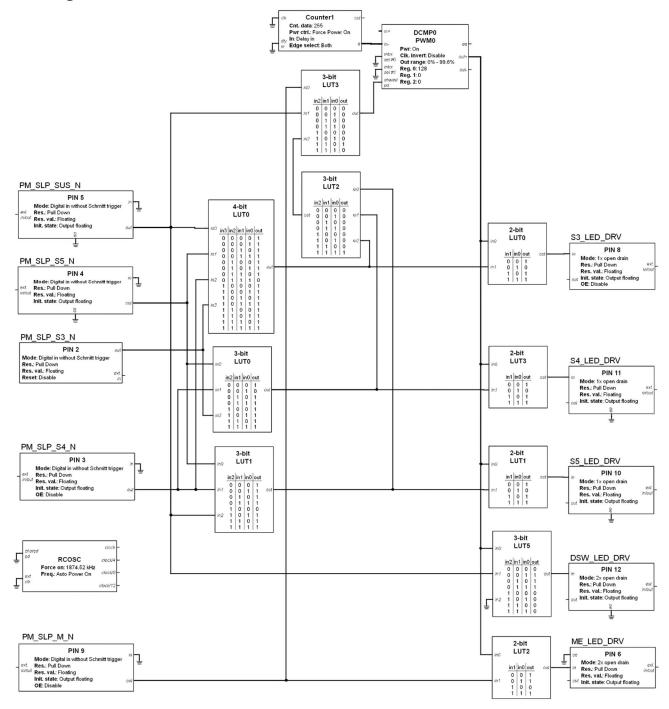

General Description

Renesas GreenPAK 2 SLG7NT4082 is a low power and small form device. The SoC is housed in a 2.5mm x 2.5mm TDFN package which is optimal for using with small devices.

Features

- Low Power Consumption
- Dynamic Voltage Supply Range
- RoHS Compliant / Halogen-Free
- Pb-Free TDFN-12 Package

Pin Configuration


Output Summary

- 3 Outputs Open Drain NMOS 1X
- 2 Outputs Open Drain NMOS 2X

Block Diagram

Pin Configuration

Pin#	Pin Name	Туре	Pin Description
1	VDD	PWR	Supply Voltage
2	PM_SLP_S3_N	Digital Input	Digital Input without Schmitt trigger
3	PM_SLP_S4_N	Digital Input	Digital Input without Schmitt trigger
4	PM_SLP_S5_N	Digital Input	Digital Input without Schmitt trigger
5	PM_SLP_SUS_N	Digital Input	Digital Input without Schmitt trigger
6	ME_LED_DRV	Digital Output	Open Drain NMOS 2X
7	GND	GND	Ground
8	S3_LED_DRV	Digital Output	Open Drain NMOS 1X
9	PM_SLP_M_N	Digital Input	Digital Input without Schmitt trigger
10	S5_LED_DRV	Digital Output	Open Drain NMOS 1X
11	S4_LED_DRV	Digital Output	Open Drain NMOS 1X
12	DSW_LED_DRV	Digital Output	Open Drain NMOS 2X
Exposed Bottom Pad	Exposed Bottom Pad	GND	Ground

Ordering Information

Part Number	Package Type
SLG7NT4082V	V = TDFN-12
SLG7NT4082VTR	VTR = TDFN-12 - Tape and Reel (3k units)

Absolute Maximum Conditions

Parameter	Min.	Max.	Unit
V _{HIGH} to GND	-0.3	7	V
Voltage at input pins	-0.3	7	V
Current at input pin	-1.0	1.0	mA
Storage temperature range	-65	125	°C
Junction temperature		150	°C
ESD Protection (Human Body Model)	2000		V
ESD Protection (Charged Device Model)	1000		V
Moisture Sensitivity Level	,	1	

Electrical Characteristics

(@ 25°C, unless otherwise stated)

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit
V_{DD}	Supply Voltage		1.71	3.3	5.5	V
TA	Operating Temperature		-40	+25	+85	°C
ΙQ	Quiescent Current	Static inputs and outputs		1		μΑ
Vo	Maximal Voltage Applied to any PIN in High-Impedance State				VDD	>
lo	Maximal Average or DC Current (note 1)	Per Each Chip Side			24	mA
		Logic Input, at VDD=1.8V	1.1			
VIH	HIGH-Level Input Voltage	Logic Input, at VDD=3.3V 1.8				V
		Logic Input, at VDD=5.0V	2.6			
		Logic Input, at VDD=1.8V LOW-Level Input Voltage Logic Input, at VDD=3.3V			0.65	
V_{IL}	LOW-Level Input Voltage				1.1	V
		Logic Input, at VDD=5.0V			1.7	
Iн	HIGH-Level Input Current	Logic Input Pins;V _{IN} = VDD	-1.0		1.0	μΑ
Iı∟	LOW-Level Input Current	Logic Input Pins; V _{IN} = 0V	-1.0		1.0	μΑ
		Open Drain, I _{OL} = 5mA, 1X Driver, at VDD=1.8 V			0.340	
	LOW-Level Output Voltage	Open Drain, I _{OL} = 5mA, 2X Driver, at VDD=1.8 V			0.138	V
	(note 1)	Open Drain, I _{OL} = 20mA, 1X Driver, at VDD=3.3 V			0.605	
		Open Drain, I _{OL} = 20mA, 2X Driver, at VDD=3.3 V	.3 V 0.252			

LED DRIVER

		Open Drain, I _{OL} = 20mA, 1X Driver, at VDD=5.0 V			0.36	
		Open Drain, I _{OL} = 20mA, 2X Driver, at VDD=5.0 V		1	0.17	
		Open Drain, V _{OL} =0.15V, 1X Driver, at VDD=1.8 V	2.72	1	I	
		Open Drain, V _{OL} =0.15V, 2X Driver, at VDD=1.8 V	5.44			
	LOW-Level Output Current	Open Drain, V _{OL} =0.4V, 1X Driver, at VDD=3.3 V	14.688			m A
l _{OL}	(note 1)	Open Drain, V _{OL} =0.4V, 2X Driver, at VDD=3.3 V	29.376			mA
		Open Drain, V _{OL} =0.4V, 1X Driver, at VDD=5.0 V	21.96			
		Open Drain, V _{OL} =0.4V, 2X Driver, at VDD=5.0 V	43.92			
T _{SU}	Start up Time	After VDD reaches 1.6V level		7		ms

^{1.} Guaranteed by Design.

Description

The device is specially designed to replace a big amount of discrete elements. Its main function is to drive 5 LEDs.

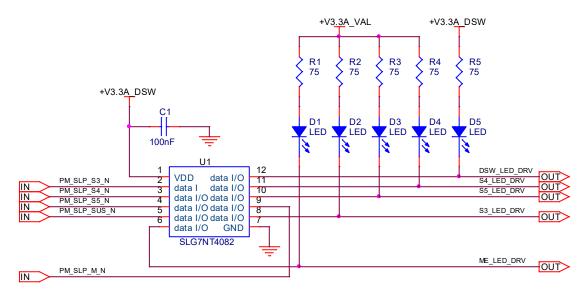
Truth tables:

	Inpu	uts		Outputs				
PIN5	PIN4	PIN3	PIN2	PIN12	PIN12 PIN10		PIN8	
PM_SLP_SUS_N	PM_SLP_S5_N	PM_SLP_S4_N	PM_SLP_S3_N	DSW_LED_DRV	S5_LED_DRV	S4_LED_DRV	S3_LED_DRV	
1	1	1	1	Hi-Z	Hi-Z	Hi-Z	Hi-Z	
1	1	1	0	Hi-Z	Hi-Z	Hi-Z	PWM	
1	1	0	0	Hi-Z	Hi-Z	PWM	Hi-Z	
1	0	0	0	Hi-Z	PWM	Hi-Z	Hi-Z	
0	0	0	0	PWM	Hi-Z	Hi-Z	Hi-Z	
0	0	1	0	PWM	Hi-Z	Hi-Z	Hi-Z	

	Inputs							
PIN5	PIN4	PIN3	PIN2	PIN9	PIN6			
PM_SLP_SUS_N	PM_SLP_S5_N	PM_SLP_S4_N	PM_SLP_S3_N	PM_SLP_M_N	ME_LED_DRV			
Х	X	Х	Х	1	PWM			
Х	Х	Х	Х	0	Hi-Z			

0 - Logic state LOW;

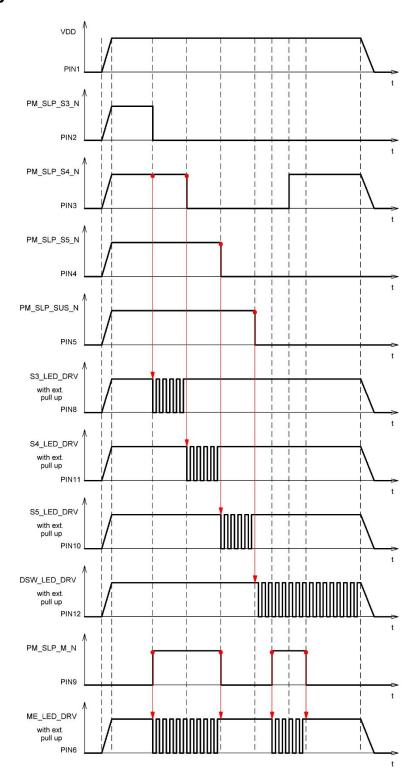
1 - Logic state HIGH;


X – Don't care;

Hi-Z – high impedance state;

PWM – 50% duty cycle PWM signal with ~ 7.3 kHz frequency

All pins are in a high impedance state until the chip has powered up.


Typical Application Circuit

Timing Diagrams

SLG7NT4082 Functionality Waveforms

Channel 1 (yellow/top) - Pin #2 (PM_SLP_S3_N)

Channel 2 (light blue/2nd line) – Pin #3 (PM_SLP_S4_N)

Channel 3 (magenta/3rd line) – Pin #4 (PM SLP S5 N)

Channel 4 (blue/bottom) – Pin #8 (S3_LED_DRV) with external $5k\Omega$ pull up resistor

1. S3 LED functionality, PM_SLP_SUS_N is HIGH, goes LOW 100ms after S3_LED_DRV goes LOW

Channel 1 (yellow/top) - Pin #2 (PM_SLP_S3_N)

Channel 2 (light blue/2nd line) - Pin #3 (PM SLP S4 N)

Channel 3 (magenta/3rd line) – Pin #4 (PM_SLP_S5_N)

Channel 4 (blue/bottom) – Pin #11 (S4_LED_DRV) with external 5kΩ pull up resistor

2. S4 LED functionality, PM_SLP_SUS_N is HIGH, goes LOW 100ms after S3_LED_DRV goes LOW

LED DRIVER

Channel 1 (yellow/top) - Pin #2 (PM_SLP_S3_N)

Channel 2 (light blue/2nd line) – Pin #3 (PM_SLP_S4_N)

Channel 3 (magenta/3rd line) – Pin #4 (PM_SLP_S5_N)

Channel 4 (blue/bottom) – Pin #10 (S5_LED_DRV) with external $5k\Omega$ pull up resistor

3. S5 LED functionality, PM_SLP_SUS_N is HIGH, goes LOW 100ms after S3_LED_DRV goes LOW

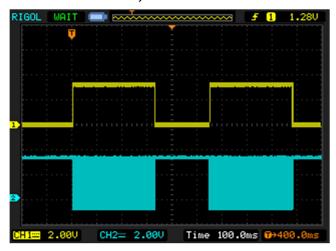
Channel 1 (yellow/top) - Pin #2 (PM_SLP_S3_N)

Channel 2 (light blue/2nd line) – Pin #3 (PM SLP S4 N)

Channel 3 (magenta/3rd line) – Pin #5 (PM_SLP_SUS_N)

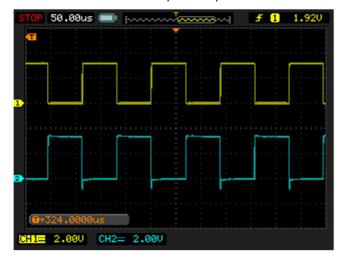
Channel 4 (blue/bottom) – Pin #12 (DSW_LED_DRV) with external $5k\Omega$ pull up resistor

4. DSW LED functionality

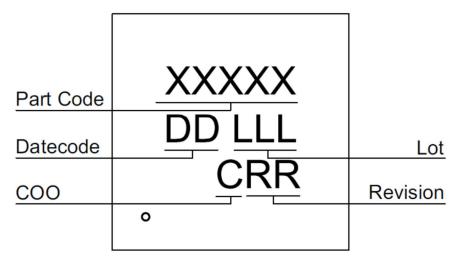


LED DRIVER

Channel 1 (yellow/top) – Pin #9 (PM_SLP_M_N)


Channel 2 (light blue/ 2^{nd} line) – Pin #6 (ME_LED_DRV) with external $5k\Omega$ pull up resistor

5. DSW LED functionality


Channel 1 (yellow/top) – Pin #12 (DSW_LED_DRV) with external $5k\Omega$ pull up resistor Channel 2 (light blue/2nd line) – Pin #11 (S4_LED_DRV) with external $5k\Omega$ pull up resistor

6. PWM difference in one chip side to prevent overcurrent

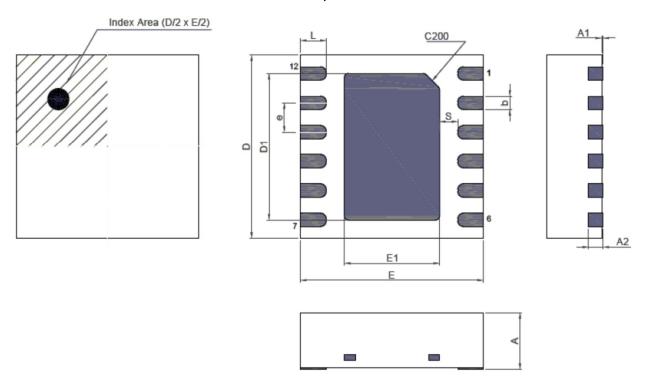
Package Top Marking

XXXXX - Part ID Field: identifies the specific device configuration

DD - Date Code Field: Coded date of manufacture

LLL – Lot Code: Designates Lot #
 C – COO: Specifies Country of Origin
 RR – Revision Code: Device Revision

Datasheet Revision	Programming Code Number	Locked Status	Part Code	Revision	Date
1.04	007	U	4082V	AG	02/25/2022

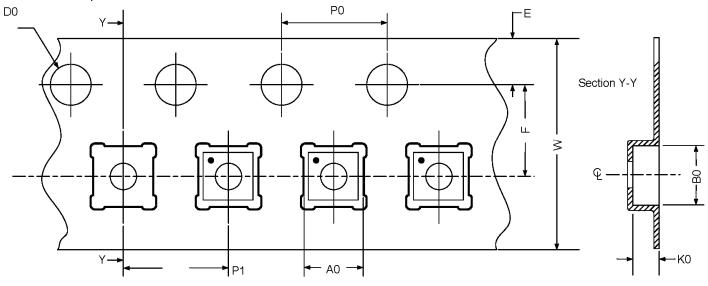

The IC security bit is locked/set for code security for production unless otherwise specified. Revision number is not changed for bit locking.

Package Drawing and Dimensions

12 Lead TDFN Package JEDEC MO-252, Variation 2525E

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.70	0.75	0.80	D1	1.95	2.00	2.05
A1	0.005	-	0.060	E1	1.25	1.30	1.35
A2	0.15	0.20	0.25	е	(0.40 BSC	,
b	0.13	0.18	0.23	L	0.30	0.35	0.40
D	2.45	2.50	2.55	S	0.18	-	-
E	2.45	2.50	2.55				


Tape and Reel Specification

	# of	Nominal	Max	Units	Reel &	Trail	ler A	Lead	ler B	Pocke	t (mm)
Package Type	Pins	Package Size (mm)	per reel	per box	Hub Size (mm)	Pockets	Length (mm)	Pockets	Length (mm)	Width	Pitch
TDFN 12L 2.5x2.5mm 0.4P Green	12	2.5x2.5x0.75	3000	3000	178/60	42	168	42	168	8	4

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length (mm)	Pocket BTM Width (mm)	Pocket Depth (mm)	Index Hole Pitch (mm)	Pocket Pitch (mm)	Index Hole Diameter (mm)	Index Hole to Tape Edge (mm)	Index Hole to Pocket Center (mm)	Tape Width (mm)
	A0	В0	K0	P0	P1	D0	E	F	w
TDFN 12L 2.5x2.5mm 0.4P Green	2.75	2.75	1.05	4	4	1.55	1.75	3.5	8

Refer to EIA-481 Specifications

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 4.6875 mm³ (nominal). More information can be found at www.jedec.org.

LED DRIVER

Datasheet Revision History

Date	Version	Change
06/04/2012	0.10	New design
06/12/2012	0.20	Added PWM output
06/12/2012	0.21	Corrected Truth Table
06/26/2012	0.22	Changed ME_LED truth table
07/10/2012	0.23	Changed PIN names
07/30/2012	0.24	Corrected LUT4.0 truth table
08/17/2012	0.25	Updated Device Revision Table
08/30/2012	0.26	Added Timing Diagrams, Typical Application Circuit
09/21/2012	1.00	Production Release
12/11/2012	1.01	Updated Device Revision Table
12/22/2021	1.02	Changed to full VDD range for Rev B chip
01/20/2022	1.03	Added Vih parameter
02/25/2022	1.04	Updated Company name and logo

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/