

Telephone +44 (0)1493 602602 Email:sales@midasdisplays.com Email:tech@midasdisplays.com www.midasdisplays.com

MDT0200FIH-MULTI	240 x 320	MULTI Interface	TFT Module				
Specification							
Version: 1		Date: 18/07/2022					
		Revision					
1	16/07/2022	First issue					

Display F	eatures		
Display Size	2.00"		
Resolution	240 x 320		
Orientation	Portrait		
Appearance	RGB		1
Logic Voltage	3.3V	(WD	oHS ompliant
Interface	MCU / SPI		$\mathbf{OH}2$
Brightness	950 cd/m ²		mnliant
Touchscreen	SPLA	7500	mphant
Module Size	38.80 x 52.30 x 2.15mm		
Operating Temperature	-20°C ~ +70°C		
Pinout	40 way FFC	Box Quantity	Weight / Display
Pitch	0.5mm		

* - For full design functionality, please use this specification in conjunction with the ST7789VI specification.(Provided Separately)

Display Accessories						
Part Number	Description					
MPBV6	40 Way FFC to cable and wires. Driven by any driver board that can be wired to a 1mm pitch SHDR-40V-S-B receptacle.					

Optional Variants					
Appearances	Voltage				

Summary

TFT 2.0" is a IPS transmissive type color active matrix TFT liquid crystal display that use amorphous silicon TFT as switching devices. This module is a composed of a TFT_LCD module, It is usually designed for industrial application and this module follows RoHs.

DESIGN • MANUFACTURE • SUPPLY

General Specifications

■ Size: 2.0" inch

■ Dot Matrix: 240 x RGB x 320(TFT) dots

■ Module dimension: 38.8(W) x 52.3(H) x 2.15(D) mm

Active area: 30.60 x 40.80 mm

■ Pixel Pitch: 0.1275 x 0.1275 mm

LCD type: TFT, Normally Black, Transmissive

■ TFT Interface: MCU / SPI

■ TFT Driver IC: ST7789VI or Equivalent

■ Viewing angle: 80/80/80/80

■ Aspect Ratio: 3:4

■ Backlight Type: LED,Normally White

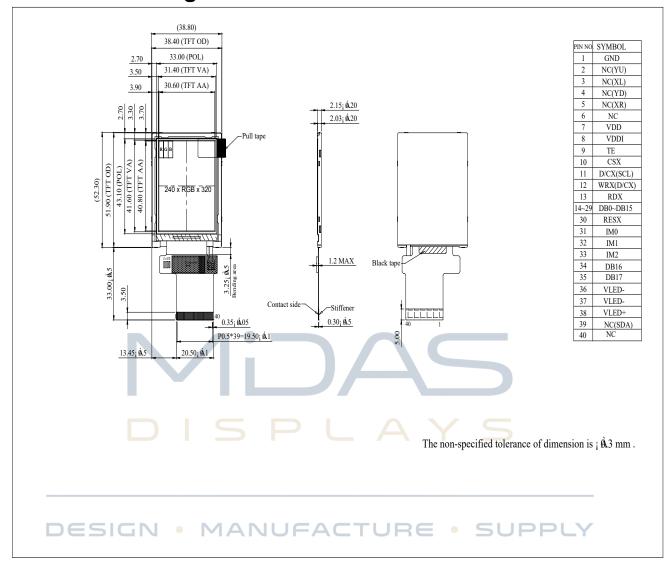
■ With /Without TP: Without TP

Surface: Glare

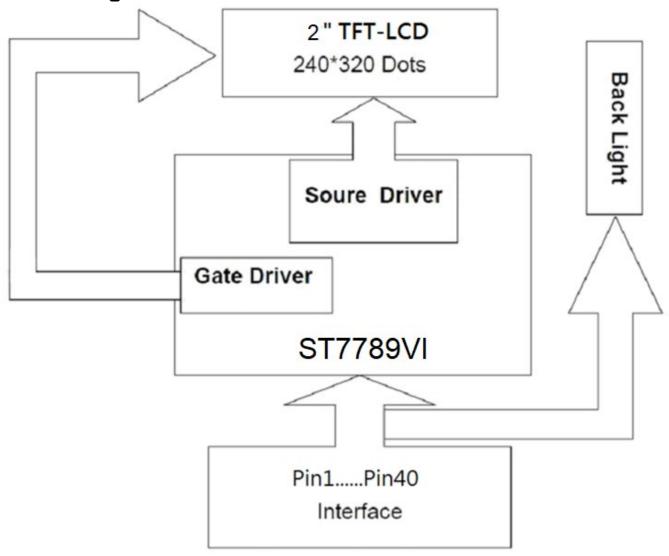
*Color tone slight changed by temperature and driving voltage.

Interface

1. LCM PIN Definition


NO	Symbol				Functio	n		
1	GND	Groui	nd					
2	NC	No co	No connection					
3	NC	No co	nnect	ion				
4	NC	No co	nnect	ion				
5	NC	No co	nnect	ion				
6	NC	No co	nnect	ion				
7	VDD	Powe	r supp	oly				
8	VDDI	Powe	r Sup	ply for	I/O System.			
9	TE	writin	g.		nal is used to synch e let this pin open	ronize MCU	to frame memory	
10	CSX	Low e	select enable disabl					
11	DCX(SCL)	(D/CX): This pin is used to select "Data or Command" in the parallel interface. DCX='1': display data or parameter. DCX='0': command data. (SCL): When SPI mode, This pin is used to be serial interface clock.						
12 _	WRX(D/CX)	Secon (WRX (D/CX	nd Da (): Wri (): Wh	ta land te ena en 4-9	mand selection e in 2 data lane seria ble in MCU parallel SPI mode,This pin in e fix this pin at VDD	interface. 4-line serial	interface	
13	RDX	-Read	d enab	ole in 8	8080 MCU parallel in se fix this pin at VDD	iterface.		
14~29	DB0~DB15	Data	bus lir	ne				
30	RESX			et pin. tive lo				
31	IMO				ce mode select.	1		
32	IM1	IM2	IM1	IM0	MPU Interface Mode	Data pin		
		0	0	0	80-8bit parallel I/F	DB[7:0]		
		0	1	0	80-16bit parallel I/F 80-9bit parallel I/F	DB[15:0]		
33	IM2	0	1	1	80-18bit parallel I/F	DB[8:0] DB[17:0],		
	33 IIVIZ		0	1	3-line 9bit serial I/F	SDA: in/out		
		1 1 0 4-line 8bit serial I/F SDA: in/out						
34~35	DB16~DB17	Data	Data bus line					
36	VLED-	Catho	ode of	LED b	packlight.			
	l .							

37	VLED-	Cathode of LED backlight.
38	VLED+	Anode of LED backlight.
39	NC(SDA)	When SPI mode, This pin is SPI interface input/output pin. The data is latched on the rising edge of the SCL signal. If not used(NC), please fix this pin at VDDI or GND level.
40	NC	No connection



DESIGN • MANUFACTURE • SUPPLY

Contour Drawing

Block Diagram

Absolute Maximum Ratings

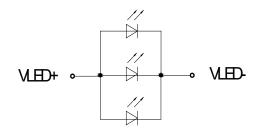
Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	TOP	-20	_	+70	°C
Storage Temperature	TST	-30	_	+80	°C

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

1. Temp. ≦60°C, 90% RH MAX. Temp. > 60°C, Absolute humidity shall be less than 90% RH at 60°C

Electrical Characteristics

1. Operating conditions


Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Analog	V_{DD}	_	2.4	3.3	3.6	V
Interface Operation Voltage	V _{DDI}		1.65	1.8	3.6	V
Supply Current For LCM	IDD	$V_{DD} = V_{DDI}$ = V_{CC} =3.0V		6.0	9.0	mA

Note: to avoid power supply noise, please avoid using driving conditions close to min, or max value

2. LED driving conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current SIGN	MAN	JFAC	T69RE	5		Y -
LED voltage	VLED+	5.5	6.0	6.5	V	Note 1
LED Life Time	_	_	50,000	_	Hr	Note 2,3,4

Note 1: There are 1 Groups LED

Back Light Circuit

Note 2 : Ta = 25 °C

Note 3: Brightness to be decreased to 50% of the initial value

Note 4: The single LED lamp case

DC Characteristics

Parameter	Symbol		Unit	Condition			
r ai ailletei	Symbol	Min	Тур	Max	Oilit	Condition	
Low level input voltage	VıL	0	-	0.3VCC	V		
High level input voltage	ViH	0.7VCC	-	VCC	V		

AC Characteristics

1. 8080 Series MCU Parallel Interface Characteristics: 18/16/9/8-bit Bus

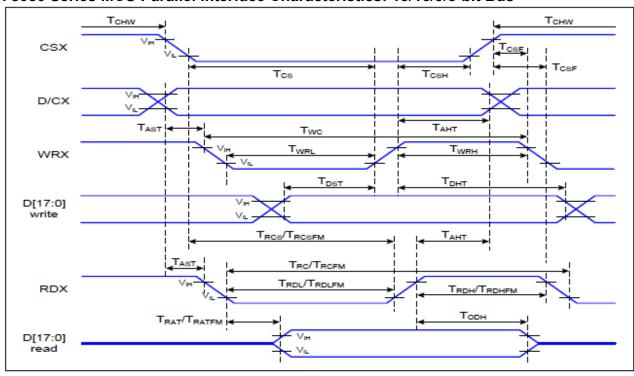


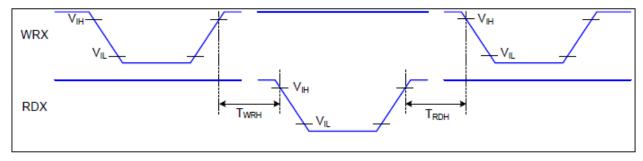
Figure 1Parallel Interface Timing Characteristics (8080-Series MCU Interface)

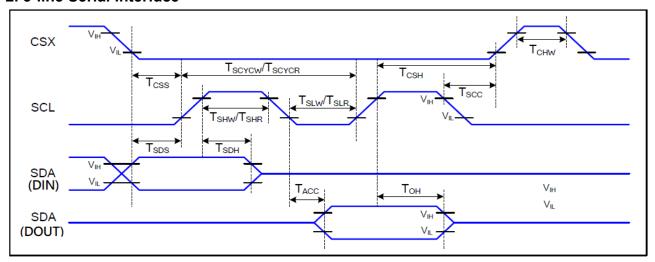
VDDI=1.65 to 3.6V, VDD=2.4 to 3.6V, GND=0V, Ta= 25 $\,^{\circ}$ C

Signal	Symbol	Parameter	Min	Max	Unit	Description
D/CV	TAST	Address setup time	0		ns	
D/CX TAHT		Address hold time (Write/Read)	10		ns	-
CSX	TCHW	Chip select "H" pulse width	0		ns	_
00%	TCS	Chip select setup time (Write)	15		ns	
	TRCS	Chip select setup time (Read ID)	45		ns	
	TRCSFM	Chip select setup time (Read FM)	355		ns	
	TCSF	Chip select wait time (Write/Read)	10		ns	
	TCSH	Chip select hold time	10		ns	
WRX	TWC	Write cycle	66		ns	
	TWRH	Control pulse "H" duration			ns	
	TWRL	Control pulse "L" duration	15		ns	
RDX (ID)	TRC	Read cycle (ID)	160		ns	When read ID data
(1.2)	TRDH	Control pulse "H" duration (ID)	90		ns	William Foad 12 data
	TRDL	Control pulse "L" duration (ID)	45		ns	
RDX	TRCFM	Read cycle (FM)	450		ns	When read from
	TRDHFM	Control pulse "H" duration (FM)	90	Y	ns	
(FM)	TRDLFM	Control pulse "L" duration (FM)	355		ns	frame memory
D[17:0]	TDST	Data setup time	10		ns	For CL=30pF
D6	E STONE N	● Data hold time △ □ 丁 U	10_	• 9	5 ins F	PPLY
	T_RAT	Read access time (ID)		40	ns	
	T _{RATFM}	Read access time (FM)		340	ns	
	T_ODH	Output disable time	20	80	ns	

Table 8080 Parallel Interface Characteristics

Figure 2 Rising and Falling Timing for I/O Signal




Figure 3 Write-to-Read and Read-to-Write Timing

Note: The rising time and falling time (Tr, Tf) of input signal and fall time are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

DISPLAYS

DESIGN • MANUFACTURE • SUPPLY

2. 3-line Serial Interface

Figure 4 3-line serial Interface Timing Characteristics

Signal	Symbol	Parameter	Min	Max	Unit	Description
	T _{CSS}	Chip select setup time (write)	15		ns	
	Тсѕн	Chip select hold time (write)	15		ns	
CSX	T _{CSS}	Chip select setup time (read)	60		ns	
	Tscc	Chip select hold time (read)	65		ns	
	Тснw	Chip select "H" pulse width	40		ns	
	Tscycw	Serial clock cycle (Write)	16		ns	
	T _{SHW}	SCL "H" pulse width (Write)	7		ns	
SCL	Tstw	SCL "L" pulse width (Write)	7		ns	
SCL	Tscyck	Serial clock cycle (Read)	150		ns	
	T _{SHR}	SCL "H" pulse width (Read)	60		ns	
	T _{SLR}	SCL "L" pulse width (Read)	60		ns	
SDA	T _{SDS}	Data setup time	7		ns	
(DIN)	T _{SDH}	Data hold time	7		ns	
SDA	Tacc	Access time	10	50	ns	For maximum CL=30pF
(DOUT)	Тон	Output disable time	15	50	ns	For minimum CL=8pF

Table 3-line serial Interface Characteristics

3. Reset Timing:

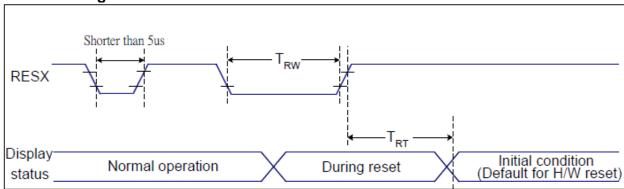
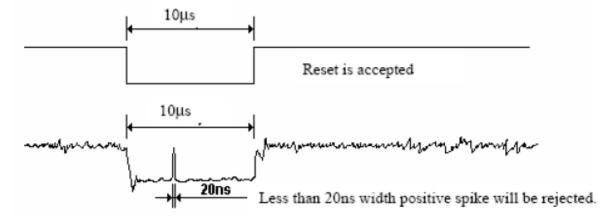


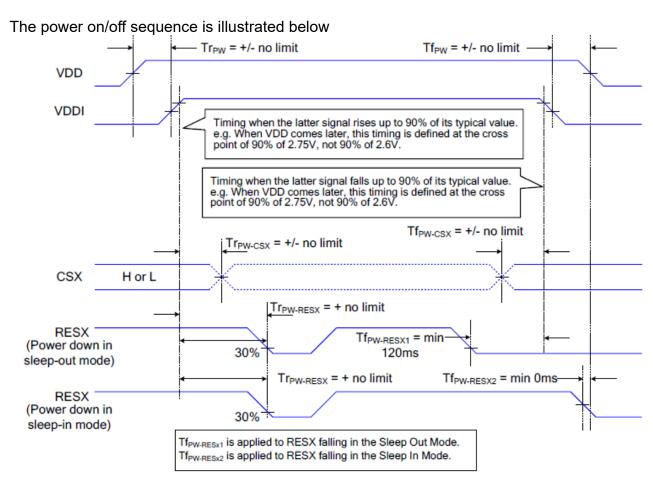
Figure 5 Reset Timing

VDDI=1.65 to 3.6V, VDD=2.4 to 3.6V, GND=0V, Ta=25 °C


Related Pins	Symbol	Parameter	MIN	MAX	Unit
	TRW	Reset pulse duration	1000	us	
RESX	TRT	Reset cancel	-	5 (Note 1, 5)	ms
				120 (Note 1, 6, 7)	ms

Notes:

- 1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.
- 2. Spike due to an electrostatic discharge on RESXline does not cause irregular system reset according to the table below:


RESX Pulse	Action	
Shorter than 5us	Reset Rejected	
Longer than 9us	Reset	JPPLY
Between 5us and 9us	Reset starts	

- 3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode.) and then return to Default condition for Hardware Reset.
- 4. Spike Rejection also applies during a valid reset pulse as shown below:

- 5. When Reset applied during Sleep In Mode.
- 6. When Reset applied during Sleep Out Mode.
- 7. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

4. Power sequences

Optical Characteristics

Item		Symbol	Condition.	Min	Тур.	Max.	Unit	Remark
Response time		Tr+ Tf	θ=0°, Ф=0°	-	35	45	ms	Note 3
Contrast ratio		CR	At optimized viewing angle	640	800	1	-	Note 4
Color Chromaticity	White	Wx	θ=0°、Ф=0	0.246	0.296	0.346		Note
		Wy		0.275	0.325	0.375		2,6,7
Minusian angle	•	ΘR	CR≧10	-	80	-	Deg.	Note 1
Viewing angle (Gray Scale Inversion		ΘL		-	80	-		
	Ver.	ΦТ		-	80	-		
Direction)		ФВ		-	80	-		
Brightness		-	-	850	950	-	cd/m ²	Center of display
Uniformity		(U)	-	75	-	-	%	Note5

Ta=25±2°C

Note 1: Definition of viewing angle range

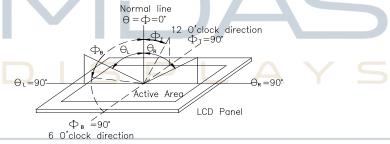


Fig. 11.1. Definition of viewing angle

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7 or BM-5 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

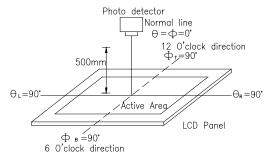
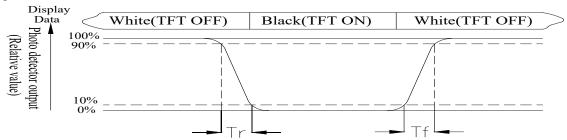



Fig. 11.2. Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90%to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10%to 90%

Note 4: Definition of contrast ratio:

The contrast ratio is defined as the following expression.

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (reference the picture in below). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax x100%

L = Active area length

W = Active area width

X(V/A)

1
2
3
MANUFACTURE

SUPPLY

7
8
9

Fig 11.3. Definition of uniformity

Note 6: Definition of color chromaticity (CIE 1931) Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Reliability

Content of Reliability Test (Wide temperature, -20°C~70°C)

Environmental Test							
Test Item	Content of Test	Test Condition	Note				
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80°C 200hrs	2				
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C 200hrs	1,2				
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70°C 200hrs					
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs	1				
High Temperature/ Humidity Operation	The module should be allowed to stand at 60°C,90%RH max	60°C,90%RH 96hrs	1,2				
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation -20°C 25°C 70°C 30min 5min 30min 1 cycle	-20°C/70°C 10 cycles					
Vibration test DESIG	Endurance test applying the vibration during transportation and using. N • MANUFACTURE	Total fixed amplitude: 1.5mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3				
Static electricity test	Endurance test applying the electric stress to the finished product housing.	Contact±4KV Air±8KV 10 times	4				

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

Note4: Some performance degradation allowed. Need Power off self-recoverable.No hardware failure

Initial Code For Reference

```
void ST7789SV RF0200B(void) for SPI & MCU mode
    Write Command(0x11); //Sleep out
        delay(150);
                                //Delay 120ms
    Write Command(0x36);
                                //
    Write Data(0x00);
    Write Command(0x3A); //
    Write Data(0x55);
    //ST7789S Frame rate setting
         Write Command(0xb2); //Porch Setting
        Write Data(0x0c);
        Write Data(0x0c);
        Write Data(0x00);
        Write Data(0x33);
        Write Data(0x33);
        Write Command(0xb7);
                                //Gate Control
        //Write Data(0x35);
                                //vgh vgl
        Write Data(0x64);
    //ST7789S Power setting
                                                                   SUPPLY
        Write Command(0xbb); //Gate Control VCOMS=1.425V
        Write Data(0x30);
        Write Command(0xc0); //LCM Control
     Write Data(0x2c);
        Write Command(0xc2); //VDV and VRH Command Enable
        Write Data(0x01);
        Write Command(0xc3); //VRH Set (AVDD=VRH+1.675
        Write Data(0x0b);
        Write Command(0xc4); //VRH Set
        Write Data(0x20);
        Write Command(0xc6); //Frame Rate Control in Normal Mode
        Write Data(0x0f);
        Write Command(0xca); //Register Value Selection 2
        Write Data(0x0f);
        Write Command(0xc8); //Register Value Selection 1
        Write Data(0x08);
        Write Command(0x55); //Write Content Adaptive Brightness Control and Color Enhancemen
```

```
t
```

```
Write Data(0x90);
    Write Command(0xd0); //Power Control
    Write Data(0xa4);
    Write Data(0xa1);
    Write Command(0x35); //
Write Command(0x26);
                      //Set Gamma
    Write Data(0x02);
    //ST7789S gamma setting
    Write Command(0xe0);
    Write Data(0xd0);
    Write Data(0x00);
    Write Data(0x02);
    Write Data(0x07);
    Write Data(0x0b);
    Write Data(0x1a);
    Write Data(0x31);
    Write Data(0x54);
    Write Data(0x40);
    Write Data(0x29);
    Write Data(0x12);
    Write Data(0x12);
    Write Data(0x12);
                         MANUFACTURE • SUPPLY
    Write Data(0x17);
    Write Command(0xe1);
    Write Data(0xd0);
    Write Data(0x00);
    Write Data(0x02);
    Write_Data(0x07);
    Write Data(0x05);
    Write Data(0x25);
    Write Data(0x2d);
    Write Data(0x44);
  Write_Data(0x45);
    Write Data(0x1c);
    Write Data(0x18);
    Write_Data(0x16);
    Write Data(0x1c);
    Write Data(0x1d);
```

```
Write_Command(0x21);

Write_Command(0x2A);

Write_Data(0x00);

Write_Data(0x00);

Write_Data(0x0EF);

Write_Command(0x2B);

Write_Data(0x00);

Write_Data(0x01);

Write_Data(0x3F);

Write_Command(0x29);
```

}

DESIGN • MANUFACTURE • SUPPLY