MCU-SMHMI-SDUG

Smart HMI Software Development User Guide
Rev. 1 — 23 May 2023

User guide

Document Information
Information Content

Keywords SLN-TLHMI-IOT, Human Machine Interface (HMI), loT, MCU-SMHMI-SDUG

Abstract The purpose of this guide is to help developers better understand the software design and

architecture of the applications in order to more easily and efficiently implement applications using
the SLN-TLHMI-IOT

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

1 Introduction

Welcome to the Developer Guide for the SLN-TLHMI-IOT!

The purpose of this guide is to help developers better understand the software design and architecture of the
applications in order to more easily and efficiently implement applications using the SLN-TLHMI-IOT.

This guide covers such topics as the bootloader and the framework + HAL architecture design, as well as other
features that may be relevant to application development using SLN-TLHMI-IOT.

Check out the Smart HMI Getting Started Guide for an overview of the out of box features available in the SLN-
TLHMI-IOT applications.

2 Setup and installation

This section is focused on the setup and installation of the tools necessary to begin developing applications
using NXP's framework architecture.

Note: This guide focuses on MCUXpresso IDE for development.

2.1 MCUXpresso IDE

MCUXpresso IDE brings developers an easy-to-use Eclipse-based development environment for NXP

MCUs based on Arm Cortex-M cores, including its general-purpose crossover and Bluetooth-enabled MCUs.
MCUXpresso IDE offers advanced editing, compiling, and debugging features with the addition of MCU-
specific debugging views, code trace and profiling, multicore debugging, and integrated configuration tools.
MCUXpresso IDE debug connections support Freedom, Tower system, LPCXpresso, i.MX RT-based EVKs, and
your custom development boards with industry-leading open-source and commercial debug probes from NXP,
P&E Micro, and SEGGER.

For more information, see the NXP website

2.2 Install the toolchain

MCUXpresso IDE can be downloaded from the NXP website by using the below link:
Get MCUXpresso IDE

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

2/226

http://www.nxp.com/mcu-smhmi
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=MCUXPRESSO

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

MCUXpresso Integrated Development Environment (IDE)

MCUXpresso-IDE Receive aleris ®

Overview Software Details Design Resources @ Training Support I DOWNLOADS I

The MCUXpresso IDE brings developers an easy-to-use Eclipse-based
development environment for NXP® MCUs based on Arm® Cortex®-M cores,
including its general purpose crossover and wireless - enabled MCUs. The
MCUXpresso IDE offers advanced editing, compiling, and debugging features
with the addition of MCU-specific debugging views, code trace and profiling,
multicore debugging, and integrated configuration tools. The MCUXpresso
IDE debug connections support Freedom, Tower® system, LPCXpresso, i.MX
RT-based EVKs, and your custom development boards with optimized open-
source and commercial debug probes from NXP, P&E Micro®, and SEGGER®.

Roll over image to zoom in

A

Figure 1. Download MCUXpresso IDE

To download the correct version of IDE, check out the Smart HMI Getting Started Guide. Once the download
has been completed, follow the instructions in the installer to get started.

Note: There is a bug in version 11.5.1 of MCUXpresso IDE that prevents building projects for SLN-TLHMI-IOT,
so version 11.7.0 or greater is required.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

31226

http://www.nxp.com/mcu-smhmi

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

38 About MCUXpresso IDE O X

MCUXpresso IDE v11.7.0 [Build 9198] [2023-01-17]
(c) Copyright 2006-2023 NXP

For further information about NXP and MNXP products, visit:

MEP Semiconductors: httpe/Swawnxp.com

MNXP Microcontrollers: http:/fwww.nxp.com/proeducts/microcontrellers
MCUXpresso IDE: hitp://www.nxp.com/meoux presso/ide

For community-based support visit the MCUXpresso IDE forum at
http:/ S www.nxpocom/meux presso/ide
Check for latest version at: http/fwww.nxp.com/meouxpresso/ide

M CUKPFE‘ iz Copyright 2000-2023 Eclipse contributors and others, Eclipse and the Eclipse

| D E logo are trademarks of the Eclipse Foundation, Inc,, https:/fwwweclipse.org/,
The Eclipse logo cannet be altered without Eclipses permission, Eclipse logos
are provided for use under the Eclipse logo and trademark guidelines,
https:/fwww.eclipse.org/logetm/. Oracle and Java are trademarks or
registered trademarks of Oracle and/or its affiliates. Other narnes may be
trademarks of their respective owners. This preduct includes software
developed by other open source projects including the Apache Software
Foundation, https://www.apache.org/.

cCSENNNOO ¢ &

3 . .
@ Installation Details

Figure 2. Check MCUXpresso IDE version with v11.7.0

2.3 Install the SDK

To build projects using MCUXpresso IDE, install an SDK for the platform you intend to use. A compatible SDK
has the required dependencies and platform-specific drivers needed to compile projects.

A compatible SDK can be downloaded from the official NXP_SDK builder

1. To build the SDK for your preferred setup, use MCUXpresso IDE to install the SDK.

2. To do this, open the application and click Download and Install SDKs on the MCUXpresso IDE welcome
screen as shown below:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

4226

https://mcuxpresso.nxp.com/en/select

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

a % F, -
P < @ & B &
Home Overview What's New First Steps Web Resources Documentation IDE

Welcome to MCUXpresso IDE

MCUXpresso IDE provides an easy-to-
use Eclipse-based development
enviranment for NXP MCUs based on
ARM Cortex-M cores, including LPC and
Kinetis microcontrollers and i MX RT
crossover processors. It offers advanced
editing, compiling, and debugging
features with the addition of MCU-
specific debugging views, code trace
and profiling, multicore debugging, and
integrated configuration tocls

Download and Install SDKs

7

o

=
L

Create a New Project

BN

3 7

Import SDK Examples

W Always show Welcome at start up

X

MCUXpresso

Figure 3. Download and Install SDKs

3. A catalog of all the SDKs that can be downloaded through MCUXpresso is available. These SDKs provide
device knowledge, drivers, middleware, and reference example applications for your development board or
MCU. Type evkmimxrt1170 in the filter section and download evkmimxrt1170 SDK. The Coffee machine

and Elevator applications were developed and tested on SDK 2.11.1, the Smart Panel application - on SDK
2.13.0.

Note: MCUXpresso does not support multiple SDKs installed.

@350 SDKs to install from hitpsy//mcuxpresso.nup.com/eclipse/sdk

» MOUNpresss 10€ Allowing projects 10 e creatied 3nd Sebugged
ore MOUpeenso SDNE 10 provide device nowiedge, drivers, middiemane, 300 refenence example SpPICations for your development board o MCU
Boards " Processoes
Boara SDX Verson Package Flash RAM e aer | 1770 1

n AOOT 3 e p— - - Hice Instalbed £ Show latest [Hade board images
Min Flass (KB |9
R I e S
Max Flash (KB 4006
Min RAM (CBE g
e ——————————————

Max RAM (KX §120

Corer
Matcore

® A Coren Corten-AMD- C a3
Cortex-Md () Corten-MT7

Keywords

Aena 10T Service (NS L] Asbaba Cloud (Aiyun

On Wiets Servnce (AN

Bhuetoom

Brown Out Detecton
CAN

CANcgen

WSS NN

Crypaoyr achy

DHCP

Figure 4. Download RT1170 SDK
4. A prompt displays the license agreement associated with the 1170 SDK.
5. Read and accept the license to automatically start the SDK installation.

MCU-SMHMI-SDUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 1 — 23 May 2023

© 2023 NXP B.V. All rights reserved.

5/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6. MCUXpresso proceeds to download the SDK.

B8 installing Software O XK

'o Operation in progress...
.__'_/J-

Fetching com.nxp.mcuxpresso.sdk.sdk 23 mimxr...1/plugins/ (128.66MB of 379.36MB at 1.46MB/s)

[] Always run in background

Run in Backgmundl Cancel Details >>

Figure 5. Install RT1170 SDK

2.4 Import example projects

Note: To build example projects that you import regardless of how they are imported, you must have a
compatible MCUXpresso SDK package for SLN-TLHMI-IOT installed.

MCUXpresso IDE allows you open example projects from the source folder.

2.4.1 Import from Github

Note: Before you begin, make sure you have Git downloaded and installed on the machine you intend to use.

The latest software updates for the SLN-TLHMI-IOT application can be downloaded from our official Github
repository. Here, you find the most up-to-date version of the code that contains the newest features available for
the Smart TLHMI project.

To import the SLN-TLHMI-IOT Smart TLHMI application into MCUXpresso IDE using Github, perform the
following steps:

1. Clone the s1n_tlhmi iot repository. Master branch is used by default
* Cloning directly to your MCUXpresso workspace location is recommended, but not required.

2. In MCUXpresso, navigate to the File from Toolbar.

3. Click Open Projects from File System....

4. Select Directory....

5. Navigate to the file path of the project cloned in the first step and click Select Folder.

6. Check the box next to each project (bootloader, coffee machine\cm4, coffee machine
\cm7, coffee machinel\lvgl vglite 1lib, elevator\cm4, elevator\cm7, elevator
\1lvgl vglite 1lib, home panell\cm4, home panell\cm7, home panel\lvgl vglite 1lib)
you wish to import.

7. Click Finish

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

6/226

https://git-scm.com/downloads
https://github.com/NXP/sln_tlhmi_iot
https://github.com/NXP/sln_tlhmi_iot

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

N WUIESpaLe = MUUARDTESSD ILE

File Edit MNavigate Search Project ConfigTools Run RT

New Alt+Shift+N >
o Eil [imeont Progects from File System or Archive o b
pen File...]
- < = Import Projects from File System or Archive
L. Open Projects from File System... _ T Az s he conment of your Sk o AV 13 1010 VoSS 30 0 T 4 IOE
Recent Files >)
cl Ed CtrisW Enport source: | CA\Usersi 8020\ One Drive - NN, 18_Senart_THMIG_sin_smart,_Sikmiin_smart_tieniicoftee_machine Directory.. Archive.
ose Editor trl+ W &
Close All Editors Ctrl+Shift+W F [s Seam
ey Ipont Deselect &4l
Save ct+s [Sctipse aroject
. Exlipse project
Save As...]
Save All Ctrl+Shift+5S 0
Revert =] wofes_maching\lwg]_vglite_ 5 Eclipse project
E—f §0t 6 seiected
Move... [veste areacy cqen progeets
Rename... F2] Cleme nemly imparied pojects upan comgletion
= TR
&) Refresh F5 [Semren foenested projecs
Convert Line Delimiters To > 71 Detect and confgure project nahures
Worlong sets
Print... Ctrl+P [At proyest 10 workang sats e
23 Import..
i Export.. Sriow offer 1peializesd im@on wiza
Properties Alt+Enter
Switch Workspace > 5 Finisn Canced
Restart
Exit

Figure 6. Open SLN-TLHMI-IOT project

After following the above steps, confirm that the projects can be found in the Project Explorer panel to ensure
they were successfully imported.

File Edit Navigate Search Project ConfigTools Run RIOS Analysis Window Help

i | &~ R~ m ¢ B:lw m BN RS b EARO
1010 _/_?

5 Project Explorer 22 i Registers #¥ Faults = Peripherals+ SRR

&% > bootloader (in sin_bootloader) [sin_bootloader tlhmi]

&5 > Ivgl_vglite_lib_coffee_machine (in Ivgl_vglite_lib) [sin_smart_tlhmi master]
=5 Ivgl_vglite_lib_elevator (in Ivgl_vglite_lib) [sin_smar]

5 sIn_smart_tlhmi_coffee_machine_cmé4 (in cm4) <Slav
= > sIn_smart_tlhmi_coffee_machine_cm7 (in cm7) <Master> <Debug> [sIn_smart_tlhmi master]

= sIn_smart_tlhmi_elevator_cm4 (in cm4) <Slave> [sln_smart_tlhmi master]

&= sln_smart_tlhmi_elevator em7 (in cm7) <)

Figure 7. Example projects

2.5 Dual-core debug

SLN-TLHMI-IOT runs under dual-core architecture. For more information on how to debug the dual-core
application, refer to AN13264.

2.6 JLink flash tool issue in MCUXpresso v11.7.0

When the MCUXpresso GUI Flash Tool is used to erase the whole chip, the SEGGER J-Flash tool is called to
do the real work.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

71226

https://www.nxp.com.cn/docs/en/application-note/AN13264.pdf

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

b o W R B R o it LA -% HH-O0-Q- B9~

R

GUI Flash Tool o X

GUI Flash Tool for: £
SEGGER)-Link probes
Program executable into flash sln_smart tlhmi home panel cm7.axf L

S =

Target: MIMXRT1176xXxXXXX

Options
Probe specific options

Interface | SWD ~ Speed auto -

Target Operations
Select the target flash operation to perform

Program [Erase

Erase flash on connected device

T

Options
Select the options to apply

Enable Erase All Flash Banks

[

General Options

L[
Flash programming tool options

Additional options

Repeat on completion Preview command Clear console

Figure 8. MCUX GUI flash

The J-Flash tool tries to erase two flash banks:

* bank 0 : 0x30000000
* bank 1 : 0x60000000

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

81226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Since there is only one bank on the board, it reports errors when trying to get information about bank 1 @
0x60000000.

Erasing device...

J-Link: Flash download: Total time needed: 267.518s (Prepare: 0.308s, Compare: 8.880s, Erase: 267.057s, Program: 0.808s,
#+#**+ Error: Failed to perform RAMCode-sided Prepare()

Error while determining flash info (Bank @ ©x60800000)

ERROR: Erase returned with error code -1.

Script processing completed.

Unable to perform operation!

Command failed with exit code 1

Figure 9. MCUX GUI flash error

This error can be ignored as bank 0 is erased correctly.

3 Ivaldi

3.1 Automated manufacturing tools

This section provides an overview of MCUXpresso Secure Provisioning Tool and Ivaldi, prerequisites, platform
configuration, and open boot programming.

3.1.1 MCUXpresso Secure Provisioning Tool

The MCUXpresso Secure Provisioning Tool is a GUI-based application provided to simplify generation and
provisioning of bootable executables on NXP MCU devices. The graphical interface provides a streamlined
development flow, making it simpler to prepare, flash, and fuse images while leveraging and providing access
to existing utilities. Advanced scripting can be achieved using the command-line interface, while even more
advanced secure provisioning flows can be accomplished by modifying scripts generated by the tool. For more
information on how to use it, check the Getting Starting with MCUXpresso Secure Provisioning Tool.

3.1.2 About Ivaldi

If the manufacture needs a custom solution for flashing the board in production, we have developed a suite of
python scripts built on top of lightweight Secure Provisioning SDK (SPSDK).

Ivaldi is a package that is responsible for manufacturing and reprogramming without J-Link. It uses the serial
downloader mode within the RT117H boot ROM to communicate with an application called Flashloader that
is programmed into RT117H. It then communicates with a program called blhost that controls various parts
of the chip and flash. Ivaldi was created to focus on the build infrastructure of a customer’s development and
manufacturing cycle. Its primary focuses are:

» Factory programming and setting up a new device/product

* Generating AWS loT Devices

 Creating certificate/key pairs for devices

* Associating policies with devices

 Signing images for OTA (Over-The-Air) and HAB (High Assurance Boot)
* Writing and Accessing OTP (One-Time Programmable) fuses

The following section gives information about the general flashing of a device without debugging tools.

Note: To use Ivaldi, put the board in Serial Download Mode. For doing that, move jumper J203 on the top of the
board into position “0”. For more information, see Smart HMI Hardware Development User Guide

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

9/226

https://www.nxp.com/design/software/development-software/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING
https://www.nxp.com/pages/getting-starting-with-mcuxpresso-secure-provisioning-tool:TIP-MCUXPRESSO-SECURE-PROVISIONING-TOOL
http://www.nxp.com/mcu-smhmi

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

3.1.3 Requirements

» Section 5.1.1 must be followed

* OpenSSL

AWS CLlI installed

— https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

— https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration
Python 3.6.x

* Linux / Windows CMD / Ubuntu for Windows

README.md from ivaldi root folder must be followed

3.1.4 Platform configuration

Ivaldi uses a platform configuration file Scripts/sln platforms config/sln tlhmi iot config/
board config.py. This file describes:

* The names of the binaries (from the Image Binaries folder) which will be flashed:
— BOOTLOADER_NAME
- DEMO1_NAME
— DEMO1_NAME_RESOURCES
- DEMO2_NAME
— DEMO2_NAME_RESOURCES
— DEMO3_NAME
— DEMO3_NAME_RESOURCES
* Flash configurations:
— FLASH_TYPE
— FLASH_START_ADDR
— FLASH_SIZE
* Flash Map
— Binaries’ images addresses
— Filesystem starting address and size
— FICA table addresses

To configure Ivaldi to use specific image binaries from Image_Binaries folder, update Scripts/sln
platforms config/sln tlhmi iot config/board config.py file.

Note: Any changesin scripts/sln platforms config/sln tlhmi_ iot config/board config.py
(except binaries’ names) require updating the embedded code and configurations.

3.1.5 Open Boot Programming

The Open Boot Programming tool is responsible for creating a device and programming it with the correct
images, certificates, and artifacts. This method is a quick and easy way of taking a device/product from the
assembly line and getting it ready to ship. It is also good practice to run the Open Boot Programming script
before enabling the security features to ensure that all images and artifacts are in the working order. The Open
Boot Programming script must only be run when all the images and artifacts are obtained. Before running the
script, ensure that the following files and folders exist in the “Image_Binaries” directory of Ivaldi root and that
all the files mentioned in the board config.py exist. After the script was executed, do not forget to exit the
serial downloader mode by moving back the J203 jumper.

A directory "Scripts/sin_tlhmi_iot_open_boot" within the Ivaldi package contains the “open_prog_full.py” script
and a README.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

10/ 226

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The README file contains build requirements for each image before running the script. If the requirements are
not fulfilled, it could cause the boot failure.

To program the firmware and artifacts, execute the open prog full.py script that performs the following
actions:

* Communicate with the BootROM to program Flashloader
* Create a device with
— Certificate
— Private Key
— Policy Attached in the cloud
Erase the flash
* Generate littlefs format filesystem, that contains files specified in the 1ittlefs file list.py
* Programming the images
— Bootloader
— demo1
— demo1_resources
— demo2
— demo2_resources
— demo3
— demo3_resources
— Program the FICA
— Program the littlefs

In the current open prog full.py python script, the littlefs is being generated to contain all the files
mentioned in Littlefs file list.py. Four files are expected:

* Root CA certificate

* AppA sign certificate - validated by the CA certificate and used to sign all the images that are being written or
send for update

* AWS certificate - used to validate connection with AWS server

* AWK public key - used to communicate with AWS MQTT server

One drawback of the current littlefs implementation is that it does not support the attributes. It is used in the
SLN TLHMI IOT projectto generate encrypted files.

Warning: Open programming script assumes that the policy is called t1hmi deployment. Update the script
to use the correct policy name in the customers aws account..

In case there are no debugging probes or ports available on the board, the script can be used for development

purpose. Calling the script with the "-h” argument shows you all the possible combinations and how to use it at

full power. By default, the script does not write all 3 applications. To do that, call it with *-fbb -fbc’ parameters. It
allows writing applications in bank B and C. Putting the “-awsd" parameter disables the AWS thing creation and
it will not obtain any certificate. For debugging purpose, it is recommended to have the image verification off. To
do it, call the script with "-ivd".

Note: To be able to write anything in a NOR flash device, perform an erase operation before the write. The
erase operation is very costly and can take up to a couple of minutes.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

111226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

4 Bootloader

4.1 Introduction

The Smart HMI Project uses a "bootloader + main application" architecture to provide additional security and
update-related functionality to the main application. The bootloader handles all boot-related tasks including, but
not limited to:

* Launching the main application and, if necessary, initializing the peripherals

* Firmware updates using either the Mass Storage Device (MSD), Over-the-Air, or Over-the-Wire update
method
— Protects against update failures by using a primary and backup application "flash bank"

* Image certification/verification

4.1.1 Why use a bootloader?

By separating the boot process from the main application, the main application can be safely updated and
verified without the risk of creating an irrecoverable state due to a failed update, or running a malicious,
unauthorized, and unsigned firmware binary flashed by a bad actor. It is essential in any production application
to take precautions to ensure the integrity and stability of the firmware before, during, and after an update, and
the bootloader application is simply one measure to help provide this assurance.

The following sections describe how to use many of the bootloader's primary features to assist developer
interested in understanding, utilizing, and expanding them.

4.1.2 Application banks

The bootloader filesystem uses dual application "banks" referred to as "Bank A" and "Bank B" to provide a
backup/redundancy "known good" application to prevent bricking when flashing an update via either the MSD,
OTA, or OTW update method. For example, if an application update is being flashed via MSD to the Bank A
application bank, even if that update fails midway, Bank B still contains a fully operational backup.

In the SLN-TLHMI-IOT, Bank Ais at 0x3010 0000, Bank Bis at 0x3150 0000, while Bank C is at
0x3290 _0000.

Providing an application binary built for the proper application bank address is crucial during MSD, OTA, and
OTW updates, and the failure will result in a failure to flash the binary.

Note: The bootloader does not automatically recover from a botched flashing procedure but reverts to the
alternate working application flash bank instead.

4.1.3 Logging

The bootloader supports debug logging over UART to help diagnose and debug issues that may arise while
using or modifying the bootloader. For example, the debug logger can be helpful when trying to understand why
an application update might have failed.

Logging is enabled by default in the Debug build mode configuration. The logging functionality, however, comes
with an increase in bootloader performance and can slow down the boot process by as much as 200 ms. As

a result, it may be desirable to disable debug logging in production applications. To disable logging to the
bootloader, simply build and run the bootloader in the Release build mode configuration. It can be done by
right-clicking on the bootloader project in the Project Explorer view and navigating to Build Configurations ->
Set Active -> Release.

To make use of the debug logging feature, use a UART->USB converter to:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

12 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* Connect GND pin of converter to J202: Pin 8
e Connect TX pin of converter to J202: Pin 3
* Connect RX pin of converter to J202: Pin 4

Once the converter has been properly attached, connect to the board using a serial terminal emulator, for
example, PuTTY or Tera Term configured with the following serial settings:

* Speed: 115200

e Data: 8 Bit

* Parity: None

» Stop Bits: 1 bit

* Flow Control: None

4.2 Overview

The bootloader employs several different boot-up methods to augment the boot-up behavior. Currently, the
bootloader supports two primary boot modes:

* Normal Mode
¢ Mass Storage Device (MSD) Update Mode

Normal mode, as the name would imply, is the default boot mode in which the bootloader simply loads the main
application.

Mass Storage Device Update mode is a special boot mode in which the board enters an update state where
the board appears as a Mass Storage Device to a host PC device. In this mode, the bootloader is capable of
receiving and flashing a new binary by copying that binary to the board as one would for a regular USB storage
device.

More information on each of these modes can be found in the subsequent sections of this document.

4.2.1 How is boot mode determined?

To determine the boot mode, the bootloader checks several different boot flags, which are set based on various
conditions.

For each different boot mode (excluding Normal boot, which is taken by default), there is a different
corresponding boot flag. Boot flag gets set depending on the boot mode in question and the platform being
used. On the SLN-TLHMI-IOT, for example, the MSD boot flag is set when the sw0 button is held during bootup.

4.3 Normal boot

By default, if no other boot flags are set during the boot phase, the Normal boot mode is used. During Normal
boot, the bootloader boots to the "main" application, which is flashed at the current application bank flash
address (for more information, see Application Banks). For example, if the current flash bank is set to Bank A,
then the bootloader jumps to the flash address associated with Bank A and begins running the application at
that address.

The OOBE has a set of three applications that can be booted into at startup. By default, the application always
boots in the Bank A, which corresponds to the coffee machine application. To change the boot application,
use buttons labeled sw1-sw3 when powering the board.

The following list shows the associations of boot application to switch.

* SW1 - Bank A - coffee_machine
* SW2 - Bank B - elevator
* SW3 - Bank C - smart_panel

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

13 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The decision to what application to jump is handled inside the bootloader. To reach the bootloader, a soft or
hard reset is needed.

For example, to boot in elevator application:

1. Unplug the board
2. Press and hold the SW2 button
3. Plug the board in.

From the bootloader's perspective, there is no information what application it is jumping into, because it uses
addresses and not names. After an update procedure, the application that was written in an inactive bank is
overwritten, so the links between banks and demos are not valid anymore.

4.3.1 Turn on Image Verification

In the OOBE bootloader demo, Image Verification is disabled to encourage developers to play with the code. If
Image Verification is enabled, Normal boot checks that the image certificate for the firmware image to run has
been signed by a trusted certificate authority to ensure that the application comes from a trusted source. Should
the signature check fail, the bootloader does not run the application to avoid executing untrusted, potentially
malicious firmware.

For more details regarding image verification, see Image Verification.

To enable the image verification, DISABLE_IMAGE_VERIFICATION must be set to 0 inside the
Preprocessors sections:

1. Within the MCUXpresso bootloader project, right-click the root project and navigate to Properties > C/C++
Build > Settings > Preprocessor.

2. Inside the Preprocessors section, change the MACRO DISABLE_IMAGE_VERIFICATION to “0” and click
the Apply and Close button as described in the figure below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

14/ 226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Settings Gror§
Configuration: |Debug [Active] ~| Manage Configurations...
& Tool Settings & Build steps Build Artifact ki Binary Parsers @ Error Parsers

~ & MCU C Compiler [[] Do not search system directories (-nostding)
3 Dialect [] Prepracess only (-E)
(£ Preprocessor Defined symbols (-D) €8 8 E
& Incl
& Includes DISABLE_IMAGE VERIFICATION=1 ~
& Optimization ENABLE_ENCRYPTION=0
& Debugging EMABIE LINSIGNED LISE MSD=1
(2 Warnings F . Edit Dialog x
& Miscellaneous
% Architecture Defined symbols (-D)
v 1 MCU Assembler [DISABLE_IMAGE VERIFICATION=(]
= General
& Architecture & Headers
~ i MCU Linker
(# General
23 Miscellaneous
 Shared Library Settings indefined symbols (-U] € H)
% Architecture |
(% Managed Linker Seript
& Multicore
~ & MCU Debugger
(& Debug
(& Miscellaneous
Restore Defaults Apply
Apply and Close Cancel
Figure 10. Enable image verification
3. After that change, rebuild the bootloader.

4. To flash the device with proper FICA and certificates, use Automated manufacturing tools (Ivaldi).

4.3.2 Disable Debug Console

In the OOBE bootloader demo, Debug Console is enabled to help developers test and debug their code. This
feature introduces unwanted message being displayed and increases the boot-up time. To disable this, set

ENABLE_LOGGING to 0 in FreeRTOSConfig.h

Note: The current implementation of the debug console adds about 150 ms to the boot time.

4.4 Mass Storage Device updates (MSD)

The MSD feature allows the device to be updated using USB instead of the SEGGER tool. Only the main
application or its resources (coffee_machine/elevator) can be flashed in this manner. If the bootloader must

be updated, the SEGGER tool or the Factory Programming flow is necessary. The MSD feature, by default,
bypasses the signature verification to simplify the development flow, since signing images can be unsuitable for

quick debugging and validation.

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

15/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

4.4.1 Enabling MSD mode

To enable MSD mode on the SLN-TLHMI-IOT, press and hold the SWO0 button while powering on the board.
If done correctly, the board's onboard LED changes to purple and begins blinking at an interval of roughly 1
second.

Note: As mentioned in the Smart HMI Getting Started Guide, to properly use "SWO0" as a general-purpose
switch the "SWO" dip switch must be set as 0001.

Additionally, if connected to a Windows PC, your computer must make a sound indicating a new USB device
has been connected. After observing the LED blinking behavior, navigate to “My Computer”, and confirm that
the SLN-TLHMI-IOT kit has mounted as a Mass Storage Device as shown in the picture below.

Note: After dragging and dropping the binary, the LED turns green. Start the application after the LED turns off.

[} 0sDisk(C) USB Drive (D)
= L .
Wy 755 GR free of 952 GB .y 19.9 ME free of 19.9 MB

Figure 11. Bootloader MSD file explorer

The size of the new storage device is equal to the Bank Size of the device from which you subtract the
filesystem metadata.

4.4.2 Flashing a new binary

The binary size increases exponentially when adding the GUI resources. Almost 70 % of the total size is
occupied by these sounds and images. To speed up the development and to decrease the load on the updating
mechanism, the large images have been split into code and resources, both with fixed addresses in the flash.
Update operations can be done on individual components, or all together into a bundle.

Right now the MSD can be used to update:

* Main Application
* Resources
* Bundle update (Main Application + Resources)

4.4.2.1 Main application

To update the main application, a binary must be built for the address 0x30100000. Because of the remap
functionality enabled in the bootloader, this binary can be placed in each of the three banks, and still work as

it is running from the base address. The bootloader checks for the current unused bank and tries to write the
image in that specific bank. When dragging and dropping a binary for the main application, the bootloader
checks if the reset handler of the new image is a flash address. No other verification is done; the functionality's
correctness must be handled by the developer. After the new image has been written, a resource copy is done.
This means that during the update procedure, the resources will stay the same.

4.4.2.2 Resources

When updating the resources, the binary needs to be renamed into RES.bin. The bootloader contains a list of
known files, res.bin is one of those files. No verification is done on the resources binary.

In the same way as updating the main application, the bootloader checks for active bank and writes the binary
in the unused one. After the write is completed, the older firmware is copied, and the new bank is activated.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

16 /226

http://www.nxp.com/mcu-smhmi

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

BANK A BANK B

2. Copy the current firmware in Bank B

»

Firmware

3. Make Bank B the current active bank

»

: Free memory |

Clearly established Resources start
address in the bank.

1. Write the new resources to Bank B

v

Filesystem

Figure 12. Update resources

4.4.2.3 Bundle

To update using the bundle method, a python script is used to generate the bundle. The script is part of the
ivaldi suite of scripts that are delivered to the customer. The script is called bundle generate tlhmi.py.
When calling it, two parameters must be set, both being the locations for two important files:

* bundle configuration file (-bf) - contains a list of files that are going to be fused to generate the bundle.
* board configuration file (-cf) - position of the files in flash to build the metadata.

In the released version of ivaldi, both bundle config and board config are placed under the platform config folder.
A full linux bash command to call this script looks like:

python bundle generate tlhmi.py -bf ../../../Scripts/sln platforms config/
sln tlhmi iot config/ -cf ../../../Scripts/sln platforms config/
sln tlhmi iot config/

After this, in the Scripts\ota signing\sign\output folder, four files are present.

<) bundle.bin 6/20/2022 11:38 PM BIN File 18,671 KB
<) bundle.binsha256 6/20/2022 11:38 PM SHA256 File 1KB
bundle.bin.sha256.txt b/20/2022 11:38 PM Text Document TKB
) bundle.bundle.bin 6/20/2022 11:38 PM BIN File 18,673 KB
Figure 13. Update bundle_generate script

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 1 — 23 May 2023

17 1226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

For MSD only bundle.bin is of interest, the other three are relevant for Over-The-Air (OTA) updates, where
validation is an important feature. To update with the bundle.bin, drag and drop the binary. The name must
not be modified, as this name is part of a hardcoded list of known files.

BANK A BANK B BANK B

2. Parse the
metadata, write
Firmware and
Resources at their

Firmware designated
addresses
1. Write the >
new bundle
in Bank B
e ——

Clearly established
Resources start
address in the

bank

3. Make Bank B the
current active bank

»
—p

Filesystem

Figure 14. Update bundle

For the bootloader to parse and write all the modules to their designated addresses, metadata must be added to
the package. Two types of metadata exist:

¢ Bundle metadata is placed at the end of the bundle and contains:
— Bundle size
— Number of modules
— Signature of the whole bundle
* Module metadata is placed after every module and contains:
— Module type (Application or Resources)
— Module starting address
— Module length
— Module signature

Upon completion, the board automatically reboots itself into the new firmware, which was flashed. To verify
this, open the serial CLI, type typing the version command, and check that the application is running from the
alternate flash bank.

4.5 Image Verification

Image Verification is a mechanism in which we validate that the image running has not been altered either by
internal or external factors.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 1 — 23 May 2023

18 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

4.5.1 Application chain of trust

The basis of the security architecture implemented in the SLN-TLHMI-IOT has signed application images.
Signing requires the use of a Certificate Authority (CA). NXP has its own CA for signing applications at the
factory, but the CA is not something that is shared with customers.

The CA is used to create signing entities for applications as shown in the figure below. A certificate from the CA
is stored in the SLN-TLHMI-IOT'’s filesystem and is used to verify the signatures of the signing entity certificates.
In addition, locally stored certificates from the signing entities are used to verify the signature of firmware
images coming in Over-the-Air (OTA) updates.

NXP Production
CA

Bootloader Flash Bank A
Signing Entity Signing Entity

Flash Bank B

Signing Entity

Signing entiies

Figure 15. Chain of trust

4.5.2 Flash Image Configuration Area (FICA) and Image Verification

The FICA table is a section inside the filesystem that is responsible for describing the images that will be
booted. It contains information about the image and signatures of the applications that will be used to ensure
that only verified firmware is executed. This ensures malicious images cannot be executed without it being
signed with the certificate authority and certificate that is programmed into the filesystem. Before any image is
jumped to, it is first verified using the signature from its associated FICA entry.

* The bootloader uses the AppA FICA entry to validate the AppA image
* The bootloader uses the AppB FICA entry to validate the AppB image

Note: As mentioned when describing the application banks, ‘Bank C' is not used for redundancy in the update
mechanism, as such, it has no entry into the FICA table. The purpose of the bank is only to showcase all 3
applications without the need of reflashing the board.

Developers can turn on the image verification and reprogram the bootloader as shown in the Turning on image
verification section. To decrease the risks of an attack, have Image Verification on.

4.6 Application banks

For this project, we enabled three application flash banks, Bank A, Bank B, and Bank C. It is done to
showcase in our OOBE all projects (coffee machine, elevator, smart panel) simultaneously.

In a real-life scenario, only 2 banks are needed. In the updating mechanism that has been implemented, we use
2 banks by doing a ping-pong between Bank A and Bank B.

The SLN-TLHMI-IOT utilizes a series of dual "application flash banks" used as a redundancy mechanism when
updating the firmware via one of the bootloader's update mechanisms (see Section 4.4) or via the AWS OTA
mechanism.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

19 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

4.6.1 Banks

The application we developed for SLN-TLHMI has 2 inter-dependent parts:
* Application (code)
* Resources (icons, sounds, pictures)

So a bank is a reserved space in the flash that stores both of these components. The application running tries to
read resources from the same bank.

In the OOBE, the size of a bank is 20 MB (0x1400000), 7 MB (0x700000) for the code area and 13 MB
(0xD00000) for resources. If there is a need to increase or decrease this value, check fica definitions.h

Code
7™MB

Resources

13MB

Figure 16. Bank components

4.6.2 Addresses

The flash address for each of the application flash banks is as follows:

* Bank A-0x30100000

— Bank A App - 0x30100000

— Bank A resources - 0x30800000
e Bank B - 0x31500000

— Bank B App - 0x31500000

— Bank B resources - 0x31C00000
e Bank C- 0x32900000

— Bank C App - 0x32900000

— Bank C resources - 0x33000000

4.6.3 Remapping

The i.MXRT117H chip supports the flash remapping function, which allows users to remap flash address to the
FlexSPl interface. The flash remapping function is beneficial in the following use cases:

* To flash multiple firmware.
* To switch one of the firmware to run when the condition is met.

* To update the firmware in the wireless application (the usual process is to download the firmware to flash,
perform the validity check, and then switch to new firmware to run. The flash remapping function helps to
directly run the firmware wherever it locates to XIP flash.)

For more information, check: How to Use Flash Remapping Function

In older Solution's projects like SLN-VIZN3D-IOT and SLN-VIZNAS-IOT, the images were built for a specific
bank. With the enablement of the remapping functionality, all applications must be built having the Flash Starting
Address set to 0x30100000.

The updating mechanisms implemented in the bootloader or the main application leverage this feature.
Because of this, the updating procedure does not have to keep track of what bank the application is running
from. The binary that is going to be used for an update, is always going to be built with the Bank A memory
settings and is going to be placed in the non-active slot.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

20/ 226

https://www.nxp.com/docs/en/application-note/AN12255.pdf
https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-3d-face-recognition:VIZN3D
https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-face-recognition-with-liveness-detection:SLN-VIZNAS-IOT

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Note: The OOBE is meant to showcase all 3 applications. After an update procedure, the application that was
written in a non-active bank is going to be overwritten.

4.6.3.1 Convert .axf to .bin

When building a project in MCUXpresso IDE, the default behavior is to create an . axf file. However, some of
the bootloader update mechanisms including MSD updates require the use of a .bin file.

Converting an . axf file to .bin can be done in MCUXpresso without any additional setup.

To perform this conversion, navigate to the project directory that contains your compiled project binary and right-
click the . axf file in that directory.

Note: The binary for your project is located in either the Debug or Release folder depending on your current
build config.

In the context menu, select Binary Utilities->Create binary.

v (= Debug)
> @ board New >
> [=-component
> [=device Open
> [(=drivers
> [(=freertos Show In
> (= HAL Open With
> [z littlefs Show in Local Terminal >
¥ [=.source
> [=startup = Copy
> [=-ui_resources
> [=usb
> (= utilities % Delete
» (= video Move...
> @op Rename...
> w sin_vizn3d_iot_smart_lock.axf - [arm/l
o= Import
vy Export

Build Project
Refresh

) Run As

45 Debug As
Profile As
Profiling Tools
Utilities
Binary Utilities
Tools

LAV Y Y Y Y

Create hex !

W

Create binary

Figure 17. Convert to binary

| Validate

#° Run C/C++ Code Analysis
Team

Compare With

Replace With

Properties

Create S-Record
Disassemble
ELF Information
Size

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

21/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Verify that the binary has been successfully created.

5 Over the air update

5.1 OTA (Over-the-Air) updates

The following section gives instructions on how to generate, sign, deploy, and update the firmware. It also
describes all the tools provided with this solution to give context to what is happening. This section assumes
that the SLN-TLHMI-TOT kit has been migrated to communicate with a non-NXP AWS loT Cloud server and
the reader has access with the correct permissions. OTA (Over-the-Air) updates are the process of pushing
new firmware from a remote service down to a connected device. When it happens, the device programs the
new image into the flash and reboots into that image assuming all necessary checks have passed. As shown in
the architecture section of this document, there are two application partitions. The application is always going
to run into one of these sections. It means that the second section is free to write into without affecting the
existing image. It also ensures that the device is safe to jump into the new image without worrying about being
compromised assuming the relevant checks have been made. The SLN-TLHMI-IOT kit leverages the Amazon
OTA service within AWS loT. This also leverages the Amazon FreeRTOS OTA client to check for updates and
download the image.

Create and AWS Store OTA
sign application | create Aws Job j_)) Update Availablel | image to flash

I

N e
Authenticate Verify image in ‘Update pank
. . pointer and jump to
signed image OK flash
) L new app
Fail

revert to

Abandon OTA
existing app

Figure 18. OTA high-level architecture

5.1.1 Migration guide

This section provides the steps to migrate the SLN-TLHMI-IOT kit to a developer's/organization's own fully
controlled AWS account. If the SLN-TLHMI-IOT kit is left connected to the default server, it is managed by NXP
and restricts the developer’s access and control of certain features. The unavailable features are described in
the SLN-TLHMI-IOT-DG.

The advantages of doing migrating are:

* Full control of OTA jobs and deployment
» Customization of firmware/cloud control

To fully use the aws environment, create an AWS Account.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

22/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

To communicate with AWS, the device must provide certain artifacts and securely connect to AWS IoT.

If the artifacts are provided on the cloud, the device cannot connect successfully. For steps to create an
Amazon “Thing”, see https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html The
communication between the device and the AWS IoT cloud is secured based on the private key and on the
device certificates created together with the Amazon “Thing”.

Note: These steps are not required, as our manufacturing tool scripts (Ivaldi) do all the necessary setups,
including “Thing” creation. For more details on Ivaldi, see Automated manufacturing tools.

5.1.1.1 RT117H firmware changes

This section provides an overview of steps to make the necessary source code changes to ensure that the
firmware communicates with the correct AWS Account.

As prerequisites:

* an AWS Account is created.
* the Get Started with MCUXpresso Tool suite and Building and Programming sections in the MCU-SMHMI-

SDUG guide are read.

* the projects are in your workspace and you are ready to make code changes

The change is required only in the coffee machine application. The changes are a must to ensure that the
device connects to the correct AWS Endpoint for OTA.

To get started:

1.
2.
3.

Follow the loT Console Sign-in online resource to log in to the desired account.

Navigate to the AWS loT Core service which opens the console.

Within the AWS loT Console, select the Settings button down toward the bottom left section of the page as
shown in Figure 19 below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

23 /226

https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/setting-up.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Services Q

Manage

» All devices

» Greengrass devices

» Remote actions

» Message Routing
Retained messages

P Security

» Fleet Hub

Device Software
Billing groups
Settings

Learn

Feature spotlight

Documentation [}

Figure 19. AWS loT monitor console
Warning:
Ensure that the correct server location for the device that was created is used. If the wrong server is used, it
causes a connection issue.

4. It opens the Settings page that has controls for logging and events. At the top of the page,
there are Endpoint Settings. Copy the endpoint string, which has the following structure
"id".iot."server".amazon.com.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

24/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Setti n gS Info

Device data endpoint info C

Your devices can use your account's device data endpoint to connect to AWS.

Each of your things has a REST API available at this endpoint. MQTT clients and AWS loT Device SDKs [also use this
endpoint.

Endpoint

Figure 20. AWS Custom endpoint URL

5. The endpoint is obtained and must be inserted into the firmware. Within the bootloader application, navigate
to the source > aws_clientcredential.h file. Within the aws clientcredential.h file, locate the array
called clientcredentialMQTT BROKER ENDPOINT and change the existing contents to the endpoint
obtained from AWS loT Endpoint Settings.

[

~ [source 34 */
& event_handlers 35 #include "aws_clientcredential_keys.h"
 filesystem 36
% flash_config 37e / *
2 app_canfig.c 38 * MQTT Broker endpoint.
[¥} app_configh 39 */
[¥ aws_application_version.t - - < -
i&@ static const char clientcredentialMQTT_BROKER_ENDPOINT[] = "<insert endpoint her‘e>";|
[aws_clientcredential.h 41

Figure 21. AWS broker endpoint update in aws_clientcredential.h for coffee_machine

5.1.1.2 Ivaldi guide

The following section describes the steps to set up the Ivaldi environment. This chapter assumes that the client

has already downloaded and unzipped the Ivaldi sln tlhmi iot.zip package. For additional details,
check Section 3.1.

Perform the following steps to configure the Ivaldi environment.

Note: These steps must be executed only once. Ensure that none of the commands return errors. For
additional details, check the Tvaldi sln tlhmi iot/README.mdand Ivaldi sln tlhmi iot/
Scripts/ota signing/README.md files. The Ivaldi tool was tested on the below Operating Systems and
the corresponding Command-Line Interfaces:

* Linux — Bash CLI

* Windows — WSL (Windows subsystem for Linux)

* CLI

* Windows — CMD (Command Prompt) CLI

1. Install the following tools.
* OpenSSL # to check if installed: openssl version
* AWS CLI # to check if installed: aws --version
— Must be configured according to your account # to configure: aws configure
— https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
— https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

25/ 226

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

e Python 3.6.x

2. Set up the environment and install the requirements. Open a CLI (from the list mentioned above) and run
the below commands.

* cd Ivaldi sln tlhmi iot/

* pip install virtualenv # installs the virtual environment tool

* virtualenv env # generates a new virtual environment

* source env/bin/activate # activates the virtual environment (on Linux or WSL)
* env\Scripts\activate # activates the virtual environment (on CMD)

* (env) pip install -r requirements.txt # installs the python dependencies
* (env) python setup.py install # setups the environment.

3. Generate the certificates. Adjust the below command’s parameters according to your needs (replace:
[code], [country], [state], [org]) and run it within the same terminal opened in the previous step. The
script below asks for the password several times, each time provide the same password. As a result, the
Ivaldi sln tlhmi iot/Scripts/ ota signing/ca/ folder containing all the required certificates is
created.

* cd Scripts/ota signing/
* (env) python generate signing artifacts.py prod [code] [country] [state] [org]
Example: (env) python generate signing artifacts.py prod FR France Normandy NXP

4. Add the previously generated certificates in the filesystem that is going to be deployed on the board. To
do that, add the path for the file in Scripts/sln platforms config/sln tlhmi iot config/
littlefs file list.py

5. Add the password provided in Step 3 to the ivaldi scripts. This approach of providing the password is not
recommended due to security reasons, but may be used for a quick test of the setup.

* Openthe Scripts/ota signing/sign/sign_me.py file and add the password on line 49 (example:
PKEY_PASS ='my_password').

* Openthe Scripts/ota signing/sign/bundle generate tlhmi.py file and add the password on
line 139 (PKEY_PASS = 'my_password').

6. Test the environment by flashing an open boot device. Connect the device to the PC via USB. Make sure
you have all the required demos inside the Image Binaries folder and that the serial mode jumper is properly
set. Within the same terminal as before, run the below commands.

* (env) cd ../sln tlhmi iot open boot/
* (env) python open prog full.py

5.1.2 Preparing an OTA image

This section describes the steps to create a binary to update the demo app. When building an OTA image,
make sure to properly sign the image that will be sent. Image authentication is a key factor in the AWS high-
level architecture. As the SLN-TLHMI-IOT kit is built to communicate with an NXP demonstration AWS loT
account, OTA is managed by NXP. For OTA to be managed by the developer, the Migration Guide must be
executed to provide access to an AWS loT Core implementation for OTA management. Without this process,
OTA is not manageable for the developer. Before starting, check the Ivaldi tool

5.1.3 Building image

As mentioned before in Section 4.4 , the current bootloader enables the remapping feature that helps customers
easily deploy new images, without keeping track of the currently active bank. All bootable images must be built
with Flash address at 0x30100000. The current implementation supports update with the same image version
or an older version. Best practices dictate that the version must be always higher. To re-enable this functionality
set otaconfigAllowDowngrade to 0 inside the ota config.h file.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

26 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

5.1.4 Sign Image

The following section describes what the NXP Application Image Signing Tool (Signing Tool) is and how to use
it. The Signing Tool is a python application that is responsible for using a signed Certificate Signing Request
(CSR) to sign the binaries and append the certificate to the binary ready to be deployed to the AWS loT OTA
service. The Signing Tool requires Python3 to run. The following instructions assume that the README file

in the Ivaldi root directory has been followed to set up the Python virtual environment. If this is not done, the
scripts fail. Navigate to the Scripts/ota signing directory inside Ivaldi. For more details, check the “QUICK
SETUP?” section from the Scripts/ota signing/README.md file.

5.1.4.1 Creating a root, intermediate pair with sign server, and certificates

A tool was created to generate all the artifacts needed for OTA signing. This tool is called

generate signing artifacts.py and was derived from publicly available information for generating CA
certificate artifacts. The generate signing artifacts.py takes 5 parameters that are all used to create
the artifacts. The ca_name is the entity where all the file names are labeled and used as the common name. It
asks you to enter a “pass phrase” and enter the same each time. Once generate signing artifacts.py
succeeds, a “ca” folder inside Scripts/ota signing appears. Inside the “ca” folder you can find: “certs” and
“private” folders.

Inside the “certs” folder there are 3 files:

* “<ca name>.app.a.crt.pem”
* “<ca name>.app.b.crt.pem”
* “<ca name>.root.ca.crt.pem”.

Inside the “private” folder there are 3 files:

* “<ca name>.app.a.key.pem”
* “<ca name>.app.b.key.pem”
* “<ca name>.root.ca.key.pem”

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

271226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

(env) User@TLHMI :/ivaldi/Scripts/ota_signing$ python3 generate signing artifacts.py

SO generate_signing_artifacts.py ca_name country code country_name state organization
ca_name: Name of CA for image signature chain of trust
country code: GB/US
country_name: CA Country Name
state: CA Country State
organization: CA Company Organization
(env) User@TLHMI :/ivaldi/Scripts/ota_signing$ python3 generate_signing_artifacts.py ca_cert US Texas Austin NXP

Creating directories...

Creating directories...

[*mkdir®, “certs’, "crl’, “newcerts’, ‘private’, "csr’]
SUCCESS: Successfully prepared the directories

chmod directories...

[*chmod®, "7@@°', 'private’]

SUCCESS: Successfully prepared the directories

creating index file...

["touch', "index.txt', 'serial’, 'crlnumber', 'index.txt.attr']
SUCCESS: Successfully prepared the directories

Creating Serial File...

Modifying contents for local path...

SUCCESS: openssl.cnf copied.

Creating Root Key...

Enter pass phrase for private/ca_cert.root.ca,key.pem:
Verifying - Enter pass phrase for private/ca_cert.root.ca.key.pem:
SUCCESS: Created Root Key

Changing Root Key Permissions...

SUCCESS: Changed Root Key Permissions

Creating Root Certificate...

Enter pass phrase for private/ca_cert.root.ca.key.pem:

SUCCESS: Created Root Certificate

Changing certificate permissions...

SUCCESS: Changed certificate permissions

Creating Private Key...

Enter pass phrase for private/ca_cert.app.a.key.pem:

Verifying - Enter pass phrase for private/ca_cert.app.a.key.pem:
SUCCESS: Created private key

Changing Key Permissions..

SUCCESS: Changing Key Permissions

Creating Certificate..

Enter pass phrase for private/ca_cert.app.a.key.pem:

SUCCESS: Creating Certificate

Sign the CSR..

Enter pass phrase for /mnt/c/ivaldi/Scripts/ota_signing/ca/private/ca_cert.root.ca.key.pem:
SUCCESS: Signed the CSR

Modifying certificate permissions...

SUCCESS: Modifed the certificate permissions

Creating Private Key...

Enter pass phrase for private/ca_cert.app.b.key.pem:

Verifying - Enter pass phrase for private/ca cert.app.b.key.pem:
SUCCESS: Created private key

Changing Key Permissions..

SUCCESS: Changing Key Permissions

Creating Certificate..

Enter pass phrase for private/ca_cert.app.b.key.pem:

SUCCESS: Creating Certificate

Sign the CSR..

Enter pass phrase for /mnt/c/ivaldi/Scripts/ota_signing/ca/private/ca_cert.root.ca.key.penm:
SUCCESS: Signed the CSR

Modifying certificate permissions...

Figure 22. generate_signing_artifacts.py description, usage, and logs

The script has been run from the Windows Linux subsystem, but it can be run from any terminal.

The Ivaldi tools should have access to the password used in the previous step for running the
generate signing artifacts.py script. To achieve this, two files must be modified:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

28 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* Openthe Scripts/ota signing/sign/sign me.py file and add the password on line 49 (example:
PKEY_PASS ='my_password').

* Openthe Scripts/ota_signing/sign/bundle generate tlhmi.py file and add the password on line
139 (PKEY_PASS ="'my_password').

Note: This approach of providing the password is not recommended due to security reasons, but may be used
for a quick test of the setup.

Navigate into the Scripts/ota signing/sign folder and run the sign me.py tool with the name of the
binary to sign (for example ais ffs demo binary) and the certificate name (for example, the prod. app. a that
we have generated in the previous step) for the entity.

5.1.4.2 Formatting the CA and the application certificate

For the device to be able to verify the image signature, it must have the root CA certificate. (ca/certs/
<cert name>.root.ca.crt.pem) and the application certificate derived from the signing entity (ca/
certs /<cert_name> .app.a.crt.pem).

The certificates do not have a specific address at which to be written, both need to be included in the filesystem.
The obtained filesystem is going to be transformed into binary format and loaded with the rest of the images. It
is done when running the open _prog full.py script. Generate all the needed certificates before running the
script.

5.1.5 OTA Workflow with AWS loT Console

On the device side, if the filesystem has been properly loaded and the board is connected to a WiFi network,
the application creates a secure MQTT connection with the AWS cloud. MQTT connection is used to receive
push update requests from the AWS cloud.

To use Amazon OTA, configure various roles to allow AWS loT access to the S3 Bucket (this is the
server that holds your images). The following link was used by NXP to configure their OTA service:https://
docs.aws.amazon.com/freertos/latest/userguide/ota-prereqgs.html

To create an OTA Job, follow these steps:

1. Navigate to the following link: https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-
workflow.html. Focus on the area named “Use my custom-signed firmware image” as this is the process that
focuses on custom-signed image creation. No other way of deploying images is currently supported. Click
the Create job button inside the AWS loT > Jobs tab.

2. A new window appears. Inside this window, select Create FreeRTOS OTA update job as shown in

Figure 23:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

29 /226

https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-workflow.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-workflow.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

AWS laT lobs Create job

Create job .

lobs define remote operations to send to and run on devices that are connected to AWS loT. Create a custom job, a FreeRTOS
over-the-air (OTA) update job, or a Greengrass Core update job.

Job type
Create custom job

© Create FreeRTOS OTA update job

Send a reguest to acquire an executable job file from one of youwr 53 buckets to one or more devices connected to AWS loT

Create Greengrass V1 Core update job

Create a snapgshot job to update one of more Greengrass Core devices with the latest Greengrass Core or OTA agent version,

Figure 23. Create OTA job — Job types

3. The OTA Job Properties window appears. Provide a job hame as shown Figure 24:

OTA job properties i

Job properties

Job name

OTA_Update_Bank_B

Enter a jue name without spaces. Valid characters: a-z, A-Z, 0-9, - (hyphen), and _ (underscore)

Description - optional

» Tags - optional

Figure 24. Create OTA job — Job name

4. The OTA File Configuration window appears. Specify the serial numbers of the devices to be updated.
Select the MQTT option as the protocol for file transfer as shown in Figure 25 :

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

30/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

OTA file configuration i

Devices Info

This OTA update job will send your file securely over MQTT or HTTP to the FreeRTOS-based things and/or the th roups that you choose

Devices to update

2c0209d265f82949 X

Select the protocol for file transfer

MQTT
HTTP

Figure 25. Create OTA job — Devices to update and protocol for file transfer

5. Select the image that is going to be delivered to the remote device. To do this, select Use my custom
signed file and copy in the Signature textbox the content that has been obtained as the output of the
Signing Tool (s1n_demo new img.bin.sha256.txt). The following fields must be properly set:
¢ Original hash algorithm - SHA-256
* Original encryption algorithm - RSA
» Path name of code signing certificate on device - app a sign cert.dat (check littlefs_file_list.py for

the name of the file)

Check the images below for more information.

If a new image is going to be loaded, check Upload a new file, click Choose file and select the image. S3
storage address must be specified in the "s3 URL" field. If the loaded binary image already exists in the
location, the user can select the checkbox corresponding to Select an existing file and use the existing image.

The binary size increases exponentially when adding the GUI resources. Almost 70 % of the total size is
occupied by those. To speed up the development and to decrease the load on the updating mechanism, the
image has been split into code and resources, both with the fixed address in the flash. Update operation can
be done on components, or all together into a bundle. Right now the OTA can be used to update:

* Main Application
* Resources
* Bundle update (Main App + Resources)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

3117226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Sign and choose your file

Ceode signing ensures that devices only run code published by trusted authors and that the code hasn't
been changed or corrupted since it was signed. You have three options for code signing.

Sign a new file for Choose a © Use my custom
me. previously signed signed file.
file.

Code signing information

Enter information about your file and how it was signed so that your devices can verify its authenticity
before they install it.
Signature

EnArrAO4142cmHObkOKy 1dJTYBdnc@AbRgNPVeljLsutdgbG2ZNOOUeGg3GhWkKRSy =
msSCMFZPedFeFGRYK1d2TuoZn3UBeS3fYj9wLxpD 1FiDAaN]Y 2cPixcOwOEKD+2318i
apLdQGx047XLEWUvBBICQVGreifRTE/mBUWwpmgueBX4fF+xLIgX3pg+9nNPuZl

Original hash algorithm

Choose the hash algorithm that was used to create your file signature.

SHA-256 v

Original encryption algorithm
Choose the encryption algorithm that was used to create your file signature.

RSA v

Path name of code signing certificate on device

app_a_sign_cert.dat

File

‘ © Upload a new file. Select an existing file.

File to upload

| [t] Choose file

File upload location in 53

This is the location in 53 where your file will be stored.

53 URL

Q, s3://nxp-ais » View [| | Browse 53 H Create 53 bucket

Format: s3:/ /bucket/prefiz/object.

Path name of file on device
This is the name and location where the file will be stored on the FreeRTOS device.

Bundle / AppA / Resources

Figure 26. Create OTA job — File info

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

32/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Until now the configuration for the update was the same. The difference, as was for the MSD, is in the name of
the file that must be updated in the Path name of the file on the device. The files should be completed with:

* AppA , when updating the main application
* Resources, when updating only resources
* Bundle, update both at the same time

5.1.5.1 Update main application

Because of the remap functionality enabled in the bootloader, this binary can be placed in each of the three
banks and still work as it is running from the base address. When receiving an OTA request, the OTA_Agent
checks for the unused bank. The empty bank is erased to prepare it for the update. All the erase is done before
starting to receive actual data. It is a measure to work around the not-in-order MQTT packets' arrival. After the
new image has been written, verification is done to check the signature. Using the Signature field and Path
name of the code signing certificate on device field, the main application can start validating the new image.
If everything is right, a resource copy is done, and the empty bank is set as an active bank. It means that during
the update procedure the resources stay the same.

BANK A BANK B

1. Write the new firmware in Bank B

v

Firmware

3. Make Bank B the current active bank

SEsEEE RN EEEEEEEEEEEEEEEEEEEEEEE . >

i Free memory i

Clearly established Resources start
address in the bank.

2. Copy the current resources to Bank B

»

Filesystem

Figure 27. Update main application

5.1.5.2 Update resources

Similarly to updating the main application, the OTA_Agent on request checks for active bank and writes the
binary in the opposite one. A complete erase is done beforehand. After the write is completed, the older
firmware is copied, and the new bank is activated.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

33/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

BANK A BANK B

2. Copy the current firmware in Bank B

»

Firmware

3. Make Bank B the current active bank

»

Clearly established Resources start
address in the bank.

1. Write the new resources to Bank B

v

Filesystem

Figure 28. Update resources

5.1.5.3 Update with Bundle

To update with a bundle, a python script is used to generate the bundle. The script is part of the ivaldi suites of
scripts that are delivered to the customer. The script is called bundle generate tlhmi.py. When calling it,
two parameters must be set, both being the location of two important files:

* bundle configuration file (-bf) - contains a list of files that are going to be fused to generate the bundle
* board configuration file (-cf) - position of the files in flash to build the metadata.

After running the script, there is no need to pass the binary through the singing process as this script generates
a signature used by the device to validate the new image.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 1 — 23 May 2023

341226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

BANK A BANK B BANK B

2. Parse the
metadata, write
Firmware and
Resources at their

Firmware designated
addresses
1. Write the >
new bundle
in Bank B
e ——

Clearly established
Resources start
address in the

bank

3. Make Bank B the
current active bank

»
—p

Filesystem

Figure 29. Update bundle

The current firmware sets all the images in the right positions based on the metadata. After the parsing of the
bundle is complete and all images are placed accordingly to the fica definitions.h file, the new bank is
activated.

After completion, the application reboots in self-test mode. For now, nothing is done in self-test mode except
checking for the version of the new application. Reboot to make sure self-test mode is not used.

6 Framework

6.1 Framework introduction

This section describes the architectural design of the framework. The application is primarily designed around
the use of a "framework" architecture that is composed of several different parts.

The constituent parts include:

* Device Managers
¢ Hardware Abstraction Layer (HAL) Devices
* Messages/Events

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 1 — 23 May 2023

35/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

[ul][Algorithm Callbacks][Feature database][Customerspeciﬂcsewices] Application

" Camera Display ~ Algorithm nput Output . Framework
Manager Manager Manager Manager Manager 3
F 4 ™\ g ™\ [) £) & 3\
ad, abd, aqs ad, Cud
QD abd, i QD QD

[Low level driver] [Low level driver] [Low level driver] [Low!evel driver] [Lowlevel driver] Low Level Driver

Software {cs1) (MIPI CS12) (sP1) (GPIO) (USB)

Hardware
: RGB Camera IR Camera 3D Camera LCD GPIO Button UART
L‘:..,)r

Figure 30. Architecture Diagram

Each of these different components is discussed in detail in the following sections.

6.1.1 Design goals

The architectural design of the framework was centered around 3 primary goals:

1. Ease-of-use
2. Flexibility/Portability
3. Performance

In the course of project development, many problems can arise which hinder the speed of that development.
The framework architecture was designed to help combat those problems.

The framework is designed with the goal of speeding up the time to market for vision and other machine-
learning applications. To ensure a speedy time to market, it is critical that the software itself is easy to
understand and modify. Keeping this goal in mind, the architecture of the framework is easy to modify without
being restrictive, and without coming at the cost of performance.

6.1.2 Relevant files

The files which pertain to the framework architecture can primarily be found in the framework/ folder of the
specific application. Because the application is designed around the use of the framework architecture, it is
likely that the bulk of a developer's efforts will be focused on the contents of these folders.

6.2 Naming conventions

The framework code adheres to a set of naming conventions for making the code easily readable and
searchable using modern code completion tools.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

36 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Note: The naming conventions described below apply only to framework-related code that is primarily located
in the framework folder and source folder of the application.

6.2.1 Functions

Functions names follow the format of {APP/FWK/HAL} {DevType} {DevName} {Action}.

For example:

hal input status t HAL InputDev PushButtons Start (const input dev t *dev);

To increase searchability using code completion tools, functions for each framework component have their own
prefix denoting the component they relate to:

* APP - app-specific function. Usually device registration or event handler-related.
* FWK - framework-specific function. Usually framework API function.
* HAL - HAL-specific function. Usually HAL device operators.

Additionally, an underscore _may be placed in front of a function name to indicate that the function is
static/private.

Note: Static functions oftentimes exclude all but the underscore and the "Action™ as the component, devType,
and devName are implicit.

For example:

static shell status t VersionCommand(shell handle t shellContextHandle, int32 t
argc, char **argv);

static shell status t ResetCommand(shell handle t shellContextHandle, int32 t
argc, char **argv);

static shell status t SaveCommand (shell handle t shellContextHandle, int32 t
argc, char **argv);

static shell status t AddCommand(shell handle t shellContextHandle, int32 t
argc, char **argv);

static shell status t DelCommand(shell handle t shellContextHandle, int32 t
argc, char **argv);

One of the above prefixes is the device type of the device defining the function.

* InputDev

* OQutputDev
¢ CameraDev
* DisplayDev
* and so forth.

As the device type is the name of the device, the name must match the name of the device specified in the
filename.

For example:

hal input status_t HAL InputDev_ PushButtons Start (const input dev t *dev);

The name of the device is the "action" performed on/by the device. It could be anything including start, Stop,
Register, and so on.

Below are several examples of different function names:

void APP InputDev Shell RegisterShellCommands (shell handle t shellContextHandle,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

371226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

input dev t *shellDev,
input dev callback t callback)

s_InputCallback = callback;

s_SourceShell = shellDev;

s_ShellHandle = shellContextHandle;
s_FrameworkRequest.respond = FrameworkEventsHandler;

SHELL_RegisterCommand(shellCoHtextHandle,
SHELL RegisterCommand (shellContextHandle,
SHELL RegisterCommand (shellContextHandle,
SHELL RegisterCommand (shellContextHandle,

SHELL COMMAND (version)) ;
SHELL COMMAND (reset)) ;

SHELL COMMAND (save)) ;
SHELL_COMMAND(add));

int HAL InputDev PushButtons Register ()

int error = 0;
LOGD ("input dev push buttons register");

error = FWK InputManager DeviceRegister (&s InputDev PushButtons);

return error;

hal input status_ t HAL InputDev PushButtons Init (input dev t *dev,

input dev callback t callback);

hal_lnput_status_t HAL _InputDev PushButtons Deinit (const input dev t *dev);

hal input status t HAL InputDev PushButtons _Start (const input dev t *dev);

hal input status t HAL InputDev PushButtons Stop(const input dev t *dev) ;

hal input status t HAL InputDev_ PushButtons InputNotify (const 1nput dev t *dev,
void *param) ;

6.2.2 Variables

Local and global variables use camelCase.

static
*dev,

hal output status t HAL OutputDev RgbLed InferComplete (const output dev t

output algo source t source,

void *inferResult)

vision algo result t *visionAlgoResult = (vision algo result t
*)inferResult;

hal output status t error

kStatus HAL OutputSuccess;

Static variables are prefixed with s PascalCase

For example:

static event common t s CommonEvent;

static event face rec t s_FaceRecEvent;

static event recordlng t s _RecordingEvent;

static input event t s InputEvent;

static framework request t s FrameworkRequest;

static 1nput_dev_callback_t s_InputCallback

static input dev_t *s SourceShell; /* Shell device that commands are sent over

*/

static shell handle t s ShellHandle;
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

38/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.2.3 Typedefs

Type definitions are written in snake case andendin t.

For example:

typedef struct
{
fwk task t task;
input task data t inputData;
} input task t;

6.2.4 Enums

Enumerations are written in the the form kEventType State.

For example:

typedef enum rgb led color

{
kRGBLedColor Red, /*!< LED Red Color */
kRGBLedColor Orange, /*!< LED Orange Color */
kRGBLedColor Yellow, /*!< LED Yellow Color */
kRGBLedColor Green, /*!< LED Green Color */
kRGBLedColor Blue, /*!< LED Blue Color */
kRGBLedColor Purple, /*!< LED Purple Color */
kRGBLedColor Cyan, /*!< LED Cyan Color */
kRGBLedColor White, /*!< LED White Color */
kRGBLedColor Off, /*!< LED Off */

} rgbLedColor t;

Enumerations for a status specifically must be written in the form kStatus {Component} {State}.

For example:

/*! @brief Error codes for input hal devices */
typedef enum hal input status
{

kStatus HAL InputSuccess = 0,

/*!< Successfully */

kStatus HAL InputError =
MAKE FRAMEWORK STATUS (kStatusFrameworkGroups Input, 1), /*!< Error occurs */
} hal input status t;

6.2.5 Macros and Defines

Defines are written in all caps.

For example:

#define INPUT DEV_PB WAKE GPIO BOARD USER_BUTTON GPIO

#define INPUT DEV_PB WAKE GPIO PIN BOARD USER_BUTTON GPIO PIN

#define INPUT DEV_SW1 GPIO BOARD BUTTON_ SW1 GPIO

#define INPUT DEV_SWl1 GPIO_ PIN BOARD BUTTON SW1 PIN

#define INPUT DEV_SW2 GPIO BOARD BUTTON_ SW2_GPIO

#define INPUT DEV SW2 GPIO PIN BOARD BUTTON SW2 PIN
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

39/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

#define INPUT DEV SW3 GPIO BOARD BUTTON SW3 GPIO
#define INPUT DEV_SW3_GPIO_ PIN BOARD BUTTON SW3_ PIN
#define INPUT DEV_ PUSH BUTTONS IRQ GPIO13 Combined 0 31 IRQOn

#define INPUT DEV_PUSH BUTTON SW1 IRQ BOARD BUTTON SWl1 IRQ
#define INPUT DEV PUSH BUTTON SW2 IRQ BOARD BUTTON SW2 IRQ
#define INPUT DEV PUSH BUTTON SW3 IRQ BOARD BUTTON SW3 IRQ

6.3 Device managers

6.3.1 Overview

As the name would imply, device managers are responsible for "managing" devices used by the system. Each
device type (input, output, and so on) has its own type-specific device manager.

A device manager serves two primary purposes:

* Initializing and starting each device registered to that manager
» Sending data to and receiving data from each device registered to that manager

This section avoids low-level implementation details of the device managers and instead focus on the device
manager APIs and the startup flow for the device managers. The device managers themselves are provided as
a library binary file to, in part, help abstract the underlying implementation details and encourage developers to
focus on the HAL devices being managed instead.

Note: The device managers themselves are provided as a library binary file in the framework folder, while the
APIs for each manager can be found in the framework/inc folder.

6.3.1.1 Initialization flow

Before a device manager can properly manage devices, it must follow a specific startup process. The startup
process for device managers is summarized as follows:

1. Initialize managers
2. Register each device to their respective manager
3. Start managers

This process is clearly demonstrated in the main function found in source/main.cpp

/*
* @brief Application entry point.
=/

int main (void)

{

/* Init board hardware. */
APP BoardInit();

LOGD (" [MAIN] :Started") ;

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices() ;

/* start the framework*/
APP StartFramework () ;

// start
vTaskStartScheduler () ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

40 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

while (1)
{

LOGD ("#") ;
}

return 0;

As part of a manager's start routine, the manager calls the init and start functions of each of its
registered devices.

Note: Developers must be concerned about adding/removing devices from the
APP RegisterHalDevices () function as the init and start functions for each manager are already
called by default inside the APP InitFramework () and APP_StartFramework () functions in main ().

6.3.2 Vision input manager

The Vision input manager manages the input HAL devices that can be registered into the system.

6.3.2.1 APIs

6.3.2.1.1 FWK_InputManager_Init

/**
* @brief Init internal structures for input manager.
* @return int Return 0 if the init process was successful
=y

int FWK InputManager Init();

6.3.2.1.2 FWK_InputManager_DeviceRegister

/**

* @brief Register an input device. All input devices need to be registered
before FWK InputManager Start is called.

* @param dev Pointer to a display device structure

* @return int Return 0 if registration was successful

=/

int FWK InputManager DeviceRegister (input dev t *dev);

6.3.2.1.3 FWK_InputManager_Start

/**
* @brief Spawn Input manager task which will call init/start for all registered
input devices
* @return int Return 0 if the starting process was successful
*/
int FWK InputManager Start();

6.3.2.1.4 FWK_InputManager_Deinit

/**

* @brief Denit internal structures for input manager.
* @return int Return 0 if the deinit process was successful

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

411226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

w4
int FWK InputManager Deinit ();

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.3 Output manager

The Output manager manages the output HAL devices that can be registered into the system.
6.3.3.1 APIs

6.3.3.1.1 FWK_OutputManager_Init

/**
* @brief Init internal structures for output manager.
* @return int Return 0 if the init process was successful
v

int FWK OutputManager Init();

6.3.3.1.2 FWK_OutputManager_DeviceRegister

/**

* @brief Register a display device. All display devices need to be registered
before FWK OutputManager Start is called.

* @param dev Pointer to an output device structure

* @return int Return 0 if registration was successful

*/
int FWK OutputManager DeviceRegister (output dev t *dev);

6.3.3.1.3 FWK_OutputManager_Start

/**
* @brief Spawn output manager task which will call init/start for all
registered output devices.
* @return int Return 0 if starting was successful
=y
int FWK OutputManager Start();

6.3.3.1.4 FWK_OutputManager_Deinit

/**

* @brief DeInit internal structures for output manager.

* @return int Return 0 if the deinit process was successful
*/

int FWK OutputManager Deinit () ;

Calling this function is unnecessary in most applications and should be used
with caution.

/**

* @brief A registered output device doesn't need to be also active. After the
start procedure, the output device

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

42226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

can register a handler of capabilities to receive events.
@param dev Device that register the handler
@param handler Pointer to a handler
* @return int Return 0 if the registration of the event handler was successful
*
/
int FWK OutputManager RegisterEventHandler (const output dev t *dev, const
output dev event handler t *handler);

* % %

6.3.3.1.5 FWK_OutputManager_UnregisterEventHandler

/**
* @brief A registered output device doesn't need to be also active. A device
can call this function to unsubscribe
* from receiving events
* @param dev Device that unregister the handler
* @return int Return 0 if the deregistration of the event handler was
successful
=y
int FWK OutputManager UnregisterEventHandler (const output dev t *dev);

6.3.4 Camera manager

Camera manager manages the camera HAL devices that can be registered into the system.
6.3.4.1 APIs

6.3.4.1.1 FWK_CameraManager_Init

/**

* @brief Init internal structures for Camera manager.

* @return int Return 0 if the init process was successful
*/

int FWK CameraManager Init();

6.3.4.1.2 FWK_CameraManager_DeviceRegister

/**
* @brief Register a camera device. All camera devices need to be registered
before FWK CameraManager Start is called
* @param dev Pointer to a camera device structure
* @return int Return 0 if registration was successful
*
/

int FWK CameraManager DeviceRegister (camera dev_t *dev);

6.3.4.1.3 FWK_CameraManager_Start

/**

* @brief Spawn Camera manager task which will call init/start for all
registered camera devices

* @return int Return 0 if the starting process was successul

=/
int FWK CameraManager Start();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

43 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.3.4.1.4 FWK_CameraManager_Deinit

/**

* @brief Deinit CameraManager

* @return int Return O if the deinit process was successful
v

int FWK CameraManager Deinit();

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.5 Display manager

The Display manager manages the display HAL devices that can be registered into the system.
6.3.5.1 APIs

6.3.5.1.1 FWK_DisplayManager_Init

/**

* @brief Init internal structures for display manager.

* @return int Return 0 if the init process was successful
*/

int FWK DisplayManager Init();

6.3.5.1.2 FWK_DisplayManager_DeviceRegister

/**

* @brief Register a display device. All display devices need to be registered
before FWK DisplayManager Start is

* called.

* @param dev Pointer to a display device structure

* @return int Return 0 if registration was successful

=y
int FWK DisplayManager DeviceRegister (display dev t *dev);

6.3.5.1.3 FWK_DisplayManager_Start

/**

* @brief Spawn Display manager task which will call init/start for all
registered display devices. Will start the flow

* to recive frames from the camera.

* @return int Return 0 if starting was successful

=y
int FWK DisplayManager Start();

6.3.5.1.4 FWK_DisplayManager_Deinit

/**

* @brief Init internal structures for display manager.

* @return int Return O if the init process was successful
*/

int FWK DisplayManager Deinit () ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

44226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.6 Vision algorithm manager

The Vision algorithm manager manages the vision algorithm HAL devices that can be registered into the
system.

6.3.6.1 APIs

6.3.6.1.1 FWK_VisionAlgoManager_Init

/**

* @brief Init internal structures for VisionAlgo manager.
* @return int Return 0 if the init process was successful
v

int FWK VisionAlgoManager Init();

6.3.6.1.2 FWK_VisionAlgoManager_DeviceRegister

/**
* @brief Register a vision algorithm device. All algorithm devices need to be
registered before
* FWK VisionAlgoManager Start is called
* @param dev Pointer to a vision algo device structure
* @return int Return 0 if registration was successful
*
/

int FWK VisionAlgoManager DeviceRegister (vision algo dev t *dev);

6.3.6.1.3 FWK_VisionAlgoManager_Start

/**

* @brief Spawn VisionAlgo manager task which will call init/start for all
registered VisionAlgo devices

* @return int Return 0 if the starting process was successul

v
int FWK VisionAlgoManager Start();

6.3.6.1.4 FWK_VisionAlgoManager_Deinit

/**

* @brief Deinit VisionAlgoManager

* @return int Return 0 if the deinit process was successful
*/

int FWK VisionAlgoManager Deinit ();

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.7 Voice algorithm manager

The Voice algorithm manager manages the voice algorithm HAL devices that can be registered into the system.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

45/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.3.7.1 APIs

6.3.7.1.1 FWK_VoiceAlgoManager_Init

/**

* @brief Init internal structures for VisionAlgo manager.
* @return int Return 0 if the init process was successful
=

int FWK VoiceAlgoManager Init();

6.3.7.1.2 FWK_VoiceAlgoManager_DeviceRegister

/**

* @brief Register a voice algorithm device. All algorithm devices need to be
registered before

* FWK VoiceAlgoManager Start is called

* (@param dev Pointer to a vision algo device structure

* @return int Return 0 if registration was successful

%/

int FWK VoiceAlgoManager DeviceRegister (voice algo dev t *dev);

6.3.7.1.3 FWK_VoiceAlgoManager_Start

/**

* @Qbrief Spawn VisionAlgo manager task which will call init/start for all
registered VisionAlgo devices

* @return int Return 0 if the starting process was successful

=)
int FWK VoiceAlgoManager Start();

6.3.7.1.4 FWK_VoiceAlgoManager_Deinit

/**

* @brief Deinit VisionAlgoManager

* @return int Return O if the deinit process was successful
v

int FWK VoiceAlgoManager Deinit ();

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.8 Low-Power device manager

The Low-Power device manager is unique among the managers because it does not have the typical Init and
Start functions that the other managers do. Instead, the Low-Power Manager has APlIs to register a device
(only one at a time), configure how the board should enter deep sleep, enable sleep mode, and more.

Note: Due to the unique nature of low-power devices being an abstract "virtual" device, only one LPM device
can be registered to the LPM manager at a time. However, there must be no need for more than one LPM
device because other devices can configure the current low-power mode states by using the Low-Power
Manager APIs.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

46/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.3.8.1 APIs

6.3.8.1.1 FWK_LpmManager_DeviceRegister

/**

* @brief Register a low power mode device. Currently, only one low power mode
device can be registered at a time.

* @param dev Pointer to a low power mode device structure

* @return int Return 0 if registration was successful

s
int FWK LpmManager DeviceRegister (lpm dev t *dev);

6.3.8.1.2 FWK_LpmManager_RegisterRequestHandler

int FWK LpmManager RegisterRequestHandler (hal lpm request t *req);

6.3.8.1.3 FWK_LpmManager_UnregisterRequestHandler

int FWK LpmManager UnregisterRequestHandler (hal lpm request t *req);

6.3.8.1.4 FWK_LpmManager_RuntimeGet

int FWK LpmManager RuntimeGet (hal lpm request t *req);

6.3.8.1.5 FWK_LpmManager_RuntimePut

int FWK LpmManager RuntimePut (hal lpm request t *req);

6.3.8.1.6 FWK_LpmManager_RuntimeSet

int FWK LpmManager RuntimeSet (hal lpm request t *reqg, int8 t count);

6.3.8.1.7 FWK_LpmManager_RequestStatus

int FWK LpmManager RequestStatus (unsigned int *totalUsageCount) ;

6.3.8.1.8 FWK_LpmManager_SetSleepMode

/**

* @brief Configure the sleep mode to use when entering sleep

* (@param sleepMode sleep mode to use when entering sleep. Examples include SNVS
and other "lighter" sleep modes

* @return int Return 0 if successful

*/
int FWK LpmManager SetSleepMode (hal lpm mode t sleepMode) ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

471226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.3.8.1.9 FWK_LpmManager_EnableSleepMode

/**
* @brief Configure sleep mode on/off status
* @param enable used to set sleep mode on/off; true is enable, false is disable
* @return int Return 0 if successful
=)
int FWK LpmManager EnableSleepMode (hal lpm manager status t enable);

6.3.9 Audio processing manager

The Audio processing manager manages the audio processing HAL devices that can be registered into the
system.

6.3.9.1 APIs

6.3.9.1.1 FWK_AudioProcessing_Init

/**
* @brief Init Audio Processing manager
*

* @return int Return 0 if the init process was successful
=/

int FWK AudioProcessing Init (void);

6.3.9.1.2 FWK_AudioProcessing_DeviceRegister

/**

* @brief Register an audio processing device

*

* @param dev Pointer to an Audio Processing device

* @return int Return 0 if the register was successful
=y

int FWK AudioProcessing DeviceRegister (audio processing dev_t *dev);

6.3.9.1.3 FWK_AudioProcessing_Start

/**
* @brief Start Audio Processing manager
*

* @return int Return 0 if the starting process was successful
*/

int FWK AudioProcessing Start (void);

6.3.9.1.4 FWK_AudioProcessing_Deinit

/**
* @brief Deinit Audio Processing manager
*

* @return int Return 0 if the deit process was successful

*/

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

48 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

int FWK AudioProcessing Deinit (void) ;

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.10 Flash manager

The Flash manager is used to provide an abstraction for an underlying filesystem implementation.

Due to the unique nature of the filesystem being an abstract "virtual" device, only one flash device can be
registered at a time. However, generally there should be no need to have more than one filesystem. It means
the Flash manager's API functions essentially act as wrappers that call the operators of the underlying flash
HAL device.

Warning: Flash access is exclusive, one request at a time.

Note: When working with the Flash Manager, unlike most other managers, FWK_Flash DeviceRegister
must be called _before_ FWK Flash Init.

6.3.10.1 Device APIs

6.3.10.1.1 FWK_Flash_DeviceRegister

/**

* @brief Only one flash device is supported. Registered a flash filesystem
device

* (@param dev Pointer to a flash device structure

* @return int Return 0 if registration was successful

=)
int FWK Flash DeviceRegister (const flash dev t *dev);

Note: Unlike the flow for most other managers, this function must be called before FWK_Flash Init.

6.3.10.1.2 FWK_Flash_lInit

/**

* @brief Init internal structures for flash.

* @return int Return O if the init process was successful
v

sln flash status t FWK Flash Init();

6.3.10.1.3 FWK_Flash_Deinit

/**

* @brief Deinit internal structures for flash.

* @return int Return 0 if the init process was successful
=/

sln flash status t FWK Flash Deinit () ;

6.3.10.2 Operations APIs

The Flash Manager and underlying flash HAL device define only a few operations in order to keep the API
simple and easy to implement. These API functions include:

e Format

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

49 /226

NXP Semiconductors MCU-SMHMI-SDUG

e Save
* Delete
* Read
* Make Directory
* Make File
* Append

* Rename
* Cleanup

Smart HMI Software Development User Guide

While it might limit filesystem functionality, it also helps to keep the code readable, portable, and maintainable.

Note: If the default list of APIs does not satisfy the requirements of a use case, the API can always be
extended or bypassed in the code directly.

6.3.10.2.1 FWK_Flash_Format

/*

*

* @brief Format the filesystem
* @return the status of formatting operation

*

/

sln flash status t FWK Flash Format();

6.3.10.2.2 FWK_Flash_Save

/

X ok X X ot

*
*

*

@brief
@param
@param
@param

Save the data into a file from the file system

path Path of the file in the file system

buf Buffer which contains the data that is going to be saved
size Size of the buffer

@return the status of save operation

/

sln flash status t FWK Flash Save(const char *path, void *buf, unsigned int

S

ize);

6.3.10.2.3 FWK_Flash_Append

/

* % X o X

*

*

@brief
@param
@param
@param
@param

Append the data to an existing file.

path Path of the file in the file system

buf Buffer which contains the data that is going to be append
size Size of the buffer

overwrite Boolean parameter. If true the existing file will be

truncated. Similar to SLN flash save
* @return the status of append operation

*

/

sln flash status t FWK Flash Append(const char *path, void *buf, unsigned int

size,

bool overwrite) ;

6.3.10.2.4 FWK_Flash_Read

/*

*

* @brief Read from a file
* @param path Path of the file in the file system

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023
50/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* @param buf Buffer in which to store the read value

* (@param offset If reading in chunks, set offset to file current position
* @param size Size that was read.

* @return the status of read operation

*

/
sln flash status t FWK Flash Read(const char *path, void *buf, unsigned int
offset, unsigned int *size);

6.3.10.2.5 FWK_Flash_Mkdir

/**
* @brief Make directory operation
* @param path Path of the directory in the file system
* @return the status of mkdir operation
*/
sln flash status t FWK Flash Mkdir (const char *path);

6.3.10.2.6 FWK_Flash_Mkfile

/**

* @brief Make file with specific attributes

* @param path Path of the file in the file system

* (@param encrypt Specify if the files should be encrypted. Based on FS
implementation

* this param can be neglected

* @return the status of mkfile operation

s
sln flash status t FWK Flash Mkfile(const char *path, bool encrypt);

6.3.10.2.7 FWK_Flash_Rm

/**
* @brief Remove file
* (@param path Path of the file that shall be removed
* @return the status of rm operation
*/
sln flash status t FWK Flash Rm(const char *path);

6.3.10.2.8 FWK_Flash_Rename

/**
* @brief Rename existing file
* @param OldPath Path of the file that is renamed
* @param NewPath New Path of the file
* @return status of rename operation
*
/

sln flash status t FWK Flash Rename (const char *oldPath, const char *newPath);

6.3.10.2.9 FWK_Flash_Cleanup

/**

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

5117226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* @brief Cleanup function. Might imply defragmentation, erased unused sectors
@EC o

*

* (@param timeout Time consuming operation. Set a time constrain to be sure that
is not disturbing the system.

o Timeout = 0 means no timeout
* @return status of cleanup operation
=4

sln flash status t FWK Flash Cleanup (uint32 t timeout);

6.3.11 Multicore manager

The Multicore manager manages the multicore HAL device that can be registered into the system. In the current
framework implementation, there are two ways of making a message multicore:

1.

isMulticoreMessage flag set to 1

A message constructed with isMulticoreMessage set to 1, becomes automatically a multicast message and
is sent to both cores. The taskld field specifies the task that must handle the message from the other core.
The below code snip shows how the message is sent to both CM4/CM7 with the Multicore manager as the
man in the middle.

pVAlgoResMsg->multicore.isMulticoreMessage 1g
pVAlgoResMsg->multicore.taskId = kFWKTaskID Output;
FWK Message Put (kFWKTaskID VisionAlgo, &pVAlgoResMsq) ;

If the message has been sent by the CM7/Camera_Manager, the message is sent to CM7/VisionAlgo and to
CM4/Output via Multicore Manager

FWK Message Put (kFWKTaskID VisionAlgo, &pVAlgoResMsq) ;

Message send to CM7/kFWKTaskID VisionAlgo

Message send to CM7/Multicore Manager -> Deep Copy -> Message send to
CM4/Multicore Manager —-> Message send to CM4/pVAlgoResMsg.taskId

. isMulticoreMessage field set to 0

A message constructed with isMulticoreMessage set to 0 is a unicast message sent only to the task
specified in the FWK_Message Put. If the task is Multicore, an additional taskld must be specified:

pAudioRegMsg->multicore.isMulticoreMessage = 0;
pAudioRegMsg->multicore.taskId = kFWKTaskID Output;
FWK Message Put (kFWKTaskID Multicore, &pAudioRegMsq) ;

If the message has been sent by the CM7/Camera_Manager, the message is sent only to CM4/Output via
Multicore Manager

FWK Message Put (kFWKTaskID Multicore, &pAudioRegMsq) ;
Message send to CM7/Multicore Manager -> Deep Copy —-> Message send to
CM4/Multicore Manager —-> Message send to CM4/pAudioRegMsg.taskId

When sending a message, a deep copy of the message is done by the Multicore Manager. The purpose of the
deep copy is to avoid sending references from untouchable regions (for example, CM7 sending a reference that
points to internal TCM memory that cannot be seen by CM4). Deep copy ensures that the messages are stored
in a shared buffer, therefore the messages must be small.

If bigger buffers must be sent, they have to be in a shared memory area and passed by reference (camera
buffers).

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

52 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.3.11.1 APIs

6.3.11.1.1 FWK_MulticoreManager_Init

/**

* @brief Init internal structures for Multicore Manager

* @return int Return O if the init process was successful
*/

int FWK MulticoreManager Init();

6.3.11.1.2 FWK_MulticoreManager_DeviceRegister

/**

* @brief Register a Multicore device. Only one multicore device is supported.
The dev needs to be registered before

* FWK MulticoreManager Start is called

* @param dev Pointer to a camera device structure

* @return int Return 0 if registration was successful

%/

int FWK MulticoreManager DeviceRegister (multicore dev t *dev);

6.3.11.1.3 FWK_MulticoreManager_Start

/**

* @Qbrief Spawn Multicore manager task which will call init/start for all
registered multicore devices

* @param taskPriority the priority of the Multicore manager task

* @return int Return 0 if the starting process was successful

*/
int FWK MulticoreManager Start (int taskPriority);

6.3.11.1.4 FWK_MulticoreManager_Deinit

/**

* @brief Deinit MulticoreManager

* @return int Return 0 if the deinit process was successful
v

int FWK MulticoreManager Deinit ();

6.4 HAL devices

6.4.1 Overview

One of the most important steps in the creation of any embedded software project is peripheral integration.
This step can often be one of the most time-intensive steps of the process. Additionally, peripheral drivers are
often heavily tied to the specific platform those drivers were originally written for. It makes upgrading/moving to
another platform difficult and costly.

The Hardware Abstraction Layer (HAL) component of the framework architecture was designed in direct
response to these issues.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

53 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

HAL devices are designed to be written "on top of" lower-level driver code, helping to increase code
understandability by abstracting many of the underlying details. HAL devices can be reused across different
projects and NXP platforms, increasing code reuse, which can help cut down on development time.

6.4.1.1 Device Registration

In order for a manager to communicate with a HAL device, that device must first be registered with its
respective manager. Registration of each HAL device takes place at the beginning of application startup when
main () calls the APP RegisterHalDevices () function as shown below:

int main (void)

{
/* Init board hardware. */
APP BoardInit();
LOGD (" [MAIN] :Started") ;
/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices();

/* start the framework*/
APP StartFramework () ;

// start
vTaskStartScheduler () ;

while (1)
{
LOGD ("#") ;

}

return 0;

}

To register a device to its manager, each HAL device implements a registration function that is called prior to
starting the managers themselves. For example, the "register" function for the push button input device looks as
follows:

int HAL InputDev PushButtons Register ()
{
int error = 0;
LOGD ("input dev push buttons register");
error = FWK InputManager DeviceRegister (&s InputDev PushButtons) ;
return error;

}

As HAL devices do not have header .1 files associated with them, the registration function for each device is
exposed via the board define.h file found inside the boards folder. To be registered on startup, each HAL
device must be added to the APP RegisterHalDevices function in the board hal registration.cfile.
The board hal registration.c fileis also found in the boards folder.

6.4.1.2 Device Types

There are several different device types to encapsulate the various peripherals that a user may wish to
incorporate into their project. These device types include:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

54 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* Input

e Output

* Camera

* Display

* VAlgo (Vision/Voice)

As well as a few others which are not listed here.

Each device type has specific methods and fields based on the unique characteristics of that device type. For
example, the camera HAL device definition looks as follows:

/**

* @brief Callback function to notify camera manager that one frame is dequeued
* @param dev Device structure of the camera device calling this function

* @param event id of the event that took place

* (@param param Parameters

*

@param fromISR True if this operation takes place in an irqg, 0 otherwise
* @return 0 if the operation was successfully
*/
typedef int (*camera dev callback t) (const camera dev t *dev, camera event t
event, void *param, uint8 t fromISR);

/*! @brief Operation that needs to be implemented by a camera device */
typedef struct camera dev operator
{
/* initialize the dev */
hal camera status t (*init) (camera dev t *dev, int width, int height,
camera dev callback t callback, void *param);
/* deinitialize the dev */
hal camera status t (*deinit) (camera dev t *dev);
/* start the dev */
hal camera status t (*start) (const camera dev t *dev);
/* enqueue a buffer to the dev */
hal camera status t (*enqueue) (const camera dev t *dev, void *data);
/* dequeue a buffer from the dev */
hal camera status t (*dequeue) (const camera dev_t *dev, void **data,
pixel format t *format);
/* postProcess a buffer from the dev */
/*
* Only do the minimum determination (data point and the format) of the frame
in the dequeue.
*
* And split the CPU based post process (IR/Depth/... processing) to
postProcess as they will eat CPU
* which is critical for the whole system as camera manager is running with
the highest priority.
*

* Camera manager will do the postProcess if there is a consumer of this
frame.

*

* Note:

* Camera manager will call multiple times of the posProcess of the same
frame determinted by dequeue.

* The HAL driver needs to guarantee the postProcess only do once for the
first call.

*

*/

hal camera status t (*postProcess) (const camera dev t *dev, void **data,

pixel format t *format);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

551226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* input notify */
hal camera status t (*inputNotify) (const camera dev t *dev, void *data);
} camera dev operator t;

/*! Qbrief Structure that characterize the camera device. */
typedef struct
{
/* buffer resolution */
int height;
int width;
int pitch;
/* active rect */
int left;
int top;
int right;
int bottom;
/* rotate degree */
cw_rotate degree t rotate;
/* flip */
flip mode t flip;
/* swap byte per two bytes */
int swapByte;
} camera dev static config t;

In many ways, HAL devices can be thought of as similar to interfaces in C++ and other object-oriented
languages.

6.4.1.3 Anatomy of a HAL device

HAL devices are made up of several components which can vary by device type. However, each HAL device
regardless of type has at least 3 components:

e id

® name

® operators

The id field is a unique device identifier that is assigned by the device's manager when the device is first
registered.

The name field is used to help identify the device during various function calls and when debugging.

The operators field is a struct that contains function pointers to each of the functions that the HAL device is
required to implement. The operators a device is required to implement vary based on the device type.

A HAL device's definition is stored in a struct that gets passed to that device's respective manager when the
device is registered. It gives the manager information about the device and allows the manager to call the
device's operators when necessary.

6.4.1.3.1 Operators

Operators are functions that "operate" on the device itself and are used by the device's manager to control the
device and/or augment its behavior. Operators are used for initializing, starting, and stopping devices, as well as
serving many other functions depending on the device.

As mentioned previously, the operators a HAL device must implement varies based on device type. For
example, input devices must implement an init, deinit, start, stop, and inputNotify function.

typedef struct
{

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

56 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* initialize the dev */

hal input status t (*init) (input dev t *dev, input dev callback t callback);

/* deinitialize the dev */

hal input status t (*deinit) (const input dev t *dev);

/* start the dev */

hal input status t (*start) (const input dev t *dev);

/* stop the dev */

hal input status t (*stop) (const input dev t *dev);

/* notify the input dev */

hal input status t (*inputNotify) (const input dev t *dev, void *param);
} input dev operator t;

Generally, each device regardless of type has at least a start, stop, init, and deinit function. Additionally,
most devices also implement an inputNoti fy function that is used for event handling.

Note: Failing to implement a function does not prevent the HAL device from being registered, but is likely to
prevent certain functionality from working. For example, failing to provide an implementation for a HAL device's
start function prevents its respective manager from starting that device.

6.4.1.4 Configs

Note: This section describes a feature which is being developed.

Configs represent the individual, configurable attributes specific to a HAL device. The configs available for a
device varies from device to device, but can be altered during runtime via user input or by other devices and
can be saved to flash to retain the same value through power cycles.

For example, the HAL device for the IR/White LEDs may only have a "brightness" config, while a speaker
device may have configs for "volume", "left/right balance", and so on.

Note: Each device can have a maximum of MAXIMUM CONFIGS PER DEVICE configs (see framework/
inc/fwk_common.h).

Each device config regardless of device type has the same fields:

* name

* expectedValue
* description

* value

* get

* set

6.4.1.4.1 Name

A string containing the name of the config. The string length must be less than
DEVICE CONFIG NAME MAX LENGTH.

char name [DEVICE CONFIG NAME MAX LENGTH];

6.4.1.4.2 ExpectedValue

A string that provides a description of the valid values associated with the config. The length of the string must
be less than DEVICE CONFIG EXPECTED VAL MAX LENGTH.

char expectedValue[DEVICE CONFIG EXPECTED VAL MAX LENGTH];

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

57 1226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.1.4.3 Description

A string that provides a description of the config. The length of the string should be less than DEVICE CONFIG
DESCRIPTION MAX LENGTH.

char description[DEVICE CONFIG DESCRIPTION MAX LENGTH];

6.4.1.4.4 Value

An int that stores the internal value of the config. The value must be set using the set function and retrieved
using the get function.

uint32 t value;

6.4.1.4.5 Get

A function that returns the value of the config.

status t (*get) (char *valueToString);

6.4.1.4.6 Set

A function that sets the value of the config.

status t (*set) (char *configName, uint32 t value);

6.4.2 Input devices

The Input HAL device provides an abstraction to implement various devices that may capture data in many
different ways, and the data can represent many different things. The Input HAL device definition is designed
to encapsulate everything from physical devices like push buttons, to "virtual" devices like a command-line
interface using UART.

Input devices are used to acquire external input data and forward that data to other HAL devices via the Input
Manager so that those devices can respond to that data accordingly. The Input Manager communicates to other
devices within the framework using inputNoti fy event messages. For more information about events and
event handling, see Events.

As with other device types, Input devices are controlled via their manager. The Input Manager is responsible
for managing all registered input HAL devices, and invoking input device operators (init, start, dequeue,
and so on) as necessary. Additionally, the Input Manager allows for multiple input devices to be registered and
operate at once.

6.4.2.1 Device definition

The HAL device definition for Input devices can be found under framework/hal api/hal input dev.h
and is reproduced below:

/*! @brief Attributes of an input device */
typedef struct input dev
{

/* unique id which is assigned by input manager during the registration */
int id;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

58 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* name of the device */

char name [DEVICE NAME MAX LENGTH];

/* operations */

const input dev operator t *ops;

/* private capability */

input dev private capability t cap;
} input dev t;

The device operators associated with input HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by an input device */
typedef struct
{

/* initialize the dev */

hal input status t (*init) (input dev t *dev, input dev callback t callback);

/* deinitialize the dev */

hal input status t (*deinit) (const input dev t *dev);

/* start the dev */

hal input status t (*start) (const input dev t *dev);

/* start the dev */

hal input status t (*stop) (const input dev t *dev);

/* notify the input dev */

hal input status t (*inputNotify) (const input dev t *dev, void *param);
} input dev operator t;

The device capabilities associated with input HAL devices are as shown below:

typedef struct
{

/* callback */

input dev callback t callback;
} input dev private capability t;

6.4.2.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object
oriented-languages and are used by the Input Manager to set up, start, and so on, each of its registered input
devices.

For more information about operators, see Section 6.4.1.3.1.

6.4.2.2.1 Init

/* initialize the dev */
hal input status t (*init) (input dev t *dev, input dev callback t callback);

Initialize the input device.

Init should initialize any hardware resources the input device requires (I/O ports, IRQs, and so on), turn on the
hardware, and perform any other setup the device requires.

The callback function to the device's manager is typically installed as part of the Init function as well.

This operator will be called by the Input Manager when the Input Manager task first starts.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

59 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.2.2.2 Deinit

/* deinitialize the dev */
hal input status t (*deinit) (const input dev t *dev);

"Deinitialize" the input device.

DeInit should release any hardware resources the input device uses (I/O ports, IRQs, and so on), turn off the
hardware, and perform any other shutdown the device requires.

This operator will be called by the Input Manager when the Input Manager task ends!".

(1JThe ‘DeInit’ function generally will not be called under normal operation.

6.4.2.2.3 Start

/* start the dev */
hal input status t (*start) (const input dev t *dev);

Start the input device.

The start operator will be called in the initialization stage of the Input Manager's task after the call to the Init
operator. The startup of the display sensor and interface should be implemented in this operator. This includes,
for example, starting the interface and enabling the IRQ of the DMA used by the interface.

6.4.2.2.4 Stop

/* start the dev */
hal input status t (*stop) (const input dev t *dev);

Stop the input device.

The Stop operator functions as the inverse of the start function and is not called under normal operation.

6.4.2.2.5 InputNotify

/* notify the input dev */
hal input status t (*inputNotify) (const input dev t *dev, void *param);

Handle input events.

The InputNotify operator is called by the Input Manager whenever a kFiiKMessageID InputNotify
message received by and forwarded from the Input Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.2.3 Capabilities

typedef struct
{

/* callback */

input dev callback t callback;
} input dev private capability t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

60 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The capabilities structis primarily used for storing a callback to communicate information from the device
back to the Input Manager. This callback function is typically installed via a device's init operator.

6.4.2.3.1 callback

@brief callback function to notify input manager with an async event

@param dev Device structure

@param eventId Id of the event that took place

@param receiverList List with managers that should be notify

@param event Pointer to a event structure.

@param size If size is 0 event should be in a persistent memory zone else the
framework will allocate memory for the
* object Note the message delivery might go slow if the size is too much.
* @param fromISR True if this operation takes place in an irqg, 0 otherwise
* @return 0 if the operation was successfully
s

typedef int (*input dev callback t) (const input dev t *dev,

input event id t eventlId,

unsigned int receiverlist,

input event t *event,

unsigned int size,

uint8 t fromISR);

X ok X X ok X %

Callback to the Input Manager.

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the Input Manager.

The Vision Algorithm manager provides the callback to the device when the init operator is called. As a result,
the HAL device should make sure to store the callback in the init operator's implementation.

static hal input status t HAL InputDev PushButtons Init (input dev_ t *dev,
input dev callback t callback)
{

hal input status t error = 0;

/* PERFORM INIT FUNCTIONALITY HERE */

/* Installing callback function from manager... */
memset (&dev->cap, 0, sizeof (dev->cap)):;

dev->cap.callback = callback;

return ret;

The HAL device invokes this callback to notify the vision algorithm manager of specific events.

The definition for valgo _dev callback_t is as shown below:

typedef int (*input dev callback t) (const input dev t *dev,
input event id t eventlId,
unsigned int receiverlist,
input event t *event,
unsigned int size,
uint8 t fromISR);

The fields passed as part of the callback are described in more detail below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

61 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.2.3.2 Eventld

typedef enum input event id

{
kInputEventID Recv,
kInputEventID AudioRecv,
kInputEventID FrameworkRecv,

} input event id t;

Describes the type of source event being sent/received.

6.4.2.3.3 ReceiverList

typedef enum fwk task id
{
kFWKTaskID Camera = 0, /* This should always stay first */
kFWKTaskID Display,
kFWKTaskID VisionAlgo,
kFWKTaskID VoiceAlgo,
kFWKTaskID Output,
kFWKTaskID Input,
kFWKTaskID Audio,
kFWKTaskID APPStart, /* APP task ID should always start from here */
kFWKTaskID COUNT = (kFWKTaskID APPStart + APP TASK COUNT)
} fwk task id t;

List of device managers meant to receive the input event message.

6.4.2.3.4 Event

typedef struct input event
{

union

{
/* Valid when message is kInputEventID RECV */
void *inputData;

/* Valid when eventId is kInputEventID AudioRECV */
void *audioData;

/* Valid when framework information is needed GET FRAMEWORK INFO*/
framework request t *frameworkRequest;
}i

} input event t;

6.4.2.4 Example

The project has several input devices implemented for use as-is or for use as reference for implementing new
input devices. Source files for these input HAL devices can be found under framework/hal/input/.

Below is an example of a push button input HAL device driver:

static input event t inputEvent;

const static input dev operator t s InputDev ExampleDevOps = {
.init = HAL InputDev ExampleDev Init,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

62 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

.deinit = HAL InputDev ExampleDev Deinit,
.start = HAL InputDev ExampleDev_ Start,
.stop = HAL InputDev ExampleDev Stop,

.inputNotify = HAL InputDev ExampleDev InputNotify,
}i

static input dev t s InputDev ExampleDev = {

.name = "buttons",
.ops = &s InputDev ExampleDevOps,
.cap = {

.callback = NULL
by
17

/* here assume buttons push event will call this handler */
void HAL InputDev ExampleDev EvtHandler (void)

{
/* Add manager task list need notify, the id is from fwk task id t.

* Note: here can set not only one task manager.
*/
receiverList = 1 << kFWKTaskID Display;

/* load input data */
inputEvent.inputData = NULL;

/* callback inputmanager notify the corresponding manager from receiverList
v

inputDev.cap.callback (&inputDev, kInputEventID Recv, receiverlList,
&inputEvent, 0, fromISR);
}

hal input status t HAL InputDev ExampleDev Init (input dev t *dev,
input dev callback t callback)

{
hal input status t ret = kStatus HAL InputSuccess;

/* install manager callback for device */
dev->cap.callback = callback;

/* put hardware init here */

return ret;

}
hal input status t HAL InputDev ExampleDev Deinit (const input dev t *dev)
{

hal input status t ret = kStatus HAL InputSuccess;

/* put device deinit here */

return ret;

}

hal input status_t HAL InputDev ExampleDev Start (const input dev t *dev)
{

hal input status t ret = kStatus HAL InputSuccess;

/* put device start here */

return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

63 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

}

hal input status t HAL InputDev ExampleDev Stop (const input dev t *dev)

{
hal input status t ret = kStatus HAL InputSuccess;

/* put device stop here */

return ret;

}

hal input status_ t HAL InputDev ExampleDev InputNotify(const input dev t *dev,
void *param)
{

hal input status t ret = kStatus HAL InputSuccess;

/* add device notify handler here */

return ret;

}

int HAL InputDev ExampleDev Register (void)

{
int ret = 0;
ret = FWK InputManager DeviceRegister (&s InputDev ExampleDev) ;
return ret;

6.4.3 Output devices

The Output HAL devices are used to represent any device that produces output (excluding specific devices that
have their own specific device types like cameras and displays).

The Output devices respond to events passed by other HAL devices and produce corresponding output. It
includes changing the Ul overlay in response to a "face recognized" event or changing the volume of the
speaker in response to a specific shell command.

Multiple output devices can be registered at a time per the design of the framework.

6.4.3.1 Subtypes

Currently, output devices can be divided into 3 "subtypes" to better represent the specific nuances of a wider
variety of output devices without creating entirely new HAL device types:

* "General" output devices
* "Overlay/Ul" output devices
* "Audio" output devices

6.4.3.1.1 General devices

"General"/generic output devices describe most output devices and include devices like LEDs.

6.4.3.1.2 Ul devices

Overlay/Ul output devices are used for output devices that act as an overlay that sits on top of a camera
preview surface.
Overlay/Ul devices require a frame buffer to be allocated when initializing a device of this subtype.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

64 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.3.1.3 Audio devices

Audio output HAL devices represent devices that act as recipients of audio data. Audio output HAL devices
typically process audio data so that they can play a sound in response to an event like a face being registered,
or sleep mode triggering.

6.4.3.2 Device definition

The HAL device definition for output devices can be found under framework/hal api/hal output dev.h
and is reproduced below:

/¥

@brief definition of an output device */

typedef struct output dev

{

/* unique id and assigned by Output Manager when this device register */
int id;

/* device name */

char name [DEVICE NAME MAX LENGTH];

/* attributes */

output dev attr t attr;

/* optional config for private configuration of special output device */
hal device config configs[MAXIMUM CONFIGS PER DEVICE];

/* operations */
const output dev operator t *ops;

}output dev t;

The operators associated with output HAL devices are as shown below:

/!

@brief Operation that needs to be implemented by an output device */

typedef struct output dev operator

{

/* initialize the dev */

hal output status t (*init) (const output dev t *dev);
/* deinitialize the dev */

hal output status t (*deinit) (const output dev_t *dev);
/* start the dev */

hal output status t (*start) (const output dev t *dev);
/* stop the dev */

hal output status t (*stop) (const output dev t *dev);

} output dev operator t;

The device attributes associated with output HAL devices are as shown below:

/!

@brief Attributes of an output device */

typedef struct output dev attr t

{

/* the type of output device */
output dev type t type;
union

{
/* if the type of output device is OverlayUI, it need to allocate

overlay surface */

gfx surface t *pSurface;
/* reserve for other type of output device*/
void *reserve;

)7

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

65/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

} output dev attr t;

6.4.3.3 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object-
oriented languages and are used by the Output Manager to set up, start, and so on, each of its registered
output devices.

For more information about operators, see Operators.

6.4.3.3.1 Init

hal output status t (*init) (const output dev t *dev);

The Init function is used to initialize the output device, Init should initialize any hardware resources the
output device requires (I/O ports, IRQs, and so on), turn on the hardware, and perform any other setup the
device requires.

This operator will be called by the Output Manager when the Output Manager task first starts.

6.4.3.3.2 Delnit

hal output status t (*deinit) (const output dev t *dev);

The DeInit function is used to initialize the output device, DeInit should release any hardware resources
the output device uses (I/O ports, IRQs, and so on), turn off the hardware, and perform any other shutdown the
device requires.

This operator will be called by the Output Manager when the Output Manager task ends!".

(1IThe “DeInit’ function generally will not be called under normal operation.

6.4.3.3.3 Start

hal output status t (*start) (const output dev t *dev);

Starts the output device. The Start method will usually call FWK OutputManager RegisterEvent
Handler to register event handlers with the Output Manager so that when the Output Manager receives an
output event (like an "inference complete" event or an "input notify" event), the corresponding event handler
function is executed.

This operator is called by the Output Manager when the Output Manager task first starts.

6.4.3.3.4 Stop

hal output status t (*stop) (const output dev t *dev);

Stops the output device. The stop method will usually call FWK_OutputManager UnRegisterEvent
Handler to unregister an event handler from the Output Manager. It prevents the device's event handlers from
executing when an event is triggered.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

66 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.3.4 Attributes

6.4.3.4.1 Type

The type of output device. If the type is kOutputDevType UI, the pSurface parameter must be set.
Otherwise, pSurface can safely be ignored.

output dev type t type;

The type enum is shown below:

/*! @brief Types of output devices' callback messages */
typedef enum output dev type
{
kOutputDevType UI, /* for Overlay UI */
kOutputDevType Audio, /* for Audio output */
kOutputDevType Other, /* for other general output, like LED, Console, etc
*/
} output dev type t;

6.4.3.4.2 pSurface

The pSurface variable is used by Overlay/UI output devices to hold a frame buffer.

If the device type "subtype" is not a kOuptutDevType UI device, then this parameter can be safely ignored.

gfx surface t * pSurface;

The gfx surface struct is shown below:

typedef struct gfx surface

{
int height; /* the height of surface */

int width; /* the width of surface */

int pitch; /* the pitch of surface */

int left; /* the left coordinate of surface */
int top; /* the top coordinate of surface */
int right; /* the right coordinate of surface */

int bottom; /* the bottom coordinate of surface */

int swapByte; /* For each 16 bit word of surface framebuffer, set true to
swap the two bytes. */

pixel format t format; /* the pixel format of surface, like
kPixelFormat RGB565 */

void *buf; /* the pointer for the framebuffer */

void *lock; /* the mutex lock for the surface, is determined by hal and set
to null if not use in hal*/
} gfx surface t;

6.4.3.5 Example

The project has several output devices implemented for use as-is or for use as a reference for implementing
new output devices. Source files for these output HAL devices can be found under framework/hal/output/.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

67 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Below is an example of the RGB LED HAL device driver framework/hal/output/hal output rgb led.
Cc:

static hal output status t HAL OutputDev RgbLed Init (output dev t *dev);

static hal output status t HAL OutputDev RgbLed Start (const output dev _t *dev);
static hal output status t HAL OutputDev RgbLed InferComplete (const output dev t
*dev,

output algo source t source,
void
*inferResult) ;

const static output dev event handler t s OutputDev RgbLedHandler = ({
.inferenceComplete = HAL OutputDev RgbLed InferComplete,
.inputNotify = NULL,

}i

/* output device operators*/
const static output dev operator t s OutputDev RgbLedOps = ({

.init = HAL OutputDev RgbLed Init,
.deinit = NULL,
.start = HAL OutputDev RgbLed Start,

.stop = NULL,
i

/* output device */
static output dev t s OutputDev RgbLed = ({

.name = "rgb led",

.attr.type = kOutputDevType Other,
.attr.reserve = NULL,

.Ops = &s_OutputDev RgbLedOps,

b

/* RGB LED output device Init function*/
static hal output status_t HAL OutputDev RgbLed Init (output dev t *dev)
{

hal output status t error = kStatus HAL OutputSuccess;

/* put RGB LED hardware initialization here*/

return error;

}

/* RGB LED output device start function*/
static hal output status t HAL OutputDev RgbLed Start (const output dev t *dev)
{
hal output status t error = kStatus HAL OutputSuccess;
/* registered special event handler for this output device */
if (FWK OutputManager RegisterEventHandler (dev,
&s_OutputDev RgbLedHandler) != 0)
{
error = kStatus HAL OutputError;
}
return error;

}

static hal output status t HAL OutputDev RgbLed InferComplete (const output dev t
*dev,

output algo source t source,
void *inferResult)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

68 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

hal output status t error = kStatus HAL OutputSuccess;

/* algorithm result t is defined by special algorithm device registered into
vision pipeline */

algorithm result t *result = (algorithm result t *)inferResult;

if (pResult != NULL)

{

/* do RGB LED hardware setting according to inference result from

valgorithm manager*/

}

return error;

}

int HAL OutputDev RgbLed Register ()
{
int error = 0;
LOGD ("output dev _rgb led register");
error = FWK OutputManager DeviceRegister (&s_ OutputDev RgbLed) ;
return error;

An example of an Overlay Ul Output device can be found at HAL/face rec/hal smart lock ui.c.

static hal output status t HAL OutputDev OverlayUi Init (const output dev t
*dev) ;

static hal output status t HAL OutputDev OverlayUi Start (const output dev t
*dev) ;

static hal output status_ t HAL OutputDev OverlayUi InferComplete (const
output dev_t *dev,

output algo source t source,

void
*infer result);
static hal output status_t HAL OutputDev OverlayUi InputNotify (const
output dev_t *dev, void *data);

/* Overlay UI surface */

static gfx surface t s UiSurface;

/* the framebuffer for Overlay UI surface */

SDK_ALIGN (static char s AsBuffer[UI BUFFER WIDTH * UI BUFFER HEIGHT *

UI BUFFER BPP], 32);

/* event handler */

const static output dev event handler t s OutputDev UiHandler = ({
.inferenceComplete = HAL OutputDev OverlayUi InferComplete,
.inputNotify = HAL OutputDev OverlayUi InputNotify,

}i

/* output device operators */
const static output dev operator t s OutputDev UiOps = {

.init = HAL OutputDev OverlayUi Init,
.deinit = NULL,
.start = HAL OutputDev OverlayUi Start,
.stop = NULL,

k7

/* output device */
static output dev t s OutputDev Ui = {
.name = "ui",

.attr.type = kOutputDevType UI,
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

69 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

.attr.pSurface
.0ps

&s_UiSurface,
&s_OutputDev UiOps,

b

/* Overlay UI output device Init function*/
static hal output status t HAL OutputDev OverlayUi Init (output dev t *dev)
{
hal output status t error = kStatus HAL OutputSuccess;
/* init overlay ui surface */
s_UiSurface.left = 0¢
s_UiSurface.top = 0g
s_UiSurface.right UI BUFFER WIDTH - 1;
s_UiSurface.bottom UI BUFFER HEIGHT - 1;
s _UiSurface.height = UI BUFFER HEIGHT;
s_UiSurface.width UI BUFFER WIDTH;
s_UiSurface.pitch UI BUFFER WIDTH * 2;
s_UiSurface.format kPixelFormat RGB565;
s_UiSurface.buf = s AsBuffer;
s_UiSurface.lock xSemaphoreCreateMutex () ;

return error;

}

/* Overlay UI output device start function*/
static hal output status t HAL OutputDev OverlayUi Start (const output dev t
*dev)
{
hal output status t error = kStatus HAL OutputSuccess;
/* registered special event handler for this output device */
if (FWK OutputManager RegisterEventHandler (dev, &s OutputDev UiHandler) !=

error = kStatus HAL OutputError;
return error;

}

/* Overlay UI inferenceComplete event handler function*/
static hal output status t HAL OutputDev OverlayUi InferComplete (const
output dev t *dev,

output algo source t source,
void

*infer result)
{

hal output status t error = kStatus HAL OutputSuccess;

/* algorithm result t is defined by special algorithm device registered into
vision pipeline */

algorithm result t *pResult = (algorithm result t *)infer result;

if (pResult != NULL)
{

/* lock overlay surface to avoid conflict with PXP composing overlay
surface */
if (s_UiSurface.lock)
{
xSemaphoreTake (s _UiSurface.lock, portMAX DELAY) ;
}

/* draw overlay surface here according to inference result from
valgorithm manager */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

70/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* unlock */
if (s_UiSurface.lock)
{
xSemaphoreGive (s_UiSurface.lock) ;
}
}
return error;

}

/* Overlay UI inputNotify event handler function*/
static hal output status_t HAL OutputDev OverlayUi InputNotify (const
output dev t *dev, void *data)
{
hal output status t error = kStatus HAL OutputSuccess;
event base t eventBase = *(event base t *)data;

if (eventBase != NULL)
{
/* lock overlay surface to avoid conflict with PXP composing overlay
surface */
if (s_UiSurface.lock)
{
xSemaphoreTake (s _UiSurface.lock, portMAX DELAY) ;
}

/* draw overlay surface here according to input notify event from input
manager*/

/* unlock */
if (s_UisSurface.lock)
{
xSemaphoreGive (s_UiSurface.lock) ;
}
}

return error;

int HAL OutputDev UiSmartlock Register ()

int error = 0;

LOGD ("output dev ui smartlock register");

error = FWK OutputManager DeviceRegister (&s OutputDev Ui) ;
return error;

6.4.4 Camera devices

The camera HAL device provides an abstraction to represent many different camera devices which may have
different resolutions, color formats, and even connection interfaces.

For example, the same GC0308 RGB camera can connect with CSl or via a FlexlO interface.

A camera HAL device represents a camera sensor + interface,
meaning a separate device driver is required for the same camera sensor using
different interfaces.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

711226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

As with other device types, camera devices are controlled via their manager. The Camera Manager is
responsible for managing all registered camera HAL devices, and invoking camera device operators (init,
start, dequeue, and so on) as necessary. Additionally, the Camera Manager allows for multiple camera
devices to be registered and operated at once.

6.4.4.1 Device definition

The HAL device definition for Camera devices can be found under framework/hal api/
hal camera dev.h and is reproduced below:

typedef struct camera dev camera dev t;
/*! Qbrief Attributes of a camera device. */
struct camera dev
{
/* unique id which is assigned by camera manager during registration */
int id;
/* state in which the device is found */
hal device state t state;
/* name of the device */
char name [DEVICE NAME MAX LENGTH];

/* operations */

const camera dev operator t *ops;

/* static configs */

camera dev_static config t config;
/* private capability */

camera dev private capability t cap;

15

The device operators associated with camera HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a camera device */
typedef struct camera dev operator
{
/* initialize the dev */
hal camera status t (*init) (camera dev t *dev, int width, int height,
camera dev callback t callback, void *param);
/* deinitialize the dev */
hal camera status t (*deinit) (camera dev_t *dev);
/* start the dev */
hal camera status t (*start) (const camera dev t *dev);
/* enqueue a buffer to the dev */
hal camera status t (*enqueue) (const camera dev t *dev, void *data);
/* dequeue a buffer from the dev */
hal camera status t (*dequeue) (const camera dev_t *dev, void **data,
pixel format t *format);
/* postProcess a buffer from the dev */
/*
* Only do the minimum determination (data point and the format) of the frame
in the dequeue.
*
* And split the CPU based post process (IR/Depth/... processing) to
postProcess as they will eat CPU
* which is critical for the whole system as Camera Manager is running with
the highest priority.
*

* Camera Manager will do the postProcess if there is a consumer of this
frame.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

72226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* Note:
* Camera Manager will call multiple times of the posProcess of the same
frame determinted by dequeue.
* The HAL driver needs to guarantee the postProcess only do once for the
first call.
*
*/
hal camera status t (*postProcess) (const camera dev t *dev, void **data,
pixel format t *format);
/* input notify */
hal camera status t (*inputNotify) (const camera dev t *dev, void *data);
} camera dev operator t;

The static configs associated with camera HAL devices are as shown below:

/*! @brief Structure that characterize the camera device. */
typedef struct
{
/* buffer resolution */
int height;
int width;
int pitch;
/* active rect */
int left;
int top;
int right;
int bottom;
/* rotate degree */
cw_rotate degree t rotate;
/% £lip #/
flip mode t flip;
/* swap byte per two bytes */
int swapByte;
} camera dev static config t;

The device capabilities associated with camera HAL devices are as shown below:

/*! @brief Structure that capability of the camera device. */
typedef struct
{
/* callback */
camera dev_callback t callback;
/* param for the callback */
void *param;
} camera dev private capability t;

6.4.4.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object-
oriented languages, and are used by the Camera Manager to set up, start, and so on, each of its registered
camera devices.

For more information about operators, see Section 6.4.1.3.1.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

731226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.4.2.1 Init

hal camera status t (*init) (camera dev_ t *dev,
int width,
int height,
camera dev_callback t callback,
void *param) ;

Initialize the camera device.

Init should initialize any hardware resources the camera device requires (I/O ports, IRQs, and so on), turn on
the hardware, and perform any other setup the device requires.

This operator is called by the Camera Manager when the Camera Manager task first starts.

6.4.4.2.2 Deinit

hal camera status t (*deinit) (camera dev t *dev);

"Deinitialize" the camera device.

DeInit mustrelease any hardware resources the camera device uses (I/O ports, IRQs, and so on), turn off the
hardware, and perform any other shutdown the device requires.

This operator will be called by the Camera Manager when the Camera Manager task ends!".

(IThe “DeInit’ function generally will not be called under normal operation.

6.4.4.2.3 Start

hal camera status t (*start) (const camera dev t *dev);

Start the camera device.

The Start operator will be called in the initialization stage of the Camera Manager's task after the call to
the Init operator. The startup of the camera sensor and interface should be implemented in this operator. It
includes, for example, starting the interface and enabling the IRQ of the DMA used by the interface.

6.4.4.2.4 Enqueue

hal camera status t (*enqueue) (const camera dev t *dev,
void *data) ;

Enqueue a single frame.

The Enqueue operator is called by the Camera Manager to submit an empty buffer into the camera device's
buffer queue. Once the submitted buffer is filled by the camera device, the camera device should call the
Camera Manager's callback function and pass a kCameraEvent SendFrame event.

6.4.4.2.5 Dequeue

hal camera status t (*enqueue) (const camera dev_t *dev,
void *data) ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

741226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Dequeue a single frame.

The Dequeue operator will be called by the Camera Manager to get a camera frame from the device. The frame
address and the format will be determined by this operator.

6.4.4.2.6 PostProcess

hal camera status t (*postProcess) (const camera dev t *dev,
void **data,
pixel format t *format);

Handles the post-processing of the camera frame.

The PostProcess operator is called by the Camera Manager to perform any required post-processing of the
camera frame. For example, if a frame must be converted from one format to another in some way before it is
useable by the display and/or a vision algorithm device, it would take place in the PostProcess operator.

6.4.4.2.7 InputNotify

hal camera status t (*inputNotify) (const camera dev_t *dev, void *data);

Handle input events.

The InputNotify operator is called by the Camera Manager whenever a kFWKMessageID InputNotify
message is received by and forwarded from the Camera Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.4.3 Static configs

Static configs, unlike regular, dynamic configs, are set at compile time and cannot be changed on-the-fly.

6.4.4.3.1 Height

int height;

The height of the camera buffer.

6.4.4.3.2 Width

int width;

The width of the camera buffer.

6.4.4.3.3 Pitch

int pitch;

The total number of bytes in a single row of a camera frame.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

751226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.4.3.4 Left

int left;

The left edge of the active area in a camera buffer.

6.4.4.3.5 Top

int top;

The top edge of the active area in a camera buffer.

6.4.4.3.6 Right

int right;

The right edge of the active area in a camera buffer.

6.4.4.3.7 Bottom

int bottom;

The bottom edge of the active area in a camera buffer.

6.4.4.3.8 Rotate

typedef enum cw rotate degree

{
kCWRotateDegree 0 = O,
kCWRotateDegree 90,
kCWRotateDegree 180,
kCWRotateDegree 270

} cw_rotate degree t;

cw_rotate degree t rotate;

The rotate degree of the camera sensor.

6.4.4.3.9 Flip

typedef enum flip mode

{
kFlipMode None = O,
kFlipMode Horizontal,
kFlipMode Vertical,
kFlipMode Both

} flip mode t;

flip mode t flip;

Determines whether to flip the frame while processing the frame for the algorithm and display.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

76 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.4.3.10 SwapByte

int swapByte;

Determines whether to enable swapping bytes while processing a frame for algorithm and display devices.

6.4.4.4 Capabilities

typedef struct

{
/* callback */
camera dev_callback t callback;
/* param for the callback */
void *param;

} camera dev private capability t;

The capabilities structis primarily used for storing a callback to communicate information from the device
back to the Camera Manager. This callback function is typically installed via a device's init operator.

6.4.4.4.1 Callback

* @brief Callback function to notify Camera Manager that one frame is dequeued
* @param dev Device structure of the camera device calling this function
* @param event id of the event that took place
* @param param Parameters

* @param fromISR True if this operation takes place in an irqg, 0 otherwise

* @return 0 if the operation was successfully

typedef int (*camera dev callback t) (const camera dev_t *dev,
camera event t event,
void *param,
uint8 t fromISR);

camera dev_callback t callback;

Callback to the Camera Manager.
The HAL device invokes this callback to notify the Camera Manager of specific events like "frame dequeued."

The Camera Manager provides this callback to the device when the init operator is called. As a result, the
HAL device should make sure to store the callback in the init operator's implementation.

static hal camera status t HAL CameraDev ExampleDev Init (

camera dev_t *dev, int width, int height, camera dev callback t callback,
void *param)
{

hal camera status t ret = kStatus HAL CameraSuccess;

/* PERFORM INIT FUNCTIONALITY HERE */

/* Installing callback function from manager... */

dev->cap.callback = callback;
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

77 1 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

return ret;

6.4.4.4.2 Param

void *param;

The parameter of the callback for kCameraEvent SendFrame event. The Camera Manager provides the
parameter while calling the Tnit operator, so this param should be stored in the HAL device's struct as part of
the implementation of the Init operator.

This param should be provided when calling the [Callback] (#callback) function.

6.4.4.5 Example

The project has several camera devices implemented for use as-is or for use as reference for implementing new
camera devices. Source files for these camera HAL devices can be found under framework/hal/camera.

Below is an example of the GC0308 RGB FlexlO camera HAL device driver framework/hal/camera/hal
camera_ flexio gc0308.c.

hal camera status t HAL CameraDev FlexioGc0308 Init (
camera dev t *dev, int width, int height, camera dev callback t callback,
void *param) ;
static hal camera status t HAL CameraDev FlexioGc0308 Deinit (camera dev t *dev);
static hal camera status t HAL CameraDev FlexioGc0308 Start (const camera dev t
*dev) ;
static hal camera status t HAL CameraDev FlexioGc0308 Enqueue (const camera dev t
*dev, void *data);
static hal camera status t HAL CameraDev FlexioGc0308 Dequeue (const camera dev t
*dev,
void **data,
pixel format t
*format) ;
static int HAL CameraDev FlexioGc0308 Notify(const camera dev_t *dev, void
*data) ;

/* The operators of the FlexioGc0308 Camera HAL Device */
const static camera dev operator t s CameraDev FlexioGc03080ps = {

.init = HAL CameraDev FlexioGc0308 Init,
.deinit = HAL CameraDev FlexioGc0308 Deinit,
.start = HAL CameraDev FlexioGc0308 Start,
.enqueue = HAL CameraDev FlexioGc0308 Enqueue,

.dequeue HAL:CameraDev:FlexichO308:Dequeue,
.inputNotify = HAL CameraDev FlexioGc0308 Notify,
i

/* FlexioGc0308 Camera HAL Device */
static camera dev_t s CameraDev FlexioGc0308 = ({

.id = 0,
.name = CAMERA NAME,
.ops = &s_CameraDev_ FlexioGc03080ps,
.Cap =
{
.callback = NULL,
.param = NULL,
o
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

78 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

17

hal camera status t HAL CameraDev FlexioGc0308 Init (

camera dev_t *dev, int width, int height, camera dev callback t callback,
void *param)
{

hal camera status t ret = kStatus HAL CameraSuccess;

LOGD ("camera_dev flexio gc0308 init");

/* store the callback and param for late using*/
dev->cap.callback = callback;
dev->cap.param = param;

/* init the low level camera sensor and interface */

return ret;

}

static hal camera status t HAL CameraDev FlexioGc0308 Deinit (camera dev t *dev)
{

hal camera status t ret = kStatus HAL CameraSuccess;

/* Currently do nothing for the Deinit as we didn't support the runtime de-
registraion of the device */

return ret;

}

static hal camera status t HAL CameraDev FlexioGc0308 Start (const camera dev t
*dev)

{

hal camera status t ret = kStatus HAL CameraSuccess;
/* start the low level camera sensor and interface */

return ret;

}

static hal camera status t HAL CameraDev FlexioGc0308 Enqueue (const camera dev t
*dev, void *data)

{

hal camera status t ret = kStatus HAL CameraSuccess;
/* submit one free buffer into the camera's buffer queue */

return ret;

}

static hal camera status t HAL CameraDev_ FlexioGc0308 Dequeue (const camera dev t
*dev,
void **data,
pixel format t
*format)

{

hal camera status t ret = kStatus HAL CameraSuccess;

/* get the buffer from camera's buffer queue and determine the format of the
frame */

return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

79 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

static int HAL CameraDev FlexioGc0308 Notify(const camera dev t *dev, void
*data)
{

int error = 0;

event base t eventBase = *(event base t *)data;
/* handle the events which are interested in */
switch (eventBase.eventId)
{

default:

break;

}

return error;

6.4.5 Display devices

The Display HAL device provides an abstraction to represent many different display panels which may have
different controllers, resolutions, color formats, and event connection interfaces.

Note: A display HAL device represents a display panel + interface. For example, the
hal display lcdif rk024hh298.cis the display HAL device driver for the rk024hh298 panel with eLCDIF
interface. It means that a separate device driver is required for the same display using different interfaces.

As with other device types, display devices are controlled via their manager. The Display Manager is
responsible for managing all registered display HAL devices, and invoking display device operators (init,
start, and so on) as necessary.

6.4.5.1 Device definition

The HAL device definition for display devices can be found under framework/hal api/
hal display dev.hand is reproduced below:

typedef struct display dev display dev t;
/*! @brief Attributes of a display device. */
struct display dev
{
/* unique id which is assigned by Display Manager during the registration */
int id;
/* name of the device */
char name [DEVICE NAME MAX LENGTH];
/* operations */
const display dev operator t *ops;
/* private capability */
display dev private capability t cap;
i

The operators associated with display HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a display device */
typedef struct display dev operator
{
/* initialize the dev */
hal display status t (*init) (
display dev t *dev,
int widEh, int height,
display dev callback t callback,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

80 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

void *param) ;
/* deinitialize the dev */

hal display status t (*deinit) (const display dev_ t *dev);

/* start the dev */

hal display status_t (*start) (const display dev_t *dev);

/* blit a buffer to the dev */

hal display status t (*blit) (const display dev t *dev,

void *frame,

int width,

int height) ;
/* input notify */

hal display status_t (*inputNotify) (const display dev t *dev, void *data);

} display dev operator t;

The capabilities associated with display HAL devices are as shown below:

/*! @brief Structure that characterize the display device.

typedef struct display dev private capability
{
/* buffer resolution */
int height;
int width;
int pitch;
/* active rect */
int left;
int top;
int right;
int bottom;
/* rotate degree */
cw_rotate degree t rotate;
/* pixel format */
pixel format t format;
/* the source pixel format of the requested frame */
pixel format t srcFormat;
volid *frameBuffer;
/* callback */
display dev callback t callback;
/* param for the callback */
void *param;
} display dev private capability t;

*/

6.4.5.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in object
oriented-languages, and are used by the Display Manager to set up, start, and so on, each of its registered

display devices.

For more information about operators, see Section 6.4.1.3.1.

6.4.5.2.1 Init

hal display status t (*init) (display dev_t *dev,
int width,
int height,

display dev callback t callback,

void *param) ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

811226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Initialize the display device.

Init should initialize any hardware resources the display device requires (I/O ports, IRQs, and so on), turn on
the hardware, and perform any other setup the device requires.

The callback function to the device's manager is typically installed as part of the Init function as well.

This operator will be called by the Display Manager when the Display Manager task first starts.

6.4.5.2.2 Deinit

hal display status t (*deinit) (const display dev_ t *dev);

"Deinitialize" the display device.

DeInit should release any hardware resources the display device uses (I/O ports, IRQs, and so on), turn off
the hardware, and perform any other shutdown the device requires.

This operator will be called by the Display Manager when the Display Manager task ends.

Note: The "Delnit’ function generally will not be called under normal operation.

6.4.5.2.3 Start

hal display status t (*start) (const display dev t *dev);

Start the display device.

The start operator is called in the initialization stage of the Display Manager's task after the call to the Init
operator. The startup of the display sensor and interface should be implemented in this operator. It includes, for
example, starting the interface and enabling the IRQ of the DMA used by the interface.

6.4.5.2.4 Blit

hal display status t (*blit) (const display dev t *dev,
void *frame,
int width,
int height);

Sends a frame to the display panel and "blits" the frame with any additional required components (Ul overlay,
and so on).

Blit is called by the Display Manager once a previously requested frame of the matching srcFormat has been
sent by a camera device. The sending of the frame from the Display Manager to the display panel should be
take place in this operator.

kStatus HAL DisplaySuccess must be returned if the frame was successfully sent to the display panel.
After calling this operator, the Display Manager will request a new frame.

If the 'Blit’ operator is working in asynchronous mode, the hardware will
continue sending the frame buffer even after the return of the 'Blit" function
call.

In this case, "kStatus HAL DisplayNonBlocking should be returned instead,

and the Display Manager will not issue a new display frame request after this
"Blit® call.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

82 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

To request a new frame, the device should invoke the Display Manager's callback
using a " kDisplayEvent RequestFrame event to notify the completion of the
sending of the previous frame.

Once the Display Manager sees this new request, it will requesting a new frame.

6.4.5.2.5 InputNotify

hal display status_t (*inputNotify) (const display dev t *dev, void *data);

Handle input events.

The InputNotify operator is called by the Display Manager whenever a kFiWkKMessageID InputNotify
message is received by and forwarded from the Display Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.5.3 Capabilities

/*! @brief Structure that characterizes the display device. */
typedef struct display dev private capability
{

/* buffer resolution */

int height;

int width;

int pitch;

/* active rect */

int left;

int top;

int right;

int bottom;

/* rotate degree */

cw_rotate degree t rotate;

/* pixel format */

pixel format t format;

/* the source pixel format of the requested frame */

pixel format t srcFormat;

volid *frameBuffer;

/* callback */

display dev callback t callback;

/* param for the callback */

void *param;
} display dev private capability t;

The capabilities structis primarily used for storing a callback to communicate information from the device
back to the Display Manager. This callback function is typically installed via a device's init operator.

Display devices also maintain information regarding the size of the display, pixel format, and other information
pertinent to the display.

6.4.5.3.1 Height

int height;

The height of the display buffer.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

83 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.5.3.2 Width

int width;

The width of the display buffer.

6.4.5.3.3 Pitch

int pitch;

The total number of bytes in one row of the display buffer.

6.4.5.3.4 Left

int left;

The left edge of the active area in the display frame buffer.

Note: The active area indicates the area of the display frame buffer that will be utilized.

6.4.5.3.5 Top

int top;

The top edge of the active area in the display frame buffer.

6.4.5.3.6 Right

int right;

The right edge of the active area in the display frame buffer.

6.4.5.3.7 Bottom

int bottom;

The bottom edge of the active area in the display frame buffer.

6.4.5.3.8 Rotate

typedef enum cw rotate degree

{
kCWRotateDegree 0 = O,
kCWRotateDegree 90,
kCWRotateDegree 180,
kCWRotateDegree 270

} cw_rotate degree t;

cw_rotate degree t rotate;

The rotate degree of the display frame buffer.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

84 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.5.3.9 Format

typedef enum pixel format

{
/* 2d frame format */
kPixelFormat RGB,
kPixelFormat RGB565,
kPixelFormat BGR,
kPixelFormat Gray888,
kPixelFormat Gray888X,
kPixelFormat Gray,
kPixelFormat Graylé6,
kPixelFormat YUV1P444 RGB, /* color display sensor */
kPixelFormat YUV1P444 Gray, /* ir display sensor */
kPixelFormat UYVY1P422 RGB, /* color display sensor */
kPixelFormat UYVY1P422 Gray, /* ir display sensor */
kPixelFormat VYUY1P422,

/* 3d frame format */
kPixelFormat Depthl6,
kPixelFormat DepthS§,

kPixelFormat YUV420P,

kPixelFormat Invalid
} pixel format t;

The format of the display frame buffer.

6.4.5.3.10 srcFormat

The source format of the requested display frame buffer.

Because there may be multiple display devices operating at a time, the display checks the srcFormat property
of the frame to determine whether it is from the display device it is expecting. It prevents the display from
displaying a 3D depth image when the user expects an RGB image, for example.

6.4.5.3.11 frameBuffer

Pointer to the display frame buffer.

6.4.5.3.12 callback

/**
* @brief callback function to notify Display Manager that an async event took
place
* (@param dev Device structure of the display device calling this function
@param event id of the event that took place
@param param Parameters
@param fromISR True if this operation takes place in an irqg, 0 otherwise
* @return 0 if the operation was successfully
=y
typedef int (*display dev callback t) (const display dev_t *dev,
display event t event,
void *param,

* X %

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

85/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

uint8 t fromISR);

display dev callback t callback;

Callback to the Display Manager. The HAL device invokes this callback to notify the Display Manager of specific
events.

Currently, only the "kDisplayEvent RequestFrame event callback is implemented
in the Display Manager.

The Display Manager provides this callback to the device when the init operator is called. As a result, the
HAL device must make sure to store the callback in the init operator's implementation.

hal display status_t HAL DisplayDev ExampleDev Init (

display dev_t *dev, int width, int height, display dev callback t callback,
void *param)
{

hal display status t ret = kStatus HAL DisplaySuccess;

/* PERFORM INIT FUNCTIONALITY HERE */

/* Installing callback function from manager... */
dev->cap.callback = callback;

return ret;

}

The HAL device invokes this callback to notify the Display Manager of specific events.

6.4.5.3.13 param

void *param;

The parameter of the Display Manager callback.

The ‘param field is not currently used by the framework in any way.

6.4.5.4 Example

The project has several display devices implemented for use as-is or as reference for implementing new display
devices. The source files for these display HAL devices can be found under framework/hal/display.

Below is an example of the "rk024hh298" display HAL device driver framework/hal/display/hal
display lcdif rk024hh298.c.

hal display status t HAL DisplayDev LcdifRk024hh2 Init (display dev_t *dev,
int width,
int height,
display dev callback t
callback,
void *param) ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

86 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

hal display status t HAL DisplayDev LcdifRk024hh2 Uninit (const display dev t
*dev) ;
hal display status t HAL DisplayDev LcdifRk024hh2 Start (const display dev t
*dev) ;
hal display status t HAL DisplayDev LcdifRk024hh2 Blit (const display dev_t *dev,
void *frame,
int width,
int height);
static hal display status t HAL DisplayDev LcdifRk024hh2 InputNotify (const
display dev_t *receiver,
void *data) ;

/* The operators of the rk024hh298 Display HAL Device */
const static display dev operator t s DisplayDev LcdifOps = {

.init = HAL DisplayDev LcdifRk024hh2 Init,
.deinit = HAL DisplayDev_ LcdifRk024hh2 Uninit,
.start = HAL DisplayDev LcdifRk024hh2 Start,

.blit = HAL DisplayDev LcdifRk024hh2 Blit,
.inputNotify = HAL DisplayDev LcdifRk024hh2 InputNotify,

I 8

/* rk024hh298 Display HAL Device */

static display dev t s DisplayDev Lcdif = {
-del = 0,
.name = DISPLAY NAME,

.ops = &s_ DisplayDev LcdifOps,
.cap = {
.width = DISPLAY WIDTH,
.height = DISPLAY HEIGHT,
.pitch = DISPLAY WIDTH * DISPLAY BYTES PER PIXEL,
.left = 0,
.top = 0,
.right = DISPLAY WIDTH - 1,
.bottom = DISPLAY HEIGHT - 1,
.rotate = kCWRotateDegree 0,
.format = kPixelFormat RGB565,
.srcFormat = kPixelFormat UYVY1P422 RGB,
.frameBuffer = NULL,
.callback = NULL,
.param = NULL

k7

hal display status t HAL DisplayDev LcdifRk024hh2 Init (display dev t *dev,
int width,
int height,
display dev callback t
callback,
void *param)

hal display status t ret = kStatus HAL DisplaySuccess;

/* init the capability */

dev->cap.width = width;
dev->cap.height = height;
dev->cap.frameBuffer = (void *)&s FrameBuffers([1l];

/* store the callback and param for late using */
dev->cap.callback = callback;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

871226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* init the low level display panel and interface */

return ret;

}

hal display status_t HAL DisplayDev LcdifRk024hh2 Uninit (const display dev t
*dev)
{
hal display status t ret = kStatus HAL DisplaySuccess;
/* Currently do nothing for the Deinit as we didn't support the runtime de-
registraion of the device */
return ret;

}

hal display status t HAL DisplayDev LcdifRk024hh2 Start (const display dev t
*dev)
{
hal display status t ret = kStatus HAL DisplaySuccess;

/* start the display pannel and the interface */

return ret;

}

hal display status t HAL DisplayDev LcdifRk024hh2 Blit (const display dev t *dev,
void *frame, int width, int height)
{

hal display status t ret = kStatus HAL DisplayNonBlocking;

/* blit the frame to the real display pannel */

return ret;

}

static hal display status t HAL DisplayDev_ LcdifRk024hh2 InputNotify (const
display dev t *receiver, void *data)

{

hal display status t error kStatus HAL DisplaySuccess;
event base t eventBase = *(event base t *)data;
event status t event response status = kEventStatus Ok;

/* handle the events which are interested in */
if (eventBase.eventId == kEventID SetDisplayOutputSource)
{

}

return error;

6.4.6 Vision algorithm devices

The Vision Algorithm HAL device type represents an abstraction for computer vision algorithms which are used
for the analysis of digital images, videos, and other visual inputs.

The crux of the design for Vision Algorithm devices is the use of "infer complete" events that communicate
information about the results of inferencing that is handled by the device. For example, in the current
application, the Vision Algorithm may receive a camera frame containing a recognized face, perform an

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

88 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

inference on that data, and communicate a "face recognized" message to other devices so that they may act
accordingly. For more information about events and event handling, see Events.

Currently, only one vision algorithm device can be registered to the Vision Manager at a time per the design of
the framework.

6.4.6.1 Device definition

The HAL device definition for vision algorithm devices can be found under framework/hal api/
hal valgo dev.hand is reproduced below:

/*! @brief definition of a vision algo device */
typedef struct vision algo dev
{
/* unique id which is assigned by vision algorithm manager during the
registration */
int id;
/* name to identify */
char name [DEVICE NAME MAX LENGTH];
/* private capability */
valgo dev private capability t cap;
/* operations */
vision algo dev operator t *ops;
/* private data */
vision algo private data t data;
} vision algo dev;

The operators associated with the vision algorithm HAL device are as shown below:

/*! @brief Operation that needs to be implemented by a vision algorithm device
=/
typedef struct
{
/* initialize the dev */
hal valgo status_t (*init) (vision algo dev t *dev, valgo dev callback t
callback, void *param);
/* deinitialize the dev */
hal valgo status t (*deinit) (vision algo dev t *dev);
/* run the inference */ B -
hal valgo status_t (*run) (const vision algo dev t *dev, void *data);
/* recv events */
hal valgo status_t (*inputNotify) (const vision algo dev t *receiver, void
*data) ;

} vision algo dev operator t;

The capabilities associated with the vision algorithm HAL device are as shown below:

typedef struct valgo dev private capability
{

/* callback */

valgo dev_callback t callback;

/* param for the callback */

void *param;
} valgo dev private capability t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

89 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The private data fields associated with the vision algorithm HAL device are as shown below:

typedef struct
{

int autoStart;

/* frame type definition */

vision frame t frames|[kVAlgoFrameID Count];
} vision algo private data t;

6.4.6.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object-
oriented languages and are used by the Vision Algorithm Manager to set up, start, and so on, its registered
vision algorithm device.

For more information about operators, see Section 6.4.1.3.1.

6.4.6.2.1 Init

hal valgo status t (*init) (vision algo dev t *dev, valgo dev callback t
callback, void *param) ;

Initialize the vision algorithm HAL device.

Init mustinitialize any hardware resources the device requires (I/O ports, IRQs, and so on), turn on the
hardware, and perform any other setup required by the device.

The callback function to the device's manager is typically installed as part of the Init function as well.

This operator is called by the vision algorithm manager when the output manager task first starts.

6.4.6.2.2 Deinit

hal valgo status t (*deinit) (vision algo dev_ t *dev);

The DeInit function is used to "deinitialize" the algorithm device. DeInit must release any hardware
resources the device uses (/O ports, IRQs, and so on), turn off the hardware, and perform any other shutdown
required by the device.

This operator is called by the Vision Algorithm Manager when the Vision Algorithm Manager task ends.

Note: The "Delnit’ function generally is not called under normal operation.

6.4.6.2.3 Run

hal valgo status t (*run) (const voice algo dev t *dev, void *data);

Begin running the vision algorithm.
The run operator is used to start running algorithm inference and processing camera frame data.

This operator is called by the Vision Algorithm manager when a "camera frame ready" message is received
from the Camera Manager and forwarded to the algorithm device via the Vision Algorithm Manager.

Once the Vision Algorithm device finishes processing the camera frame data, its manager forwards this
message to the Output Manager in the form of an "inference complete" message.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

90/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.6.2.4 InputNotify

hal valgo status t (*inputNotify) (const vision algo dev t *receiver, void
*data) ;

Handle input events.

The InputNotify operator is called by the Vision Algorithm Manager whenever a
kFWKMessageID InputNotify message is received and forwarded from the Vision Algorithm Manager's
message queue.

For more information regarding events and event handling, see Events.

6.4.6.3 Capabilities

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the Vision Algorithm Manager. This callback function is typically installed via a device's init operator.

6.4.6.3.1 Callback

A

* @brief Callback function to notify managers the results of inference

* valgo dev* dev Pointer to an algorithm device

* valgo event t event Event which took place

* void* param Pointer to a struct of data that needs to be forwarded

* unsigned int size Size of the struct that needs to be forwarded. If size = 0,
param should be a pointer to a

* persistent memory area.

*/

typedef int (*valgo dev callback t) (int devId, valgo event t event, void *param,
unsigned int size, uint8 t fromISR);

valgo dev callback t callback;

Callback to the Vision Algorithm Manager.

The Vision Algorithm manager provides the callback to the device when the init operator is called. As a result,
the HAL device should make sure to store the callback in the init operator's implementation.

static hal valgo status t HAL VisionAlgoDev ExampleDev Init(vision algo dev t
*dev,
valgo dev callback t

callback,
void *param)

hal valgo status t ret = kStatus HAL ValgoSuccess;

/* PERFORM INIT FUNCTIONALITY HERE */

/* Installing callback function from manager... */
memset (&dev->cap, 0, sizeof (dev->cap)):;
dev->cap.callback = callback;

return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

91 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

}

The HAL device invokes this callback to notify the Vision Algorithm manager of specific events.

6.4.6.3.2 Param

void *param;

The param for the callback (optional).
6.4.6.4 Private Data

6.4.6.4.1 AutoStart

int autoStart;

The flag for automatic start of the algorithm.

If autoStart is 1, the Vision Algorithm Manager automatically starts requesting camera frames for this
algorithm device after its init operator is executed.

6.4.6.4.2 Frames

vision frame t frames[kVAlgoFrameID Count];

The three kinds of frames that are currently supported by the vision framework are RGB, IR, and Depth images.

The vision algorithm device must specify information for each kind of frame so that the framework properly
converts and passes only the frames which correspond to this algorithm device's requirement.

For example, older Solution's projects like SLN-VIZN3D-IOT use both 3D Depth and IR camera images to
perform liveness detection and face recognition, while using RGB frames solely for use as user feedback help
with aligning a user's face, and so on. Therefore, the algorithm device must ensure that it is receiving only the
3D and IR frames and not any RGB frames.

The definition of vision frame t is as shown below:

typedef struct vision frame
{

/* 1s supported by the device for this type of frame */

/* Vision Algorithm Manager will only request the supported frame for this
device */

int is supported;

/* frame resolution */
int height;
int width;
int pitch;

/* rotate degree */

cw_rotate degree t rotate;
flip mode t flip;

/* swap byte per two bytes */
int swapByte;

/* pixel format */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

92 /226

https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-3d-face-recognition:VIZN3D

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

pixel format t format;

/* the source pixel format of the requested frame */
pixel format t srcFormat;
void *data;

} vision frame t;

6.4.6.5 Example

As only one Vision Algorithm device can be registered at a time per the design of the framework, the project has
one Vision Algorithm device implemented.

Note: This example is implemented using NXP's OasisLite face recognition algorithm, which is the core vision
computing algorithm used in all projects.

This example is reproduced below:

static hal valgo status t HAL VisionAlgoDev OasisLite Init(vision algo dev t
*dev,
valgo dev callback t
callback,
void *param) ;
static hal valgo status t HAL VisionAlgoDev OasisLite Deinit (vision algo dev t
*dev) ;
static hal valgo status t HAL VisionAlgoDev OasisLite Run (const
vision algo dev_t *dev, void *data);
static hal valgo status t HAL VisionAlgoDev OasisLite InputNotify (const
vision algo dev t *receiver, void *data);

/* vision algorithm device operators */

const static vision algo dev operator t s VisionAlgoDev OasisLiteOps = {
.init = HAL VisionAlgoDev OasisLite Init,
.deinit = HAL VisionAlgoDev OasisLite Deinit,
.run = HAL VisionAlgoDev OasisLite Run,

.inputNotify HAL VisionAlgoDev OasisLite InputNotify,

157

/* vision algorithm device */

static vision algo dev t s VisionAlgoDev OasisLite3D = ({
.id = 0,
.name = "OASIS 3D",
.ops = (vision algo dev operator t *)&s VisionAlgoDev OasisLiteOps,
.cap = {.param = NULL},

i

/* vision algorithm device Init function*/
static hal valgo status t HAL VisionAlgoDev OasisLite Init(vision algo dev t
*dev,
valgo dev callback t
callback,
void *param)

LOGI ("++HAL VisionAlgoDev OasisLite Init");
hal valgo status t ret = kStatus HAL ValgoSuccess;

// init the device
memset (&dev->cap, 0, sizeof (dev->cap)):;
dev->cap.callback = callback;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

93 /226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* set parameters of the requested frames that this vision algorithm dev
asks for*/

/* for example oasisLite algorithm asks for two kind of frames:
the other is Depth */

/* firstly set parameters of the requested IR frames */

one is IR,

dev->data.

autoStart = 1;

dev->data.frames[kVAlgoFrameID IR].height = OASIS FRAME HEIGHT;
dev->data.frames[kVAlgoFrameID IR].width = OASIS FRAME WIDTH;
dev->data.frames[kVAlgoFrameID IR].pitch = OASIS_FRAME_WIDTH w 3g
dev->data.frames .1s_supported = 1;

]

]

IR]
kVAlgoFrameID IR]
]

]

]

— e

dev->data.frames [kVAlgoFrameID IR].rotate = kCWRotateDegree O0;
dev->data.frames[kVAlgoFrameID IR].flip = kFlipMode None;
dev->data.frames [kVAlgoFrameID IR].format = kPixelFormat BGR;
dev->data.frames[kVAlgoFrameID IR].srcFormat = kPixelFormat Grayl6;

int ocasis lite rgb frame aligned size =
SDK SIZEALIGN(OASIS FRAME HEIGHT * OASIS FRAME WIDTH * 3,
dev->data. frames[kVAlgoFrameID IR]. data =
pvPortMalloc (oasis lite rgb frame aligned size);

64);

if
{

(dev->data.frames[kVAlgoFrameID IR].data == NULL)
OASIS LOGE (" [ERROR]: Unable to allocate
ret = kStatus HAL ValgoMallocError;

return ret;

memory for kVAlgoFrameID IR.");

}

/* secondly set parameters of the requested Depth frames */

dev->data.frames[kVAlgoFrameID Depth] .height = OASIS FRAME HEIGHT;
dev—>data.frames[kVAlgoFrameID:Depth].width = OASIS FRAME WIDTH
dev->data.frames[kVAlgoFrameID Depth].pitch = OASIS FRAME WIDTH * 2;
dev->data.frames[kVAlgoFrameID Depth].is supported = 1;
dev->data.frames|[kVAlgoFrameID Depth].rotate = kCWRotateDegree 0;
dev—>data.frames[kVAlgoFrameID:Depth].flip = kFlipMode_None;i
dev->data.frames [kVAlgoFrameID Depth].format = kPixelFormat Depthl6;
dev->data.frames [kVAlgoFrameID Depth].srcFormat = kPixelFormat_Depth16;

int oasis lite depth frame aligned size =
SDK78IZEALIGN(OASIS FRAME HEIGHT * OASIS FRAME WIDTH * 2,

dev—>data.frames[kVAlgoFrameID_Depth] . data =
pvPortMalloc (oasis lite depth frame aligned size);

64) ;

if
{

(dev->data.frames [kVAlgoFrameID Depth].data == NULL)

OASIS LOGE ("Unable to allocate memory for kVAlgoFrameID IR");
ret = kStatus HAL ValgoMallocError;
return ret;

}

/* do private Algorithm Init here */

LOGI ("--HAL VisionAlgoDev OasisLite Init");
return ret;

}

/* vision algorithm device DeInit function*/
static hal valgo status t HAL VisionAlgoDev OasisLite Deinit(vision algo dev t
*dev)
{
hal valgo status t ret = kStatus HAL ValgoSuccess;
LOGI ("++HAL VlSlonAlgoDev OasisLite _Deinit");

MCU-SMHMI-SDUG
User guide

All information provided in this document is subject to legal disclaimers.

Rev. 1 — 23 May 2023

© 2023 NXP B.V. All rights reserved.

94/ 226

NXP Semiconductors MCU-SMHMI-SDUG

}

Smart HMI Software Development User Guide

/* release resource here */

LOGI ("--HAL VisionAlgoDev OasisLite Deinit");
return ret;

/* vision algorithm device inference run function*/
static hal valgo status t HAL VisionAlgoDev OasisLite Run(const
vision algo dev t *dev, void *data)

{

}

hal valgo status t ret = kStatus HAL ValgoSuccess;
OASIS LOGI("++HAL_Vls1onAlgoDev_OasisLite_Run");

vision algo result t result;
/* do inference run, derive meaningful information from the current frame

data in dev private data */

/* for example, oasisLite will inference according to two kinds of input

frames:

void* framel = dev->data.frames[kVAlgoFrameID IR].data
void* frame2 = dev->data.frames[kVAlgoFrameID Depth].data
result = oasislLite run(framel, frame2,) 2

*/

/* execute algorithm manager callback to inform algorithm manager the result

if (dev != NULL && result != NULL && dev->cap.callback != NULL)
{
valgo event t valgo event = {
.eventId = kVAlgoEvent RequestFrame,
.eventInfo = kEventInfo DualCore/Remote/Local,
.data = data,
.size = 0,
.copy = 0};

dev->cap.callback (dev->id, kVAlgoEvent VisionResultUpdate, result,

sizeof (vision algo result t), 0);

}

OASIS LOGI ("--HAL VisionAlgoDev OasisLite Run");
return ret;

/* vision algorithm device InputNotify function*/
static hal valgo status t HAL VisionAlgoDev OasisLite InputNotify (const

{

vision algo dev t *recelver, void *data)

hal valgo status t ret = kStatus HAL ValgoSuccess;
OASIS LOGI("++HAL VlSlonAlgoDev OasisLite _InputNotify");
event base t eventBase = * (event base t *)data,

/* do proess according to different input notify event */

LOGI ("--HAL VisionAlgoDev OasisLite InputNotify");
return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

95/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* register vision algorithm device to vision algorithm manager */
int HAL VisionAlgoDev OasisLite3D Register ()
{
int error = 0;
LOGD ("HAL VisionAlgoDev OasisLite3D Register");
error = FWK VisionAlgoManager DeviceRegister (
&s_VisionAlgoDev OasisLite3D);

return error;

6.4.7 Voice algorithm devices

The Voice Algorithm HAL device type represents an abstraction to do voice recognition based on clean stream
AFE generated.

After the Voice Algorithm manager receives the clean stream, the Voice Algorithm Hal device run method is
called. If a voice command is detected, the device outputs the inference result and transfer result to the Output
HAL device through valgo dev callback t callback. For more information about events and event
handling, see Events.

Currently, only one voice algorithm device can be registered to the Voice Manager at a time per the design of
the framework.

6.4.7.1 Device definition

The HAL device definition for voice algorithm devices can be found under framework/hal api/
hal valgo dev.hand is reproduced below:

/*! @brief Attributes of a voice algo device */
struct voice algo dev
{
/* unique id which is assigned by algorithm manager during the registration
*
/
int id;
/* name to identify */
char name [DEVICE NAME MAX LENGTH];
/* private capability */
valgo dev private capability t cap;
/* operations */
voice algo dev operator t *ops;
/* private data */
voice algo private data t data;

i

The operators associated with the voice algorithm HAL device are as shown below:

/*! @brief Operation that needs to be implemented by a voice algorithm device */
typedef struct voice algo dev operator t
{

/* initialize the dev */

hal valgo status t (*init) (voice algo dev_t *dev, valgo dev callback t
callback, void *param) ;

/* deinitialize the dev */

hal valgo status t (*deinit) (voice algo dev t *dev);

/* start the dev */

hal valgo status_ t (*run) (const voice algo dev t *dev, void *data);

/* recv events */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

96 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

hal valgo status_t (*inputNotify) (const voice algo dev t *receiver, void
*data) ;

} voice algo_dev operator t;

The capabilities associated with the voice algorithm HAL device are as shown below:

typedef struct valgo dev private capability
{

/* callback */

valgo dev callback t callback;

/* param for the callback */

void *param;
} valgo dev private capability t;

The private data fields associated with the voice algorithm HAL device is as shown below:

typedef struct voice algo private data

{

} voice algo private data t;

6.4.7.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object-
oriented languages, and are used by the Voice Algorithm Manager to init, run, and so on its registered voice
algorithm device.

For more information about operators, see Section 6.4.1.3.1.

6.4.7.2.1 Init

hal valgo status t (*init) (voice algo dev_t *dev, valgo dev callback t callback,
void *param) ;

Init the voice algorithm HAL device.

Init performs all setups the device requires, such as preparing memory for voice algorithm runtime
consumption, loading Al models, running library initialization APl and so on.

The callback function to the device's manager is typically installed as part of the Init function as well.

This operator is called by the voice algorithm manager when the voice manager task first starts.

6.4.7.2.2 Deinit

hal valgo status t (*deinit) (voice algo dev t *dev);

The DeInit function is used to "deinitialize" the algorithm device. DeInit must release any hardware
resources the device uses (heap memory, handles created by device, and so on), turn off the hardware, and
perform any other shutdown required by the device.

This method is not called in AFE Manager based on current framework version.

Note: The "Delnit’ function generally is not called under normal operation.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

97 | 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.7.2.3 Run

hal valgo status t (*run) (const voice algo dev t *dev, void *data);

Begin running the voice algorithm.
The run operator is used to start running algorithm inference and processing voice frame data.

This operator is called by the Voice Algorithm manager when the kFWKMessageID VAlgoASRInputProcess
message is received from the AFE Manager and forwarded to the algorithm device via the Voice Algorithm
Manager.

Once the Voice Algorithm device finishes processing the voice frame data, its manager forwards the inference
result to the Output Manager. If Wake Word is detected, Voice manager forwards a message indicating length of
wake word to AFE manager.

6.4.7.2.4 InputNotify

hal valgo status_t (*inputNotify) (const voice algo dev t *receiver, void *data);

Handle input events.

The InputNotify operator is called by the Voice Algorithm Manager whenever the
kFWKMessageID InputNotify message is received and forwarded from the Voice Algorithm Manager's
message queue.

For more information regarding events and event handling, see Events.

6.4.7.3 Capabilities

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the Voice Algorithm Manager. This callback function is typically installed via a device's init operator.

6.4.7.3.1 Callback

A

* @brief Callback function to notify managers the results of inference
* valgo dev* dev Pointer to an algorithm device

* valgo event t event Event which took place

* persistent memory area.

*/

typedef int (*valgo dev callback t) (int devId, valgo event t event, void *param,
unsigned int size, uint8 t fromISR);

valgo dev _callback t callback;

Callback to the Voice Algorithm Manager.

The Voice Algorithm manager provides the callback to the device when the init operator is called. As a result,
the HAL device must make sure to store the callback in the init operator's implementation.

The HAL device invokes this callback to notify the Voice Algorithm manager of specific events.

The event structure is the following.

/*! Qbrief Structure used to define an event.*/

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

98 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

typedef struct valgo event
{
/* Eventid from the list above.*/
valgo _event id t eventId;
event info t eventInfo;
/* Pointer to a struct of data that needs to be forwarded. */
void *data;
/* Size of the struct that needs to be forwarded. */
unsigned int size;
/* If copy is set to 1, the framework will forward a copy of the data. */
unsigned char copy;
} valgo event t;

All the events, which are identifiable by the eventld, can be send to:

* both core in a broadcast manner by setting the eventinfo flag to kEventInfo DualCore
* remote core by setting the eventinfo flag to kEventInfo Remote
* local core by the eventinfo flag to kEventInfo Local

In general, all supported message type can be used in conjunction with the copy field set to 1 in order to deep
copy the message. One exception is the kVAlgoEvent AsrToAudioDump event, which we encourage to be
sent with the flag set to 0 in order to avoid copy on large buffers.

6.4.7.3.2 Param

void *param;

The param for the callback (optional).

6.4.7.4 Example

Because only one Voice Algorithm device can be registered at a time per the design of the framework, the SLN-
TLHMI-IOT project has two Voice Algorithm devices(DSMT/VIT) implemented.

Note: This example is implemented using the DSMT (DSpotter Modeling Tool) algorithm.

This example is reproduced below:

hal valgo status_t voice algo dev_asr init(voice algo dev t *dev,

valgo _dev callback t callback, void *param)

static hal valgo status t HAL VisionAlgoDev OasisLite Deinit (vision algo dev t
*dev) ;

hal valgo status t voice algo dev asr run(const voice algo dev t *dev, void
*data)

hal valgo status t voice algo dev _input notify(const voice algo dev_t *dev, void
*data)

const static voice algo dev operator t voice algo dev_asr ops = {
.init = voice algo dev asr init,
.deinit = NULL,

.run voice algo dev_asr run,
.inputNotify = voice algo dev input notify

}i

static voice algo dev t voice algo dev asr = {
.id = 0,
.ops = (voice algo dev operator t *)&voice algo dev asr ops,

.cap = {.param = NULL},

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

99 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

17

hal valgo status t voice algo dev _asr init(voice algo dev t *dev,
valgo dev callback t callback, void *param)

{

hal valgo status t ret kStatus HAL ValgoSuccess;
uint32 t timerId = (07

/* Set callback function */
dev->cap.callback = callback;

/* Initialize the ASR engine */
initialize asr();

return ret;

}

/* voice algorithm device inference run function*/
hal valgo status_t voice algo dev_asr run(const voice algo dev_t *dev, void
*data)
{
hal valgo status t status = kStatus HAL ValgoSuccess;
static asr events t asrEvent = ASR SESSION ENDED;
struct asr inference engine *pInfWW; N
struct asr inference engine *pInfCMD;
char **cmdString;
intl6é t *piléSample;

msg payload t *audioIn = (msg payload t *)data;

/* Wake Word detection. Check all enabled languages, but stop on first
match. */
for (pInfWW = s AsrEngine.voiceControl.infEngineWW; pInfWW != NULL; pInfWW =
PInfWW->next)
{
if (asr_process _audio buffer (pInfWW->handler, pil6Sample,
NUM SAMPLES AFE OUTPUT, pInfWW->iWhoAmI inf) == kAsrLocalDetected)

{
LOGI ("Trust: %d, SGDiff: %d\r\n",
s_AsrEngine.voiceControl.result.trustScore,
s_AsrEngine.voiceControl.result.SGDiffScore) ;

}

return status;

}

hal valgo status t voice algo dev input notify(const voice algo dev t *dev, void
*data)
{

hal valgo status t error = kStatus HAL ValgoSuccess;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

100 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

event voice t event
const char *language_ str

* (event voice t *)data;
NULL;

return error;

}

int HAL VoiceAlgoDev Asr Register()
{
int error = 0;
LOGD ("HAL VoiceAlgoDev Asr Register");
error = FWK VoiceAlgoManager DeviceRegister (&voice algo dev asr);
return error;

6.4.8 Audio processing device

Audio Processing Device is used for Audio Front End (AFE) processing. In the following sections, we abridge
'Audio Processing Device' as 'AFE device'. And also use 'AFE manager' instead of 'audio_processing manager'.

The AFE HAL device provides an abstraction to represent audio front-end (AFE) handling.

AFE provides several subalgorithm modules, finally outputting a clean stream for the ASR (Automatic Speech
Recognition) engine. AFE supports Beamformer, AEC, NS, and DOA. Beamformer eliminates reverberation
and background noise. AEC (Acoustic Echo Cancellation) can support multi-channel systems, which is used for
suppressing local speaker stream. DOA (Direction Of Arrival) tracking has 1-degree resolution.

The AFE device receives microphone streams and reference streams (speaker streams) and outputs a clean
stream for the ASR engine.

As with other device types, the AFE device is controlled via the AFE manager. The AFE manager is responsible
for managing all registered AFE HAL devices, and invoking AFE device operators (init, start, run, stop,
and so on) as necessary. Additionally, the AFE Manager allows for multiple AFE devices to be registered and
operate at once. Based on real project requirements, in most cases, only one AFE device is needed.

6.4.8.1 Device definition

The HAL device definition for AFE devices can be found under framework/hal api/hal audio
processing dev.h and is reproduced below:

typedef struct audio processing dev audio processing dev t;
/*! @brief Attributes of an audio processing device. */
struct audio processing dev
{

/* unique id which is assigned by audio processing manager during
registration */

int id;

/* name of the device */

char name [DEVICE NAME MAX LENGTH];

/* operations */

const audio processing dev operator t *ops;

/* private capability */

audio processing dev private capability t cap;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

101/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The device operators associated with AFE HAL devices are as shown below:

/*! Qbrief Operation that needs to be implemented by a audio processing device
*/
typedef struct audio processing dev operator
{
/* initialize the dev */
hal audio processing status_t (*init) (audio_processing dev_t *dev,
audio processing dev_callback t callback);
/* deinitialize the dev */
hal audio processing status t (*deinit) (const audio processing dev t *dev);
/* start the dev */
hal audio processing status_t (*start) (const audio processing dev t *dev);
/* start the dev */
hal audio processing status_t (*stop) (const audio processing dev_t *dev);
/* notify the audio processing dev t */
hal audio processing status_ t (*run) (const audio processing dev t *dev, void
*param) ;
/* notify the audio processing dev t */
hal audio processing status_t (*inputNotify) (const audio processing dev_ t
*dev, void *param) ;
} audio processing dev operator t;

The device capabilities associated with AFE HAL devices are as shown below:

/*! @brief Structure that capability of the AFE device. */
typedef struct audio processing dev private capability
{
/* callback */
audio processing dev callback t callback;
} audio processing dev private capability t;

6.4.8.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in
object-oriented languages, and are used by the AFE Manager to set up, start, and so on, each of its registered
AFE devices.

6.4.8.2.1 Init

hal audio processing status_t (*init) (audio_processing dev_t *dev,
audio processing dev_callback t callback);

Initialize the AFE device.

Init performs all setups that the device requires, such as preparing memory for AFE runtime consumption,
microphone number and position, and so on.

This operator is called by the AFE Manager when the AFE Manager task first starts.

6.4.8.2.2 Deinit

hal audio processing status_t (*deinit) (const audio processing dev_t *dev);

De-initialize the AFE device.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

102/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

DeInit releases all memory resources allocated in initialization stage. Set all handles created to NULL.
This operator is not called in AFE Manager based on current framework version.

Note: The "Delnit’ function is not called under normal operation.

6.4.8.2.3 Start

hal audio processing status_t (*start) (const audio processing dev t *dev);

Start the AFE device.

The start operator is called in the initialization stage of the AFE Manager's task after the call to the Init
operator. Since AFE device is a pure software device, there is not Clock/GPIO, or any peripheral bus depended.
In most cases, the Start method can return kStatus HAL AudioProcessingSuccess directly.

6.4.8.2.4 Stop

hal audio processing status t (*stop) (const audio processing dev_t *dev);

Stop is reverted operation compared to Start. Return kStatus HAL AudioProcessingSuccess if there is
nothing needed to be done to device.

For the AFE device SDK implemented, this method returns kStatus HAL AudioProcessingSuccess
directly. And it is not called in AFE Manager based on current framework version.

6.4.8.2.5 Run

hal audio processing status_t (*run) (const audio processing dev_t *dev, void
* .
param) ;

Execute AFE engine for handling microphone stream and outputting clean stream.

The rRun operator will be called by the AFE Manager to handle audio frame with 160 samples.

6.4.8.2.6 InputNotify

hal audio processing status_t (*inputNotify) (const audio processing dev_t *dev,
void *param) ;

Handle input events.

The InputNotify operator is called by the AFE Manager whenever a kFWKMessageID InputNotify
message is received by and forwarded from the AFE Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.8.3 Capabilities

typedef struct audio processing dev private capability
{

/* callback */

audio processing dev callback t callback;
} audio processing dev private capability t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

103 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The capabilities structis primarily used for storing a callback to communicate information from the device
back to the AFE Manager. This callback function is typically installed via a device's init operator.

6.4.8.3.1 Callback

/**
* @brief Callback function to notify audio processing manager that an async
event took place
* @param dev Device structure of the audio processing device calling this
function
* @param event id of the event that took place
* @return 0 if the operation was successfully
*
/
typedef int (*audio processing dev callback t) (
const audio processing dev_t *dev, audio processing event t event, uint8 t
fromISR) ;

Callback to the AFE Manager.

The HAL device invokes this callback to notify the AFE Manager of specific events like audio processing done
or audio dumping event.

The AFE Manager provides this callback to the device when the init operator is called. As a result, the HAL
device should make sure to store the callback in the init operator's implementation.

The event structure is as follows:

/*! @brief Structure used to define an event.*/
typedef struct audio processing event
{
/* Eventid from the list above.*/
audio processing event id t eventId;
event info t eventInfo;
/* Pointer to a struct of data that needs to be forwarded. */
void *data;
/* Size of the struct that needs to be forwarded. */
unsigned int size;
/* If copy is set to 1, the framework will forward a copy of the data. */
unsigned char copy;
} audio processing event t;

As mentioned before, the events supported right now are Audio Processing Done and Audio Processing Dump.

* kAudioProcessingEvent Done is an event used to signal that the processing done over the last chunk
has been finalized. Depending where the ASR is initiated, this message can be forward to:

— both core by setting the eventinfo flag to kEventInfo DualCore
— remote core only by setting the eventinfo flag to kEventInfo Remote
— local, by setting the eventinfo flag to kEventInfo Local.

Note: To avoid high data traffic between cores, design the architecture of the system to have both the AFE and
ASR on the same core. For better performance, the “copy’ flag must be set to 0.

* kAudioProcessingEvent Dump is an event that is sent to an output device that can log the audio stream
on an output interface UART /USB/Wi-Fi/BLE. As mentioned before, this message can also be DualCore/

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

104 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Remote/Local, but it is better to have it as a local message due to high data transfer. If the design does not
support this, use reference and shared memory buffers, instead of deep copy the data .

hal audio processing status_t audio processing afe init (audio processing dev t
*dev,

audio processing dev callback t callback)

{

hal audio processing status t error = kStatus HAL AudioProcessingSuccess;

sln afe status t afeStatus kAfeSuccess;
sln afe config t afeConfig = {0};

dev->cap.callback = callback;

afeConfig.numberOfMics = AUDIO PDM MIC COUNT;
afeConfig.afeMemBlock = s _afeExternalMemory;

return error;

6.4.8.3.2 Param

void *param;

The parameter of the callback points to audio data AFE outputting.

6.4.8.4 Example

The SLN-TLHMI-IOT project implements one AFE device for use as-is or for use as reference for implementing
new AFE devices. Source files for these AFE HAL devices can be found under hal/voice/hal audio
processing afe.c.

const static audio processing dev operator t audio processing afe ops = {
.init = audio processing afe init,
.deinit = audio processing afe deinit,
.start = audio processing afe start,
.stop = audio processing afe stop,
.run = audio processing afe run,

.inputNotify = audio processing afe notify,

}i

static audio processing dev t audio processing afe = {
.id = 1, .name = "AFE", .ops = &audio processing afe ops, .cap = {.callback
= NULL} };

hal audio processing status_t audio processing afe init (audio processing dev t
*dev,

audio processing dev callback t callback)

{

hal audio processing status t error = kStatus HAL AudioProcessingSuccess;
/%
* Prepare AFE memory and configuration parameters needed,
* and then initialize AFE library.
*/
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

105 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

return error;

}

hal audio processing status_t audio processing afe deinit (const
audio processing dev_t *dev)
{
hal audio processing status t error = kStatus HAL AudioProcessingSuccess;
return error;

}

hal audio processing status_ t audio processing afe start (const
audio processing dev_t *dev)
{
hal audio processing status t error = kStatus HAL AudioProcessingSuccess;
return error;

}

hal audio processing status t audio processing afe stop(const
audio processing dev_t *dev)
{
hal audio processing status t error = kStatus HAL AudioProcessingSuccess;
return error;

}

hal audio processing status t audio processing afe notify(const
audio processing dev_t *dev, void *param)
{
hal audio processing status t error = kStatus HAL AudioProcessingSuccess;
event voice t event * (event voice t *)param;

/* Parse event structure and do further handling */

return error;

}

hal audio processing status t audio processing afe run(const
audio processing dev_t *dev, void *param)
{
hal audio processing status t error = kStatus HAL AudioProcessingSuccess;
event voice t event * (event voice t *)param;

/* Parse event structure and execute AFE engine for handling microphone
streams */

return error;

6.4.9 Flash devices

The flash HAL device represents an abstraction used to implement a device that handles all operations dealing
with flash (permanent) storage.

Note: Even though the word "flash" is used in the terminology of this device, the user is technically capable
of implementing an FS that uses a volatile memory instead. One potential reason for doing so would be to run
logic/sanity checks on the filesystem API's before implementing them on a flash device. Ultimately, the flash
HAL device is useful for abstracting not only flash operations, but memory operations in general.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

106 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The flash HAL device is primarily used as a wrapper over an underlying filesystem, be it LittleFS, FatFS, and
so on. As a result, the Flash Manager only allows one flash device to be registered because there is usually no
need for multiple filesystems operating at the same time.

General information

Because only one flash device can be registered at a time, it means that API calls to the Flash Manager
essentially act as wrappers over the flash HAL device's operators.

In terms of functionality, the flash HAL device provides:

* Read/Write operations
» Cleanup methods to handle defragmentation and/or emptying flash sectors during idle time
* Information about underlying flash mapping and flash type

6.4.9.1 Device definition

The HAL device definition for flash devices can be found under framework/hal api/hal flash dev.h
and is reproduced below:

/*! Qbrief Attributes of a flash device */
struct flash dev
{

/* unique id */

int id;

/* operations */

const flash dev operator t *ops;

k7

The device operators associated with flash HAL devices are as shown below:

/*! Q@brief Callback function to timeout check requester list busy status. */
typedef int (*lpm manager timer callback t) (lpm dev t *dev);

/*! @brief Operation that needs to be implemented by a flash device */
typedef struct flash dev operator
{
sln flash status t (*init) (const flash dev t *dev);
sln flash status t (*deinit) (const flash dev t *dev);
sln flash status t (*format) (const flash dev t *dev);
sln flash status t (*save) (const flash dev t *dev, const char *path, void
*buf, unsigned int size);
sln flash status t (*append) (const flash dev t *dev, const char *path, void
*buf, unsigned int size, bool overwrite);
sln flash status t (*read) (const flash dev t *dev, const char *path, void
*buf, unsigned int offset, unsigned int *size);
sln flash status t (*mkdir) (const flash dev t *dev, const char *path);
sln flash status t (*mkfile) (const flash dev t *dev, const char *path, bool
encrypt) ;
sln flash status t (*rm) (const flash dev t *dev, const char *path);
sln flash status t (*rename) (const flash dev t *dev, const char *oldPath,
const char *newPath);
sln flash status t (*cleanup) (const flash dev t *dev, unsigned int
timeout ms) ;
} flash dev operator t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

107 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.9.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object
oriented-languages.

For more information about operators, see Section 6.4.1.3.1 .

6.4.9.2.1 Init

sln flash status t (*init) (const flash dev t *dev);

Initialize the flash and filesystem.

Init mustinitialize any hardware resources required by the flash device (pins, ports, clock, and so on) In
addition to initializing the hardware, the init function should also mount the filesystem.

Note: An application that runs from flash (does XiP) must not initialize/deinitialize any hardware. If a hardware
change is truly needed, the change must be performed with caution.

Note: Some lightweight FS may not require mounting and can be prebuilt/preloaded on the flash instead.
Regardless, the “init” function must result in the filesystem being in a usable state.

6.4.9.2.2 Deinit

hal lpm status_t (*deinit) (const lpm dev t *dev);

"Deinitialize" the flash and filesystem.

DeInit must release any hardware resources a flash device might use (I/O ports, IRQs, and so on), turn off the
hardware, and perform any other shutdown the device requires.

6.4.9.2.3 Format

sln flash status t (*format) (const flash dev t *dev);

Clean and format the filesystem.

6.4.9.2.4 Save

sln flash status t (*save) (const flash dev t *dev, const char *path, void *buf,
unsigned int size);

Save a file with the contents of buf to path in the filesystem.

6.4.9.2.5 Append

sln flash status t (*append) (const flash dev t *dev, const char *path, void
*buf, unsigned int size, bool overwrite);

Append the contents of buf to an existing file at path.
Setting overwrite equal to true causes append from the beginning of the file instead.

Note: "overwrite == true’ makes this function nearly equivalent to the save function, the only difference is that
this does not create a new file.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

108 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.9.2.6 Read

sln flash status t (*read) (const flash dev t *dev, const char *path, void *buf,
unsigned int offset, unsigned int *size);

Read a file from the filesystem at path and storing the contents in buf.

To find the needed space for the buf, call read with buf set to NULL. In case there is not enough space in
memory to read the whole file, read with offset can be use while specifying the chunk size.

Note: It is up to the user to guarantee that the buffer supplied will fit the contents of the file being read.

6.4.9.2.7 Make directory

sln flash status t (*mkdir) (const flash dev_t *dev, const char *path);

Create a directory at path.

If the filesystem in use does not support directories,
this operator can be set to "NULL .

6.4.9.2.8 Make file

sln flash status t (*mkfile) (const flash dev t *dev, const char *path, bool
encrypt) ;

Creates the file mentioned by the path. If the information needs to stored not in plain text, encryption can be
enabled.

6.4.9.2.9 Remove

sln flash status t (*rm) (const flash dev t *dev, const char *path);

Remove the file at path.

If the filesystem in use does not support directories,
this operator can be set to "NULL .

6.4.9.2.10 Rename

sln flash status t (*rename) (const flash dev t *dev, const char *oldPath, const
char *newPath) ;

Rename/move a file from c1dPath to newPath.

6.4.9.2.11 Cleanup

sln flash status t (*cleanup) (const flash dev t *dev, unsigned int timeout ms);

Clean up the filesystem.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

109 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

This function is used to help minimize delays introduced by things like fragmentation caused during "erase
sector" operations that can lead to unwanted delays when searching for the next available sector.

timeout ms specifies how much time to wait while performing cleanup. This helps prevent multiple HAL
devices calling cleanup and stalling the filesystem.

6.4.9.3 Example

As only one flash device can be registered at a time per the design of the framework, the project has only one
filesystem implemented.

The source file for this flash HAL device can be found at framework/hal/misc/hal flash littlefs.c.
In this example, we demonstrate a way to integrate Littlefs in our framework.

Littlefs is a lightweight file-system that is designed to handle random power failures. The architecture of the file-
system allows having directories and files. As a result, this example uses the following file layout:

root-directory
— cfg

Metadata
fwk cfg - stores framework related information.
app_cfg - stores app specific information.

faceFiles - the number of files that stores faces are up to 100
— app_specific

— wifi info

L wifi info

6.4.9.3.1 Littlefs device

static sln flash status t 1fs init()

{
int res = kStatus HAL FlashSuccess;
if (s_LittlefsHandler.lfsMounted)
{

return kStatus HAL FlashSuccess;

_LittlefsHandler.lock = xSemaphoreCreateMutex();
if (s _LittlefsHandler.lock == NULL)

(T

—_

LOGE ("Littlefs create lock failed");
return kStatus HAL FlashFail;

_1fs get default config(&s LittlefsHandler.cfq);
#if DEBUG
BOARD InitFlashResources () ;
#endif
SLN Flash Init();
if (res)
{
LOGE ("Littlefs storage init failed: %i", res);
return kStatus HAL FlashFail;

res = 1lfs mount (&s LittlefsHandler.lfs, &s LittlefsHandler.cfq);
if (res == 0)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

110/ 226

https://github.com/littlefs-project/littlefs

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

s_LittlefsHandler.lfsMounted = 1;
LOGD ("Littlefs mount success");

}

else if (res == LFS ERR CORRUPT)

{
LOGE ("Littlefs corrupt"):;
1fs format (&s LittlefsHandler.lfs, &s LittlefsHandler.cfqg);

LOGD ("Littlefs attempting to mount after reformatting...");
res = 1fs mount (&s LittlefsHandler.lfs, &s LittlefsHandler.cfq);
if (res == 0)

{
s _LittlefsHandler.lfsMounted = 1;
LOGD ("Littlefs mount success");

}

else

{
LOGE ("Littlefs mount failed again");
return kStatus HAL FlashFail;

}

else

{
LOGE ("Littlefs error while mounting");

}

return res;

}

static sln flash status t 1fs cleanupHandler (const flash dev t *dev,

unsigned int
timeout ms)

{

sln flash status t status = kStatus HAL FlashSuccess;
uint32 t usedBlocks[LFS SECTORS/32] = {0};

uint32 t emptyBlocks = 0;

uint32 t startTime = 0p

uint32 t currentTime = 03

if (_lock())

{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;
}

/* create used block list */
1fs fs traverse (&s_LittlefsHandler.lfs, 1fs traverse create used blocks,
S&usedBlocks) ;

startTime = sln current time us();
/* find next block starting from free.i */

for (int 1 = 0; i < LFS SECTORS; i++)
{

currentTime = sln current time us();

/* Check timeout */ B B

if ((timeout ms) && (currentTime >= (startTime + timeout ms * 1000)))

{

break;

}
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

111/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

1fs block t block = (s _LittlefsHandler.lfs.free.i + i) % LFS SECTORS;

/* take next unused marked block */
if (! is blockBitSet (usedBlocks, block))
{

/* If the block is marked as free but not yet erased, try to erase

it */
LOGD ("Block %i is unused, try to erase it", block);
_1fs gspiflash erase(&s LittlefsConfigDefault, block);
emptyBlocks += 1;

}

LOGI ("%1i empty blocks starting from %i available in %ims",
emptyBlocks, s LittlefsHandler.lfs.free.i,
(sln current time us() - startTime)/1000);

_unlock();
return status;

}

static sln flash status t 1fs formatHandler (const flash dev t *dev)
{
if (_lock())
{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;
}
1fs format (&s_LittlefsHandler.lfs, &s LittlefsHandler.cfqg);
_unlock();
return kStatus HAL FlashSuccess;

}

static sln flash status t 1fs rmHandler (const flash dev t *dev, const char

*path)
{
int res;
if (_lock())

{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;

res = 1fs remove (&s LittlefsHandler.lfs, path);
if (res)
{

LOGE ("Littlefs while removing: %i", res);

_unlock() ;

if (res == LFS ERR NOENT)

{

return kStatus HAL FlashFileNotExist;
}

return kStatus HAL FlashFail;
}

_unlock() ;
return kStatus HAL FlashSuccess;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

112/ 226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

static sln flash status t 1fs mkdirHandler (const flash dev t *dev,
*path)
{

int res;

if
{

(_lock())

LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;

res = 1fs mkdir (&s LittlefsHandler.lfs, path);

if
{

(res

LFS_ERR _EXIST)

LOGD ("Littlefs directory exists:
_unlock();
return kStatus HAL FlashDirExist;

%i", res);

}

else if

{

(res)

LOGE ("Littlefs creating directory: %i", res);
_unlock();
return kStatus HAL FlashFail;

}

_unlock() ;

return kStatus HAL FlashSuccess;

}

static sln flash status t 1fs writeHandler (const flash dev t *dev,
*path, void *buf, unsigned int size)
{
int res;
1fs file t file;

const char

const char

if (_lock())
{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;
}
res = 1lfs file opencfg(&s LittlefsHandler.lfs, &file, path, LFS O CREAT,
&s_FileDefault) ;
if (res)
{
LOGE ("Littlefs opening file: %i", res);
_unlock();
return kStatus HAL FlashFail;
}
res = 1fs file write(&s LittlefsHandler.lfs, &file, buf, size);
if (res < 0)
{
LOGE ("Littlefs writing file: %i", res);
_unlock() ;
return kStatus HAL FlashFail;
}
res = 1fs file close(&s LittlefsHandler.lfs, &file);
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

113 /226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

}

static sln flash status t 1fs appendHandler (const flash dev t *dev,

if (res)

{
LOGE ("Littlefs closing file: %i", res);
_unlock() ;
return kStatus HAL FlashFail;

}

_unlock() ;
return kStatus HAL FlashSuccess;

const char *path,
void *buf,
unsigned int size,
bool overwrite)

int res;
1fs file t file;

if (_lock())

{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;

res = 1fs file opencfg(&s LittlefsHandler.lfs, &file, path, LFS O APPEND,

&s_FileDefault) ;
if (res)

{
LOGE ("Littlefs opening file: %i", res);
_unlock() ;
if (res == LFS ERR NOENT)
{
return kStatus HAL FlashFileNotExist;
}
return kStatus HAL FlashFail;
}

if (overwrite == true)

{

res = 1fs file truncate(&s_LittlefsHandler.lfs, &file, 0);

if (res < 0)

{
LOGE ("Littlefs truncate file: %i", res);
_unlock();
return kStatus HAL FlashFail;

res = 1fs file write(&s LittlefsHandler.lfs, &file, buf, size);

if (res < 0)

{
LOGE ("Littlefs writing file: %i", res);
_unlock() ;
return kStatus HAL FlashFail;

}

res = 1fs file close(&s LittlefsHandler.lfs, &file);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

114/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

if (res)

{
LOGE ("Littlefs closing file: %i", res);
_unlock() ;
return kStatus HAL FlashFail;

}

_unlock() ;
return kStatus HAL FlashSuccess;

}

static sln flash status t 1fs readHandler (const flash dev t *dev, const char
*path, void *buf, unsigned int size)
{
int res;
int offset = 0;
1fs file t file;

if (_lock())
{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;
}
res = 1fs file opencfg(&s LittlefsHandler.lfs, &file, path, LFS O RDONLY,
&s_ FileDefault) ;
if (res)
{
LOGE ("Littlefs opening file: %i", res);
_unlock();
if (res == LFS ERR NOENT)
{
return kStatus HAL FlashFileNotExist;
}
return kStatus HAL FlashFail;

res = 1fs file read(&s_LittlefsHandler.lfs, &file, (buf + offset),

if (res < 0)
{
LOGE ("Littlefs reading file: %i", res);
_unlock() ;
return kStatus HAL FlashFail;
}
else 1f (res == 0)
{
LOGD ("Littlefs reading file \"%s\": Read only %d. %d bytes not found
", path, offset, size);
break;

}

offset += res;
size -= res;
} while (size > 0);

res = 1fs file close(&s LittlefsHandler.lfs, &file);
if (res)

{

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

115/ 226

NXP Semiconductors MCU-SMHMI-SDUG

}

Smart HMI Software Development User Guide

LOGE ("Littlefs closing file: %i", res);
_unlock() ;
return kStatus HAL FlashFail;

_unlock();
return kStatus HAL FlashSuccess;

static sln flash status t 1fs renameHandler (const flash dev t *dev, const char
*OldPath, const char *NewPath)

{

}

int res;

if (_lock())

{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;

res = 1fs rename(&s LittlefsHandler.lfs, OldPath, NewPath);
if (res)
{
LOGE ("Littlefs renaming file: %$i", res);
_unlock();
return kStatus HAL FlashFail;
}
_unlock() ;
return kStatus HAL FlashSuccess;

const static flash dev operator t s FlashDev LittlefsOps = ({

17

.init = 1fs init,
.deinit = NULL,
.format = 1fs formatHandler,

.append = _lfs:appendHandler,

.save = 1fs writeHandler,
.read = 1fs readHandler,
.mkdir = 1fs mkdirHandler,
.rm = 1fs rmHandler,
.rename = 1fs renameHandler,
.cleanup= 1fs cleanupHandler,

static flash dev t s FlashDev Littlefs = {

k7

del = 0,
.ops = &s FlashDev LittlefsOps,

int HAL FlashDev Littlefs Init ()

{

int error = 0;
LOGD ("++HAL FlashDev Littlefs Init");
_1fs init();

LOGD ("--HAL FlashDev Littlefs Init");
error = FWK Flash DeviceRegister (&s_FlashDev Littlefs);

FWK LpmManager RegisterRequestHandler (&s_ LpmReq) ;
return error;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

116 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Note: The information presented here shows only the operators described above. For more information
regarding Littlefs configuration, FlexSPI configuration, optimization done, check the full code base.

6.4.10 Multicore devices

The multicore HAL device represents an abstraction used to implement a device that handles all multicore
message passing.

The multicore HAL device is primarily used as a wrapper over known multicore message libraries, be it MU/
Mailbox peripheral registers, rpmsg_lite, eRPC, and so on.

In terms of functionality, the multicore HAL device provides:

» Send operation
* Receive operation

6.4.10.1 Device definition

The HAL device definition for multicore devices can be found under framework/hal api/hal multicore
dev.h and is reproduced below:

/*! Q@brief Attributes of a multicore device. */
struct multicore dev
{
/* unique id which is assigned by multicore manager during the registration
*
/
int id;
/* name of the device */
char name [DEVICE NAME MAX LENGTH];
/* operations */
const multicore dev operator t *ops;
/* private capability */
multicore dev private capability t cap;

k7

The device operators associated with multicore HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a multicore device */
typedef struct multicore dev operator
{
/* initialize the dev */
hal multicore status t (*init) (multicore dev t *dev,
multicore dev callback t callback, void *param) ;
/* deinitialize the dev */
hal multicore status t (*deinit) (const multicore dev_ t *dev);
/* start the dev */
hal multicore status t (*start) (const multicore dev t *dev);
/* Multicore Send the message */
hal multicore status t (*send) (const multicore dev t *dev, void *data,
unsigned int size);
/* input notify */
hal multicore status t (*inputNotify) (const multicore dev t *dev, void
*data) ;
} multicore dev operator t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

117 1 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

In order to achieve a two-way communication between cores, hal devices must implement both send and
receive operations. The send is triggered by the multicore manager, while receive is async, the other core being
able to send at any moment. All async operations are handled within Multicore manager callback.

/**

* @brief callback function to notify multicore manager that an async event took
place

* @param dev Device structure of the multicore device calling this function

* (@param event the event that took place

* @param fromISR True if this operation takes place in an irqg, 0 otherwise

* @return 0 if the operation was successfully

*/
typedef int (*multicore dev callback t) (const multicore dev t *dev,

multicore event t event, uint8 t fromISR);

/*! @brief Structure that characterizes the multicore device. */
typedef struct multicore dev private capability
{

/* callback */

multicore dev callback t callback;

} multicore dev private capability t;

6.4.10.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in object
oriented-languages.

For more information about operators, see Section 6.4.1.3.1.

6.4.10.2.1 Init

/* initialize the dev */
hal multicore status t (*init) (multicore dev t *dev, multicore dev callback t
callback, void *param) ;

Init should initialize any hardware resources required by the multicore device (pins, ports, clock, and so on).

6.4.10.2.2 Deinit

/* deinitialize the dev */
hal multicore status t (*deinit) (const multicore dev_t *dev);

"Deinitialize" the multicore device.

DeInit should release any hardware resources a multicore device might use (I/O ports, IRQs, and so on), turn
off the hardware, and perform any other shutdown the device requires.

6.4.10.2.3 Start

/* start the dev */
hal multicore status t (*start) (const multicore dev t *dev);

Start should start the flow. Handshake protocol can be implemented. The purpose of a handshake protocol is
to verify that both cores initialized properly the multicore unit.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

118 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.10.2.4 Send

/* Multicore Send the message */
hal multicore status t (*send) (const multicore dev_t *dev, void *data, unsigned
int size);

Multicore manager passes a buffer to the underlying level. The multicore device must send the message,
characterized by the size, to the counterpart device from the other core. On the other side, after receiving the
message, the hal device is responsible to call the callback, to make the multicore manager aware of the new
message.

6.4.10.3 FreeRTOS message buffer Device

Message buffers from FreeRTOS are used for one-way communication between two threads. To create a two-
way communication, a send and receive task must be created on both cores. Multicore Manager acts as a send
task, while the receive task is created within the Hal device init. The receive task also inherits the priority
of the send task. The portable layer, mandatory for this message buffer solution to work in dual-core system, is
provided as part of the SDK middleware for RT1170 and is based on the MCMGR middleware. MCMGR uses
under the hood the MU peripheral.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

119/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Primary core Secondary core

Initialize the multicare.
manager early nit Call this BemotetiareypRient message
funclion as close to the reset
entry as possible, (into the
startup sequence) to allow
CoreUp event triggering.

Multicore manager init
function to be calied I the
application main. It registers
critical and generic event
handlers.

II’

Register the application
event before starting the
secondary core.

MCMGR_RegisterEvent()

release the secondary core Initialize the multicore

Trigger the secondary core from the reset manager, early init. Call this
application execution. Pass the MCMGR_StartCore{) 4 function as close to the reset
startupData to the secondary RemoteCoreLipEvent message - entry as possible, (into the
core application. Either wait < i = 1 MCMGR_Earlylnit() startup sequence) to allow

until the secondary core reads Corelp event triggering.

and confirms the startup data

(KMCMGR_Start_Synchronous Multicore manager init
mode) or does not wait ISR MCMGR_Init() function to be called in the

h 4
MCMGR_StartupData
EventHandler

ISR
(KMCMGR_Start_Asynchronous application main. It registers
mode). critical and generic event
» DataEvent message handlers
<
StarfupDataEvent message »
E B Trigger a mechanism to get
% = the startup data from the
< g MCMGR_GetStartupData(} primary core to the
& E| 4 FeedStatupDataEvent message secondary core.
[
R StartupDataEvent message
SO
=

FeedStartupDataEvent message

Trigger the application event

T wonon Trggeme) | ks and

1o pass the accompany data

ol

A

RemoteApplication
Event handler

Register the MCMGR_ReqgisterEvent()

handler.

RemoteExceptionEvent message.

Defaulisk
{exception)

RemoteException
Ewent handler

Figure 31. Step-by-step diagram

The send and receive tasks must be built having a non-blocking design pattern in mind. To have the best
response time, they must be initialized with the highest priority.

The number of shared buffers that must be allocated is two, one for each one-way communication. The size is
at least the maximum message size, after a deep copy has been performed. They must be allocated statically at
compile or a procedure to advertise between cores the address must be implemented.

¢ CM7/ Write Buffer = CM4/ Read Buffer
e CM4/ Write Buffer = CM7/ Read Buffer

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

120/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

For more information about RTOS Message Buffers API, check FreeRTOS documentation

void vGenerateMulticorelInterrupt (void *xUpdatedMessageBuffer)

{

/* Trigger the inter-core interrupt using the MCMGR component.
Pass the APP MESSAGE BUFFER EVENT DATA as data that accompany
the kMCMGR FreeRtosMessageBuffersEvent event. */

(void) MCMGR TriggerEventForce (KMCMGR FreeRtosMessageBuffersEvent,

kMulticore DataEvent) ;

}

static void RemoteAppReadyEventHandler (uintl6 t eventData, void *context)

{

* (bool *)context = (bool)eventData;

}

static void FreeRtosMessageBuffersEventHandler (uintl6 t eventData, void
*context)

{
BaseType t xHigherPriorityTaskWoken = pdFALSE;

/* Make sure the message has been addressed to us. Using eventData that
accompany

the event of the kMCMGR FreeRtosMessageBuffersEvent type, we can
distinguish
different consumers. */
if (kMulticore DataEvent == eventData)

{
/* Call the API function that sends a notification to any task that is

blocked on the xUpdatedMessageBuffer message buffer waiting for data to

arrive. */
(void) xMessageBufferSendCompletedFromISR (xReadMessageBuffer,

&xHigherPriorityTaskWoken) ;
}

/* Normal FreeRTOS "yield from interrupt" semantics, where
HigherPriorityTaskWoken is initialzed to pdFALSE and will then get set to
PpdTRUE if the interrupt unblocks a task that has a priority above that of

the currently executing task. */
POrtYIELD FROM ISR (xHigherPriorityTaskWoken) ;

/* No need to clear the interrupt flag here, it is handled by the mcmgr. */
}

static void HAL MulticoreDev MessageBuffer RcvMsgHandler (void *param)

{

/* Size to cover on MAX message. Can be lowered if we know what we send */
static uint8 t pMessageBufferRcv[MB STORAGE BUFFER SIZE];

while (1)
{

size t xReceivedBytes = xMessageBufferReceive (xReadMessageBuffer, (void

*)pMessageBaffechv,
sizeof (pMessageBufferRcv),

portMAX DELAY) ;

LOGI ("Remote Message receive, size = %d", xReceivedBytes);
if ((xReceivedBytes != 0) &&
(s_MulticoreDev MessageBuffer.cap.callback != NULL))
{
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

121/ 226

https://www.freertos.org/RTOS-message-buffer-API.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

multicore event t multicore event;

multicore event.eventId = kMulticoreEvent MsgReceive;
multicore event.data = pMessageBufferRcv;
multicore event.size = xReceivedBytes;

s MulticoreDev MessageBuffer.cap.callback(&s MulticoreDev MessageBuffer,
multicore event, false);
}
1
}

static hal multicore status t HAL MulticoreDev MessageBuffer Deinit (const
multicore dev t *dev)

{

hal multicore status t status = kStatus HAL MulticoreSuccess;

return status;

}

static hal multicore status t HAL MulticoreDev MessageBuffer Send(const
multicore dev_t *dev, void *data, uint32 t size)

{

hal multicore status t status = kStatus HAL MulticoreSuccess;

if ((data !'= NULL) && (size != 0))
{
uint32 t streamFreeSpace =
xStreamBufferSpacesAvailable (xWriteMessageBuffer) ;
if (streamFreeSpace < size)

{
status = kStatus HAL MulticoreError;
LOGE ("Not enough space, free %$x needed %x", streamFreeSpace, size);

}

if (status == kStatus HAL MulticoreSuccess)

{

(void) xMessageBufferSend (xWriteMessageBuffer, data, size, 0);
LOGI ("MulticoreDev_send: Send %d bytes", size);

}

else

{
LOGD ("MulticoreDev_ send: Nothing to send");

}

return status;

}

static hal multicore status t HAL MulticoreDev MessageBuffer InputNotify (const
multicore dev_t *dev, void *data)

{

hal multicore status t status = kStatus HAL MulticoreSuccess;

return status;

}

static hal multicore status t HAL MulticoreDev MessageBuffer Start (const
multicore dev_t *dev)

{

hal multicore status t status = kStatus HAL MulticoreSuccess;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

122/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* Wait until the secondary core application signals it is ready to
communicate. */

while (true != s SecondCoreReady)

{
(void) MCMGR TriggerEvent (kMCMGR RemoteApplicationEvent, true);
vTaskDelay (pdMS TO TICKS (10));

Iy

/* Send one more event to be sure the other core got it */
(void) MCMGR TriggerEvent (kMCMGR RemoteApplicationEvent, true);

if (xTaskCreate(HAL MulticoreDev MessageBuffer RcvMsgHandler,
MULTICORE RCV_TASK NAME, MULTICORE RCV_ TASK STACK,
NULL, uxTaskPriorityGet (NULL), NULL) != pdPASS)
{
LOGE (" [MessageBuffer] Task creation failed!.");
while (1)

r

}

return status;

}

static hal multicore status t
HAL MulticoreDev MessageBuffer Init (multicore dev t *dev,

multicore dev callback t callback,
void *param)

hal multicore status t status = kStatus HAL MulticoreSuccess;
LOGD ("Start Multicore MessageBuffer INIT");

s _MulticoreDev MessageBuffer.cap.callback = callback;

xWriteMessageBuffer = xMessageBufferCreateStatic (
/* The buffer size in bytes. */
MB STORAGE BUFFER SIZE,
/* Statically allocated buffer storage area. */
&ucWriteMessageBufferStorage,
/* Message buffer handle. */
&xWriteMessageBufferStruct) ;

(void) MCMGR RegisterEvent (KMCMGR FreeRtosMessageBuffersEvent,
FreeRtosMessageBuffersEventHandler, ((void *)0));

(void) MCMGR RegisterEvent (kMCMGR RemoteApplicationEvent,
RemoteAppReadyEventHandler, (void *)&s SecondCoreReady) ;

/* We initied we are ready to rcv messages */
LOGD ("Exit Multicore MessageBuffer INIT");
return status;

6.5 Events

6.5.1 Overview
Events are a means by which information is communicated between different devices via their managers.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

123 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.5.1.1 Event triggers

Events can correspond to many different happenings during the runtime of the application, and can include
things like:

» Button pressed

* Face detected

» Shell command received

When an event is triggered, the device that first received the event communicates that event to its manager, that
in turn notifies other managers designated to receive the event.

For example, when a button is pressed, a flow similar to the following takes place:

1. The "Push Button" HAL device receives an interrupt corresponding to the button that was pressed.

2. Inside the HAL device's interrupt handler, the device associates an event with the button that was pressed.
3. The HAL device specifies which managers should receive the event.

4. The HAL device forwards the event to its manager.

The code that corresponds to this scenario can be seen in the below excerpts from framework/hal/input/
hal

input push buttons.c and source/event handlers, respectively.

void HAL InputDev IrgHandler (button data t *button, switch press type t
pressType)
{
if (s_InputDev PushButtons.cap.callback != NULL)
{
uint32 t receiverlList;
if (APP_ InputDev PushButtons SetEvent (button->buttonId, pressType,

&s_pEvent, sreceiverList) == kStatug_Success)
{
s_inputEvent.inputData = s_pEvent;
uint8 t fromISR = get IPSR();

s_InputDev PushButtons.cap.callback(&s InputDev PushButtons,
kInputEventID Recv, receiverList,
&s_inputEvent, 0, fromISR);
}
else
{
LOGE ("No valid event associated with SW%d button %s press", button-
>buttonId,
pressType == kSwitchPressType Short ? "short" : "long");
}

The "callback" function in the above code refers to an internal callback

function inside the [Input Manager] (../device managers/input manager.md)
which relays input events to each of the managers specified in an event's
‘receiverlList'.

switch (button)

{
case kSwitchID 1:

if (pressType == kSwitchPressType Long)
{

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

124/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

LOGD ("Long PRESS Detected.");

unsigned int totalUsageCount;

FWK ILpmManager RequestStatus (&totalUsageCount) ;

FWK ILpmManager EnableSleepMode (kLPMManagerStatus SleepEnable) ;
}

break;

case kSwitchID 2:
if ((pressType == kSwitchPressType Short) || (pressType ==
kSwitchPressType Long))
{

*receiverList = 1 << kFWKTaskID VisionAlgo;
s_FaceRecEvent.eventBase.eventId = kEventFaceRecID DelUser;
s_FaceRecEvent.delFace.hasName = false;
s _FaceRecEvent.delFace.hasID = false;
*event = &s FaceRecEvent;

}

break;

case kSwitchID 3:
if ((pressType == kSwitchPressType Short) || (pressType ==
kSwitchPressType Long))

{
*receiverList 1 << kFWKTaskID VisionAlgo;
s_FaceRecEvent.eventBase.eventId = kEventFaceRecID AddUser;
s_FaceRecEvent.addFace.hasName false;
*event &s_FaceRecEvent;

}

break;

default:
ret = kStatus Fail;
break;

}

return ret;

6.5.1.2 Types of events

Events can be used to communicate all sorts of information, but the two types of events defined by default are
InferComplete events and InputNotify events.

Both types of events represent different information being communicated to and by the HAL devices.

6.5.1.2.1 InferComplete events

Inference events are used to indicate that a vision/voice algorithm HAL device has completed a stage in its
inference pipeline.

Note: Only output HAL devices can respond to “InferComplete” events. This is not true of “InputNotify" events.
In the current application, it can refer to several things, including:

¢ Face detected
* Face recognized
e Fake face detected

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

125/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Output HAL devices can respond to inference events by implementing an inferComplete method. When an
"InferComplete” event is triggered, the output manager attempts to call the inferComplete event handler of
each of its devices, (assuming the device has implemented an inferComplete function).

As part of the inferComplete function call, the output manager also communicates the HAL device from
which the event originated, the ID of the event received, as well as any additional information related to the
event that was generated.

For example, a "Face Recognized" event also includes the ID of the face being recognized. Below is an
example of how the RGB LED HAL device responds to several different events.

static hal output status t HAL OutputDev_ RgbLed InferComplete (const output dev t
*dev,

output algo source t source,
void *inferResult)

vision algo result t *visionAlgoResult = (vision algo result t
*)inferResult;
hal output status t error

kStatus HAL OutputSuccess;

if (visionAlgoResult != NULL)
{ if (visionAlgoResult->id == kVisionAlgoID OasisLite)
{ ocasis lite result t *result = &(visionAlgoResult->oasisLite);
if (source == kOutputAlgoSource Vision)
{ if ((result->face recognized) && (result->face id >= 0))

{

RGB LED SET COLOR (kRGBLedColor Green) ;
}
else if (result->face count)
{

RGB_LED SET COLOR (kRGBLedColor Red);
}
else
{

RGB_LED SET COLOR (kRGBLedColor Off);
}

For more information about handling events, see Event handlers.

6.5.1.2.2 InputNotify events

Input events are events that indicate that input has been received by an input HAL device.

Only input HAL devices can generate an "InputNotify" event.
However, all HAL devices

(with the exception of LPM, Flash, and Graphics devices)
are able to respond to an "InputNotify" event.

Examples of input events include:

* Button pressed
e Shell command received

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

126 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

e WI-Fi/BLE input received
The event to generate for a given input is decided by the device which receives the input.

For example, the Push-Button device associates different events based on the different button presses and the
duration of those button presses, either long or short presses.

switch (button)
{
case kSwitchID 1:
if (pressType == kSwitchPressType Long)
{
LOGD ("Long PRESS Detected.");
unsigned int totalUsageCount;
FWK ILpmManager RequestStatus (&totalUsageCount) ;
FWK LpmManager EnableSleepMode (kLPMManagerStatus SleepEnable);
}

break;

case kSwitchID 2:
if ((pressType == kSwitchPressType Short) || (pressType ==
kSwitchPressType Long))
{

*receiverList = 1 << kFWKTaskID VisionAlgo;
s_FaceRecEvent.eventBase.eventId = kEventFaceRecID DelUser;
s_FaceRecEvent.delFace.hasName = false;
s_FaceRecEvent.delFace.hasID = false;
*event = &s_ FaceRecEvent;

}

break;

case kSwitchID 3:
if ((pressType == kSwitchPressType Short) || (pressType ==
kSwitchPressType Long))
{

*receiverList = 1 << kFWKTaskID VisionAlgo;
s_FaceRecEvent.eventBase.eventId = kEventFaceRecID AddUser;
s_FaceRecEvent.addFace.hasName = false;
*event = &s FaceRecEvent;

}

break;

default:
ret = kStatus Fail;
break;

Alongside an input event, the HAL device from which the event originated may also relay additional information .
Depending on the event, this may correspond to the button that was pressed, the shell command and args that
were received, and so on.

In the above example, we can see that pressing the SW3 push-button generates a
kEventFaceRecID AddUser event, specifying that there is no name for the face to add.

A list of general events can be found in "hal event descriptor common.h’,
while a list of face recognition-specific events can be found in
"hal event descriptor face rec.h'.

It is recommended that new events be added to the
"hal event descriptor common.h” file.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

127 1 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

To respond to an "InputNotify" event, a HAL device must implement an inputNotify handler function. When
an "InputNotify" event is triggered, each manager which receives the event attempts to call the inputNotify
method of every one of its devices (assuming the device has implemented an inputNotify method).

For more information regarding event handlers, see Event handlers.

6.5.2 Event handlers

Because events are the primary means by which the framework communicates between devices, a mechanism
to respond to those events is necessary for them to be useful. Event handlers were created for this explicit
purpose.

There are two kinds of event handler:

e Default Handlers
¢ App-specific Handlers

Event handlers, like other device operators, are passed via the device's operator struct to its manager.

const static dlsplay dev_operator t s DisplayDev LcdifOps = {

.init = HAL DisplayDev LcdifRk024hh2 Init,
.deinit = HAL DisplayDev LcdifRk024hh2 _Uninit,
.start = HAL DisplayDev LcdifRk024hh2 Start,
.blit = HAL DisplayDev LcdifRk024hh2 Bllt

.inputNotify = HAL DisplayDev LcdifRk024hh2 InputNotify,
}i

Each HAL device may define its own handlers for any given event. For example, a developer may want

the RGB LEDs to turn green when a face is recognized, but have the Ul display a specific overlay for that
same event. To do it, the RGB Output HAL device and the Ul Output HAL device can each implement an
InferComplete handler which will be called by their manager when an "InferComplete" event is received.

A HAL device does NOT have to implement an event handler for any specific event,
nor does it have to implement an "InputNotify handler (applicable for most
device types)

or an "InferComplete’ handler (applicable only for output devices).

6.5.2.1 Default handlers

Default event handlers are exactly what their name would suggest -- the default means by which a device
handles events. A HAL device's default event handlers (InputNotify, InferComplete, and so on) can be
found in the HAL device driver itself.

Nearly every device has a default handler implemented, although most devices will only actually handle a few
types of events.

Note: Devices that do not have a handler implemented can be extended to have one by using a similar device
as an example.

static hal display status t HAL DisplayDev LcdifRk024hh2 InputNotify (const
display dev_t *receiver, “void *data)
{
hal display status t error = kStatus HAL DisplaySuccess;
event base t eventBase * (event base t *)data;
event status t event response status kEventStatus_Ok;

if (eventBase.eventId == kEventID SetDisplayOutputSource)
{

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

128 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

event common t event

s DisplayDev Lcdif.cap.srcFormat
event.displayOutput.displayOutputSource;

s NewBufferSet = true;

if (eventBase.respond != NULL)

{

* (event common t *)data;

eventBase.respond (eventBase.eventlId, &event.displayOutput,
event response status, true);
}
LOGI (" [display dev_ inputNotify]: kEventID SetDisplayOutputSource devID
%$d, srcFormat %d", receiver->id,
event.displayOutput.displayOutputSource) ;
}
else if (eventBase.eventlId == kEventID GetDisplayOutputSource)
{
display output event t display;
display.displayOutputSource = s DisplayDev Lcdif.cap.srcFormat;
if (eventBase.respond != NULL)
{
eventBase.respond (eventBase.eventId, &display,
event response status, true);
}
LOGI (" [display dev_ inputNotify]: kEventID GetDisplayOutputSource devID
%$d, srcFormat %d", receiver->id,
display.displayOutputSource) ;
}

return error;

Some devices will not handle any events at all and will instead return 0 after performing no action.

hal camera status t HAL CameraDev CsiGc0308 InputNotify(const camera dev t *dev,
void *data)
{

hal camera status t ret = kStatus HAL CameraSuccess;

return ret;

Alternatively, some devices which do not require an event handler may simply return a NULL pointer instead.

const static display dev operator t s DisplayDev LcdifOps = {

.init = HAL DisplayDev Lcdifv2Rk055ah Init,
.deinit = HAL DisplayDev Lcdifv2Rk055ah Deinit,
.start = HAL DisplayDev Lcdifv2Rk055ah Start,
.blit = HAL DisplayDev Lcdifv2Rk055ah Blit,

.inputNotify = NULL,
}i

Managers will not call the InputNotify or other handler if that handler points to NULL.

A device's default handler whether for InputNotify events or InferComplete or otherwise can be
overridden by an "app-specific" handler.

6.5.2.2 App-specific handlers

App-specific handlers are device handlers which are defined for a specific "app".

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

129/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Not every device must implement an app-specific handler, but because default handlers are implemented using
WEAK functions, any device which has a default event handler can have that handler overridden.

Note: Some devices may not have implemented their default handlers using "WEAK" functions, but may be
updated to do so in the future.

For example, the IR + White LEDs may not require project-specific handlers because they will always react the
same way to a kEventID SetConfig/kEventID GetConfig command. Alternatively, an application may
wish to override and/or extend that default event handling behavior so that, for example, the LEDs increase in
brightness when an "Add Face" event is received.

To help denote an app-specific handler, App-specific handlers start with the App prefix. If an app-specific
handler for a device exists, it can be found in source/event handlers/{APP NAME} {DEV_TYPE} {DEV_
NAME}.c

7 Coffee machine

7.1 Introduction

This Coffee Machine application demonstrates the Coffee machine use case with the following core
functionalities:

» Coffee machine GUI with touch support
* Local voice command to control the use cases of Coffee machine
* Face recognition to store user's coffee preferences automatically

For leveraging the full computational power of the RT117H, the image has been split into two images that are
running in parallel on the CM7 and CM4 cores. The Coffee Machine CM7 acts as an Al block, handling all the
machine learning operations, such as face recognition and voice command. The operation has been optimized
to obtain the best performance on this type of MCU. The Coffee Machine CM4 holds the user interaction
(display, shell, buttons). The CM4 image is loaded into the memory by the CM7 core.

By default, i.MX RT117H boot from CM7. By fusing BT_CORE_SEL (Bit 12 in 0x960), the chip switches to CM4
as the main core. For more info on this topic, check AN13264.

The Coffee Machine uses the following HW components and peripherals:

* 2 x PDM MIC - configured to work with 16 kHz sampling. The conversion to PCM is done in hardware using
the PDM microphone interface.

* 16 KHz raw data to RT117x MQS HW peripheral that generates PWM data output.
External filtering and coupling.

* Analog audio amplifier

MIPI GC2145 Camera - configured to work with 600x800 resolution.

LCDIFV2 Rocktech RKO55MHDO091 - configured to work at the HD resolution of 1280x720

To change this configuration, check HAL code and Section 10.1

It uses NXP's below core technologies:

LVGL-based GUI

* Local voice command algorithm

* Face recognition algorithm

» Dual-core architecture based on multicore manager (mcmgr) middleware component.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

130 /226

https://www.nxp.com/docs/en/application-note/AN13264.pdf

NXP Semiconductors

MCU-SMHMI-SDUG

7.2

Architecture

Smart HMI Software Development User Guide

Framework
MQS HAL
Vision Algo HAL

Voice Algo

Peripherals CM7

Notification

IPC with Shared Memory

Camera HAL
Display HAL

Graphics HAL

CcM4

Peripherals

CMY7 (Vision & Voice algorithm accelerator):

Framework

Vision algorithm with VGA input frames
Voice algorithm (AFE + ASR) with mic input
MQS audio playback

CM4 (Ul & System control unit):

Framework

CSI/MIPI Camera preview @VGA

LVGL GUI @720p with VGLite 2D GPU acceleration

Vision algorithm input frames color space conversion with PxP

« IPC communication with shared memory

Figure 32. Architecture diagram

+ Touch panel input
+ IPC communication with shared memory

7.3 Software block diagram

OTA FW Update
pAWS loT

MSD FW Update

Automatic Speech Recognifion
Wake Words & Commands

Figure 33. Software diagram

Multicore QOutput Manager Algorithm Manager
Manager HAL HAL HAL

Camera
HAL

Qutput Manager
HAL

Display Manager
HAL
Power Manager
HAL

Multicore
Manager HAL
Input Manager

HAL

It includes two projects as below:
¢ Host CM7 project

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023
131/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

¢ Slave CM4 project

Each project uses a two-layer architecture containing the Framework + HAL layer and the Application layer.
For the details, refer to the documentation on each project.

7.4 Coffee machine CM7

This Coffee Machine CM7 host project runs on the CM7 core.
It is linked to flash with the combination of the CM4 project.

The CM7 was designed to focus on the vision and voice algorithms' processing to get the best performance.

7.5 Main functionalities

* Vision algorithm
* Voice algorithm
* Audio playback
* Microphone stream input
* Multicore communication
Littlefs format filesystem

7.6 Boot sequence

The "main" entry of this project is located in the . . /coffee machine/cm7/source/sln smart tlhmi
cm7 . cpp file. The basic boot-up flow is:

* Initialize board level

* Initialize framework

* Register HAL devices

Start the framework

Start the FreeRTOS scheduler

int main (void)

{
/* init the board */
APP BoardInit();

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices();

/* start the framework*/
APP StartFramework() ;

vTaskStartScheduler () ;
for (;;)

{
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

132/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

7.7 Board level initialization

The board-level initialization is implemented in the APP_BoardInit () entry whichis locatedin ../coffee
machine/cm7/source/sln smart tlhmi cm7.cpp. Below is the main flow:

* Relocate vector table into RAM

» Configure MPU, Clock, and Pins

* Debug console with hardware semaphore initialization

» System time stamp start

* Load resources from flash into the share memory region
Multicore manager init and boot slave core

void APP BoardInit (void)

{
BOARD RelocateVectorTableToRam() ;

BOARDfConfigMPU ()
BOARD_InitBootPins ()
BOARD InitBootClocks();

BOARD InitDebugConsole();
Time Init(1l);

APP LoadResource () ;

/* Initialize the HW Semaphore */
SEMA4 Init (BOARD SEM4 BASE) ;

#if defined (ENABLE MASTER) && ENABLE MASTER
/* Initialize MCMGR before calling its API */
(void) MCMGR Init () ;

/* Boot Secondary core application */

(void) MCMGR StartCore (kMCMGR Corel, (void *) (char *)CORE1l BOOT ADDRESS, O,
kMCMGR Start Synchronous) ;
#endif /* defined (ENABLE MASTER) && ENABLE MASTER Y
}

7.8 Framework managers

The below framework managers are enabled on the cm7 side with the following priorities:

* Vision algorithm manager - P3
* Voice algorithm manager - P3

* Audio processing manager - P2
* Input manager - P1

* Output manager - P4

* Multicore manager - PO

* Flash device manager

Where PO is the highest priority and P4 is the least prioritized.

Note: Choosing the right priority for the manager is something that must be addressed based on the
requirements. Our recommendation is to keep Vision manager equal to or less than Voice manager, or the
audio sample can be lost.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

133 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Refer to the framework documentation (. . /framework/docs) for a detailed description of these framework

managers.

Note: To prepare the environment for other framework managers, initialize the filesystem and application
configuration first.

int APP InitFramework (void)

{

int ret = 0;

HAL FLASH DEV REGISTER(thtlefS, ret) ;
HAL OutputDev SmartTlhmiConfig Init();

FWK MANAGER INIT
FWK MANAGER INIT

VisionAlgoManager, ret);
. | - VoiceAlgoManager, ret);
FWK MANAGER INIT (AudioProcessing, ret);
FWK_MANAGER INIT (OutputManager, ret);
FWK MANAGER INIT (InputManager, ret);
#if defined(ENABLE_MASTER) && ENABLE MASTER
FWK MANAGER INIT (MulticoreManager, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE MASTER */

—_— o~ —~ —~

return ret;

}

int APP StartFramework (void)
{

int ret = 0;

FWK_MANAGER_START(VisionAlgoManager, VISION ALGO MANAGER TASK PRIORITY,
ret) ;

FWKiMANAGERisTART(OutputManager, OUTPUT MANAGER TASK PRIORITY, ret) ;

FWK MANAGER START(AudioProcessing, AUDIO PROCESSING TASK PRIORITY, ret) ;

FWK | ~ MANAGER START(InputManager, INPUT MANAGER TASK PRIORITY ret) ;

FWK MANAGER . START (VoiceAlgoManager, VOICE ALGO MANAGER TASK PRIORITY, ret);

#if defined (ENABLE _MASTER) && ENABLE MASTER
FWK MANAGER START(MultlcoreManager, MULTICORE MANAGER TASK PRIORITY, ret);
#endif /* defined (ENABLE MASTER) && ENABLE MASTER */

return ret;

7.9 Framework HAL devices

The enabled HAL devices are configured in the . ./coffee machine/cm7/board/board define.h file as

shown below:

#define ENABLE INPUT DEV_ PdmMic

#define ENABLE _AUDIO_ PROCESSING DEV Afe
#define ENABLE DSMT ASR

#define ENABLE OUTPUT DEV_MgsAudio

#define ENABLE OUTPUT DEV ~ SmartTlhmiConfig
#define ENABLE VISIONALGO DEV_ Oasis CoffeeMachine
#define ENABLE FLASH DEV Littlefs

#define ENABLE FACEDB

#define USE_CAMERA MipiGc2145

#if defined (ENABLE MASTER) && ENABLE MASTER
#define ENABLE MULTICORE DEV MessageBuffer

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

134 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

#endif /* defined(ENABLE MASTER) && ENABLE MASTER */

The registration of the enabled HAL devices is implemented in the APP RegisterHalDevices (...) function
which is located in . . /coffee machine/cm7/source/sln smart tlhmi cm7.cpp:

Note: APP RegisterHalDevices (...) mustbe called after the framework initialization
APP InitFramework (...) and before framework startup APP StartFramework (...).

int APP RegisterHalDevices (void)

{

int ret = 0;

HAL OUTPUT DEV REGISTER (MgsAudio, ret);

HAL AUDIO PROCESSING DEV REGISTER (Afe, ret);

HAL INPUT DEV_REGISTER (PdmMic, ret);

HAL VOICEALGO DEV_ REGISTER (Asr, ret);

HAL VALGO DEV REGISTER (OasisCoffeeMachine, ret);
#i1if defined (ENABLE MASTER) && ENABLE MASTER

HAL MULTICORE DEV REGISTER (MessageBuffer, ret);
#endif /* defined (ENABLE MASTER) && ENABLE MASTER */

HAL INPUT DEV_REGISTER (WiFiAWAM510, ret);

return ret;

7.10 Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document
located in . ./coffee machine/cm7/freertos/libraries/logging/README.md.

The CM7 and CM4 share the low-level LPUART12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of the LPUART12 peripheral. They share a low-level
timer to get the unified timestamp of the logging information.

7.10.1 Log Task Init

The application calls the xLoggingTaskInitialize (...) APIto create the logging task in the main ()
entry of this project and is located in . . /coffee machine/cm7/source/sln smart tlhmi cm7.cpp:

xLoggingTaskInitialize (LOGGING TASK STACK SIZE, LOGGING TASK PRIORITY,
LOGGING QUEUE_LENGTH) ;

7.10.2 Log Macros

There are four kinds of logging that can be used in both cm7 and cm4, which you can find in . . /framework/
inc/fwk log.h.

#ifndef LOGV

#define LOGV (fmt, args...) {implement...}

#endif

#ifndef LOGD

#define LOGD (fmt, args...) {implement...}

#endif
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

135/226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

#ifndef LOGI

#define LOGI (fmt, args...) {implement...}
#endif

#ifndef LOGE

#define LOGE (fmt, args...) {implement...}
#endif

7.11 Coffee Machine database

The Coffee Machine application uses framework flash operations with the low-level littlefs filesystem to store
the recognized user-faces database and user coffee information. The detailed usage APl is located in files . ./
framework/hal/vision/hal sln facedb.hand ../coffee machine/cm7/source/hal sln cof
feedb.h. The face database and user coffee information database entry are bound together using the user id.
The user id is a unique identifier on one device.

To make it easier for users to add their database with personal attributes, we split the face database from user
database. The user should create something similar with hal sln coffeedb.h and add attributes like in the
coffee attribute t structure.

7.11.1 Face recognition database usage

g facedb ops handles all kinds of face database operations.

typedef struct facedb ops
{
facedb status t (*init) (uintl6 t featureSize);
facedb status t (*saveFace) (void);
facedb status_t (*addFace) (uintl6_t id, char *name, void *face, int size);
facedb status_t (*delFaceWithId) (uintl6_t id);
facedb status_t (*delFaceWithName) (char *name) ;
facedb status t (
facedb status t (
size) ;
facedb status t (*getFaceWithId) (uintl6 t id, void **pFace);
facedb status_t (*getIdsAndFaces) (uintl6é t *face ids, void **pFace);
*
5

*updNameWithId) (uintl6_t id, char *name);
*updFaceWithId) (uintl6 t id, char *name, void *face, int

facedb:status_t getIdWithName) (char *ngme, uinE16_t #ael) g
facedb status t genld) (uintl6é t *new id);
facedb status t (*getIds) (uintl6 t *face ids);
bool (*getSaveStatus) (uintl6 t id);
int (*getFaceCount) (void) ;
char * (*getNameWithId) (uintl6 t id);
} facedb ops t;

extern const facedb ops t g facedb ops;

7.11.2 User coffee information database usage

g _coffedb ops handles all kinds of user information database operations.

ypedef enum coffee type
{
Coffee Espresso,
Coffee Americano,
Coffee Cappuccino,
Caffee Latte,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

136 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

} coffee type t;

typedef enum coffee size
{

Coffee Small,

Coffee Medium,

Coffee Large,
} coffee size t;

typedef enum coffee strength
{

Coffee Soft,

Coffee Mild,

Coffee_ Strong,
} coffee strength t;

typedef struct coffee attribute
{

uintlé t id;

uint8 t type;

uint8 t size;

uint8 t strength;

uint8 t reserved[1l6];
} coffee attribute t;

typedef struct coffeedb ops
{
coffeedb status t (
coffeedb status_t (*deinit) (void);
coffeedb status t (*addWithId) (uintlé t id, coffee attribute t *attr);
coffeedb status t (*delWithId) (uintlé6 t id);
coffeedb status t (*updWithId) (uintl6é t id, coffee attribute t *attr);
coffeedb status t (*getWithId) (uintlé t id, coffee attribute t *attr);
} coffeedb ops t;

*init) (void) ;

extern const coffeedb ops t g coffedb ops;

7.12 Coffee machine CM4

This Coffee Machine CM4 slave project runs on the CM4 core.
Itis linked to SDRAM and is embedded into the CM7 project.
The CM7 project handles the loading of this CM4 project into SDRAM and launching it.

7.13 Main functionalities

* Main GUI based on LVGL with Vglite graphics acceleration

* Camera with 2D PxP graphics acceleration

* Display for the camera preview and LVGL GUI

USB shell

LED indicator

Multicore with messaging and shared memory communication

7.14 LVGL GUI screens and widgets
All the LVGL GUI screens and widgets are generated with NXP's GUI Guider tools.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

1371226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Refer the GUI Guider home page for more information.

7.15 LVGL and Vglite library
The LVGL and Vglite components are directly ported from RT1170 SDK and we did not modify them in our
solution.

Also the code for the LVGL GUI screens and widgets, which are generated by NXP's GUI guider, is not
frequently changed.

To speed up the building of the whole project, we moved these components into one static library and linked the
library into the CM4 application project.

This LVGL and Vglite library project is located in the coffee machine/1lvgl vglite 1ib folder.

7.16 Boot sequence

Below is the core boot up flow:

* Board level initialization

* Framework initialization

* HAL devices registration

* Framework startup
FreeRTOS scheduler startup

The main () entry of this project is located in . . /coffee machine/cm4/source/sln smart tlhmi
cmé . cpp file:

int main (void)

{
/* init the board */
APP BoardInit();

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices() ;

/* start the framework*/
APP StartFramework () ;

vTaskStartScheduler () ;

Eor (755

{

} /* should never get here */
return 0;

7.17 Board level initialization

The board level initialization is implemented in the APP_BoardInit () entry which is located in the ../
coffee machine/cmd4/source/sln smart tlhmi cmé.cpp file.

Below is the main flow:

* MPU, Clock, and Pins configuration
» Multicore manager init and slave startup

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

138 /226

https://www.nxp.com/design/software/development-software/gui-guider

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

 Peripherals initialization

void APP BoardInit ()

{
BOARDfConfigMPU();
BOARD_BootClOCkRUN();
BOARD InitBootPins();

#if defined (ENABLE SLAVE) && ENABLE SLAVE

uint32 t startupData, i;

mcmgr status t status;

(void) MCMGR Init () ;

/* Get the startup data */

do

{

status = MCMGR GetStartupData (&startupData) ;

} while (status != kStatus MCMGR Success) ;

#endif /* defined (ENABLE SLAVE) && ENABLE SLAVE */

BOARD MIPIPanelTouch I2C Init();
BOARD_InitEDMA();
Time Init(1l);

7.18 LVGL image resource and icon resource loading

All the LVGL images, data, and icon data are merged into one continuous binary block with the 64 Bytes aligned
of each imagef/icon.

The cm?7 loads this resource binary block into the dedicated memory region res sh mem.
The following two functions load each of these LVGL images and icons from this region during the boot.

Setup the LVGL images is implemented in . . /coffee machine/cm4/generated/gui guider.c

void setup imgs (unsigned char *base)

{
brewing animimg brewingfOl.data = (base + 0);
brewing animimg brewingf02.data = (base + 120000);
brewing animimg brewingf03.data (base + 240000) ;

}

Load theicons (. ./framework/hal/output/hal output ui coffee machine.c):

void LoadIcons (void *base)

{

s _Icons[ICON PROGRESS BAR] = (base + 0);
s_Icons[ICON VIRTUAL FACE BLUE] = (base + 6720);

s _Icons[ICON VIRTUAL FACE GREEN] = (base + 364608);
s Icons[ICON VIRTUAL FACE RED] = (base + 722496);

// Icons Total: 0x00107c40 1080384

7.19 Framework managers

The below framework managers are enabled on the cm4 side with the following priorities:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

139 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* Low-power manager

» Camera manager - P2
* Display manager - P2

* Multicore manager - PO
* Output manager - P1

* Input manager - P2

Where PO is the highest priority and P3 is the least prioritized.

For a more detailed description of these framework managers, refer to the framework documentation (. .

framework/docs/introduction.md).

Framework initialization (. . /coffee machine/cm4/source/sln smart tlhmi cm4.cpp):

int APP InitFramework (void)

{

int ret = 0;

FWK_MANAGER INIT (LpmManager, ret);

FWK_ MANAGER INIT (CameraManager, ret);

FWK MANAGER INIT (DisplayManager, ret);
#if defined(ENABLEisLAVE) && ENABLE SLAVE

FWK MANAGER INIT (MulticoreManager, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE SLAVE */

FWK_MANAGER INIT (OutputManager, ret);

FWK MANAGER INIT (InputManager, ret);

return ret;

Framework startup (. ./coffee machine/cm4/source/sln_smart tlhmi cmé4.cpp):

int APP StartFramework (void)
{

int ret = 0;

FWK_MANAGER START (LpmManager, 0, ret);

FWK_MANAGER START (CameraManager, CAMERA MANAGER TASK PRIORITY, ret);

FWK MANAGER START (DisplayManager, DISPLAY MANAGER TASK PRIORITY, ret);
#if defined (ENABLE SLAVE) && ENABLE SLAVE

FWKiMANAGERisTXRT(MulticoreManager, MULTICORE MANAGER TASK PRIORITY, ret);

#endif /* defined (ENABLE SLAVE) && ENABLE SLAVE */
FWK_MANAGER START (OutputManager, OUTPUT MANAGER TASK PRIORITY, ret);
FWK_MANAGER START (InputManager, INPUT MANAGER TASK PRIORITY, ret);

return ret;

7.20 Framework HAL devices

The enabled HAL devices are configured in the . . /coffee machine/cm4/board/board define.h file as

shown below:

#define ENABLE GFX DEV_Pxp

#define ENABLE DISPLAY DEV LVGLCoffeeMachine
#define ENABLE CAMERA DEV MipiGc2145

#define ENABLE OUTPUT DEV RgbLed

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

140/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

#if deflned(ENABLE SLAVE) && ENABLE SLAVE

#define ENABLE MULTICORE DEV MessageBuffer

#endif /* deflned(ENABLE SLAVE) && ENABLE SLAVE */
#define ENABLE INPUT DEV ShellUsb

#define ENABLE OUTPUT DEV UiCoffeeMachine

#define ENABLE LPM DEV Standby

The registration of the enabled HAL devices is implemented in the APP RegisterHalDevices (...) function
which is located in . . /coffee machine/cm4/source/sln smart tlhmi cmé.cpp:

Note: APP RegisterHalDevices (...) mustbe called after the framework initialization
APP InitFramework (...) and before framework startup APP StartFramework (...).

int APP RegisterHalDevices (void)

{

int ret = 0;

HAL GFX DEV REGISTER (Pxp, ret);
HAL DISPLAY DEV ~ REGISTER (LVGLCoffeeMachine, ret);
HAL CAMERA DEV_REGISTER (MipiGc2145, ret);
#1if defined (ENABLE SLAVE) && ENABLE SLAVE
HAL, MULTICORE DEV REGISTER(MessageBuffer, ret) ;
#endif /* defined (ENABLE SLAVE) && ENABLE SLAVE */
HAL OUTPUT DEV REGISTER(RgbLed ret);
HAL INPUT DEV ~ REGISTER (ShellUsb, ret);
HAL OUTPUT DEV REGISTER(UlCoffeeMachlne, ret) ;
HAL LPM DEV REGISTER (Standby, ret);
#ifdef ENABLE OUTPUT DEV_ AudioDump
HAL OUTPUT DEV REGISTER (AudioDump, ret);
#endif /* ENABLE OUTPUT DEV _AudioDump Y
/* Add new HAL device registrations here */

return ret;

7.20.1 MipiGc2145 camera HAL device

This HAL device driver is located in . . /framework/hal/camera/hal camera mipi gc2145.c.

Below is the configuration of this camera device located in . . /coffee machine/cm4/board/board
define.h.

#ifdef ENABLE CAMERA DEV MipiGc2145
#define CAMERA DEV MlpchZl45 BUFFER COUNT 2

#define CAMERA DEV MipiGc2145 HEIGHT 600 // 720
#define CAMERA DEV MipiGc2145 WIDTH 800 // 1280
#define CAMERA DEV MipiGc2145 LEFT 0

#define CAMERA DEV MipiGc2145 TOP 0

#define CAMERA DEV MipiGc2145 RIGHT 799 // 1279
#define CAMERA DEV MipiGc2145 BOTTOM 599 // 719
#define CAMERA DEV MipiGc2145 ROTATE kCWRotateDegree 0
#define CAMERA DEV MipiGc2145 FLIP kFlipMode None
#define CAMERA DEV MipiGc2145 SWAPBYTE 0

#define CAMERA DEV MipiGc2145 FORMAT kPixelFormat YUV1P444 RGB
#define CAMERA DEV MipiGc2145 BPP 4

#endif /* ENABLE CAMERA DEV MipiGc2145 */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

141/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

7.20.2 PxP graphics HAL device

This HAL device driver is located in . . /framework/hal/misc/hal graphics pxp.c

It represents the 2D graphics device to handle the 2D graphics operations.

7.20.3 LVGLCoffeeMachine display HAL device

This HAL device driver is located in . . /framework/hal/display/hal display lvgl coffeemachine.
c.

Below is the configuration of this display device located in . ./coffee machine/cm4/board/board
define.h.

#ifdef ENABLE DISPLAY DEV LVGLCoffeeMachine
#define DISPLAY DEV LVGLCoffeeMachine _BUFFER_COUNT 1

#define DISPLAY DEV LVGLCoffeeMachlne HEIGHT 640

#define DISPLAY DEV LVGLCoffeeMachine ~WIDTH 480

#define DISPLAY DEV LVGLCoffeeMachine StartX 80

#define DISPLAY DEV LVGLCoffeeMachine StartY 50

#define DISPLAY DEV LVGLCoffeeMachine LEFT 0

#define DISPLAY DEV LVGLCoffeeMachine TOP 0

#define DISPLAY DEV LVGLCoffeeMachine RIGHT 479

#define DISPLAYiDEViLVGLCoffeeMachlneiBOTTOM 639

#define DISPLAY DEV LVGLCoffeeMachine ROTATE kCWRotateDegree 270
#define DISPLAY DEV LVGLCoffeeMachlne FORMAT kPixelFormat RGB565

#ifdef ENABLE CAMERA DEV MlplG02145

#define DISPLAY DEV LVGLCoffeeMachlne SRCFORMAT kPixelFormat YUV1P444 RGB
#else

#define DISPLAY DEV LVGLCoffeeMachine SRCFORMAT kPixelFormat UYVY1P422 RGB
#endif /* ENABLE CAMERA DEV MlplGCZl45 w/

#define DISPLAY DEV LVGLCoffeeMachine BPP 2

#endif /* ENABLE DlsplayDev LVGLCoffeeMachine */

This LVGLCoffeeMachine-display-HAL-device launches the main LVGL task loop for the Ul flashing.

static void LvglTask(void *param)
{
#if LV _USE_LOG
lv_log register print cb(PrintCb);
#endif /* LV_USE LOG */

lv _port pre init();

lv _init();

lv_port disp init();
lv_port indev _init();

g_ nglInltlallzed = true;

setup imgs ((unsigned char *)APP LVGL IMGS BASE) ;
setup ui (&guider ui);
events init (&guider ui);
custom init (&guider ui);
while (1)
{
1lv_task handler () ;
vTaskDelay(deS TO TICKS(S));

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

142/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

It also handles the camera preview request from the framework in HAL. DisplayDev LVGLCoffeeMachine
Blit function:

hal display status_t HAL DisplayDev LVGLCoffeeMachine Blit (const display dev t
*dev, void *frame, int width, int height)
{
hal display status t ret = kStatus HAL DisplaySuccess;
LOGI ("++HAL DisplayDev LVGLCoffeeMachine Blit");

// Show the new frame.
void *lcdFrameAddr s_LcdBuffer[0];
static int camerPreviewLayerOn = 0;

// enable camera preview layer in screen with camera preview.
if (lv_scr _act() == guider ui.home && g PreviewMode == PREVIEW MODE CAMERA)
{
if (camerPreviewLayerOn == 0)
{
lv_enable camera preview (lcdFrameAddr, true);
camerPreviewLayerOn = 1;

// disable camera preview layer in screen without camera preview.
if (camerPreviewLayerOn == 1)

{
camerPreviewLayerOn = 0;
1v_enable camera preview (lcdFrameAddr, false);

}

LOGI ("--HAL DisplayDev LVGLCoffeeMachine Blit");
return ret;

7.20.4 UiCoffeeMachine Ul output HAL device

This HAL device driver is located in . . /framework/hal/output/hal output ui coffee machine.c.

The whole Ul state machine is driven by this output HAL device with the below event sources:

7.20.4.1 LVGL touch events

All the event callbacks of the LVGL widget are implemented in . . /coffee machine/cm4/generated/
events_init.c.

7.20.4.2 Vision and Voice algorithm inference result

The vision and voice inference result is notified by the output manager with below HAL OutputDev_UiCoffee
Machine InferComplete operator:

static hal output status t HAL OutputDev UiCoffeeMachine InferComplete (const
output dev t *dev,output algo source t source,void *inferResult)
{

hal output status t error = kStatus HAL OutputSuccess;

if (inferResult == NULL)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

143 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

{

return error;

}

coffee machine screen id t currentScreenld = get current screen();

if (currentScreenId == SCR_INVALID)
{

return error;

}

if (source == kOutputAlgoSource Vision)
{
_InferComplete Vision (dev, inferResult, currentScreenId);
}
else if (source == kOutputAlgoSource Voice)
{

_InferComplete Voice (dev, inferResult, currentScreenId);

}

return error;

7.20.5 RgbLed output HAL device

This HAL device driver is located in . . /framework/hal/output/hal output rgb led.c.

It flashes the RGB led with different pattern according to the HAL OutputDev RgbLed InferComplete oOr
HAL OutputDev_RgbLed InputNotify operators below:

static hal output status_ t HAL OutputDev RgbLed InferComplete (const output dev t
*dev, output algo source t source, void *inferResult)
{
hal output status t error = kStatus HAL OutputSuccess;
uint32 t timerOn = 0g
_SetLedColor (APP_OutputDev RgbLed InferCompleteDecode (source, inferResult,
&timerOn)) ;

if (timerOn != 0)
{
xTimerChangePeriod (OutputRgbTimer, pdMS TO TICKS (timerOn), 0);

}

return error;

static hal output status t HAL OutputDev RgbLed InputNotify(const output dev t
*dev, void *data)

{
hal output status t error = kStatus HAL OutputSuccess;
_SetLedColor (APP_OutputDev RgbLed InputNotifyDecode (data)):;

return error;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

144/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

7.20.6 MessageBuffer multicore HAL device

This HAL device driver is located in. . /framework/hal/misc/hal multicore messageBuffer.c.
It handles the multicore messaging based on the multicore manager message buffer mechanism.

Refer the . ./framework/docs/hal devices/multicore.md file in the framework documentation for the
detailed description of this HAL device.

7.20.7 ShellUsb input HAL device

This HAL device driver is located in . . /framework/hal/input/hal input shell cdc.c.
It populates one USB CDC device and generates the shell.

This driver only includes one weak shell command registration function as below:

__attribute ((weak)) void

APP InputDev_ Shell RegisterShellCommands (shell handle t shellContextHandle,
input dev_t shellDev, input dev callback t callback)

{

1

The application must overwrite this function to register the exactly shell commands.

The implementation of this overwritten function for the Coffee Machine applicationisin ../coffee
machine/cmé4/source/event handlers/smart tlhmi input shell commands.c:

void APP InputDev Shell RegisterShellCommands (shell handle t shellContextHandle,
input dev_t *shellDev, input dev callback t callback)
{

s_InputCallback = callback;

s_SourceShell = shellDev;

s_ShellHandle = shellContextHandle;

s _FrameworkRequest.respond = FrameworkEventsHandler;

if (s _ThingName == NULL)
{

APP GetHexUniqueID (&s_ThingName) ;
}

SHELL RegisterCommand (shellContextHandle, SHELL COMMAND (version)) ;

7.20.8 Standby LPM HAL device

This HAL device driver is located in . . /framework/hal/misc/hal lpm standby.c

Referto . ./framework/docs/hal devices/low power.md in the framework documentation for the
detailed description of this LPM device.

This standby HAL device implements the standby mode of this application. The backlight is turned off and the
main display layer is disabled.

static void EnterStandbyMode (void)

{
LOGD (" [Standby] Enter standby mode") ;
BOARD BacklightControl (0);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

145/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

1v_enable ui preview(0);

7.21 Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document
../coffee machine/cm4/freertos/libraries/logging/README.md.

The CM7 and CM4 share the low-level LPUART12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of theLPUART12 peripheral.

They share a low-level timer to get the unified timestamp of the logging information.

7.21.1 Logging Task Init

Application calls xL.oggingTaskInitialize (...) API to create the logging task in the main () entry of this
project is located in the . . /coffee machine/cm4/source/sln smart tlhmi cm4.cpp file:

xLoggingTaskInitialize (LOGGING TASK STACK SIZE, LOGGING TASK PRIORITY,
LOGGING QUEUE_ LENGTH) ;

7.21.2 Logging Macros

The logging Macros are defined in . . /framework/inc/fwk log.h.

All the modules must use these unified logging Macros for logging.

#ifndef LOGV
#define LOGV (fmt, args...) {implement...}

#endif
#ifndef LOGD

#define LOGD (fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI (fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE (fmt, args...) {implement...}
fendif

8 Elevator

8.1 Introduction

This Elevator application demonstrates the elevator use case with the core functionalities:

 Elevator GUI with touch support
¢ Local voice command to control the use cases of the elevator
* Face recognition to store user's floor information automatically

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

146 / 226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

For leveraging the full computational power of the RT117H, the image has been split into two images that are
running in parallel on the CM7 and CM4 cores. The Elevator CM7 acts as an Al block, handling all the machine
learning operations, such as face recognition and voice command. The operation has been optimized to obtain
the best performance on this type of MCU. Elevator CM4 holds the user interaction (display, shell, buttons). The
CM4 image is loaded into memory by the CM7 core.

By default, i.MX RT117H is boot from CM7. By fusing BT_CORE_SEL (Bit 12 in 0x960), the chip switches to
CM4 as the main core. For more information on this topic, check AN13264.

The Elevator Application uses the following HW components and peripherals:

* 2 x PDM MIC - configured to work with 16 kHz sampling. The conversion to PCM is done in hardware using
the PDM microphone interface.

* 16 KHz raw data to RT117x MQS HW peripheral that generates PWM data output.

External filtering and coupling.

Analog audio amplifier.

MIPI GC2145 Camera - configured to work at 600x800 resolution.

LCDIFV2 Rocktech RK0O55MHDO091 - configured to work at HD resolution of 1280x720.

To change this configuration, check HAL code and Section 10.1

8.2 Architecture

IR & RGB Framework
Framework Frames
Camera HAL Display
MQS HAL () Vision Algo i Camera
Speaker || Resut 4@ Display HAL
— Vision Algo HAL Voice Algo. —
 Result | Graphics HAL =7
Mic Voice Algo HAL ~ Notification -
Message LYl e I GPU2D
Peripherals cm? IPC with Shared Memory cM4 Peripherals

CM4 (U1 & System control unit):
Framework
CSI/MIPI Camera preview @VGA

CMY7 (Vision & Voice algorithm accelerator):
« Framework
« Vision algorithm with VGA input frames

- Voice algorithm (AFE + ASR) with mic input + LVGL GUI @720p with VGLite 2D GPU acceleration
+ MQS audio playback + Vision algorithm input frames color space conversion with PxP
« |PC communication with shared memory + Touch panel input

IPC communication with shared memory

Figure 34. Architecture diagram

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

147 | 226

https://www.nxp.com/docs/en/application-note/AN13264.pdf

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

8.3 Software block diagram

Boot Loader

OTA FW Update
pAWS loT

MSD FW Update

Beamforming
Echo
Automatic Speech Recognition
Wake Words & Commands

Figure 35. Software diagram

Multicore Camera Manager Display Manager
IManager HAL HAL HAL
Input Manager OQutput Manager Power Manager
HAL HAL HAL

It includes two projects as below:
¢ Host CM7 project
¢ Slave CM4 project

Each project uses two-layer architecture containing the Framework + HAL layer and the Application layer. For
details, refer to the documentation on each project.

8.4 Elevator CM7

This Elevator CM7 host project runs on the CM7 core. It is linked to flash with the combination of the CM4
project. CM7 was designed to focus on the vision and voice algorithms' processing to get the best performance.

8.5 Main functionalities

* Vision algorithm

* Voice algorithm

Audio playback
Microphone stream input
Multicore communication
Elevator database

8.6 Boot sequence

The "main” entry of this projectis inthe . . /elevator/CM7/source/sln_smart tlhmi CM7.cpp file. The
basic boot up flow is:

¢ |nitialize board level

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 1 — 23 May 2023

148 / 226

NXP Semiconductors

MCU-SMHMI-SDUG

Initialize framework

Register HAL devices

Start the framework

Start the freeRTOS scheduler

Smart HMI Software Development User Guide

int main (void)

{

/* init the board */
APP BoardInit();

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices();

/* start the framework*/
APP StartFramework () ;

vTaskStartScheduler () ;
for (;;)

{
}

8.7 Board level initialization

The board-level initialization is implemented in the APP_BoardInit () entry whichis locatedin ../
elevator/CM7/source/sln smart tlhmi CM7.cpp. Below is the main flow:

Relocate vector table into RAM
Configure MPU, Clock, and Pins

Debug console with hardware semaphore initialization

System time stamp start

Load resource from flash into share memory region

Multicore manager init and boot slave core

void APP BoardInit (void)

{

#if defined (ENABLE MASTER)

MCU-SMHMI-SDUG

BOARD RelocateVectorTableToRam() ;

BOARD ConfigMPU() ;
BOARDfInitBootPinS () 2
BOARD InitBootClocks();

BOARD InitDebugConsole();
Time Init (1);

APP LoadResource () ;

/* Initialize the HW Semaphore */

SEMA4 Init (BOARD SEM4 BASE) ;

&& ENABLE MASTER

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

149 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* Initialize MCMGR before calling its API */
(void) MCMGR Init () ;

/* Boot Secondary core application */
(void) MCMGR StartCore (kMCMGR Corel, (void *) (char *)CORE1l BOOT ADDRESS, O,
kMCMGR_Start Synchronous) ;
#endif /* defined(ENABLEiMASTER) && ENABLE MASTER %/
}

8.8 Framework managers

The below framework managers are enabled in the CM7 side with the following priorities:

* Vision algorithm manager - P3
* Voice algorithm manager - P3

* Audio processing manager - P2
* Input manager - P1

* Output manager - P4

* Multicore manager - PO

Refer to the framework documentation (. . / framework/docs) for a detailed description of these framework
managers.

Note: To prepare the environment for other framework managers, initialize the filesystem and application
configuration first.

int APP InitFramework (void)

{

int ret = 0;

HAL FLASH DEV REGISTER (Littlefs, ret);
HAL OutputDev SmartTlhmiConfig Init();

FWK MANAGER INIT (VisionAlgoManager, ret);
FWK MANAGER INIT (VoiceAlgoManager, ret);
FWK MANAGER INIT (AudioProcessing, ret);
FWK_ MANAGER INIT (OutputManager, ret);
FWK_MANAGER_INIT(InputManager, ret) ;
#if defined(ENABLE_MASTER) && ENABLE MASTER
FWK MANAGER INIT (MulticoreManager, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE MASTER %/

return ret;

}

int APP RegisterHalDevices (void)

{

int ret = 0;

HAL OUTPUT DEV REGISTER (MgsAudio, ret):;

HAL AUDIO PROCESSING DEV REGISTER (Afe, ret);

HAL INPUT DEV REGISTER (PdmMic, ret);

HAL VOICEALGO DEV_ REGISTER (Asr, ret);

HAL VALGO DEV REGISTER (OasisElevator, ret);
#if defined (ENABLE MASTER) && ENABLE MASTER

HAL MULTICORE DEV_ REGISTER (MessageBuffer, ret);
#endif /* defined (ENABLE MASTER) && ENABLE MASTER */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

150/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

return ret;

}

int APP StartFramework (void)
{

int ret = 0;

FWK_MANAGER_START(VisionAlgoManager, VISION ALGO MANAGER TASK PRIORITY,
ret) ;
FWK_MANAGER_START(OutputManager, OUTPUT_MANAGER_TASK_PRIORITY, ret) ;
FWK_MANAGER_START(AudioProcessing, AUDIO_ PROCESSING TASK PRIORITY, ret) ;
FWK_MANAGER_START(InputManager, INPUT MANAGER TASK PRIORITY, ret) ;
FWKiMANAGERisTART(VoiceAlgoManager, VOICE ALGO MANAGER TASK PRIORITY, ret) ;
// FWK_MANAGER_START(CameraManager, CAMERA MANAGER TASK PRIORITY, ret) ;
#if defined(ENABLE_MASTER) && ENABLE MASTER
FWK_MANAGER_START(MulticoreManager, MULTICORE_MANAGER_TASK_PRIORITY, ret) ;
#endif /* defined(ENABLE MASTER) && ENABLE MASTER */

return ret;

8.9 Framework HAL devices

The enabled HAL devices are configured in the . . /elevator/CM7/board/board define.h file as shown
below:

#define ENABLE INPUT DEV PdmMic

#define ENABLE AUDIO PROCESSING DEV Afe

#define ENABLE DSMT ASR

#define ENABLE OUTPUT DEV_MgsAudio

#define ENABLE OUTPUT DEV SmartTlhmiConfig

#if defined (ENABLE MASTER) && ENABLE MASTER

#define ENABLE MULTICORE DEV MessageBuffer

#endif /* defined (ENABLE MASTER) && ENABLE MASTER */

8.10 Logging

Both CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document . .
/coffee machine/cm7/freertos/libraries/logging/README.md.

The CM7 and CM4 share low-level LPUART12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of LPUART12 peripheral. And they also share low-
level timer to get the unified timestamp of the logging information

8.10.1 Log task init

The application calls the xLoggingTaskInitialize (...) APIto create the logging task in the main ()
entry of this project and is located in elevator/cm7/source/sln _smart tlhmi cm7.cpp:

xLoggingTaskInitialize (LOGGING TASK STACK SIZE, LOGGING TASK PRIORITY,
LOGGING QUEUE LENGTH) ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

151 /226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

8.10.2 Log usage

There are four kinds of logging that can use both CM7 and CM4, that you can find in . . /framework/inc/
fwk log.h.

#ifndef LOGV
#define LOGV (fmt, args...) {implement...}

#endif
#ifndef LOGD

#define LOGD (fmt, args...) {implement...}
fendif

#ifndef LOGI
#define LOGI (fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE (fmt, args...) {implement...}
#endif

8.11 Elevator database

The Elevator application uses framework flash operation with low-level littlefs filesystem to store the recognized
user-faces database and user elevator information. The detailed usage APl is located in files . . /framework/
vision/hal sln facedb.hand ../source/hal sln elevatordb.h. The face database and elevator
user information database entry are bound together using user id. The user id is a unique identifier on one
device.

To make it easier for users to add their own database with personal attributes, we split the face database from
user database. The user must create something similar with hal sln elevator.h and add attributes like in
the elevator attr t structure. If the purpose is to extend the current elevator database, use a reserved field
from the structure below.

8.11.1 Face recognize database usage

g facedb ops handles all kinds of face database operation.

typedef struct facedb ops
{
facedb_status_t (*init) (uintl6 t featureSize);
facedb_status_t (*saveFace) (void);
facedb status_t (*addFace) (uintl6_t id, char *name, void *face, int size);
facedb status_t (*delFaceWithId) (uintlé t id);
facedb status t (*delFaceWithName) (char *name) ;
facedb status t (*updNameWithId) (uintl6 t id, char *name);
facedb _status_t (*updFaceWithId) (uintl6_t id, char *name, void *face, int
size);
facedb status t (*getFaceWithId) (uintlé t id, void **pFace);
facedb status_t (*getIdsAndFaces) (uintl6 t *face ids, void **pFace);
facedb status t (*getIdWithName) (char *name, uintlé t *id);
facedb status t (*genId) (uintl6 t *new id);
facedb _status_t (*getIds) (uintl6 t *face ids);
bool (*getSaveStatus) (uintl6 t id);
int (*getFaceCount) (void) ;
char *(*getNameWithId) (uintlé t id);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

152/ 226

NXP Semiconductors

MCU-SMHMI-SDUG

} facedb ops t;

extern const facedb ops t g facedb ops;

Smart HMI Software Development User Guide

8.11.2 Elevator user information database usage

g elevatordb ops handles all kinds of user information database operation.

typedef struct elevator attribute

{
uintlé t id;
uint32 t floor;

uint8 t reserved[16];

} elevator attr t;

typedef struct elevatordb ops

{
elevatordb status t
elevatordb status t
elevatordb status t
elevatordb status t
elevatordb status t
elevatordb status t

} elevatordb ops t;

(
(
(
(
(
(

*init) (void) ;
*deinit) (void) ;
*addWithId) (uintl6 t

*delWithId
*updWithId
*getWithId

) (
) (
)

uintlé t
uintleé t
uintleé t

id, elevator attr t *attr);
id);

id, elevator attr t *attr);
id, elevator attr t *attr);

extern const elevatordb ops t g elevatordb ops;

8.12 Elevator CM4

This Elevator CM4 slave project runs on the CM4 core.
Itis linked to SDRAM and will be embedded into the CM7 project.
The CM7 project handles the loading of this CM4 project into SDRAM and launching it.

8.13 Main functionalities

* Main GUI based on LVGL with Vglite graphics acceleration
» Camera with 2D PxP graphics acceleration
* Display for the camera preview and LVGL GUI

USB shell
LED indicator

* Multicore with messaging and shared memory communication

8.14 LVGL GUI screens and widgets
All the LVGL GUI screens and widgets are generated with NXP's GUI Guider tools.

Refer to the GUI Guider home page for more detailed information.

8.15 LVGL and Vglite library

LVGL and Vglite components are directly ported from RT1170 SDK where we did not modify them in our

solution.

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

153 /226

https://www.nxp.com/design/software/development-software/gui-guider

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The code for LVGL GUI screens and widgets, which are generated by NXP's GUI guider, is not frequently

changed.

To speed up the building of the whole project, we moved these components into one static library and linked the

library to the CM4 application project.

This LVGL and Vglite library project is located in the

8.16 Boot sequence

Below is the core boot-up flow:

e Board level initialization

* Framework initialization

* HAL devices registration

* Framework startup

* FreeRTOS scheduler startup

The main () entry of this project is located in the
file:

../elevator/lvgl vglite 1ib folder.

../elevator/cm4/source/sln smart tlhmi cmd.cpp

int main (void)

{
/* init the board */
APP BoardInit();

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices();

/* start the framework*/
APP StartFramework () ;

vTaskStartScheduler () ;

for (;;)

{

} /* should never get here */
return 0;

8.17 Board level initialization

The board level initialization is implemented in the APP_BoardInit () entry which is located in the ../
elevator/cm4/source/sln smart tlhmi cm4.cpp file.

Below is the main flow:

* MPU, Clock, and Pins configuration
* Multicore manager init and slave startup
 Peripherals initialization

void APP BoardInit ()

{
BOARD_ConfigMPU ()
BOARD_BootClOCkRUN ()
BOARD InitBootPins();

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

154/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

#if defined(ENABLE_SLAVE) && ENABLE SLAVE

uint32 t startupData, i;

mcmgr status t status;

(void) MCMGR Init () ;

/* Get the startup data */

do

{

status = MCMGR GetStartupData (&startupData) ;

} while (status != kStatus MCMGR Success) ;

#endif /* defined(ENABLE SLAVE) && ENABLE SLAVE */

BOARD MIPIPanelTouch I2C Init();
BOARD_InitEDMA();
Time Init (1);

8.18 LVGL image resource loading

All the LVGL images, data, and icon data are merged into one continuous binary block with the 64 Bytes aligned
of each image/icon.

The cm7 loads this resource binary block into the dedicated memory region res sh mem.
The below two function loads each of these LVGL images and icons from this region during the boot.

Setup the LVGL images is implemented in . . /elevator/cm4/generated/gui_guider.c:

void setup imgs (void *base)

{

_TLHMI Elevator Main Screen 1280x720.data = (base + 0);
_TLHMI Elevator Virtual Face Blue 180x180.data = (base +
27764800) ;
TLHMI Elevator Button Call alpha 90x90.data = (base +

2862016) ;

}

8.19 Framework managers

The below framework managers are enabled on the cm4 side:

* Low-power manager
» Camera manager
 Display manager

* Multicore manager

* Output manager

* Input manager

Refer to framework/docs/introduction.md for a more detailed description of these framework managers.

Framework initialization (. . /elevator/cm4/source/sln smart tlhmi cm4.cpp):

int APP InitFramework (void)

{

int ret = 0;

FWK_MANAGER INIT (LpmManager, ret);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

155/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

FWKiMANAGERilNIT(CameraManager, ret) ;
FWK MANAGER INIT (DisplayManager, ret);
#if defined (ENABLE SLAVE) && ENABLE SLAVE
FWK MANAGER INIT(MultlcoreManager, ret) ;
#endif /* deflned(ENABLE_SLAVE) && ENABLE SLAVE */
FWK MANAGER INIT (OutputManager, ret);
FWKiMANAGERiINIT(InputManager, ret) ;

return ret;

Framework startup (. . /elevator/cm4/source/sln smart tlhmi cm4.cpp):

int APP StartFramework (void)
{

int ret = 0;

FWK MANAGER START (LpmManager, 0, ret);

FWK | ~ MANAGER _ START (CameraManager, CAMERA MANAGER TASK PRIORITY, ret);
FWK MANAGER __ START (DisplayManager, DISPLAY MANAGER TASK PRIORITY, ret);

#if deflned(ENABLE SLAVE) && ENABLE SLAVE

FWK MANAGER START(MultlcoreManager, MULTICORE MANAGER TASK PRIORITY,

#endif /* deflned(ENABLE SLAVE) && ENABLE SLAVE */

FWK_MANAGER_START(OuEputManager, OUTPUT MANAGER TASK PRIORITY, ret);

FWK MANAGER START (InputManager, INPUT MANAGER TASK PRIORITY ret);

return ret;

ret) ;

8.20 Framework HAL devices

The enabled HAL devices are configured in the . . /elevator/cmé4/board/board define.h file as below:

#define ENABLE ~GFX DEV_ Pxp

#define ENABLE DISPLAY DEV LVGLElevator

#define ENABLE CAMERA DEV M1p1G02145

#define ENABLE " OUTPUT DEV RgbLed

#if deflned(ENABLE SLAVE) && ENABLE SLAVE

#define ENABLE MULTICORE DEV MessageBuffer

#endif /* deflned(ENABLE SLAVE) && ENABLE SLAVE */
#define ENABLE INPUT DEV ShellUsb

#define ENABLE OUTPUT DEV UiElevator

#define ENABLE LPM DEV Standby

The registration of the enabled HAL devices is implemented in the APP RegisterHalDevices (...

function, which is located in . . /elevator/cm4/source/sln smart tlhmi cmé.cpp

Note: The APP RegisterHalDevices (...) mustbe called after the framework initialization
APP InitFramework (...) and before framework startup APP StartFramework (...).

int APP RegisterHalDevices (void)
{

int ret = 0;

HAL GFX DEV REGISTER (Pxp, ret);

HAL DISPLAY DEV REGISTER (LVGLElevator, ret);

HAL CAMERA DEV REGISTER (MipiGc2145, ret);
#if defined (ENABLE SLAVE) && ENABLE SLAVE

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

156 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

HAL MULTICORE DEV REGISTER (MessageBuffer, ret);
#endif /* deflned(ENABLE SLAVE) && ENABLE SLAVE */

HAL OUTPUT DEV REGISTER(RgbLed ret) ;

HAL INPUT DEV REGISTER(SheIIUSb ret) ;

HAL OUTPUT DEV REGISTER(UlElevator, ret) ;

HAL_ LPM DEV REGISTER (Standby, ret);

/* Add new HAL device registrations here */

return ret;

8.20.1 MipiGc2145 camera HAL device

This HAL device driver is located in . . /framework/hal/camera/hal camera mipi gc2145.c

Below is the configuration of this camera device, which is located in . . /elevator/cm4 /board/board
define.h

#ifdef ENABLE CAMERA DEV MipiGc2145
#define CAMERA DEV MlplG02145 BUFFER_COUNT 2

#define CAMERA DEV MipiGc2145 HEIGHT 600 // 720
#define CAMERA DEV MipiGc2145 WIDTH 800 // 1280
#define CAMERA DEV MipiGc2145 LEFT 0

#define CAMERA DEV _MipiGc2145 TOP 0

#define CAMERA DEV M1p1G02145 RIGHT 799 // 1279
#define CAMERA DEV MipiGc2145 BOTTOM 599 // 719
#define CAMERA DEV MipiGc2145 ROTATE kCWRotateDegree 0
#define CAMERA DEV MipiGc2145 FLIP kFlipMode None
#define CAMERA DEV MipiGc2145 SWAPBYTE 0

#define CAMERA DEV MipiGc2145 FORMAT kPixelFormat YUV1P444 RGB
#define CAMERA DEV MipiGc2145 BPP 4

#endif /* ENABLE CAMERA DEV MipiGc2145 */

8.20.2 PxP graphics HAL device

This HAL device driver is located in . . /framework/hal/misc/hal graphics pxp.c

It represents the 2D graphics device to handle the 2D graphics operations.

8.20.3 LVGLElevator display HAL device

This HAL device driver is located in . . /framework/hal/display/hal display lvgl elevator.c

Below is the configuration of this display device, which is located in the . . /elevator/cm4/board/board
define.h

#ifdef ENABLE DISPLAY DEV LVGLElevator
#define DISPLAY DEV LVGLElevator BUFFER COUNT 1

#define DISPLAY_DEV_LVGLEIevator_HEIGHT 640

#define DISPLAY DEV LVGLElevator WIDTH 480

#define DISPLAY DEV LVGLElevator StartX 80

#define DISPLAY DEV LVGLElevator StartY 50

#define DISPLAY DEV LVGLElevator LEFT 0

#define DISPLAY DEV LVGLElevator TOP 0

#define DISPLAY DEV LVGLElevator RIGHT 479

#define DISPLAY DEV LVGLElevator BOTTOM 639

#define DISPLAY DEV LVGLElevator ROTATE kCWRotateDegree 270

#define DISPLAY DEV LVGLElevator FORMAT kPixelFormat RGB565
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

157 1 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

#ifdef ENABLE CAMERA DEV MipiGc2145

#define DISPLAY DEV LVGLElevator SRCFORMAT kPixelFormat YUV1P444 RGB
#else

#define DISPLAY DEV_LVGLElevator SRCFORMAT kPixelFormat UYVY1P422 RGB
#endif

#define DISPLAY DEV LVGLElevator BPP 2

#endif /* ENABLE DisplayDev LVGLElevator */

This LVGLEIlevator display HAL device launches the main LVGL task loop for the Ul flashing.

static void LvglTask(void *param)
{
#if LV _USE_LOG
1v_log register print cb(PrintCb);
#endif /* LV _USE_LOG */

lv_port pre init();
lv_init();
lv_port disp init();
lv_port indev init();

g LvglInitialized = true;

setup imgs ((unsigned char *)APP LVGL IMGS BASE) ;

setup ui (&guider ui);

events init (&guider ui);

custom init (&guider ui);

while (1)

{
1lv_task handler () ;
vTaskDelay (pdMS TO TICKS(5)) ;

8.20.4 UiElevator Ul output HAL device

This HAL device driver is located in . . /framework/hal/output/hal output ui elevator.c

The whole Ul state machine is driven by this output HAL device with the below event sources:

8.20.4.1 LVGL touch events

All the event callbacks of the LVGL widget are implemented in . . /elevator/cmd4/generated/events
init.c

8.20.4.2 Vision and Voice algorithm inference result

The vision and voice inference result is notified by the output manager with below HAL OutputDev_ Ui
Elevator InferComplete operator:

static hal output status t HAL OutputDev UiElevator InferComplete (const
output dev t *dev,output algo source t source,void *inferResult)

{
hal output status t error = kStatus HAL OutputSuccess;

if (inferResult == NULL)
{

return error;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

158 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

}

if (source == kOutputAlgoSource Vision)

{

_InferComplete Vision (dev, inferResult);

}

else if (source == kOutputAlgoSource Voice)

{

_InferComplete Voice (dev, inferResult);

}

return error;

8.20.5 RgbLed output HAL device

This HAL device driver is located in . . /framework/hal/output/hal output rgb led.c

It flashes the RGB led with different pattern according to the HAL OutputDev RgbLed InferComplete Or
HAL OutputDev RgbLed InputNotify operators below:

static hal output status t HAL OutputDev RgbLed InferComplete (const output dev t
*dev, output algo source t source, void *inferResult)

{

hal output status t error kStatus HAL OutputSuccess;

uint32 t timerOn = 0p

_SetLedColor (APP OutputDev RgbLed InferCompleteDecode (source, inferResult,
&timerOn)) ;

if (timerOn != 0)
{
xTimerChangePeriod (OutputRgbTimer, pdMS TO TICKS (timerOn), O0);

}

return error;

static hal output status_t HAL OutputDev RgbLed InputNotify (const output dev t
*dev, void *data)

{
hal output status t error = kStatus HAL OutputSuccess;
_SetLedColor (APP_OutputDev RgbLed InputNotifyDecode (data)) ;

return error;

8.20.6 MessageBuffer multicore HAL device

This HAL device driver is located in . . /framework/hal/misc/hal multicore messageBuffer.c
It handles multicore messaging based on the multicore manager message buffer mechanism.

For the detailed description of this HAL device, refer to . . /framework/docs/hal devices/multicore.m
d in the framework documentation.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

159 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

8.20.7 ShellUsb input HAL device

This HAL device driver is located in . . /framework/hal/input/hal input shell cdc.c
It populates one USB CDC device and generates the shell.

This driver only includes one weak shell command registration function as below:

___attribute ((weak)) void

APP InputDev_ Shell RegisterShellCommands (shell handle t shellContextHandle,
input dev_t shellDev, input dev callback t callback)

{

}

The application must overwrite this function to register the exactly shell commands.

You can find the implementation of this overwritten function for the Elevator application from . . /elevator/
cm4/source/event handlers/smart tlhmi input shell commands.c:

void APP InputDev Shell RegisterShellCommands (shell handle t shellContextHandle,
input dev_t *shellDev, input dev callback t callback)
{
s_InputCallback callback;
s_SourceShell = shellDev;
s_ShellHandle shellContextHandle;
s FrameworkRequest.respond = FrameworkEventsHandler;

if (s_ThingName == NULL)
{
APP GetHexUniqueID (&s_ThingName) ;

}

SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(version));

8.20.8 Standby LPM HAL device

This HAL device driver is located in . . /framework/hal/misc/hal lpm standby.c.

For the detailed description of this LPM device, referto . . /framework/docs/hal devices/low power.
md in the framework documentation.

This standby HAL device implements the standby mode of this application. The backlight is turned off and the
main display layer is disabled.

static void EnterStandbyMode (void)

{
LOGD (" [Standby] Enter standby mode");
BOARD BacklightControl (0) ;
lv_enable ui preview(0);

8.21 Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

160 / 226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document . .
/elevator/cm4/freertos/libraries/logging/README . md

The CM7 and CM4 share low-level LPUART12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of LPUART12 peripheral.

They share a low-level timer to get the unified timestamp of the logging information.

8.21.1 Logging task init

Application calls xL.oggingTaskInitialize (...) APl to create the logging task in the main () entry of this
project is located in the . . /elevator/cm4/source/sln smart tlhmi cm4.cpp:

xLoggingTaskInitialize (LOGGING TASK STACK SIZE, LOGGING TASK PRIORITY,
LOGGING_QUEUE_ LENGTH) ;

8.21.2 Logging macros

The logging Macros are defined in . . /framework/inc/fwk log.h.

All the modules must use these unified logging Macros for logging.

#ifndef LOGV
#define LOGV (fmt, args...) {implement...}

#endif
#ifndef LOGD

#define LOGD (fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI (fmt, args...) {implement...}
fendif

#ifndef LOGE
#define LOGE (fmt, args...) {implement...}
#endif

9 Smart panel

9.1 Introduction

This Smart Panel application demonstrates the smart control panel use case with the following core
functionalities:

* Smart panel GUI (including thermostat, security, and audio player mini applications) with touch support
* Local voice command to control the use cases of a Smart panel

* Face recognition to store the user's thermostat preferences and store security users

* Hand gesture recognition to control the Audio Player mini-application

For leveraging the full computational power of the RT117H, the application image is split into two images that
are running in parallel on the CM7 and CM4 cores. The Smart Panel CM7 acts as an Al block, handling all the
machine learning tasks, such as face recognition, voice command, and gesture recognition. The operation is
optimized to obtain the best performance on this type of MCU. The Smart Panel CM4 holds the user interaction
(display, shell, buttons). The CM4 image is loaded into the memory by the CM7 core.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

161 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

By default, i.MX RT117H boot from CM7. By fusing BT CORE_SEL (Bit 12 in 0x960), the chip switches to CM4
as the main core. For details, see AN13264.

The Smart Panel uses the following HW components and peripherals:

* 2 x PDM MIC - configured to work with 16 kHz sampling. The conversion to PCM is done in hardware using
the PDM microphone interface.

* 16 KHz raw data to RT117x MQS HW peripheral that generates PWM data output.

External filtering and coupling

Analog audio amplifier

MIPI GC2145 Camera - configured to work with 600x800 resolution.

Flexio GC0308 IR Camera - configured to work with 640x480 resolution.

LCDIFV2 Rocktech RKO55MHD091 - configured to work at the HD resolution of 1280x720

To change this configuration, check the HAL code and section Section 10.1.

It uses NXP's below core technologies:

* LVGL-based GUI

* Local voice command algorithm

* Face recognition algorithm

» Gesture recognition algorithm

» Dual-core architecture based on the multi-core manager (mcmgr) middleware component.

9.2 Architecture

SLN-TLHMI-IOT (I.MX RT117H) EDGEREADY SOLUTION SOFTWARE ARCHITECTURE

Framework IR & RGB Framework
Frames .~ :
MQS HAL — Camera HAL Display
| VisionAlgo | | Fm—
Speaker Vision Algo HAL Result | Display HAL .
Voice Algo. : Touch
Mic Gesture Algo HAL . Result | Graphics HAL PxP
| Notification)
2.Corca Voice Algo HAL __Message LVGL & YGLiis HAL GPUZD
Peripherals cm7 IPC with Shared Memory cMm4 Peripherals
CM7 (Vision & Voice algorithm accelerator): CM4 (uI & system control unit):

+« Framework + Framework

« Vision algorithm with VGA input frames (RGB + IR) + CSI/MIPI Camera preview @VGA

+ Gesture algorithm with VGA input frames + LVGL GUI @720p with VGLite 2D GPU acceleration

+ Voice algorithm (AFE + ASR) with mic input + Vision algorithm input frames color space conversion with PxP
+ MAQS audio playback + Touch panel input

+ IPC communication with shared memory * IPC communication with shared memory

Figure 36. Smart panel software architecture

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

162/ 226

https://www.nxp.com/docs/en/application-note/AN13264.pdf

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

9.3 Software block diagram

OTA FW Update
pAWS loT
MSD FW Update

Multicore Qutput Manager Algorithm Manager
Manager HAL HAL HAL

i
Beamforming
- Echo
Automatic Speech Recognition
Wake Words & Commands

Figure 37. Smart panel software diagram

Manager HAL HAL HAL
Input Manager OQutput Manager Power Manager
HAL HAL HAL

It includes two projects:
¢ Host CM7 project
» Slave CM4 project

Each project uses a two-layer architecture containing the Framework + HAL layer and the Application layer.
For the details, refer to the documentation on each project.

9.4 Smart panel CM7

This Smart panel CM7 host project runs on the CM7 core.
It is linked to flash with the combination of the CM4 project.

The CM7 was designed to focus on the vision, gesture, and voice algorithms processing to get the best
performance.

9.4.1 Main functionalities

* Vision algorithm

* Gesture algorithm

» Voice algorithm

Audio playback
Microphone stream input
Multicore communication
Littlefs format filesystem

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

163 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

9.4.2 Boot sequence

The "main" entry of this project is located in the ../home panel/cm7/source/sln smart tlhmi cm7.
cpp file. The basic boot-up flow is:

* Initialize board-level hardware
* Initialize framework

Register HAL devices

Start the framework

Start the FreeRTOS scheduler

int main (void)

{
/* init the board */
APP BoardInit();

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices();

/* start the framework*/
APP StartFramework () ;

vTaskStartScheduler () ;
for (;;)

{
}

9.4.3 Board level initialization

The board-level initialization is implemented in the APP BoardInit () entry locatedin ../home panel/cm7/
source/sln smart tlhmi cm7.cpp. Below is the main flow:

* Relocate vector table into RAM

» Configure MPU, Clock, and Pins

* Debug console with hardware semaphore initialization

» System timestamp start

* Config FlexIO camera DMA

* Load resource from flash into the shared memory region
* Multicore manager init and boot slave core

void APP BoardInit (void)
{
BOARD RelocateVectorTableToRam() ;

BOARD ConfigMPU () ;
BOARD_InitBootPins();
BOARD InitBootClocks () ;
BOARD InitDebugConsole();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

164 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Time Init (1);
BOARD FlexioCameraConfigDMA () ;
APP LoadResource () ;

/* Initialize the HW Semaphore */
SEMA4 Init (BOARD SEM4 BASE) ;

#if defined(ENABLE_MASTER) && ENABLE_MASTER
/* Initialize MCMGR before calling its API */
(void) MCMGR Init () ;

/* Boot Secondary core application */

(void)MCMGR StartCore (kMCMGR Corel, (void *) (char *)CORE1l BOOT ADDRESS, O,
kMCMGR_Start Synchronous) ;
#endif /* defined (ENABLE MASTER) && ENABLE MASTER */
}

9.4.4 Framework managers

The below framework managers are enabled in the cm7 side with the following priorities:

* Vision algorithm manager - P3
* Voice algorithm manager - P3

* Audio processing manager - P2
* Input manager - P1

* Output manager - P3

* Camera manager - P2

* Multicore manager - PO

* Flash device manager

Where PO is the highest priority and P4 is the least prioritized.

Note: Choosing the right priority for the manager is something that must be addressed based on the
requirements. Our recommendation is to keep the Vision manager equal to or less than Voice manager, or the
audio sample can be lost.

Refer to the framework chapter for a detailed description of these framework managers.

Note: To prepare the environment for other framework managers, initialize the filesystem and application
configuration first.

int APP InitFramework (void)

{

int ret = 0;

HAL FLASH DEV_REGISTER (Littlefs, ret);
HAL OutputDev_ SmartTlhmiConfig Init();

FWK MANAGER INIT (VisionAlgoManager, ret);
FWK_MANAGER INIT (OutputManager, ret);

FWK MANAGER INIT (AudioProcessing, ret);
FWK_MANAGER_INIT (InputManager, ret);

FWK MANAGER INIT (VoiceAlgoManager, ret);
FWK MANAGER INIT (CameraManager, ret);

#if defined (ENABLE MASTER) && ENABLE MASTER

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

165 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

FWK MANAGER INIT (MulticoreManager, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

return ret;

int APP StartFramework (void)
{

int ret = 0;

FWK_MANAGER_START(VisionAlgoManager, VISION_ALGO_MANAGER_TASK_PRIORITY,
ret) ;
FWK MANAGER START(OutputManager, OUTPUT MANAGER TASK PRIORITY, ret);
FWK MANAGER START(AudioProcessing, AUDIO PROCESSING TASK PRIORITY, ret):;
FWK MANAGER START(InputManager, INPUT MANAGER TASK PRIORITY ret) ;
(

FWK MANAGER START VoiceAlgoManager, VOICE ALGO MANAGER TASK PRIORITY, ret);

FWK_MANAGER_START(CameraManager, CAMERA | MANAGER TASK PRIORITY ret) ;
#if defined (ENABLE MASTER) && ENABLE MASTER

FWK MANAGER START(MuItlcoreManager, MULTICORE MANAGER TASK PRIORITY, ret);
#endif /* defined (ENABLE _MASTER) && ENABLE MASTER */

return ret;

9.4.5 Framework HAL devices

The enabled HAL devices are configured in the . . /home panel/cm7/board/board define.h file as
shown below:

#define ENABLE INPUT DEV_ PdmMic

#define ENABLE AUDIO PROCESSING DEV_ Afe
#define ENABLE VIT ASR

#define ENABLE OUTPUT DEV_MgsStreamerAudio
#define ENABLE OUTPUT DEV ~SmartTlhmiConfig
#define ENABLE VISIONALGO DEV_Oasis HomePanel
#define ENABLE VISIONALGO DEV UVlta Gesture
#define ENABLE FLASH DEV Littlefs

#define ENABLE FACEDB

#define ENABLE CAMERA DEV FlexioGc0308

#if deflned(ENABLE MASTER) && ENABLE MASTER
#define ENABLE MULTICORE DEV MessageBuffer
#endif /* deflned(ENABLE MASTER) && ENABLE MASTER W/

The registration of the enabled HAL devices is implemented in the APP RegisterHalDevices (...) function

which is located in . . /home panel/cm7/source/sln smart tlhmi cm7.cpp

Note: The APP RegisterHalDevices (...) mustbe called after the framework initialization
APP InitFramework (...) and before framework startup APP StartFramework (...).

int APP RegisterHalDevices (void)
{

int ret = 0;

HAL OUTPUT DEV_ REGISTER (MgsAudio Streamer, ret);
HAL_AUDIO_PROCESSING_DEV_REGISTER(Afe, ret) ;
HAL_INPUT_DEV_REGISTER(Pdeic, ret) ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

166 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

HAL7VOICEALG07DEV7REGISTER(Asr7VIT, ret) ;
HAL_CAMERA_DEV_REGISTER(FlexichO308, ret) ;
HAL VALGO DEV REGISTER (UvitaGestureRecognition, ret);
HAL VALGO DEV_REGISTER (OasisHomePanel, ret);
#if defined(ENABLE_MASTER) && ENABLE MASTER
HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret) ;
#endif /* defined(ENABLEiMASTER) && ENABLE MASTER */
HAL_INPUT_DEV_REGISTER(WiFiAWAM510, ret) ;

return ret;

9.4.6 Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document
located in . . /home panel/cm7/aws iot/amazon-freertos/libraries/logging/README.md.

The CM7 and CM4 share the low-level LPUART 12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of the LPUART12 peripheral. They share a low-level
timer to get the unified timestamp of the logging information.

9.4.6.1 Log Task Init

The application calls the xLoggingTaskInitialize (...) API to create the logging task in the main ()
entry of this project and is located in . . /home panel/cm7/source/sln smart tlhmi cm7.cpp:

xLoggingTaskInitialize (LOGGING TASK STACK SIZE, LOGGING TASK PRIORITY,
LOGGING_QUEUE_ LENGTH) ;

9.4.6.2 Log Macros

There are four kinds of logging that can be used in both cm7 and cm4, which you can find in . . /framework/
inc/fwk log.h.

#ifndef LOGV
#define LOGV (fmt, args...) {implement...}

#endif
#ifndef LOGD

#define LOGD (fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI (fmt, args...) {implement...}
fendif

#ifndef LOGE
#define LOGE (fmt, args...) {implement...}
#endif

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

167 / 226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

9.4.6.3 UART hardware connection

The Smart panel application prints the log to the LPUART12 port. The tx/rx pins of LPUART12 are connected
to J202, at the back of the board (pin3-RX and pin4-TX). Connect the LPUART12 tx/rx pins to a TTL USB serial
adapter (LPUART12 rx pin to USB adapter tx pin, LPUART12 tx pin to USB adapter rx pin), and connect the
TTL USB serial adapter to a USB port on the host machine (Windows or Linux based).

9.4.6.4 Get UART log from Windows host

For a Windows host system, find the corresponding COM port number from the Windows "Device Manager" for
the newly connected TTL USB serial adapter. Using a terminal emulator program (for example, putty) to connect
to the COM port, setting the speed to 115200 Hz.

9.4.6.5 Get UART log from Linux host

For a Linux host system, Connect to the serial port (usually /dev/ttyUSBx) using a Linux terminal emulator
program (for example, Minicom), use 115200 8N1 as the serial port setting for the serial communication.

9.4.7 Smart panel database

The Smart panel application uses framework flash operations with a low-level littlefs filesystem to store
persistent user information. There are two kinds of users in the Smart panel application, the thermostat users
(including the recognized user-faces database and user-preferred thermostat setting database) and the security
users (only including the user-faces database) . The detailed usage APl is located in files . . /framework/
hal/vision/hal sln facedb.hand ../home panel/cm7/source/hal sln thermostatdb.h.
The face database and user thermostat setting information database entry are bound together using user id.
The user id is a unique identifier on one device. The security user database APl isin .. /home panel/cm7/
source/hal sln security facedb.h that only stores the user face data.

To make it easier for users to add their database with personal attributes, we split the face database from user
database. The user must create something similar with hal sln thermostatdb.h and add attributes like in
the thermostat attribute t structure.

9.4.7.1 Face recognize database usage

g facedb ops handles all kinds of thermostat user face database operation. g security facedb ops
handles all kinds of thermostat user face database operation.

typedef struct facedb ops
{
facedb_status_t (*init) (uintl6_t featureSize);
facedb _status_t (*saveFace) (void);
facedb status_t (*addFace) (uintl6_t id, char *name, void *face, int size);
facedb status_t (*delFaceWithId) (uintlé t id);
facedb status t (*delFaceWithName) (char *name) ;
facedb status t (*updNameWithId) (uintl6 t id, char *name);
facedb status_t (*updFaceWithId) (uintl6 t id, char *name, void *face, int
size) ;
facedb status t (*getFaceWithId) (uintlé t id, void **pFace);
facedb status_ t (*getIdsAndFaces) (uintl6 t *face ids, void **pFace);
facedb status t (*getIdWithName) (char *name, uintlé t *id);
facedb status t (*genId) (uintl6 t *new id);
facedb status_t (*getIds) (uintl6 t *face ids);
bool (*getSaveStatus) (uintl6 t id);
int (*getFaceCount) (void) ;
char *(*getNameWithId) (uintlé t id);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

168 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

} facedb ops t;

extern const facedb ops t g facedb ops;
extern const facedb ops t g security facedb ops;

9.4.7.2 User Thermostat setting database usage

g thermostatdb ops handles all kinds of thermostat user information database operation.

typedef enum thermostatdb status

{
kThermostatDBStatus Success,
kThermostatDBStatus Failed,
kThermostatDBStatus MallocFail,
kThermostatDBStatus MetaDataFail,
kThermostatDBStatus DbLoadFail,
kThermostatDBStatus LockFail

} thermostatdb status t;

typedef enum thermostat mode

{
kThermostat Auto,
kThermostat Cold,
kThermostat Heat,

} thermostat mode t;

typedef enum thermostat speed

{
kThermostatFan On,
kThermostatFan Off,
kThermostatFan Low,
kThermostatFan Med,
kThermostatFan High,

} thermostat fan speed t;

typedef struct thermostat attribute

{
uintlé t id;
uint8 t mode;
uint8 t fan speed;
uint8 t temperature[TEMPERATURE VALUE SIZE];
uint8 t reserved[1l6];

} thermostat attribute t;

typedef struct thermostatdb ops
{
thermostatdb status t (*init) (void);
thermostatdb status t (*deinit) (void);
thermostatdb status t (*addWithId) (uintl6 t id, thermostat attribute t
*attr);
thermostatdb status_ t (*delWithId) (uintl6 t id);
thermostatdb status t (*updWithId) (uintlé t id, thermostat attribute t
*attr) ;
thermostatdb status t (*getWithId) (uintlé t id, thermostat attribute t
*attr);
} thermostatdb ops t;

extern const thermostatdb ops t g thermostatdb ops;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

169 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

9.5 Smart Panel CM4

This Smart Panel CM4 slave project runs on the CM4 core.
Itis linked to SDRAM and is embedded into the CM7 project.
The CM7 project handles the loading of this CM4 project into SDRAM and launching of it.

9.5.1 Main functionalities

Main GUI based on LVGL with Vglite graphics acceleration

» Camera with 2D PxP graphics acceleration

* Display for the camera preview and LVGL GUI

USB shell

LED indicator

* Multicore with messaging and shared memory communication

9.5.2 LVGL GUI screens and widgets

All the LVGL GUI screens and widgets are generated with NXP's GUI Guider tools.

Refer to the GUI Guider home page for more information.

9.5.3 LVGL and Vglite library

The LVGL and Vglite components are directly ported from RT1170 SDK and we did not modify them in our
solution.

Also the code for the LVGL GUI screens and widgets, which are generated by NXP's GUI guider, is not
frequently changed.

To speed up the building of the whole project, we moved these components into one static library and linked the
library into the CM4 application project.

This LVGL and Vdlite library project is located in the . . /home panel/lvgl vglite 1ib folder.

9.5.4 Boot sequence

Below is the core boot up flow:

* Board level initialization

* Framework initialization

* HAL devices registration

e Framework startup
FreeRTOS scheduler startup

The main () entry of this project is located in the . . /home panel/cm4/source/sln smart tlhmi cm4.
cpp file:

int main (void)

{
/* init the board */
APP BoardInit();

/* init the framework*/

APP InitFramework();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

170/ 226

https://www.nxp.com/design/software/development-software/gui-guider

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* register the hal devices*/
APP RegisterHalDevices();

/* start the framework*/
APP StartFramework () ;

vTaskStartScheduler () ;

for (;;)

{

} /* should never get here */
return 0;

9.5.5 Board level initialization

The board level initialization is implemented in the APP_BoardInit () entry located in the .. /home panel/
cm4/source/sln_smart tlhmi cmé.cpp file.

Below is the main flow:

* MPU, Clock, and Pins configuration
» Multicore manager init and slave startup
* Peripherals initialization

void APP BoardInit ()

{
BOARD ConfigMPU() ;
BOARD BootClockRUN () ;
BOARDfInitBootPinS();

#if defined(ENABLE_SLAVE) && ENABLE SLAVE

uint32 t startupData, i;

mcmgr status t status;

(void) MCMGR Init () ;

/* Get the startup data */

do

{

status = MCMGR GetStartupData (&startupData) ;

} while (status != kStatus MCMGR Success) ;

#endif /* defined(ENABLE SLAVE) && ENABLE SLAVE */

BOARD MIPIPanelTouch I2C Init();
BOARD_InitEDMA();
Time Init (1);

9.5.6 LVGL image resource and icon resource loading

All the LVGL images, data, and icon data are merged into one continuous binary block with the 64 Bytes aligned
of each imagef/icon.

The cm7 loads this resource binary block into the dedicated memory region res sh mem.
The following two functions load each of these LVGL images and icons from this region during the boot.

Setup the LVGL images is implemented in . . /home panel/cm4/custom/custom.c:

void setup imgs (unsigned char *base)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

171/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

_audio player background 1280x720.data (base + 0);
_audio player mic off 70x112.data = (base + 1843200);
_audio player next 140x214.data (base + 1858880) ;

Load the icons . ./framework/hal/output/hal output ui home panel.c:

void LoadIcons (void *base)
{

s_Icons[ICON PROGRESS BAR] = (base + 0);
}

9.5.7 Framework managers

The below framework managers are enabled on the cm4 side with the following priorities:

* Low-power manager

* Camera manager - P2
* Display manager - P2

* Multicore manager - PO
* Output manager - PO

* Input manager - P2

Where PO is the highest priority and P3 is the least prioritized.
For a more detailed description of these framework managers, refer to the Section 6 chapter.

Framework initialization . . /home panel/cm4/source/sln smart tlhmi cmé.cpp

int APP InitFramework (void)

{

int ret = 0;

FWK MANAGER INIT (LpmManager, ret);

FWK MANAGER INIT (CameraManager, ret);

FWK MANAGER INIT (DisplayManager, ret);
#if defined(ENABLE_SLAVE) && ENABLE SLAVE

FWK MANAGER INIT (MulticoreManager, ret);
#endif /* defined(ENABLE SLAVE) && ENABLE SLAVE */

FWK_MANAGER INIT (OutputManager, ret);

FWK MANAGER INIT (InputManager, ret);

return ret;

Framework startup . . /home panel/cm4/source/sln smart tlhmi cmé.cpp

int APP StartFramework (void)
{

int ret = 0;

FWK MANAGER START (LpmManager, 0, ret);
FWK_MANAGER_START(CameraManager, CAMERA MANAGER TASK PRIORITY, ret) ;
FWK_MANAGER_START(DisplayManager, DISPLAY MANAGER TASK PRIORITY, ret) ;
#if defined(ENABLEisLAVE) && ENABLE SLAVE
FWK_MANAGER_START(MulticoreManager, MULTICORE MANAGER TASK PRIORITY, ret) ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

172/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

#endif /* defined(ENABLE SLAVE) && ENABLE SLAVE */
FWK MANAGER START(OutputManager, OUTPUT MANAGER TASK PRIORITY, ret);
FWK | _MANAGER START (InputManager, INPUT MANAGER TASK PRIORITY, ret);

return ret;

9.5.8 Framework HAL devices

The enabled HAL devices are configured in the . . /home panel/cm4/board/board define.h file as
shown below:

#define ENABLE GFX DEV Pxp

#define ENABLE DISPLAY DEV LVGLHomePanel
#define ENABLE CAMERA DEV M1p1G02145
#define ENABLE OUTPUT DEV ~ RgbLed

#if deflned(ENABLE SLAVE) && ENABLE SLAVE
#define ENABLE MULTICORE DEV MessageBuffer
#endif /* deflned(ENABLE SLAVE) && ENABLE SLAVE W/
#define ENABLE INPUT DEV ShellUsb

#define ENABLE OUTPUT DEV UiHomePanel
#define ENABLE LPM DEV Standby

#define ENABLE OUTPUT DEV_ IrWhiteLeds

The registration of the enabled HAL devices is implemented in the APP RegisterHalDevices (...) function
located in home panel/cm4/source/sln smart tlhmi cmé.cpp:

Note: The APP RegisterHalDevices (...) mustbe called after the framework initialization
APP InitFramework (...) and before framework startup APP StartFramework (...).

int APP RegisterHalDevices (void)
{

int ret = 0;

HAL GFX DEV REGISTER (Pxp, ret);

HAL DISPLAY DEV REGISTER (LVGLHomePanel, ret);

HAL_CAMERA_DEV_REGISTER(MipiGCZl45, ret) ;
#if defined(ENABLE SLAVE) && ENABLE SLAVE

HAL MULTICORE DEV REGISTER(MessageBuffer, ret) ;
#endif /* deflned(ENABLE SLAVE) && ENABLE SLAVE */

HAL OUTPUT DEV REGISTER(RgbLed ret) ;

HAL INPUT DEV ~ REGISTER (ShellUsb, ret);

HAL OUTPUT DEV REGISTER(UiHomePanel, ret) ;

HAL LPM DEV REGISTER(Standby, ret) ;

HAL OUTPUT DEV REGISTER(IrWhlteLedS, ret) ;
#ifdef ENABLE OUTPUT DEV AudloDump

HAL OUTPUT DEV REGISTER(AudloDump, ret) ;
#endif /* ENABLE OUTPUT DEV AudloDump %/

/* Add new HAL device registrations here */

return ret;

9.5.8.1 MipiGc2145 camera HAL device

This HAL device driver is located in . . /framework/hal/camera/hal camera mipi gc2l45.c.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

173 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Below is the configuration of this camera device located in . . /home panel/cm4/board/board define.h.

#ifdef ENABLE CAMERA DEV MipiGc2145
#define CAMERA DEV MlplG02145 BUFFER COUNT 2

#define CAMERA DEV MipiGc2145 HEIGHT 600 // 720
#define CAMERA DEV MipiGc2145 WIDTH 800 // 1280
#define CAMERA DEV MipiGc2145 LEFT 0

#define CAMERA DEV M1p1G02145 TOP 0

#define CAMERA DEV MipiGc2145 RIGHT 799 // 1279
#define CAMERA DEV MipiGc2145 BOTTOM 599 // 719
#define CAMERA DEV MipiGc2145 ROTATE kCWRotateDegree 0
#define CAMERA DEV MipiGc2145 FLIP kFlipMode None
#define CAMERA DEV MipiGc2145 SWAPBYTE 0

#define CAMERA DEV M1p1G02145 FORMAT kPixelFormat_YUV1P444_RGB
#define CAMERA DEV MipiGc2145 BPP 4

#endif /* ENABLE CAMERA DEV MipiGc2145 */

9.5.8.2 PxP graphics HAL device

This HAL device driver is located in . . /framework/hal/misc/hal graphics pxp.c.
It represents the 2D graphics device to handle the 2D graphics operations.

9.5.8.3 LVGLHomePanel display HAL device

This HAL device driver is located in . . /framework/hal/display/hal display lvgl homepanel.c.

Below is the configuration of this display device located in . . /home panel/cm4/board/board define.h.

#ifdef ENABLE DISPLAY DEV LVGLHomePanel
#define DISPLAY DEV LVGLHomePanel _BUFFER_COUNT 1

#define DISPLAY DEV LVGLHomePanel HEIGHT 640

#define DISPLAY DEV LVGLHomePanel WIDTH 480

#define DISPLAY DEV LVGLHomePanel StartX 110

#define DISPLAY DEV LVGLHomePanel Starty 30

#define DISPLAY DEV LVGLHomePanel LEFT 0

#define DISPLAY DEV LVGLHomePanel TOP 0

#define DISPLAY DEV LVGLHomePanel RIGHT 479

#define DISPLAY DEV LVGLHomePanel BOTTOM 639

#define DISPLAY DEV LVGLHomePanel ROTATE kCWRotateDegree 270
#define DISPLAY DEV LVGLHomePanel FORMAT kPixelFormat RGB565

#ifdef ENABLE CAMERA DEV MipiGc2145

#define DISPLAY_DEV_LVGLHomePanel_SRCFORMAT kPixelFormat_YUV1P444_RGB
#else

#define DISPLAY DEV LVGLHomePanel SRCFORMAT kPixelFormat UYVY1P422 RGB
#endif /* ENABLE CAMERA DEV MipiGc2145 */

#define DISPLAY DEV LVGLHomePanel BPP 2

#endif /* ENABLE DlsplayDev LVGLHomePanel */

This LVGLHomePanel-display-HAL-device launches the main LVGL task loop for the Ul flashing.

static void LvglTask(void *param)
{
#if LV USE LOG
1v Iog register print cb(PrintCb);
#endif /* LV_USE LOG */

lv_port pre init();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

174/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

1v_init();

lv _port disp init();

lv _port indev init();

g LvglInitialized = true;

setup imgs ((unsigned char *)APP LVGL IMGS BASE) ;
setup ui (&guider ui);
events init (&guider ui);
custom init (&guider ui);
while (1) N
{
LVGL LOCK () ;
1v task handler();
LVGL_UNLOCK () ;
vTaskDelay (pdMS TO TICKS (10));

It also handles the camera preview request from the framework in the
HAL DisplayDev LVGLHomePanel Blit function

hal display status t HAL DisplayDev LVGLHomePanel Blit (const display dev t *dev,

{

void *frame, int Width,_int heightT

hal display status t ret = kStatus HAL DisplaySuccess;
LOGI ("++HAL DisplayDev LVGLHomePanel Blit");

// Show the new frame.
void *lcdFrameAddr = s _LcdBuffer[0];
static int camerPreviewLayerOn 0;

// enable camera preview layer in screen with camera preview.
if (s_EnableCameraPreview && (g PreviewMode == PREVIEW MODE CAMERA))
{

if (camerPreviewLayerOn == 0)

{
lv_enable camera preview (lcdFrameAddr, true);
camerPreviewLayerOn = 1;

else

// disable camera preview layer in screen without camera preview.
if (camerPreviewLayerOn == 1)

{
camerPreviewLayerOn = 0;
lv_enable camera preview (lcdFrameAddr, false);

}

if (camerPreviewLayerOn)

{
ret = kStatus HAL DisplayRequestFrame;

}

LOGI ("--HAL DisplayDev LVGLHomePanel Blit");
return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

175/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

9.5.8.4 UiHomePanel Ul output HAL device

This HAL device driver is located in . . /framework/hal/output/hal output ui home panel.c.
The whole Ul state machine is driven by this output HAL device with the below event sources:

9.5.8.4.1 LVGL touch events

All the event callbacks of the LVGL widget are implemented in . . /home panel/cm4/generated/events
init.c.

9.5.8.4.2 Vision and Voice algorithm inference result

The vision (face and gesture) and voice inference result is notified by the output manager with below HAL
OutputDev_UiHomePanel InferComplete operator:

static hal output status t HAL OutputDev UiHomePanel InferComplete (const
output dev t *dev,

output algo source t source,
void
*inferResult)
{
hal output status t error = kStatus HAL OutputSuccess;

if (inferResult == NULL)
{

return error;

}

#if AQT_TEST
if (source == kOutputAlgoSource Voice)
{

_control audio player (inferResult);

}
#endif /* AQT TEST */

LVGL_LOCK() ;
home panel screen id t currentScreenld = get current screen();

if (currentScreenId == kScreen Num)
{

LVGL_UNLOCK () ;

return error;

if (source == kOutputAlgoSource Vision)

_InferComplete Vision (dev, inferResult, currentScreenId);

}

else if (source == kOutputAlgoSource Voice)
{
_InferComplete Voice (dev, inferResult, currentScreenId);
}
LVGL_UNLOCK();
return error;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

176 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

9.5.8.5 RgbLed output HAL device

This HAL device driver is located in . . /framework/hal/output/hal output rgb led.c.

It flashes the RGB LED with different patterns according to the HAL OutputDev RgbLed InferComplete Or
HAL OutputDev RgbLed InputNotify operators below:

static hal output status t HAL OutputDev RgbLed InferComplete (const output dev t
*dev, output_algo_source_t source, void *inferResult)
{
hal output status t error = kStatus HAL OutputSuccess;
uint32 t timerOn = 0;
SetLedColor(APP _OutputDev RgbLed InferCompleteDecode (source, inferResult,
stimeroOn)) ;

if (timerOn != 0)
{

xTimerChangePeriod (OutputRgbTimer, pdMS TO TICKS (timerOn), O0);
}

return error;

static hal output status_ t HAL OutputDev RgbLed InputNotify (const output dev t
*dev, void *data)
{
hal output status t error = kStatus HAL OutputSuccess;

_SetLedColor (APP_OutputDev RgbLed InputNotifyDecode (data)) ;

return error;

9.5.8.6 MessageBuffer multicore HAL device

This HAL device driver is located in . . /framework/hal/misc/hal multicore messageBuffer.c.
It handles the multicore messaging based on the multicore manager message buffer mechanism.

Refer the "framework-> HAL devices -> Multicore devices" part in the framework chapter for the detailed
description of this HAL device.

9.5.8.7 ShellUsb input HAL device

This HAL device driver is located in . . /framework/hal/input/hal input shell cdc.c.
It populates one USB CDC ACM device and implements a shell command interface.

This driver only includes one weak shell command registration function as below:

attribute ((weak)) wvoid
" APP InputDev Shell RegisterShellCommands (shell handle t shellContextHandle,
input dev t shellDev, input dev callback t callback)
{
}

The application must overwrite this function to register the application-specific shell commands.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

177 1 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The implementation of this overwritten function for the Smart Panel applicationisin ../home panel/cm4/
source/event handler/smart tlhmi input shell commands.c:

void APP InputDev Shell RegisterShellCommands (shell handle t shellContextHandle,
input dev_t *shellDev, input dev callback t callback)
{

s_InputCallback = callback;

s_SourceShell = shellDev;

s_ShellHandle = shellContextHandle;

s _FrameworkRequest.respond = FrameworkEventsHandler;
if (s_ThingName == NULL)

{
APP GetHexUniqueID (&s_ThingName) ;

}

SHELL RegisterCommand (shellContextHandle, SHELL COMMAND (version)) ;

9.5.8.8 Standby LPM HAL device

This HAL device driver is located in . . /framework/hal/misc/hal lpm standby.c.

Referto framework -> HAL Devices/docs/hal devices/low power.md in the framework
documentation for the detailed description of this LPM device.

This standby HAL device implements the standby mode of this application. The backlight is turned off and the
main display layer is disabled.

static void EnterStandbyMode (void)

{
LOGD (" [Standby] Enter standby mode") ;
BOARD BacklightControl (0) ;
1v_enable ui preview(0);

9.5.9 Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document
../home panel/cm4/freertos/libraries/logging/README.md.

The CM7 and CM4 share low-level LPUART12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of the LPUART12 peripheral.

They share a low-level timer to get the unified timestamp of the logging information.

9.5.9.1 Logging Task Init

Application calls xLoggingTaskInitialize (...) APl to create the logging task in the main () entry of this
project is located in the . . /coffee machine/cm4/source/sln smart tlhmi cm4.cpp file:

xLoggingTaskInitialize (LOGGING TASK STACK SIZE, LOGGING TASK PRIORITY,
LOGGING QUEUE LENGTH) ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

178 / 226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

9.5.9.2 Logging Macros

The logging Macros are defined in . . /framework/inc/fwk log.h.

All the modules must use these unified logging Macros for logging.

#ifndef LOGV
#define LOGV (fmt, args...) {implement...}

#endif
#ifndef LOGD

#define LOGD (fmt, args...) {implement...}
fendif

#ifndef LOGI
#define LOGI (fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE (fmt, args...) {implement...}
#endif

9.5.9.3 UART hardware connection

The Smart Panel application prints the log to the LPUART12 port. The tx/rx pins of LPUART12 are connected
to J202, at the back of the board (pin3-RX and pin4-TX). Connect the LPUART12 tx/rx pins to a TTL USB serial
adapter (LPUART12 rx pin to USB adapter tx pin, LPUART12 tx pin to USB adapter rx pin), and connect the
TTL USB serial adapter.

9.5.9.4 Get UART log from Windows host

For a Windows host system, find the corresponding COM port number from the Windows "Device Manager" for
the newly connected TTL USB serial adapter. Using terminal emulator program (for example, putty) to connect
to the COM port, setting the speed to 115200 Hz.

9.5.9.5 Get UART log from Linux host

For a Linux host system, Connect to the serial port (usually /dev/ttyUSBXx) using a Linux terminal emulator
program (for example, Minicom), use 115200 8N1 as the serial port setting for the serial communication.

10 Customization

10.1 How to develop a user application

10.1.1 Introduction

We created the template to demonstrate the Smart HMI application with multicore, LVGL GUI, Face
Recognition, Gesture Recognition, and Far-Field Voice Recognition Al/ML algorithms integrated.

You can leverage this template to quickly build your own applications:
* Implement multicore cooperation for higher performance

» Create your fancy GUI with open-source LVGL library
* Use the Face Recognition as the user identity

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

179/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

» Use the Gesture Recognition as the touchless interface
» Use the Far-Field Voice Recognition as the touchless interface

10.1.2 Build the LVGL GUI

LVGL is a free and open-source embedded graphic library with features that enable you to create embedded
GUIs with intuitive graphical elements, beautiful visual effects, and a low memory footprint. The complete
graphic framework includes various widgets for you to use in the creation of your GUI, and supports more
advanced functions such as animations and antialiasing.

To learn more about LVGL, visit the following link.

10.1.2.1 Design and create the GUI with NXP's free GUI Guider tool

GUI Guider is a user-friendly graphical user interface development tool from NXP that enables rapid
development of high quality displays with the open-source LVGL graphics library. GUI Guider's drag-and-drop
editor makes it easy to utilize features of LVGL such as widgets, animations, and styles to create a GUI with
minimal or no coding at all.

To learn more about GUI Guider, visit https://www.nxp.com/design/software/development-software/qui-
guider:GUI-GUIDER

You can also refer to our full GUI Guider project for Coffee Machine and Elevator demo as below:

-- Coffee Machine (/coffee machine/gui guider/TLHMI Coffee Demo LGVLv8 Landscape.
guiguider)

-- Elevator (/elevator/gui guider/TLHMI Elevator Demo.guiguider)

10.1.2.2 Integrate your generated LVGL GUI code

The whole GUI code is running in the CM4 core and is built into the CM4 project.

By default, the function below is the main entry of the whole LVGL GUI located in your generated GUI code . ./
coffee machine/cm4/generated/gui guider.c.

void setup ui(lv_ui *ui)

{
setup scr_ standby (ui) ;
lv_scr load(ui->standby) ;

}

We created the LVGL Display HAL device to handle the LVGL initialization and the GUI launch. The void
setup ui(lv_ui *ui) is called in this HAL device, therefore you must replace the "generated" folder with
your GUI code in the CM4 project, and the whole Ul be launched during the startup.

You can also refer the LVGL Display HAL device implementation for the Coffee Machine demo and Elevator
demo as below:

-- Coffee Machine hal display 1lvgl coffeemachine.c
-- Elevator hal display lvgl elevator.c
To learn more about the Display HAL device, refer to the display.md file.

Note: There is an Application Note to introduce the detailed steps to integrate the LVGL GUI codes to the
smart HMI platform.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

180 /226

https://lvgl.io/
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER
https://www.nxp.com/design/designs/nxp-edgeready-smart-hmi-solution-based-on-i-mx-rt117h-with-ml-vision-voice-and-graphical-ui:SLN-TLHMI-IOT-RD

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

10.1.3 Build the phoneme-based voice recognition model

We enabled the Far-Field Voice Recognition by phoneme-based Automatic Speech Recognition (ASR) engine.
NXP provides two inference engines (VIT/DSMT) for ASR.

We created two Voice Algorithm HAL devices to handle the whole voice recognition based on VIT and DSMT
respectively.

* VIT Voice Algorithm HAL device implementation hal voice algo vit asr.c
* DSMT Voice Algorithm HAL device implementation hal voice algo dsmt asr.c

By default, Coffee Machine and Elevator Apps are built with DSMT Voice Algorithm HAL device and Smart
Panel App is built with VIT Voice Algorithm HAL device.

* Coffee Machine voice recognition models: ../../coffee machine/cm7/local voice/ folder
* Elevator voice recognition models: . ./../elevator/cm7/local voice folder
* Smart Panel voice recognition models: . ./../home panel/cm7/local voice/oob demo vit/ folder

VIT is total NXP intellectual property. We can get its basic knowledge from the VIT main page. For more
information on how to build your VIT phoneme-based voice engine, refer to vit_instructions.md.

DSMT is provided by NXP partner Cyberon. For more information on how to build your DSMT phoneme-based
voice engine, refer to dsmt_instructions.md

10.1.3.1 Voice recognition flow

For more information, refer to the Smart Panel App implementation. VIT inference engine recognizes voice
command based on VIT model. VIT Process returns the detection status by VIT DetectionResults.

VIT Status = VIT Process (VITHandle, cleanSound, &VIT DetectionResults);

Detection status is defined as follows:

/* VIT Detection Status

o Status returned by VIT Process () API.

% Indicates if the Wake Word or a Voice Command has been detected on the
frame processed

[

typedef enum
{

VIT NO DETECTION 0, // Nothing detected

VIT WW_DETECTED = 1, // WakeWord Detected

VIT VC DETECTED = 2, // a Voice Command Detected
VIT DUMMY DETECTION = PL MAXENUM

}VIT DetectionStatus en;

Based on the value of VIT DetectionResults, check Wake Word of Command information.

if (VIT DetectionResults == VIT WW DETECTED)

{
VIT Status = VIT GetWakeWordFound (VITHandle, &s WakeWord) ;

}
else if (VIT DetectionResults == VIT VC DETECTED)

{

/* Retrieve id of the Voice Command detected

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

181 /226

https://www.nxp.com/design/software/embedded-software/voice-intelligent-technology:VOICE-INTELLIGENT-TECHNOLOGY

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

String of the Command can also be retrieved (when WW and CMDs
strings are integrated in Model) */
VIT Status = VIT GetVoiceCommandFound (VITHandle, &s_ VoiceCommand) ;

If voice recognition result is true even confirmed by confirmDetectedCommand, not triggered by Residual
noise from board speaker, the recognition result is sent to output device by static void voice algo
asr _result notify(asr inference result t *result, uint32 t utteranceLength).

If the value of utteranceLength is not 0, there is another message created for AFE device to calibrate AFE
algorithm.

After output device receives voice recognition result, InferComplete Voice handles all voice commands.

static hal output status t InferComplete Voice (const output dev t *dev,
void *inferResult,
home panel screen id t
currentScreenld)

{

hal output status t error kStatus HAL OutputSuccess;
asr inference result t *voiceAlgoResult = (asr inference result t
*)inferResult;
LOGD (" [UI] Screen:%d voice command status:%d cmd:%d", currentScreenld,
voiceAlgoResult->status,
voiceAlgoResult->keywordID) ;

The user can customize the Ul actions based on different product design. The field of keywordID in
asr_ inference result tis used to store command ID.

typedef struct asr inference result
{
asr_voice detect status t status;
asr language t language;
int32 t keywordID;
asr inference t demo;
} asr inference result t;

The voice inference engine runs in CM7 and the whole Voice algorithm HAL device and voice models are built
into CM7 project.

10.1.4 Face recognition and database operations

The face recognition algorithm and database operations are both implemented in the framework.
There are two kinds of databases used in the application:

* The face feature database is used to store the user's face feature data when recognized by the face
recognition algorithm

* The user's profile database is used to store the user's application-specific data (for example, user's confect
selection in the coffee machine demo).

When a user is recognized, a unique face id is generated, and it can be used as the search key to the face
feature database and user's profile database.

The face recognition algorithm and database operations are both running on the CM7 and built into CM7
project.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

182 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

You can refer to the implementation for the Coffee Machine demo, Elevator demo and the Smart Panel demo as
below:

* Face recognition algorithm for Coffee Machine: hal vision algo_oasis_ coffeemachine.c
* Face recognition algorithm for Elevator: hal vision algo oasis coffeemachine.c
 Face recognition algorithm for Elevator: hal vision algo oasis homepanel.c

» Face feature database: hal sln facedb.c

We have implemented the framework flash APIs based on the little fs. You can define the user's profile data
structure and implement the user's profile database base on these well-defined APls.

You can refer to the user's profile database implementation as below:

* User's profile database for Coffee Machine: hal sln coffeedb.c
 User's profile database for Elevator: hal sln elevatordb.c
* User's thermostat profile database for HomePanel: hal sln thermostatdb.c

10.1.4.1 Implement user case flow with face recognition results

The face recognition algorithm and database operations are running on the CM7 core (for example, ../../
framework/hal/vision/hal vision algo coffee machine.c)itis controlled by the Ul HAL output
device (for example, . ./../framework/hal/output/hal output ui coffee machine.c), which runs
on the CM4 CORE.

10.1.4.1.1 Start/ stop the face recognition algorithm

The Ul hal output device controls the start / stop of the face recognition algorithm according to the application Ul
flow logic, for example, when the application enters into the user register screen trying to register a new user.

uint8 t UI EnterScreen Callback(screen t screenlId)

{

switch (screenId)

{

case kScreen Home:

{

__StopFaceRec (0) ;
}

case kScreen Standby:

{
__StopFaceRec (1) ;

}
}

_StopFaceRec sends a event_face_rec_t to the face recognition algorithm that starts/stops the face
recognition algorithm.

static void StopFaceRec (int stop)

{
static event face rec t s FaceRecEvent;
output event t output event = {0};

output event.eventId = kOutputEvent VisionAlgoInputNotify;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

183 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

output event.data = &s_ FaceRecEvent;
output event.copy = 1;
output event.size = sizeof (s_FaceRecEvent) ;

output event.eventInfo kEventInfo Remote;

// notify the face rec to start
s _FaceRecEvent.eventBase.eventId = kEventFaceRecID OasisSetState;

if (stop)
{
s_FaceRecEvent.oasisState.state = kOASISLiteState Stopped;
}
else
{

s_FaceRecEvent.oasisState.state

kOASISLiteState Running;

}

uint8 t fromISR = get IPSR();

s_OutputDev UiCoffeeMachine.cap.callback (s OutputDev UiCoffeeMachine.id,
output event, fromISR);
}

When the face recognition algorithm receives the event, it starts / stops the face recognition processing
accordingly. When starting the face recognition process, it requests camera frames to do the recognition.

static hal valgo status t HAL VisionAlgoDev OasisCoffeeMachine InputNotify (const
vision algo dev t *receiver,
void
*data)
{
switch (eventBase.eventId)

{

ééée kEventFaceRecID OasisSetState:
{ if (start)

{ _oasis start();

élse if (stop)

{ _oasis stop();

}

When receiving a camera frame, the face recognition algorithm does the recognition, and it reports the result
back to the Ul HAL output device.

static hal valgo status t HAL VisionAlgoDev OasisCoffeeMachine Run (const
vision algo dev t *dev, void *data)
{

hal valgo status t ret = kStatus HAL ValgoSuccess;

if (s_OasisCoffeeMachine.currRunFlag != OASIS RUN FLAG NUM &&
s_OasisCoffeeMachine.currRunFlag != OASIS RUN FLAG_ STOP)
{
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

184 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

int ocasis ret = OASISLT run extend(s OasisCoffeeMachine.pframes,
s_OasisCoffeeMachine.currRunFlag,
s_OasisCoffeeMachine.config.minFace,

&s_OasisCoffeeMachine) ;

/* Take decision regarding the inference results */
_process_inference result (&s_OasisCoffeeMachine) ;

10.1.4.1.2 Handling the face recognition results

The Ul HAL output device starts application-specific logic when receiving a face recognition result. For example,
in the coffee machine demo, we ask the user whether to save the coffee selection to the database after we
recognize a new user. Or if we recognize an already registered user, we update the coffee selection on the Ul to
the previous selection.

static hal output status t InferComplete Vision (const output dev t *dev, void
*inferResult, screen t currentScreenId)

{

if ((pResult->face recognized) && (pResult->face id != INVALID FACE ID))
{
// store the user's selection
coffee result t *pAttr = (coffee result t *)pResult->userData;
s_Recognized = 1g

s UserId pResult->face id;
s _UserCoffeeType pAttr->coffeeType;
s_UserCoffeeSize = pAttr->coffeeSize;
s_UserCoffeeStrength = pAttr->coffeeStrength;

// update the UI to user's coffee selection

gui home set language (ConvertASRLanguageToUILanguage (s UserLanguage)) ;
gui set home coffee type (s UserCoffeeType);

gul set home coffee size (s UserCoffeeSize);

guil set home coffee strength (s UserCoffeeStrength);

10.1.4.2 Implement the user's profile database with face recognition

The user profile database is a separate database (besides the face feature database), it is used to store
application-specific data for a user. We use the face id as the key to the user profile database, which is
generated after the face recognition algorithm recognizes a new user.

10.1.4.2.1 Define user profile data structure and database ops

For the coffee machine demo, we use the following data structure to remember a user's coffee selection
hal sln coffeedb.h. The detailed implementation of the database APlisin hal sln coffeedb.c.

typedef struct coffee attribute

{
uintlée t id;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

185/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

uint8 t type;

uint8 t size;

uint8 t strength;

uint8 t language;

uint8 t reserved[1l5];
} coffee attribute t;

typedef struct coffeedb ops
{
coffeedb status t (
coffeedb status_t (*deinit) (void);
coffeedb status t (*addWithId) (uintlé t id, coffee attribute t *attr);
coffeedb status t (*delWithId) (uintlé6 t id);
coffeedb status t (*updWithId) (uintl6 t id, coffee attribute t *attr);
coffeedb status t (*getWithId) (uintlé t id, coffee attribute t *attr);
} coffeedb ops t;

*init) (void) ;

extern const coffeedb ops t g coffedb ops;

10.1.4.2.2 Save user profile data into the database

When the face recognition algorithm detects a new user, the Ul output HAL device decides when to save the
user's face feature data and the user profile data after receiving the face recognition result. For example, in
coffee machine demo, after the user confirms to save the coffee selection, an event with the user's coffee
selection is sent to the face recognition algorithm.

static hal output status t InferComplete Voice(const output dev t *dev, void
*inferResult, screen t currentScreenId)

{

case (VOICE CMD CONFIRM) :
{
if (s_IsWaitingRegisterSelection)
{
coffee type t curType = get coffee type();
coffee size t curSize get coffee size();
coffee strength t curStrength = get coffee strength();
asr language t language =
_ConvertUILanguageToASRLanguage (get language()) ;

_RegisterCoffeeSelection (curType, curSize, curStrength,

language) ;

}
}

static void RegisterCoffeeSelection (coffee type t type,
coffee size t size,
coffee strength t strength,
asr language t language)

static event smart tlhmi t s TlhmiEvent;
LOGD (" [UI] Register user:%d coffee selection %d:%d:%d:%d", s UserId, type,
size, strength, language);

output event t output event = {0};

output event.eventId = kOutputEvent VisionAlgoInputNotify;

output event.data = &s_TlhmiEvent;

output event.copy = 1;
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

186 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

output event.size = sizeof (s TlhmiEvent) ;
output event.eventInfo kEventInfo Remote;

s_TlhmiEvent.eventBase.eventId =
kEventFaceRecId RegisterCoffeeSelection;

s_TlhmiEvent.eventBase.eventInfo =
kEventInfo Remote;

s_TlhmiEvent.regCoffeeSelection.id = s UserId;
s_TlhmiEvent.regCoffeeSelection.coffeelInfo.coffeeType = type;
s_TlhmiEvent.regCoffeeSelection.coffeelInfo.coffeeSize = size;
s_TlhmiEvent.regCoffeeSelection.coffeelInfo.coffeeStrength = strength;
s_TlhmiEvent.regCoffeeSelection.coffeelInfo.language = language;
uint8 t fromISR = get IPSR();

s_OutputDev UiCoffeeMachine.cap.callback (s OutputDev UiCoffeeMachine.id,
output event, fromISR);

}

When the face recognition algorithm receives the event, it saves the user face feature data and the user profile
data, using the face id as the key for both databases.

static hal valgo status t HAL VisionAlgoDev OasisCoffeeMachine InputNotify (const
vision algo dev t *receiver, void *data)

{

case kEventFaceRecId RegisterCoffeeSelection:
{
s_pFacedbOps->addFace (s_faceId, NULL, s pFaceFeature,
OASISLT getFaceltemSize());
s _pCoffeedbOps->addWithId (s faceld, &attr);
}

10.1.5 Implement the use case flow with gesture recognition results

The gesture recognition is only used in Smart Panel APP. The use case flow is handled in the Ul Output HAL
device implemented in the file hal output ui home panel.c. The basic process of the use case flow for
gesture recognition is:

» Start the gesture control by enabling it with calling the API EnableGestureControl (true)
* Trigger the user's use cases with the inference results of gesture recognition model
» End the gesture control by disabling it with calling EnableGestureControl (false)

The inference result-related information is defined as a data struct for the use case flow. See below:

typedef struct
{

bool has hand; /**< whether the hand is detected
or not; */

DetBox t box; /**< hand location: left, top,
right, bottom. */

float conf; /**< hand confidence. */

hand 1r left right; /**< left hand or right hand. */

gesture type gtype; /**< gesture type. */

float handmark [HAND LANDMARK NUMBER * 3]; /**< hand landmark location: x1,
yl, z1, x2, y2, z2... */

} uvita gesture out;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

187 1 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The process of triggering the use cases with the results from the gesture algorithm model is implemented in the
MHCﬁon_InferComplete_VisionAudioPlayer():

* Check whether the hand is detected first. For example:

if (pHandResult->hand.has hand == true)

* If detected, trigger the different use cases according to the gesture type, such as fist, palm. For example:

if (pHandResult->hand.gtype == GESTURE FIST)
{

//implement your use case

}

The user can implement the APP use ce on the corresponding gesture type. For more details, check the file
hal output ui home panel.c.

10.1.6 Implement multicore communication

For better performance, different tasks are running on m4 and m7 core. Both cores must communicate with
each other for cooperation. Based on framework design, both cores communicate via events covering different
framework managers and HAL devices. On Smart HMI platform, the multicore communication mechanism has
been built and there has implemented many multicore communications with many defined events in the APPs.
A user can implement multicore communication in the application. Below is the guidance for it.

The event type indicating multicore communication is defined in the fwk common.h:

typedef enum event info
{
kEventInfo DualCore = 0, /* default */
kEventInfo Local,
kEventInfo Remote,
kEventInfo Invalid
} event info t;

The default value kEventInfo DualCore means that the event is sent to both cores M4 and M7.
kEventInfo Local means the local core and kEventInfo Remote means the other core. Usually,
kEventInfo Remote used for multicore communication in APP.

There could be a little difference from the event definitions on the different HAL devices for multicore
communication. But they have common control information, for example the event struct is defined for output
device as below:

typedef struct output event
{
/* Eventid from the list above.*/
output event id t eventId;
event info t eventInfo;
/* Pointer to a struct of data that needs to be forwarded. */
void *data;
/* Size of the struct that needs to be forwarded. */
unsigned int size;
/* If copy is set to 1, the framework will forward a copy of the data. */
unsigned char copy;
} output event t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

188 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Below is a simple and typical example from Elevator APP to show how to send an event on the output device
for multicore communication. The function of the example codes is that the M4 core is notifying the output
device on M7 core to stop playing the prompt.

void StopPrompt (void)

{
static event common t s StopPromptEvent;
LOGD (" [UI] Stop prompt");

output event t output event = {0};

output event.eventId = kOutputEvent OutputInputNotify;
output event.data = &s_ StopPromptEvent;

output event.copy = 1;

output event.size = sizeof (s_StopPromptEvent) ;
output event.eventInfo kEventInfo Remote;

s_StopPromptEvent.eventBase.eventId = kEventID StopPrompt;

uint8 t fromISR = get IPSR();

s_OutputDev UiElevator.cap.callback(s OutputDev UiElevator.id, output event,
fromISR) ;
}

In the above codes, the eventID value indicates the event case handled by the output device. The "data" is the
information that the specific event required to be handled, here is to stop prompt. The eventinfo value indicates
that the event must be sent to the other core, that is multicore communication.

Finally, a new eventID value could be required for the user case. Suggest to define it in the head
file - smart tlhmi event descriptor.h underthe path source/event handlers/ of
each APP for the application layer, for example, the eventID definitions for smart Home which is in
smart tlhmi event descriptor.h:

typedef enum event smart tlhmi id

{
kEventID HomePanelType = kEventType App,
kEventID SetKeyboardOverlay,
kEventID GetPreviewMode,
kEventID SetPreviewMode,
kEventID MediaPlayer TrackInfo,
kEventID MediaPlayer TrackPosition,
kEventID MediaPlayerInfo,
kEventFaceRecId RegisterSecuirtyUser,
kEventFaceRecId RespondAddUser,
kEventFaceRecId RespondUpdateUser,
kEventFaceRecId RespondAddSecurityUser,
kEventFaceRecId RespondUpdateSecurityUser,
kEventFaceRecId DelSecurityUser,
kEventID SmartTLHMIID COUNT

} event smart tlhmi id t;

10.2 Application resource build

10.2.1 Introduction

This chapter focuses on usages of the resource generator tool used to pack some resource files into a binary
file. In TLHMI project, there are some huge resource files, such as pictures used by LVGL, prompts, and music

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

189 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

files used by audio player, significant VIT model files used in Smart Panel App. To reduce compiler linking time
cost, it is a good practice to extract these resource files from the project, and build them into an independent
binary file.

10.2.2 How to use the resource generator tool

We can generate the resource binary file by running a script file which locates in second-level directory
of App root. Provide two build versions for the resource generator tool. The one suffixed with bat is built
for Windows. The other one suffixed with sh is used for Linux. This chapter is written based on Linux
environment. For Coffee Machine App, navigate to . /coffee machine/resource/ and run bash
coffee machine resource build.sh

Look into the script file, it actually leverages the . ./../tools/resource build/resource build tool
and provide required parameters.

#! /bin/bash
../../toolsfresource_build/resource_build coffee_machine_resource.txt coffee_machine_resource.bin

exit

Figure 38. Resource build tool

resource build executable binary supports three parameters:

* description file: the name of description file

* binary filename (optional): by default, the name of generated binary file is "resources.bin”

* image file format (optional): by default, it is set to 0 (LV_COLOR_16_SWAP == 0). Image data layout is little-
endian. Otherwise image data layout is big-endian.

In most cases, no changes are needed to the resource generator tool. Run the script with default parameters,
update the description file based on specified projects.

10.2.3 Descriptions of the resource file

The description file contains the directory information of resource files. Update the directory information based
on where the used resource file is. There are four types of resource in the description file: image/icon/sound/
model. Follow the above resource type order during updating resource directory information.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

190/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

resource_build home_panel_resource.txt

home_panel_resource.txt format
each line for one file description

type file_name

./home_panel/resource/images/ audio_player_background_1288x720.c
. fhome_panel/resource/images/_audio_player_mic_off_70x112.c

. fhome_panel/resource/images/_audio_player_next_140x214.c

. fhome_panel/resource/images/_audio_player_pause_170x190.c

. fhome_panel/resource/images/_audio_player_play_170x198.c

. fhome_panel/resource/images/_audio_player_previous_140x214.c

. fhome_panel/resource/images/_audio_player_volume_down_144x130.c
. fhome_panel/resource/images/_audio_player_volume_up_144x138.c

. fhome_panel/resource/images/_auido_player_mic_on_70x112.c
./home_panel/resource/images/ back 85x70.c

. fhome_panel/resource/images/_button_green_alpha_210x116.c

. fhome_panel/resource/images/_button_red_alpha_210x110.c

. fhome_panel/resource/images/_face_blue_96x93.c

. fhome_panel/resource/images/_face_green_96x93.c

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

/
/
/
/
/
/
ooflc
/
/
/
/
/
/
/

.
.

Figure 39. Resource description file

10.2.3.1 Resource file type

* Image file

The image files are generated by GUI-Guide and automatically saved in the gui guide/generated/
images folder. The latest GUI-Guide can be found at this address: GUI-Guide Tool

const uint8 t Americano 250x250 map[] = {
#if LV _COLOR DEPTH == 16 && LV_COLOR 16 SWAP == 0

Oxff, Oxff, 0x00, Oxff, Oxff, 0x00, Oxff, Oxff, 0x00, Oxff, Oxff,
fendif
#if LV _COLOR DEPTH == 16 && LV _COLOR 16 SWAP != 0

Oxff, Oxff, 0x00, Oxff, Oxff, 0x00, Oxff, Oxff, 0x00, Oxff, Oxff,
fendif
i

¢ |con file

Icon files are automatically generated by the GUI-Guide Tool.

#ifndef NXP_LOGO H_
#define NXP LOGO H

#define NXP_LOGO W 240
#define NXP LOGO H 86

static const unsigned short nxp logo 240x86[] = {

OxFDA4, OxFD83, OxFD83, 0xFD83, 0xFD83, 0xFD83, 0xFD83, O0xFD83,
}i
#endif /* NXP LOGO H */

* Audio file
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1 — 23 May 2023

191/ 226

https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The audio header files can be generated by free tools, such as xxd, Audacity, or WAVToCode.

/*********~k*~k************~k*~k**********~k*~k******************************

* Written by WAVToCode

* FileName: Can I help.h
* Signed: Yes

* No. of channels: 1

* No. of samples: 14211

* Bits/Sample: 16

*

***/

#define WW DETECT EN LEN sizeof (ww_detect en)
short ww_detect en[14211] = {
0, 0, 0, 1, -2, 2, -1, @, /% Q=7 %/
L =iy 1502k 2,0 =i 0, 1, /* 8-15 */

2, 0, -1}; /* 14208-14210 */

Note: In Coffee Machine and Elevator, audio files are in 16 KHz/16 bit/Mono Wav formate. Audio files in
Smart Panel are 48 KHz/16 Bit/Mono MP3 formate. Since audio resource file in Smart panel is very significant,
compress audio resource into MP3 from Wav to save flash memory resource. Smart Panel App has integrated
MP3 stream decoder.

* VIT Model file
VIT model is generated by the VIT online tool. For details, see vit instructions.md.

Note: Update the model array type as const unsigned char. By default, the array is defined with
the aligned attribute. resource build has considered the model-aligned requirement very well.
resource build does not understand the macros defined in vit.h, so update the array type manually.

/*
VIT Model version : v4.8.0

WakeWord supported
WW_Id : WW_Name
1 : HEY NXP

Voice Commands supported
Cmd Id : Cmd Name

0 : UNKNOWN
1 : THERMOSTAT
2 : SECURITY
3 : AUDIO PLAYER
wf
const unsigned char VIT Model Main Menu en[] = {

0xa2, 0x34, Oxfe, Oxab, 0x00, 0x08, 0x04, 0x00, 0x02, 0x00, 0x03, 0x00, 0x01,
0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x68, 0x05, 0x00, 0x00, 0x04,

0x0c, 0x63, 0x0c, 0x65, 0x0Oc, 0x67, 0x0Oc, 0x69, 0x0Oc, 0x6b, 0x0Oc, Ox6d, 0xOc,
Ox6f, 0x0c, 0x71, 0x0Oc, 0x75, 0x0Oc, 0x77, 0x0Oc, 0x79, 0x0Oc, 0x7b, 0xO0c,
0x7d, 0x0c, 0x80, 0x0Oc, 0x84, 0x0Oc, 0x86, 0x0c, 0x88, 0x0c, 0x8a, 0x0c, 0x0a,
0x00, 0Ox2c, 0O0x01, 0x00, 0x00, 0x00, Ox41, 0x00, 0x00, OxcO, 0x3f, 0x66,
0x66, Oxco6, 0x3f, Oxba, 0x89, Oxed, 0x56, ¥

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

192/ 226

https://vit.nxp.com

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

10.2.4 Update the device firmware based on resource generator output

After resource generator runs successfully, it generates a file named resource information table.txt
containing binary resource layout information. Reference this file to update the device firmware. Otherwise
device firmware cannot parse resource binary correctly.

In case we are referencing smart panel application, the file of resource information table.txt consists
of 4 parts:

* Image index list

_audio_player_background_1280x720.data = (base + 08);
_audio_player_mic_off_70x112.data = (base + 1843200);
_audio_player_next_140x214.data = (base + 1858880);
_audio_player_pause_170x190.data = (base + 1918848);
_audio_player_play_170x190.data = (base + 1983488);
_audio_player_previous_140x214.data = (base + 2048128);
_audio_player_volume_down_144x130.data = (base + 2188096);
_audio_player_volume_up_144x130.data = (base + 2145536);
_auido_player_mic_on_70x112.data = (base + 2182976):;
_back_85x70.data = (base + 2198656);
_button_green_alpha_210x110.data = (base + 2210560);
_button_red_alpha_210x110.data = (base + 2279872);
_face_blue_96x93.data = (base + 2349184);
_face_green_96x93.data = (base + 2367040);
_face_red_96x93.data = (base + 23B84896);
_help_1606x180.data = (base + 2402752);

_home_85x70.data = (base + 2422784);
_main_audio_player_160x160.data = (base + 2434688);

Figure 40. Image index list

¢ |con index list

d 5P i = Dd h
_user_setting_128x128.data = (base + 8259200);
s_Icons[process_bar_240x14] = (base + 0);

s_Prompts[Flying_On_The_Wings_Of_Love].data (base + 0);
s_Prompts[Flying_On_The_Wings_Of_Love].len = 365893;
s_Prompts[Feel_Alright_Main].data = (base + 365952);

Figure 41. Icon index list

e Music/Prompt index list

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

193 /226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

S:Prompta[Flyina_Dn:The_HingS_Df_Love].data (base + 0);

s Prompts[Flying On_The Wings Of Love].len 365893;
s Prompts[Feel Alright Main].data (base + 365952);
s Prompts[Feel Alright Main].len 365893;

s Prompts[Digital Technology Full].data
s _Prompts[Digital Technology Full].len

365852;

s Prompts[have your favorite setttings Confirm_cancel cn].data
s _Prompts[have your favorite setttings Confirm_cancel cn].len
s Prompts[delete selected user confirm cancel cn].data
s _Prompts[delete_selected user_confirm_cancel _cn].len

s _Prompts[start_registration_cn].data
s_Prompts[start_registration_cn].len 3681;

s Prompts[identified new user verify pin_cn].data
s Prompts[identified new user verify pin_cn].len

s Prompts[invalid Pin_cn].data (base + 1135872);
s Prompts[invalid Pin_cn].len 3465;

s Prompts[registration_successful cn].data
s Prompts[registration_successful cn].len

s Prompts[verify pin_to delete user _cn].data
s Prompts[verify pin_to delete user_cn].len

4005;

2405;

Figure 42. Music/Prompt index list

(base + 731904);

(base + 10897792);
12213;

(base + 1118016);

11025;

(base + 1121088);

(base + 1124800);
11025;
(base + 1139392);

(base + 1143424);

¢ VIT model index list

s Models[VIT Model Main Menu en].data
s Models[VIT Model Main_Menu _en].len

(base + 8);
360732;

s Models[VIT Model Thermostat en].data = (base + 360768);

s Models[VIT Model Thermostat en].len
s Models[VIT Model Security en].data
s Models[VIT Model Security en].len 362084;
s_Models[VIT Model Audio Player_en].data
s_Models[VIT_ Model Audio Player_en].len
s Models[VIT Model Main Menu cn].data
s Models[VIT Model Main_Menu cn].len
s Models[VIT Model Thermostat cn].data
s Models[VIT Model Thermostat cn].len

415244 ;

362436;

336844;

340924 ;

(base + 776064);
(base + 1138176);
(base + 1500672);

(base + 1837568);

s Models[VIT Model Security cn].data = (base + 2178496);

s Models[VIT Model Security cn].len 338420;
s_Models[VIT_ Model Audio Player_cn].data
s_Models[VIT_ Model Audio Player_cn].len

338828;

Figure 43. VIT model index list

(base + 2516928);

» Each type resource total size

Images Total: Ox7e8688, 8291968
Icons Total: Ox001a48, 6720

Prompts Total: 0x1zbese, 1224832
Models Total: ©x2b9388, 2855808

Total(Images, Icons): Ox7ea®cO®, B29B68B

Total(Images, Icons, Prompts): 8x915148, 9523520

Figure 44. Resource size

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

194/ 226

NXP Semiconductors

MCU-SMHMI-SDUG

10.2.4.1 Update image index in custom.c

Smart HMI Software Development User Guide

- void setup imgs(unsigned char *base)
{

_audio player background 1280x720.data
_audio player mic off 78x112.data
_audio player next 148x214.data
_audio player pause 178x198.data
_audio player play 176x190.data
_audio player previous 148x214.data
_audio player volume down 144x130.data
_audio player volume up 144x130.data
_auido player mic on 70x112.data
_back 85x78.data
_button _green_alpha 216x118.data
_button red alpha 218x110.data
_face _blue 96x93.data
_face green 96x93.data
_face_red 96x93.data
_help 1leexle0.data
_home_85x70.data
_main_audio player 160x168.data
_main_background 1280x630.data

Figure 45. Update image index

= (base + 8);

= (base + 1843200);
= (base + 1858880);
= (base + 1918848);
= (base + 1983488);
= (base + 2848128);
= (base + 2108096);
= (base + 2145536);
= (base + 2182976);
= (base + 2198656);
= (base + 2210560);
= (base + 2279872);
= (base + 2349184);
= (base + 2367040);
= (base + 2384896);
= (base + 2402752);
= (base + 2422784);
= (base + 2434688);
= (base + 2485888);

10.2.4.2 Update icon index in hal_output_ui_home_panel.c

4
5= void LoadIcons(void *base)
6
7

P P B B R R
e
e

Figure 46. Update icon index

s Icons[ICON PROGRESS BAR] = (base + 8);

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

195/226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

10.2.4.3 Update music/prompt index in smart_tlhmi_mgs.c

3= void LoadAudioPrompts(void *base)

o

3 s Songs[Flying On The Wings Of Love].track = (base + 0);

3 s Songs[Flying On The Wings OF Love].length = 365893;

7 s Songs|[Feel Alright Main].track = (base + 365952);
3 s Songs[Feel Alright Main].length = 365893;

3 s Songs[Digital Technology Fulll.track = (base + 731904);
3 s Songs[Digital Technology Full].length = 365852;

1

2 // Prompts Total: 0x12bG86, 1224832

3 s _Prompts[@][Have Your Favorite Setttings Confirm Cancel].data
} s Prompts[0] [Have Your Favarite Setttings Confirm Cancel].len
3 s_Prompts[@][Delete Selected User Confirm Cancel].data

3 s Prompts[0] [Delete Selected User Confirm Cancel].len

7 s Prompts[@][Start Registration].data

3 s Prompts[@][Start Registration].len

J s _Prompts[@][Identified New User Verify Pin].data

J s Prompts[0] [Identified New User Verify Pin].len

1 s Prompts[@][Invalid Pin].data

2 s Prompts[@][Invalid Pin].len

Figure 47. Update music/prompt index

(base + 1897792);
12213;

(base + 1110016);
11025;

(base + 1121088);
3681;

(base + 11248600);
11025;

(base + 1135872);
3465;

10.2.4.4 Update VIT model index in smart_tlhmi_vit.c

5= void LoadVITModels(void *base)
i/
{
;] //English VIT models
g s VITModels[8] [MAIN MENU].data = (base + 0);
] S_VITI"'IOdEIS[@] [PMIN_HENU] .len = 360732;
1 s VITModels[8] [THERMOSTAT] .data = (base + 360768);
2 S_VITI"'IOdEIS[@] [THERMOSTAT] .1len = 415244;
3 s VITModels[8] [SECURITY] .data = (base + 776864);
- S_VITI"'IOdEIS[@] [SECURITY].len = 362084;
5 s VITModels([8] [AUDIO PLAYER].data = (base + 1138176);
B S_VITI"'IOdEIS[@] [AUDID_PLAYER] .len = 362436;
i/
B //Chinese VIT models
3 s VITModels[1] [MAIN MENU].data = (base + 1580672);
] S_VITI"'IOdEIS[l] [PMIN_HENU] .len = 336844;
1 s VITModels[1] [THERMOSTAT] .data = (base + 1837568);
2 S_VITI"'IOdEIS[l] [THERMOSTAT] .1len = 340924;
3 s VITModels[1] [SECURITY].data = (base + 2178496);
- S_VITI"'IOdEIS[l] [SECURITY].len = 338420;
5 s VITModels[1] [AUDIO PLAYER].data = (base + 2516928);
B S_VITI"'IOdEIS[l] [AUDID_PLAYER] .len = 338828;
i/
¥

Figure 48. Update VIT model index

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

196 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

10.2.4.5 Update all each type resource size in app_config.h

65 #define APP_LVGL IMGS BASE (APP RES SHMEM BASE)

#define APP LVGL IMGS SIZE 0x007e8680

7 #define APP_ICONS BASE (APP_RES SHMEM BASE + APP LVGL IMGS SIZE)
68 #define APP ICONS SIZE 8x00061a40

69

70 #define APP PROMPTS SIZE 0x0612b686

71 #define APP_MODELS SIZE ©x002b9380

=

on LA

o O

o

Figure 49. Update resource size

10.3 Cyberon DSMT speech model instructions

10.3.1 Getting started with phoneme-based voice engine tool

NXP partners with Cyberon for generating phoneme-based voice engines. The voice engine supports speaker-
independent recognition and there is no need to collect speech data for training specific commands in advance.
With the generation tool, you can create your own custom voice engine by simply typing text.

The TLHMI solution supports Far-Field voice recognition enabled by phoneme-based Automatic Speech
Recognition (ASR) engine, digital signal processing (DSP), and audio front end (AFE). This chapter describes:

1. How to create or modify phoneme-based voice engine in various languages
2. How to integrate a generated voice engine into TLHMI solution software

3. Guide for voice recognition improvement

4. Technical specification information of the voice engine

10.3.2 Installation

The generation tool requires you to log in. To get access to the tool, contact NXP (local-commands@nxp.com)
with the following information.

1. Company name

2. User’s name

3. User’s company email address

4. Physical address (MAC address) of PC network interface.

We reach out to let you know when the account is created. The installation package for Cyberon DSpotter
Modeling Tool (DSMT) V2 can be found at this address: DSpotter Modeling Tool

The installation package contains the following items.

1. Cyberon DSpotter Modeling Tool (DSMT) V2

2. DSpotter Offline Test Tool V2

3. DSpotter Online Test Tool V2 You are required to install all of them. While installing the modeling tool, you
are prompted to install the offline / online test tools.

Install the Cyberon DSpotter GarbGen Tool from this address: DSpotter GarbGen Tool

10.3.3 Load the project template

Note: This guide focuses on exemplifying how DSMT tool works by using the Coffee Machine demo template
for English language.

First, copy the coffee machine/oob demo en.dsnt file in the MCUXpresso project at the location below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

197 / 226

mailto:local-commands@nxp.com
https://tool.cyberon.com.tw/DSMT_V2/index.php?lang=en
https://tool.cyberon.com.tw/DSpotterGarbGenTool/index.php?lang=en

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

0
a

5 Project Explorer 22 1l Registers % Faults 2, Peripherals+
B% Y

T_,-_i?- > sln_smart_tlhmi_coffee_machine_cm4 (in cmd) <5lave> [sln_smart_tlhmi m ~

| -

Qo0

W T_,~_i?- > sln_smart_tlhmi_coffee_machine_cm7 (in cm7) <Master> [sln_smart_tlhmi
=i Project References
& Project Settings
f;? Binaries
it Includes
3 CMsIS

3 audio

3 board

3 component
3 device

(3 drivers

R = framework
(43 freertos

2 libs
2 littlefs

v [» local_voice
(% oob_demo_cn
% oob_demo_de
v 2% = oob_demo_en
5 » CMD_COFFEE_MACHIMNE. et
@ = opob_demeo_en_pack_WithMaplD.bin
e' cob_demo_en.dsmt

< >

Figure 50. Coffee Machine DSMT en template

Ensure that the DSpotter Modeling Tool (DSMT) is installed. To load the project template:

1. Launch the application.
2. A window prompts you to enter your credentials. Log in with your credentials.
3. Click File > Load Project

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

198 / 226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

File | Group

0 Cyberon DSpotter Modeling Tool V2

Language Help

New Project...

|| Load Project...

Save Project

Exit

Figure 51. Load DSMT template

Modify Project Settings...

Ctrl+S

4. Open the DSMT project previously copied into the workspace.

o Cyberon Dspotter Modeling Tool V2

File Group Llanguage Help

: CMD_COFFEE_MACHINE
Commands

Input Command

Add
Batch Add
Command List
Up
MHo. Cornmand Reward CrndMap! ™
0 Hey NXP 0 1 Down
1 Hey MXP ~1] 1
2 Hey NXP 2 0 1
3 Hey NXP ~3 0 1 LefEi
4 Hey NXP 4 0 1
5 Garb-Hey -100 0 Edit
] Garb-MxpP -100 0
7 Garb-Hey NX -100 0 1/53
8 Garb-Hey NP -100 i]
9 Garb-Hi NXP -100 0
10 Garb-Hello NXP -100 0 Phoneme Table
11 Garb-Hello MXP ~1 -100 0
12 Garb-Hallo NXP -100 0 w
£ >
Command Phoneme Play
<en-US=hh-eyl<en-US=ehl.n-eh-kcl.s-p-iyl
¥ Pl Update
Default

Command

Confi. Reward Ijl - [| +

Global
Speaker Independent

Energy Threshold ol|-| +
Confi. Reward o |- [| +
SG Diff. Reward o |- [] +
Ending Silence (sec.) 0.24 | - [] +
Reset

Extra Quitput

Pack Model With: [1 Big Endian

[command Text

1 Trimap bin

MapID

Online Test Offline Test Save Project

Platform: 32 Bit

Language: English(Worldwide) Base Model Release: 202009281300

Sample Rate: 16000 Hz | Frame Rate: 100 (frame/sec)

Feature: 23D Level: 1

Figure 52. Coffee Machine DSMT en template

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

199 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

10.3.4 Add a new command into the Coffee Machine demo

Note: For an easier demonstration, we remove the garbage words here. Delete all entries after "Deregister"
command.

To add a command into the Coffee Machine demo:

1. Click CMD_COFFEE_MACHINE tab on the DSMT tool.

2. Type a new command, then press on "Add". For example, "Mochaccino". This command is inserted at the
end, as shown below (this is the reason for which we have deleted the garbage words, we would have
needed to press the "Up" button for more than 300 times to bring the new command on the position from the
image below.)

@ Cyberon DSpotter Modeling Toal V2 ------ Current modification is Not saved — X

Group Llanguage Help

ww CMD_COFFEE_MACHINE

Commands Command
Input Command Confi. Reward ljl - [] +
Add
Batch Add Global
Speaker Independent
Command List
Up
No. Command Reward CrndMap! ® Energy Threshold ol-|1 ¥ +
11 Americano 0 2 Down
12 Cappuccino 0 2 Confi. Reward 0 -] +
13 Cafe latte 0 2
14 Cafe lbtte ~1 0 2 Delete 56 Diff. Reward o - | +
13 Small 0 2
16 Madium a 2 Edit Ending Silence (sec.) 0.24 | - [) +
17 Large 0] 2
18 Soft 0 2 24/24
19 Soft ~1 0 2 Reset
20 Mild 0 2
21 Strong 0 2 Phoneme Table
22 Deregister i} 2
23 Mochaccino 0 -1 Extra Output
< > Pack Model With: [Big Endian
[Command Text
Command Phoneme Phay] Trimap bin
<en-US=m-ow0.k-ael.ch-iyl.n-owl Update MapID
Default Online Test Offline Test Save Project
Platform: 32 Bit Language: English(Worldwide) Base Model Release: 202009281300
Sample Rate: 16000 Hz | Frame Rate: 100 (frame/sec) Feature: 23D Level: 1

Figure 53. Mochaccino at the end
3. Edit cmdMap1d from -1 to the one used for the other commands of this command group, which is 2. To do
this, double-click the command.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

200/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

0 Cyberon Dspotter Modeling Tool V2 — X
File Group Language Help
wwy CMD_COFFEE_MACHINE
Commands Command
Input Command Confi. Reward ljl -] i
Add
Batch Add Global
Speaker Independent
Command List
Up
No. Command Reward ~CmdMap! * Energy Threshold o[- @ +
11 Americano 0 2 Down
12 Cappuccino 0 2 Confi. Reward o - ' +
13 Cafe latte 0 2 :
14 Cofebite N1 0 2 Delete S6 Diff. Reward 0 -] ¥
15 Srmall 0 2
16 Medium 0 2 Edit Ending Silence (sec.) 0.24 | - [] +
17 Large i} 2
18 Soft 0] 2 24/24
19 Soft ~1 0 2 Reset
20 Mild 0] 2
21 Strong i] 2 Phoneme Table
22 Deregister 0] 2
23 Mochaccino [i 2 Extra Qutput
= > Pack Model With: [Big Endian
[command Text
Command Phoneme Play] Trimap bin
-US 0.k-ae0.ch-iyl.n-ow0
«<en-Us=m-ow0.k-ael.ch-iyl.n-owl Update MapID
Default Online Test Offline Test Save Project
Platform: 32 Bit Language: English(Waorldwide) Base Model Release: 202009281300
Sample Rate: 16000 Hz | Frame Rate: 100 (frame/sec) Feature: 23D Level: 1
Figure 54. Mochaccino at the end good cmdMapld

4. Save the project (by pressing Ctrl + S or clicking the Save Project button.)

10.3.4.1 Integrate the voice engine in MCUXpresso project

If the DSMT template was copied into the folder mentioned above, the binary containing the speech model is
automatically updated when you save the DSMT project.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

201 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

| |

W

5 Project Explorer 32 1l Registers % Faults 'Z, Peripherals+
5% V| |- s

L-_iz- > gln_smart_tlhmi_coffee_machine_cmd (in cmd) <Slaves [sln_smart_tlhmi s
VL-_i?- > sln_smart_tlhmi_coffee_machine_cm7 (in cm?) <Master> <Debug> [sIn_sn

B Project References

& Project Settings

{f Binaries

! Includes

3 CMSI5

3 audio

%3 board

3 component

3 device

(3 drivers

B = framework
(23 freertos

72 libs
2 littlefs

v (23 = local_voice
[#% oob_demo_cn
% oob_demo_de
w 2% = oob_demo_en
[AllGreup_MaplD_pack.bin
s CMD_COFFEE_MACHIME_MaplD.bin
CMD_COFFEE_MACHIMNE. mod
= CMD_COFFEE_MACHIME. tct
CYBase.mod
CYTrimap.mod
= oob_demo_en_pack_WithMaplD.bin

oob_dermno_en_pack.bin

=

NSRRI w) !

=
)

oob_demo_en.dsmt
I ,1 cob_demo_en.zip
v WW_MaplD.bin
By WW.mod
B > WW.xt
% oob_demo_fr
[scripts "

[v ladrmei mmmmmam e At

2

£

Figure 55. Updated dsmt binary

We now must update a few things in the firmware to add support for the new command. For the sake of the
example, we do the same action on the GUI for Mochaccino as we are doing for Cappuccino.

1. Update IndexCommands_dsmt.h. Increase the total number of commands by 1 and also add an action in
action coffee machine en, specifying that we have the same action as for Cappuccino.

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Rev. 1 — 23 May 2023

MCU-SMHMI-SDUG
User guide

202 /226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

[h] IndexCommands_dsmth 52 [h] IndexToCommand_en.h

18 f* -These-detines-are- currently-used -only- tor-displaying-in
19 #define NUMBER_OF_COFFEE_MACHINE_CMDS_EN-24

20 #define NUMBER_OF COFFEE_MACHINE_CMDS_CN- 2@

21 #define NUMBER_OF COFFEE_MACHINE CMDS_FR- 16

22 #define NUMBER_OF COFFEE_MACHINE CMDS_DE- 15

23

24 unsigned int action_coffee_machine _en[] = {

25 kCoffeeMachineActionStart, /- tstart”

26 kCoffeeMachineActionCancel, /- "Cancel™

27 kCoffeeMachinedctionConfirm, J-"Confirm™

28 kCoffeeMachinedctionConfirm, J-"Confirm”

29 kCoffeeMachinedctionConfirm, Jf-"Confirm”

3e kCoffeeMachinedctionConfirm, J-"Confirm”

31 kCoffeeMachinedctionConfirm, J-"Confirm”

32 kCoffeeMachinedctionConfirm, Jf-"Confirm”

33 kCoffeeMachineActionConfirm, /- "Confirm™”

34 kCoffeeMachinedctionConfirm, /- "Confirm™

35 kCoffeeMachineActionEspresso, - // "Espresso”
36 kCoffeeMachineActionAmericano, - - // "Americano”
37 kCoffeeMachinedctionCappuccine, - // "Cappuccing”
38 kCoffeeMachinedctionlatte, ffl"[afe lakte”
39 kCoffeeMachinedActionlatte, //-"Cafe- latte”
48 kCoffeeMachinedctionsmall , Jf-"small”

41 kCoffeeMachineActionMedium, /- "Medium®

42 kCoffeeMachineActionlarge, /- "Large"

43 kCoffeeMachineActionSoft, /- "Soft”

Ee kCoffeeMachineActionSoft, /- "soft

45 kCoffeeMachinedctionMild, J-"Mild”

46 kCoffeeMachinedctionstrong, J-"strong”

47 kCoffeeMachinedctionDeregister, - // "Deregister”
48 kCoffeeMachinedctionCappuccineg, - // "Mochaccing”

49 };

Figure 56. Update IndexCommands_dsmt
2. Update IndexToCommand en.h. Add a string representation of the new command.

[n] IndexCommands_dsmth [h] IndexToCommand_en.h 5%

1 #ifndef INDEXCOMMANDS_EN_H_
2 #define TNDEXCOMMANDS_EN_H_

char- *ww_en[] = {"Hey NXP", "Hey NXP", "Hey NXP", "Hey NXP", "Hey NXP"};

char- *cmd_coffee_machine_en[] = {"Start”, "Cancel”, "Confirm”, "Confirm”, "Confirm”,
"Confirm", "Confirm", "Confirm", "Confirm", "Confirm",
"E " " . " "C ina", "Cafe-] "
"Cafe- latte”, "Small”, "Medium”, "Large”, "Soft™,
"Soft"”, "Mild”, “Strong”, "Deregister”, "Mochaccino™};

12 #endif- /* INDEXCOMMANDS EN H_-*/

Figure 57. Update IndexToCommand_en
3. Build and flash the project. You must now be able to see the command "Mochaccino" being detected and
also triggering the same action as the "Cappuccino" command.

10.3.5 Add a new language into the Coffee Machine demo
1. Open DSMT and login

MCU-SMHMI-SDUG
User guide

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Rev. 1 — 23 May 2023

203 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

beeren
E-mmail: |user@ nxp| |
Password: esesesncs |

[] show Password

Login Forget Password Guest Mode
Version 2.2.14.7 (Build 202205061800)

Figure 58. Dsmt login

2. File -> New Project. Use the name oob demo it, choose the Italian language. Click OK.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

204 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

. Cyberon D5potter Modeling Tool V2 — X

File Group Language Help

Select Language

Project Mame: |oob_d emo_it

Language: | Italan

B

Figure 59. New dsmt project

3. Use the default settings. Click OK.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 1 — 23 May 2023

205/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

. Cyberon DSpotter Modeling Tool V2 — *

File Group Language Help

Sample Rate

Feature Dimension

Frame Rate (frame/sec)

Model Size Level

ook

Figure 60. New dsmt project settings

4. When asked about the Folder where the project should be saved, go to the workspace location of the cm7
Coffee Machine demo project -> local_voice folder.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 1 — 23 May 2023

206/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

@ sclect Folder >
U <« sln_smart_tlhmi » coffee_machine » cm7 » local_voice w (W] A2 Search local_voice
Organize * Mew folder == - 0
Fa
Marne Date modified Type Size
s Quick access
- oob_demo_cn 6/6/2022 1:19 PM File folder
@ Documents)
oob_demo_de B/ 2972022 3:00 PM File folder
¥ Downloads # oob_demo_en 6/20/2022 11:20 PM File folder
=] Pictures * oob_demao_fr £/29/2022 3:00 PM File folder
Documents scripts 471472022 2:05 PM File folder
EBV_tarining
imyg
Maggie_1
@ OneDrive - NXP
= This PC
[_j' Metwork
FoMen||
Select Folder Cancel
Figure 61. New dsmt project folder

5. Rename Group_1 to WW by selecting Group -> Rename.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

207 / 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

0:_ beron DSpotter Modeling Tool V2 ------ Current modification is Mot saved — x
File Group Language Help
Group_1
Commands Command
Input Command Confi. Reward Ijl - L | +
Add
Batch Add Global
Speaker Independent
Comrmand List
Up
Mo. Command Reward CmdMapID ‘ Energy Threshold 0 - ' +
I 1
Rename X 0|- [| +
Old Name: |Gr0up_1 | 0 - [| +
New Mame: |WW1 | 024 |- (] +
0K Cancel
Phoneme Table
Extra Output
Pack Model With: [Big Endian
[Command Text
Command Phoneme Play] Trimap bin
Update [MapID
Default Online Test Offline Test Save Project
Platform: 32 Bit Language: Italan Base Model Release: 202105061200
Sample Rate: 16000 Hz | Frame Rate: 100 (frame/sec) Feature: 23D Level: 1
Figure 62. Rename group1

6. Add a simple wake word - let us use "Ciao NXP". By default CmdMapld has value -1. Change that to value
1 by double-clicking the wake word.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

208 /226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

@ Cyberon DSpotte e T p QN e
File Group Language Help
Ww
Commands Command
Input Cornmand Confi. Reward
Add
Batch Add Global
Speaker Independent
Command List
Edit cormmand >
Mo. Command Reward CmdMapID ¥ Threshold
0 Ciao NXP 1]
Rename Ciao MNXP to : Reward
|Ci3° NXP | F. Reward

CrmdMapID(-1~32767, Default -1)

l |

Silence (sec.)

I:ieset

0K Cancel

Command Phoneme

<it-IT>tS-al.00<it-IT>e-nl.n-e0.i-k-51.p-il

Pack Model With:
[Command Text
Play [Trimap bin
Update L] MapID
Default Online Test

Platform: 32 Bit

Language: Ttalian

sample Rate: 16000 Hz |

Frame Rate: 100 (frame/sec)

Feature: 23D

(e [
ol-| @ +

o - | +

o - | +

0.24 | -] +

[] Big Endian
Offline Test Save Project
Base Model Release: 202105061200
Level: 1

Figure 63. Add it wake word

7. Add a new group by selecting Group -> Insert. Change the group name to CMD_COFFEE_MACHINE.
Add the commands below and change CmdMapld value to 2 for all of them.
Inizia, Annulla, Confermare, Caffé espresso, Caffé americano, Cappuccino, Caffé Latte, Piccolo, Medio,
Grande, Leggero, Mite, Forte, Annullare la registrazione.

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

209/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

0 Cyberon D5potter Modeling Tool V2 ------ Current modification is Not saved - X
File Group Language Help
wiw CMD_COFFEE_MACHINE
Commands Command
Input Command Confi. Reward Ijl -] +
Add
Batch Add Global
Speaker Independent
Comrmand List
Up
Mo. Command Reward CmdMapID Energy Threshold of[-| ¥ +
0 Inizia 0 2 Down
1 Annulla 0 2 Confi. Reward 0 - | +
2 Confermare 0 2
3 Caffé espresso 0 2 2 SG Diff. Reward 0|- | =
4 Caffé americano 0 2
3 Cappuccino 0 2 Edit Ending Silence (sec.) 0.24 | - [] +
6 Caffé Latte 0 2
7 P|cc?lo 0 2 1/14
8 Medio 0 2 ——
9 Grande 0 2
10 Leggero 0 3 Phoneme Table
11 Mite 0 2
12 Forte 0 2 ExBSUUIUE
13 Annullare I3 regist... 0 2 Pack Model With: [Big Endian
[Command Text

Command Phoneme Play] Trimap bin

<it-IT=i0.n-i--ts1.j-a0 Update] mapID
Default Online Test Offline Test Save Project
Platform: 32 Bit Language: Italian Base Model Release: 202105061200

Sample Rate: 16000 Hz | Frame Rate: 100 (frame/sec) Feature: 230 Level: 1

Figure 64. Add it commands
8. Very important: Check the MapID checkbox, otherwise the binary we must integrate into our project will not
be generated.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

210/ 226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Command
Confi. Reward EI - [| +
Global
Speaker Independent
Energy Threshold o/ - +
Confi. Reward 0 |- [| +
5G Diff. Reward -11 | - [| +
Ending Silence (sec.) 0.48 | - P -
Reset
Extra Output
Pack Model With:] Big Endian
[] Command Text
[] Trimap bin
MapID
Online Test Offline Test Save Project
Figure 65. Add it commands

9. Save the DSMT project (Ctrl + S or File -> Save project).
10. Now we modify the source code to use the newly generated lItalian speech model. It is easier to replace one
of the existing models, like French.
* create IndexToCommand it.h

#ifndef INDEXCOMMANDS IT H
#define INDEXCOMMANDS IT H

char *ww_it[] = {"Ciac NXP"};

char *cmd_coffee_machine it[] = {"Inizia", "Annulla®™, "Confermare", n"Caffh - espressol,
nCaffhe americano™, "Cappuccino™, nCaffh- Latte™,
"Piccolo™, "Medio™, "Grande™, "Leggero®, "Mite®,
"Forte™, "Annullare la registrazione™}l;

#endif /* INDEXCOMMANDS IT H */

Figure 66. Index to cmd it

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023
211/226

NXP Semiconductors

MCU-SMHMI-SDUG

Replace the following symbols in your workspace:

¢ ASR FRENCH with ASR_ITALIAN

e NUMBER_OF COFFEE_MACHINE CMDS_FR with NUMBER OF COFFEE_MACHINE CMDS_IT (mustadd
that in TndexCommands_dsmt.h). NUMBER OF COFFEE_MACHINE CMDS_IT should be 14.

* action coffee machine fr withthe equivalentaction coffee machine it

* action coffee machine fr canberemoved from IndexCommands dsmt.h

* In IndexCommands_dsmt.h include IndexToCommand it.h instead of IndexToCommand fr.h

* action coffee machine it mustbe defined, as shown below

Smart HMI Software Development User Guide

92
93
94
a5
96
a7
a8
99
lae
lal
la2
1a3
la4
1as
las
1a7
las

unsigned-int- action_coffee_machine_it[]

1s

kCoffeeMachineActionStart,
kCoffeeMachineActionCancel,
kCoffeeMachineActionConfirm,
kCoffeeMachinedActionEspresso,
kCoffeeMachineActiondmericano,

kCoffeeMachineActionlatte,
kCoffeeMachineActionSmall ,
kCoffeeMachineActionMedium,
kCoffeeMachineActionlarge,
kCoffeeMachineActionSoft,

kCoffeeMachineActionMild,

kCoffeeMachineActionStrong,

kCoffeeMachineActionDeregister, //

Figure 67. Coffee machine it commands

.'l. .'l.

o onformare”
“catre sspresse’
"Caff i .
kCoffeeMachineActionCappuccing, - // i
' mCaffE Latte”

"c .
Piccolo

* replace oob_demo fr begin with oob demo it begin everywhere in the workspace
* use oob_demo_it pack WithMapID.binin local voice model.s

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

212/226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Modified, not staged File: coffee machine/cm7/local voice/local voice model.s

@ -11,11 +11,11 @@
.align 4

.glokal ook demo en begin
.glokal ook demo cn begin
.glockal ook demo de begin
—-.glcbal ook _demo fr begin
+.global ook demo it begin

ook _demo en begin:

.inckin "../local_woice/oob_demo_en/ook demo _en pack WithMapID.bin"
ook demo en end:
B2 -26,9 426,59 (EE oob demo on end:

ook demo de begin:
.inckin "../local woice/oock demo defook demo de pack WithMapID.bin"

DDb_demD_de_end:

—ockb _demo fr begin:

—.inckin "../local woice ook demo fr/ook demo fr pack WithMapID.bin"
—ock _demo fr end:
+ocb demo it | 3

Figure 68. Index to cmd it
11. Replace s memPoolWLangFr with s memPoolWLangIt.

12. Delete the cm7 debug folder and rebuild afterward. Flash the project. You must now be able to interact with
the dev kit through voice.

10.3.6 Cyberon tools
Check the video tutorials: Cyberon demos

11 VIT speech model instructions

11.1 Getting started with VIT

VIT is based on state-of-the-art deep learning and speech recognition technologies. The Smart Panel App uses
VIT as Audio Speech Recognition technology. Below source codeblocks referenced are copied from the Smart
panel App.

11.2 Obtaining new VIT models

First effective way is to create a model by VIT online tool. An nxp.com account is needed for logging to this
website. The online tool support maximum amount of command is 12. If you need to create more commands or
require some help for tuning more to get better recognition performance, email to local-commands@nxp.com
and explain the requirements as detailed as possible. For example, if you need help with creating a model, write

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

213 /226

https://www.youtube.com/playlist?list=PLTEknqO5GAbrDX5NMs-P6b9THWwamgVBo
https://vit.nxp.com/#/generate

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

down your Wake word and command list and let us know your product usage. There is a FAQ list that may be
useful for you: https://vit.nxp.com/#/faq.

11.3 Integrating a new VIT model

After obtaining new models, pack new models into the home panel resource.bin file. Regarding the usage
of resource build tool, refer to home panel resource.

» Update resource file indexes in home panel resource.txt

102model ../../home panel/cm7/local voice/oob demo vit/en/VIT Model Main Menu en.h
I 103 model ../../home_panel/cm7/local voice/oob_demo vit/en/VIT Model Thermostat_en.h
104 model ../../home_panel/cm7/local voice/oob_demo vit/en/VIT Model Security en.h
105 model ../../home_panel/cm7/local voice/oob_demo vit/en/VIT Model Audio Player_en.h
106 model ../../home_panel/cm7/local_voice/oob_demo vit/cn/VIT Model Main Menu cn.h
107 model ../../home panel/cm7/local voice/oob demo vit/cn/VIT Model Thermostat cn.h
108 model ../../home panel/cm7/local voice/oob demo vit/cn/VIT Model Security cn.h
109 model ../../home panel/cm7/local voice/oob demo vit/cn/VIT Model Audio Player cn.h
Figure 69. Resource file indexes

» Execute resource pack tool In Linux environment, Execute bash home panel resource.sh. For Windows
environment, run . /home _panel resource.bat

» Extract model position information in resource binary file After resource pack tool is successfully executed,
Two files are generated: home panel resource.bin and resource information table.txt. Inthe
resource_information table.txt file, read the model position/size and models total size.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

214 /226

https://vit.nxp.com/#/faq

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

[resource_information_table.txt X

110S_Prompts|UsSer_aeLetea_enj.Len = 335/,

111s Prompts[registered user en].data
112s Prompts[registered user en].len

(base + 1219968);
3789;

113s Prompts[beep].data = (base + 1223808);

114 s Prompts[beep].len = 981;

115{s Models[VIT Model Main Menu en].data = (base + 0);
116{s Models[VIT Model Main Menu en].len
117|s_Models[VIT Model Thermostat en].data = (base + 360768);
118{s Models[VIT Model Thermostat en].len =
119s Models[VIT | Model _Security en].data
126fs Models[VIT Model Security en].len
121fs Models[VIT Model Audio Player en].data = (base + 1138176);
122{s Models[VIT Model Aud10 _Player en].len = 362436;

123|s Models[VIT | Model Main Menu cn].data = (base + 1500672);
124{s Models[VIT Model Main Menu cn].len
125|s Models[VIT Model Thermostat cn].data = (base + 1837568);
126{s Models[VIT Model Thermostat cn].len = 340924;

127|s _Models[VIT Model Security cn].data
128ls Models[VIT Model Security cn].len =
129|s Models[VIT Model Audio Player cn].data = (base + 2516928);
136|s Models[VIT Model Audlo _Player cn].len = 338828;

= 360732;
415244;

= (base + 776064);
= 362084;

= 336844;

= (base + 2178496);
338420;

131
132 Images Total: ©x7e8680, 8291968
133

134 Icons Total: 0x001ad40, 6720
135

136 Prompts Total: ©x12b080, 1224832

17
138Models Total: 0x2b9380, 2855808
139

140 Total(Images, Icons):

111

0x7ea0dcoO, 8298688

Figure 70. Model information in resource information table

* Update model size and position into device firmware.

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023
215/226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

36~ void LoadVITModels(void *base)

37 {

38 //English VIT models

39 s VITModels[0] [MAIN MENU].data = (base + 0);

4m s VITModels[®] [MAIN MENU].len = 360732;

41 S_VI'I'I"IDdElS[H] [THERMOSTAT] .data = (base + 360768);
42 s VITModels([®] [THERMOSTAT].len = 415244;

43 s VITModels[0] [SECURITY].data = (base + 776064);

44 s VITModels[®] [SECURITY].len = 362084;

45 S_VI'I'HDdElS[H][AUDID_PLAYER].data = (base + 1138176);
46 s VITModels([®8] [AUDIO PLAYER].len = 362436;

47

48 //Chinese VIT models

49 s VITModels[1] [MAIN MENU].data = (base + 1580672);
58 s VITModels[1] [MAIN MENU].len = 336844;

51 S_VI'I'I"IDdElS[l][THERHDSTAT].data = (base + 1837568);
52 s VITModels([1] [THERMOSTAT].len = 340924;

53 s VITModels[1] [SECURITY].data = (base + 2178496);
54 s VITModels[1] [SECURITY].len = 338420;

55 S_VITI"IDdElS[l] [AUDID_PLAYER] .data = (base + 2516928);
56 s VITModels([1] [AUDIO PLAYER].len = 338828;

57 }

Figure 71. Update model size and position

» Update total model size in the appConfig.h file.

[app_config.h X

#define USR SHMEM TOTAL SIZE 0x10000
#endif

extern unsigned char res sh mem[];
#define
#define
#define
#define
#define

APP LVGL IMGS SIZE 0x007e8680
APP_ICONS BASE

APP ICONS SIZE 0x00001a40

©x002b938

define

Figure 72. Update total model size in appConfig.h

APP RES SHMEM BASE (uint32 t) & res sh mem
APP_LVGL IMGS BASE (APP RES SHMEM

(APP_RES SHMEM

BASE)

BASE + APP LVGL IMGS SIZE)

e Update command ID in the IndexCommands . h file. A better

practice is to define action ID matching Ul

designs. For example, in Smart Panel App, there are three voice commands detectable on the main menu

panel.

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

216/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

[b IndexCommands.h x | [o] VIT Model Main_Menu_en.h
=

10 #ifndef INDEXCOMMANDS H

11 #define INDEXCOMMANDS H

12

12 #include "IndexCommand funcs.h®
14

15 #define ENABLE HOME PANEL 1

16

17 /#* Number of Voice Commands Models #/
18 #define CMD_MODELS_COUNT (4)

19

28=enum _hp_home _menu_action

21 {

22 kHpHomeMenuActionThermostat,
23 kHpHomeMenuActionSecurity,

24 kHpHomeMenuActionAudioPlayer,
25 kHpHomeMenuActionInvalid

26 };

27

Figure 73. Update command ID in IndexCommands.h

There is a copy of IndexCommands . h in cm4 project, since Ul device is running on cm4 and it needs these
action IDs to update display.

» Update the array used for converting command ID to action ID in IndexCommands_vit.h Some developers
may would like to use command ID instead of action ID directly. In real practice, to get better voice
performance, we may need to tune models many times. And the command ID may be changed during model
tuning. After model ID being changed, need to update the below arrays, without any changes into Ul code.

[n IndexCommands_vit.h x

v} TUTI LT IHUI'II.}LI_LH _III'_IIILI\.I'IU.JIHI_\.I'IU.J_UL SLLCUI L Ou L_LUII_
31 #define NUMBER_OF HP SECURITY CMDS DE sizeof(action_
32 #define NUMBER OF HP AUDIO PLAYER CMDS DE sizeof(action
33

34 unsigned int action hp main menu cn[] = {

35 kHpHomeMenuActionInvalid,

36 kHpHomeMenuActionThermostat,

37 kHpHomeMenuActionSecurity,

38 kHpHomeMenuActionAudioPlayer

39)

an

Figure 74. Update the array in IndexCommands_vit.h

We can get all command ID from model header file.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

217/ 226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Py
9 #ifndef _ VIT MODEL MAIN MENU EN H
10 #define _ VIT MODEL MAIN MENU EN H

11

12 /*#

13 VIT Model version : v4.8.0
14

15

16 WakeWord supported :

17 W Id : WW Name

18 1 : HEY NXP

19

20 Voice Commands supported
21 cmd Id : Cmd Name

22 6] : UNKNOWN

23 1 : THERMOSTAT
24 2 : SECURITY

25 3 : AUDIO PLAYER

aE &
£0 /!
=57

an

Figure 75. all command ID

* Finally Flash programs into board. rebuild Smart Panel App and flash binary at 0x30100000. Flash
home panel resource.bin binary at 0x30800000.
Note: Assume only one App runs on board.

11.4 Barge-in support

When audio player is playing back, AEC feature is enabled automatically to support Barge-in feature.

11.5 Multilanguage support

VIT does not support listening for multiple wake words from different languages at the same time, as it is
the case with DSMT. Therefore, you are able to say only one wake word at a time. To change to a different
language, use the language menu from the display.

12 Gesture recognition

Gesture recognition is a topic in computer science and language technology with the goal of interpreting human
gestures via mathematical algorithms. It is a subdiscipline of computer vision. Gestures can originate from any
body motion or state, but commonly originate from the face or hand.

NXP developed their own gesture recognition library that provides access to the following features:

1. Hand detection
2. Hand landmark detection - optimized Google Hand landmark model
3. Gesture recognition

All models are quantized using NXP's NanoAl technology and are optimized for the ARMv7-CortexM7. The
memory footprint is as follows:

* text memory - 1.26 MB
* RAM - 1.48 MB + (height * width * 3)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

218 /226

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

By default, the Smart Panel application uses the Gesture recognition library found under cm7/1ibs/uvita
gesture/libuvita gesture cm7.a. The gesture recognition can be disabled by commenting the
ENABLE VISIONALGO DEV Uvita Gesture from board define.h.

12.1 Uvita gesture recognition setup

Inthe current .c/.cpp working file include "uvita gesture.h, to set up the gesture recognition,
initialize it by calling uvita gesture init. For proper initialization, the following parameters must be set
beforehand:

12.1.1 1. input_height/input_wdith

Maximum height and width of the input frame.

12.1.2 2. mem_size

To get the right memory size needed by the library, call uvita gesture get buf size (height, width)
where height and width are maximum input frames.

12.1.3 3. mem_pool

Memory pool allocated having the size mentioned in the mem_size field

12.1.4 4. fast_mem_size / fast_mem_pool

Uvita library is optimized to store and maintain often used variables inside a fast memory. Depending on the
type of memory provided here, performance can be improved considerably. For M7 core, allocate this memory
pool inside DTCM for best results.

Note: In order to obtain considerable improvements, fast mem size should be at least 32 KB.

void Init (void)
{
/* memory configuration */
init para.mem pool = NULL;
init para.mem size = uvita gesture get buf size (UVITA FULL FRAME H,
UVITA FULL FRAME W) ;
PRINTF ("uvita requires memory size: %d\r\n", init para.mem size);

char* mempool = (char*)pvPortMalloc(init para.mem size);
if (mempool == NULL) ({
PRINTF ("uvita malloc error\r\n");

}

init para.mem pool = mempool;
init para.fast mem size DTC OPTIMIZE BUFFER SIZE;
init para.fast mem pool s_DTCOPBuf;

/* uvita initialization */
ret = uvita gesture init(&init para);
if (ret != UVITA SUCCESS) {
PRINTF ("uvita initialization error: %d\r\n", ret);

}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

219/226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

12.2 Uvita gesture recognition usage

After the setup stage, we can provide frames to the inference engine in order to get the results. Uvita library run

function is uvita gesture run. As mentioned before, the library performs 3 types of operation.

Hand detection is done over the det frame provided as second parameter of the run function (det frame).
The buffer should be a low-resolution image, of recommended size 192*256, situated in a fast memory area.

If the hand has been found in the det frame, the algorithm moves forward to step 2 and 3. These operations
are done on high-resolution image for better distance recognition and higher accuracy. The library places 21

hand markers and recognizes up to 13 gestures:

typedef enum

{
GESTURE OK = 0,
GESTURE FIST,
GESTURE ONE,
GESTURE VICTORY,
GESTURE THREE,
GESTURE FOUR,
GESTURE PALM,
GESTURE THUMB UP,
GESTURE PINKY UP,
GESTURE ROCK ROLL,
GESTURE CALL ME,
GESTURE PREVIOUS,
GESTURE NEXT,
GESTURE NONE

} gesture type;

The inference results are returned via 3 parameters of the run function *hout. The structure contains
information about hand presence, hand position, hand identification, hand gesture, and hand landmarks:

typedef struct
{

bool has hand; /**<
or not; */

DetBox t box; [**<
right, bottom. */

float conf; /**<

hand 1r left right; /*x*<

gesture type gtype; /**<

float handmark[HAND_LANDMARK_NUMBER * 3]; /**<
yl, z1, x2, y2, z2... */

} uvita gesture out;

whether the hand is detected
hand location: left, top,

hand confidence. */

left hand or right hand. */
gesture type. */

hand landmark location: x1,

For more information regarding hand markers, check Google Media Pipe

L
*
L 1

Figure 76. Hand markers example

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers.

User guide Rev. 1 — 23 May 2023

220 /226

© 2023 NXP B.V. All rights reserved.

https://developers.google.com/mediapipe/solutions/vision/hand_landmarker

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

13 Revision history

Table 1 summarizes the revisions of this document.

Table 1. Revision history
Revision number Date Substantive changes
1 23 May 2023 Section 9 and Section 12 are

added. Section 2, Section 3,
Section 10 are modified.

0 25 October 2022 Initial release

14 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

221226

NXP Semiconductors

MCU-SMHMI-SDUG

15 Legal information

Smart HMI Software Development User Guide

15.1 Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

15.2 Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

15.3 Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamiQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, pVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

i.MX — is a trademark of NXP B.V.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

222 /226

mailto:PSIRT@nxp.com

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Tower — is a trademark of NXP B.V.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023

223 /226

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Contents
1 Introduction ..o, 2 5.1.5.2 Update resourcescccccceeeeeeeieiiiiicccciiinnenns 33
2 Setup and installationccccceerriiiiiicccccciieeee 2 5.1.5.3 Update with Bundleccccceeeviiiiiiiiiiiiinn, 34
2.1 MCUXpresso IDE ..., 2 6 Frameworkeeirmimiiieccceccccc s ssmsmneeereeeees 35
2.2 Install the toolchaincccoceviiiiie 2 6.1 Framework introductioncccccoeeiniininnen. 35
2.3 Install the SDK ..o 4 6.1.1 Design goalscceoeiiiiiiiiie e 36
2.4 Import example projectsccccceeviiieieeiiiieenn. 6 6.1.2 Relevant filescccooooiciiiiiiie, 36
241 Import from Github ... 6 6.2 Naming conventionscccooeeiiiiiieeeeee. 36
25 Dual-core debugccccooiiiiiiiiiiiieeieee e 7 6.2.1 Functions ..o 37
2.6 JLink flash tool issue in MCUXpresso 6.2.2 Variablescooooviiiiiiiii e, 38
VI1.7.0 e 7 6.2.3 Typedefs ... 39
3 IValdi et —————— 9 6.2.4 ENUMS ..o 39
3.1 Automated manufacturing tools 9 6.2.5 Macros and Definesccccooiiiiiiiiiiieeeie 39
3.1.1 MCUXpresso Secure Provisioning Tool 9 6.3 Device managerscccoocooeeeeeiiiieee e 40
3.1.2 About Ivaldicooooviiiiiii 9 6.3.1 OVEIVIEW ...ooiiiiiiiiic e 40
3.1.3 Requirementscccccceeeiiiiiiiiiicieeee e 10 6.3.1.1 Initialization floWcccooiiiiiiiiiee 40
3.1.4 Platform configurationc.ccccciiiiiiiiniie 10 6.3.2 Vision input managercccccoeeiiieeeeeiiieennn. 41
3.1.5 Open Boot Programmingcccccceeviiiiieaennns 10 6.3.2.1 APIS e 41
4 Bootloader ... 12 6.3.3 Output managerccccceeeeiiieeeieee e 42
41 Introduction ..o 12 6.3.3.1 APIS o 42
411 Why use a bootloader?ccccoviiiieiinineen. 12 6.3.4 Camera Managercccceeeeueeeeeeeeieea e 43
4.1.2 Application banksccooiiiiiii, 12 B6.3.4.1 APIS (i ———— 43
41.3 LOGOING it 12 6.3.5 Display managercccoooooieiiiiiiiee e 44
4.2 OVEIVIEW ..ottt 13 6.3.5.1 APIS oo 44
421 How is boot mode determined? 13 6.3.6 Vision algorithm managerccccoccoiiieiinie 45
4.3 Normal bootcccoeeeiiiiec e 13 6.3.6.1 APIS oo 45
4.31 Turn on Image Verificationc.ccccooceeiniie 14 6.3.7 Voice algorithm managerccccceeviienenn. 45
43.2 Disable Debug Consoleccccceeiiiiiiiennnie 15 6.3.7.1 APIS e 46
4.4 Mass Storage Device updates (MSD) 15 6.3.8 Low-Power device managerccccceeeeenne 46
441 Enabling MSD modecocviieiiiiiiiiieeenne 16 B.3.8.1 APIS ot 47
442 Flashing a new binarycccoocoiieiiiiiine. 16 6.3.9 Audio processing managerccccceeeeeieeennn. 48
4421 Main applicationccccoviiiiiiii 16 6.3.9.1 APIS (i ———— 48
4422 Resources ... 6.3.10 Flash managercccccoiiiiiiiiiiiieeee 49
4423 BUNAIE ...ooiiiii 6.3.10.1 Device APIS ...occoeiiiiieiiicee e 49
4.5 Image Verificationcccoiiiiiiiiii 18 6.3.10.2 Operations APISccooiiiiiiiie e 49
451 Application chain of trustcccceeeeee. 19 6.3.11 Multicore managercccoeeceeeieniiiieee e 52
452 Flash Image Configuration Area (FICA) and 6.3.11.1 APIS o 53
Image Verificationcccoiiiiiiiiii 19 6.4 HAL deVIiCeS ...ooiiiiiiiiieeiiee e 53
4.6 Application banksccooiiiiiii, 19 6.4.1 OVEIVIEW ...ttt 53
461 BanKS ... 20 6.4.1.1 Device Registrationccoccooiiiiiiiiiinie. 54
46.2 AdAreSSesueiiiiiiiee e 20 6.4.1.2 Device TYPES ..eeerieiiiieiaeiiiee e 54
46.3 Remappingccoeeeeiiiiiee e 20 6.4.1.3 Anatomy of a HAL devicec.coociereiiineenn. 56
4.6.3.1 Convert .axf to .bincccooiiiiii 21 6.4.1.4 CONFigS .eeeiiiiiiiiiee e 57
5 Over the air updateccccoeimmrmrerrrerneeeeee, 22 6.4.2 INput deViICESuvvviiiiiiiiieieieee e 58
51 OTA (Over-the-Air) updatesccccoeciveerinie 22 6.4.2.1 Device definitioncccccooiiiiiiiiiii e 58
51.1 Migration guidecccooiiiiiii e 22 6.4.2.2 Operatorsccccceeeeeiiiee e 59
5.1.1.1 RT117H firmware changesccccocceeeennnen. 23 6.4.2.3 Capabilitiescccoeriiiiiii e 60
51.1.2 Ivaldi guide ...coooviiiiiie e 25 6.4.2.4 EXAMPIE ...ooiiiiiiiieei e 62
51.2 Preparing an OTA imageccccoevcieveeniinnenn. 26 6.4.3 Output deviCesooiioiiiiiiiiiieeeee e 64
51.3 Building imageccooe i 26 6.4.3.1 Subtypes ..o 64
51.4 Sign IMagecooeieiiee e 27 6.4.3.2 Device definitioncccccoiiiiiiiiiiiii, 65
5.1.4.1 Creating a root, intermediate pair with sign 6.4.3.3 Operatorscccceeeiiiiiie e 66
server, and certificatescccooovviiieiiiiiiieeeeee, 27 6.4.3.4 AHrbUES ...coooeeee 67
5.1.4.2 Formatting the CA and the application 6.4.3.5 EXample ... 67
certificateoocovevii 29 6.4.4 Camera devViCescccovveeriiiiiiieeeee e 71
5.1.5 OTA Workflow with AWS loT Console 29 6.4.4.1 Device definitionccccoeeriiiiiiin 72
5.1.5.1 Update main applicationccccccceeeeeeiiiiinnnnn, 33 6.4.4.2 Operatorsccccccvvieiiiiiiieieee e 73

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

224 /226

NXP Semiconductors

MCU-SMHMI-SDUG

6.4.4.3
6.4.4.4
6.4.4.5
6.4.5
6.4.5.1
6.4.5.2
6.4.5.3
6.4.54
6.4.6
6.4.6.1
6.4.6.2
6.4.6.3
6.4.6.4
6.4.6.5
6.4.7
6.4.7.1
6.4.7.2
6.4.7.3
6.4.7.4
6.4.8
6.4.8.1
6.4.8.2
6.4.8.3
6.4.8.4
6.4.9
6.4.9.1
6.4.9.2
6.4.9.3
6.4.10
6.4.10.1
6.4.10.2
6.4.10.3
6.5
6.5.1
6.5.1.1
6.5.1.2
6.5.2
6.5.2.1
6.5.2.2
7

71

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
7.10
7.10.1
7.10.2
7.1
7111
7.11.2
7.12
7.13
7.14
7.15

MCU-SMHMI-SDUG

Static configsccevviiiii 75
Capabilitiesccccovivieiiiieie 77
EXamPleccoiiiiiii 78
Display deviCesccocceviiieiiniiiiiieiee e 80
Device definitioncccovvviiiiiiii, 80
OPEratorscoovveiiiieieriee e 81
Capabilitiescccceviieiiiiiei 83
EXamPleccoiiiiiii 86
Vision algorithm devicesccccovieiiiiiiinnenn. 88
Device definitionccccovvviiiiiiiiiie, 89
OPEratorscoovveiiiieieriee e 90
Capabilitiescccceviieiiiiiei 91
Private Dataccccoviiiiiiii e 92
EXamPleccoviiiii 93
Voice algorithm devicesccccceviiieriiiennn. 96
Device definitioncccoviviiiiiiiiiece e, 96
OPEratorscoovueviiieieriee e 97
Capabilitiesccccoviieeiiiei e 98
EXamPleccoviiiii 99
Audio processing devicecccoceeerieeennnen. 101
Device definitioncccceeveeiiiiiiiiiieee, 101
OPEratorscoevviiiiieeeiiee e 102
Capabilitiesccoeeveeiriiieiie e 103
EXamplecoooviiiii 105
Flash devicesccccviiiiiiiiiiiiiiic e, 106
Device definitioncccceeveeiiiiiiiiiieee, 107
OPEratorscoevviiiiieeeiiee e 108
EXamplecoooviiiii 110
Multicore devicesccceviiiiiiiinieeeiiieee 117
Device definitioncccceevieiiiiiiiieee e, 117
OPEratorscoevviiiiieeeiiee e 118
FreeRTOS message buffer Device 119
EVENES ..o 123
OVEIVIEW ...oiiiiiiiiiie e 123
Event triggerscccooviiiiiee i 124
Types of eventsccocovvviiiiiieiiiiec 125
Event handlerscccoveviiiiiiiiiie, 128
Default handlers ... 128
App-specific handlersccccociiniiiineen. 129
Coffee machinecccccceiniinininiee s 130
Introduction ..o 130
Architecture ..o 131
Software block diagramc.ccccoiiieiiieennn 131
Coffee machine CM7ccccoiiiiiiiciieene 132
Main functionalitiesccccocevriiiniiiniinns 132
BOOt SEQUENCEeeeviiiiiiiicieee e 132
Board level initializationccccceeniieennnen. 133
Framework managersccccoveevinieeenneenne 133
Framework HAL devicescccccverneerinnnenn. 134
LOGQING ueveiiiiieiiiee et 135
Log Task INitoooeeeiiiiiiiec e 135
Log MaCrOSoovvieiiiiiciiee e 135
Coffee Machine databaseccccocveennen. 136
Face recognition database usage 136
User coffee information database usage 136
Coffee machine CM4cccoiiiiiiiiiieee 137
Main functionalitiesccccoceeviiiniiiiiinns 137
LVGL GUI screens and widgetscc.cc....... 137
LVGL and Vglite libraryccccceviiiniiiennenn. 138

Smart HMI Software Development User Guide

7.16
7.17
7.18

7.19
7.20
7.20.1
7.20.2
7.20.3
7.20.4
7.20.4.1
7.20.4.2
7.20.5
7.20.6
7.20.7
7.20.8
7.21
7.21.1
7.21.2
8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.10.1
8.10.2
8.11
8.11.1
8.11.2
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.20.1
8.20.2
8.20.3
8.20.4
8.20.4.1
8.20.4.2
8.20.5
8.20.6
8.20.7
8.20.8
8.21
8.21.1
8.21.2
9

9.1

All information provided in this document is subject to legal disclaimers.

BoOt SEqQUENCEc.eeeviiiiiiii e 138
Board level initializationccccoeeiiiiinnn. 138
LVGL image resource and icon resource
10AdING .vviieiieie 139
Framework managerscccccevviviieeinnenns 139
Framework HAL devicesccccccvivieeernenn. 140
MipiGc2145 camera HAL device 141
PxP graphics HAL devicec.ccccovievenneenne 142
LVGLCoffeeMachine display HAL device 142
UiCoffeeMachine Ul output HAL device 143
LVGL touch eventsccccoevieeiiiiiiiicciiiees 143
Vision and Voice algorithm inference result ... 143
RgbLed output HAL devicecccceeeeennneen.. 144
MessageBuffer multicore HAL device 145
ShellUsb input HAL deviceccccooveeenineenne 145
Standby LPM HAL deviceccccevvveieeennennne 145
LOGQING v 146
Logging Task Initcccoooviiiiniiiie, 146
Logging Macrosccccevveeiiieeiiiiiierec e 146
Elevatorccccvvminienininn s 146
INtroductioncooviiiiiiii 146
Architecture ... 147
Software block diagramcccccviiiiiiinnnne 148
Elevator CM7coooviiiiiiieiee e 148
Main functionalitiesccccooeviiiiiiiniiines 148
BoOt SEqQUENCEc.eeeviiiiii 148
Board level initializationcccceeiiiiinnn. 149
Framework managerscccccevviiiiieninnenns 150
Framework HAL devicescccocovevieeennenn. 151
LOGQING oot 151
Log task init ...c.cooveeeiiii 151
LOG USAQJE ..eviiriiiiiiiiiie e 152
Elevator databaseccccccooveiiiiiiiiiiee 152
Face recognize database usage 152
Elevator user information database usage153
Elevator CM4oooiiiiiiiie e 153
Main functionalitiescccooeeriiiiiiniines 153
LVGL GUI screens and widgetsc.ccce.... 153
LVGL and Vglite librarycccccoviiiiiiinnnnn. 153
BoOt SEqQUENCEo.eeeiiiiiiii 154
Board level initializationcccoeviiiinnn. 154
LVGL image resource loadingcccceeuneee. 155
Framework managersccccceviiiieeeinnennn 155
Framework HAL devicescccocovevieeennenn. 156
MipiGc2145 camera HAL device 157
PxP graphics HAL devicecccccceeinnee. 157
LVGLElevator display HAL device 157
UiElevator Ul output HAL device 158
LVGL touch eventsccccoevieiiiiiiiiieciiiees 158
Vision and Voice algorithm inference result ... 158
RgbLed output HAL deviceccoceeeennn. 159
MessageBuffer multicore HAL device 159
ShellUsb input HAL deviceccccovuevennenne 160
Standby LPM HAL deviceccccevvveiieennennnn 160
LOGQING v 160
Logging task initccccoeviiiiiiiii 161
LOgging MAacCrOSccccvvirieieiiieeiiee e 161
Smart panel ... ——— 161
INtroductioncooviiiiiiii 161

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1 — 23 May 2023

225/226

NXP Semiconductors

MCU-SMHMI-SDUG

9.2

9.3

9.4
9.4.1
94.2
943
94.4
94.5
94.6
9.4.6.1
9.4.6.2
9.4.6.3
9464
9.4.6.5
947
94.71
94.7.2
9.5
9.5.1
952
9.5.3
954
9.5.5
9.5.6

957
9.5.8
9.5.8.1
9.5.8.2
9.5.8.3
9.5.84
9.5.8.5
9.5.8.6
9.56.8.7
9.5.8.8
9.5.9
9.5.91
9.5.9.2
9.5.9.3
9594
9.5.95
10
10.1
10.1.1
10.1.2
10.1.21

10.1.2.2
10.1.3

10.1.3.1
10.1.4
10.1.41

10.1.4.2

Architecturecooviiiiii s 162
Software block diagramcccccoiieiinnennn 163
Smart panel CM7 ... 163
Main functionalitiesccccocrviiiniiiniinns 163
BOOt SEQUENCEeeeviiiiiiiiicieee e 164
Board level initializationcccceeriennnnen. 164
Framework managersccccoveevinieecnneenne 165
Framework HAL devicescccccevriierinnnenn. 166
LOGQING ueveiiiieiiiiee et 167
Log Task INitoooveeiiiiiie e 167
Log MaCIOSooviiiiiiei e 167
UART hardware connectionccccceeennen. 168
Get UART log from Windows host 168
Get UART log from Linux hostccceee. 168
Smart panel databaseccccooeeiiniennn. 168
Face recognize database usage 168
User Thermostat setting database usage 169
Smart Panel CM4 ... 170
Main functionalitiesccccoceviiiiniiiniinns 170
LVGL GUI screens and widgetscc..c....... 170
LVGL and Vglite librarycccccoviiiiiniennnn. 170
BOOt SEQUENCEeeeviiiiiiiicieee e 170
Board level initializationccccceerieennnen. 171
LVGL image resource and icon resource
10AdING .oviiiiee 171
Framework managersccccvcevinieeenneenne 172
Framework HAL devicescccccevriierinnnenn. 173
MipiGc2145 camera HAL device 173
PxP graphics HAL devicecccccooeeeiinnenee 174
LVGLHomePanel display HAL device 174
UiHomePanel Ul output HAL device 176
RgbLed output HAL deviceccoeveeennneee. 177
MessageBuffer multicore HAL device 177
ShellUsb input HAL devicecccccoceeevieene 177
Standby LPM HAL deviceccccceveeiirenenne. 178
LOGQING ueveiiiiieiiiee et 178
Logging Task Initccooiiiiiiiiee, 178
Logging Macroscccceeveeviniieeinieeneee e 179
UART hardware connectionccccceeennen. 179
Get UART log from Windows host 179
Get UART log from Linux hostccceee. 179
Customizationccccvveeininninseninr e 179
How to develop a user application 179
Introductionccooviiiiii 179
Build the LVGL GUIcooeiiiiiiiiiiiceeeee 180
Design and create the GUI with NXP's free
GUI Guider toolccoveeviriieiieiiieeeiee e 180
Integrate your generated LVGL GUI code 180
Build the phoneme-based voice recognition
MOAEI ..ot 181
Voice recognition flowccccoeiiiieiiniinns 181

Face recognition and database operations 182
Implement user case flow with face

recognition resultscccoveeiniiiiniee e 183
Implement the user's profile database with
face recognitionccccoveiiniii i 185

Smart HMI Software Development User Guide

10.1.5

10.1.6
10.2
10.2.1
10.2.2
10.2.3
10.2.3.1
10.2.4

10.2.41
10.2.4.2

10.2.4.3

10.2.4.4

10.2.4.5

10.3
10.3.1

10.3.2
10.3.3
10.3.4

10.3.4.1

10.3.5

10.3.6
11
1.1
1.2
1.3
1.4
11.5
12
12.1
12.1.1
12.1.2
12.1.3
12.1.4
12.2
13

14

15

Implement the use case flow with gesture

recognition resultsccccoveiiiiiiiiieeiiiees 187
Implement multicore communication 188
Application resource buildcccceeiiiens 189
Introductionccoeiiiiiii 189
How to use the resource generator tool 190
Descriptions of the resource file 190
Resource file typeccccvviiiiiiiiiieee, 191
Update the device firmware based on

resource generator outputcccceeiinnen. 193
Update image index in custom.c 195
Update icon index in hal_output_ui_home_
PANELC oo 195
Update music/prompt index in smart_tlhmi_
MGS.C oeirieieee e ee e et ee e e e e e e e 196
Update VIT model index in smart_tlhmi_

VIELC e 196
Update all each type resource size in app_
CONFIG.N e 197

Cyberon DSMT speech model instructions197
Getting started with phoneme-based voice

engine 00lcoccviiiiiii e 197
Installationcccceeiiiiiiii e 197
Load the project templateccccceeeeennen. 197
Add a new command into the Coffee
Machine democccoeiiiiiiiiiiee e 200
Integrate the voice engine in MCUXpresso
PrOJECE .o 201
Add a new language into the Coffee
Machine democcccooiiiiiiiiiiee e 203
Cyberon tools ..o 213
VIT speech model instructionsc..c.c..... 213
Getting started with VIT ... 213
Obtaining new VIT modelscccoceeevnernne 213
Integrating a new VIT modelccceevveene 214
Barge-in supportcccoviiiniiiinee 218
Multilanguage supportccccceviiiiniiiennn. 218
Gesture recognitioncccocverininincinnnieenns 218
Uvita gesture recognition setupc.......... 219
1. input_height/input_wdithccocees 219
2. MEM_SIZE e 219
3. MeM_POO0|oiiiiiiiiii 219
4. fast_mem_size / fast_mem_pool 219
Uvita gesture recognition usage 220
Revision historyccccccnvimnnnnieennsieninans 221
Note about the source code in the
document ... 221
Legal informationcccconieniiininiennnieenns 222

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP

B.V. All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 23 May 2023
Document identifier: MCU-SMHMI-SDUG

	1 Introduction
	2 Setup and installation
	2.1 MCUXpresso IDE
	2.2 Install the toolchain
	2.3 Install the SDK
	2.4 Import example projects
	2.4.1 Import from Github

	2.5 Dual-core debug
	2.6 JLink flash tool issue in MCUXpresso v11.7.0

	3 Ivaldi
	3.1 Automated manufacturing tools
	3.1.1 MCUXpresso Secure Provisioning Tool
	3.1.2 About Ivaldi
	3.1.3 Requirements
	3.1.4 Platform configuration
	3.1.5 Open Boot Programming

	4 Bootloader
	4.1 Introduction
	4.1.1 Why use a bootloader?
	4.1.2 Application banks
	4.1.3 Logging

	4.2 Overview
	4.2.1 How is boot mode determined?

	4.3 Normal boot
	4.3.1 Turn on Image Verification
	4.3.2 Disable Debug Console

	4.4 Mass Storage Device updates (MSD)
	4.4.1 Enabling MSD mode
	4.4.2 Flashing a new binary
	4.4.2.1 Main application
	4.4.2.2 Resources
	4.4.2.3 Bundle

	4.5 Image Verification
	4.5.1 Application chain of trust
	4.5.2 Flash Image Configuration Area (FICA) and Image Verification

	4.6 Application banks
	4.6.1 Banks
	4.6.2 Addresses
	4.6.3 Remapping
	4.6.3.1 Convert .axf to .bin

	5 Over the air update
	5.1 OTA (Over-the-Air) updates
	5.1.1 Migration guide
	5.1.1.1 RT117H firmware changes
	5.1.1.2 Ivaldi guide

	5.1.2 Preparing an OTA image
	5.1.3 Building image
	5.1.4 Sign Image
	5.1.4.1 Creating a root, intermediate pair with sign server, and certificates
	5.1.4.2 Formatting the CA and the application certificate

	5.1.5 OTA Workflow with AWS IoT Console
	5.1.5.1 Update main application
	5.1.5.2 Update resources
	5.1.5.3 Update with Bundle

	6 Framework
	6.1 Framework introduction
	6.1.1 Design goals
	6.1.2 Relevant files

	6.2 Naming conventions
	6.2.1 Functions
	6.2.2 Variables
	6.2.3 Typedefs
	6.2.4 Enums
	6.2.5 Macros and Defines

	6.3 Device managers
	6.3.1 Overview
	6.3.1.1 Initialization flow

	6.3.2 Vision input manager
	6.3.2.1 APIs
	6.3.2.1.1 FWK_InputManager_Init
	6.3.2.1.2 FWK_InputManager_DeviceRegister
	6.3.2.1.3 FWK_InputManager_Start
	6.3.2.1.4 FWK_InputManager_Deinit

	6.3.3 Output manager
	6.3.3.1 APIs
	6.3.3.1.1 FWK_OutputManager_Init
	6.3.3.1.2 FWK_OutputManager_DeviceRegister
	6.3.3.1.3 FWK_OutputManager_Start
	6.3.3.1.4 FWK_OutputManager_Deinit
	6.3.3.1.5 FWK_​Output​Manager_​Unregister​Event​Handler​

	6.3.4 Camera manager
	6.3.4.1 APIs
	6.3.4.1.1 FWK_CameraManager_Init
	6.3.4.1.2 FWK_CameraManager_DeviceRegister
	6.3.4.1.3 FWK_CameraManager_Start
	6.3.4.1.4 FWK_CameraManager_Deinit

	6.3.5 Display manager
	6.3.5.1 APIs
	6.3.5.1.1 FWK_DisplayManager_Init
	6.3.5.1.2 FWK_DisplayManager_DeviceRegister
	6.3.5.1.3 FWK_DisplayManager_Start
	6.3.5.1.4 FWK_DisplayManager_Deinit

	6.3.6 Vision algorithm manager
	6.3.6.1 APIs
	6.3.6.1.1 FWK_VisionAlgoManager_Init
	6.3.6.1.2 FWK_​Vision​Algo​Manager_​Device​Register
	6.3.6.1.3 FWK_VisionAlgoManager_Start
	6.3.6.1.4 FWK_VisionAlgoManager_Deinit

	6.3.7 Voice algorithm manager
	6.3.7.1 APIs
	6.3.7.1.1 FWK_VoiceAlgoManager_Init
	6.3.7.1.2 FWK_VoiceAlgoManager_DeviceRegister
	6.3.7.1.3 FWK_VoiceAlgoManager_Start
	6.3.7.1.4 FWK_VoiceAlgoManager_Deinit

	6.3.8 Low-Power device manager
	6.3.8.1 APIs
	6.3.8.1.1 FWK_LpmManager_DeviceRegister
	6.3.8.1.2 FWK_​Lpm​Manager_​Register​Request​Handler
	6.3.8.1.3 FWK_​Lpm​Manager_​Unregister​Request​Handler
	6.3.8.1.4 FWK_LpmManager_RuntimeGet
	6.3.8.1.5 FWK_LpmManager_RuntimePut
	6.3.8.1.6 FWK_LpmManager_RuntimeSet
	6.3.8.1.7 FWK_LpmManager_RequestStatus
	6.3.8.1.8 FWK_LpmManager_SetSleepMode
	6.3.8.1.9 FWK_LpmManager_EnableSleepMode

	6.3.9 Audio processing manager
	6.3.9.1 APIs
	6.3.9.1.1 FWK_AudioProcessing_Init
	6.3.9.1.2 FWK_AudioProcessing_DeviceRegister
	6.3.9.1.3 FWK_AudioProcessing_Start
	6.3.9.1.4 FWK_AudioProcessing_Deinit

	6.3.10 Flash manager
	6.3.10.1 Device APIs
	6.3.10.1.1 FWK_Flash_DeviceRegister
	6.3.10.1.2 FWK_Flash_Init
	6.3.10.1.3 FWK_Flash_Deinit

	6.3.10.2 Operations APIs
	6.3.10.2.1 FWK_Flash_Format
	6.3.10.2.2 FWK_Flash_Save
	6.3.10.2.3 FWK_Flash_Append
	6.3.10.2.4 FWK_Flash_Read
	6.3.10.2.5 FWK_Flash_Mkdir
	6.3.10.2.6 FWK_Flash_Mkfile
	6.3.10.2.7 FWK_Flash_Rm
	6.3.10.2.8 FWK_Flash_Rename
	6.3.10.2.9 FWK_Flash_Cleanup

	6.3.11 Multicore manager
	6.3.11.1 APIs
	6.3.11.1.1 FWK_MulticoreManager_Init
	6.3.11.1.2 FWK_MulticoreManager_DeviceRegister
	6.3.11.1.3 FWK_MulticoreManager_Start
	6.3.11.1.4 FWK_MulticoreManager_Deinit

	6.4 HAL devices
	6.4.1 Overview
	6.4.1.1 Device Registration
	6.4.1.2 Device Types
	6.4.1.3 Anatomy of a HAL device
	6.4.1.3.1 Operators

	6.4.1.4 Configs
	6.4.1.4.1 Name
	6.4.1.4.2 ExpectedValue
	6.4.1.4.3 Description
	6.4.1.4.4 Value
	6.4.1.4.5 Get
	6.4.1.4.6 Set

	6.4.2 Input devices
	6.4.2.1 Device definition
	6.4.2.2 Operators
	6.4.2.2.1 Init
	6.4.2.2.2 Deinit
	6.4.2.2.3 Start
	6.4.2.2.4 Stop
	6.4.2.2.5 InputNotify

	6.4.2.3 Capabilities
	6.4.2.3.1 callback
	6.4.2.3.2 EventId
	6.4.2.3.3 ReceiverList
	6.4.2.3.4 Event

	6.4.2.4 Example

	6.4.3 Output devices
	6.4.3.1 Subtypes
	6.4.3.1.1 General devices
	6.4.3.1.2 UI devices
	6.4.3.1.3 Audio devices

	6.4.3.2 Device definition
	6.4.3.3 Operators
	6.4.3.3.1 Init
	6.4.3.3.2 DeInit
	6.4.3.3.3 Start
	6.4.3.3.4 Stop

	6.4.3.4 Attributes
	6.4.3.4.1 Type
	6.4.3.4.2 pSurface

	6.4.3.5 Example

	6.4.4 Camera devices
	6.4.4.1 Device definition
	6.4.4.2 Operators
	6.4.4.2.1 Init
	6.4.4.2.2 Deinit
	6.4.4.2.3 Start
	6.4.4.2.4 Enqueue
	6.4.4.2.5 Dequeue
	6.4.4.2.6 PostProcess
	6.4.4.2.7 InputNotify

	6.4.4.3 Static configs
	6.4.4.3.1 Height
	6.4.4.3.2 Width
	6.4.4.3.3 Pitch
	6.4.4.3.4 Left
	6.4.4.3.5 Top
	6.4.4.3.6 Right
	6.4.4.3.7 Bottom
	6.4.4.3.8 Rotate
	6.4.4.3.9 Flip
	6.4.4.3.10 SwapByte

	6.4.4.4 Capabilities
	6.4.4.4.1 Callback
	6.4.4.4.2 Param

	6.4.4.5 Example

	6.4.5 Display devices
	6.4.5.1 Device definition
	6.4.5.2 Operators
	6.4.5.2.1 Init
	6.4.5.2.2 Deinit
	6.4.5.2.3 Start
	6.4.5.2.4 Blit
	6.4.5.2.5 InputNotify

	6.4.5.3 Capabilities
	6.4.5.3.1 Height
	6.4.5.3.2 Width
	6.4.5.3.3 Pitch
	6.4.5.3.4 Left
	6.4.5.3.5 Top
	6.4.5.3.6 Right
	6.4.5.3.7 Bottom
	6.4.5.3.8 Rotate
	6.4.5.3.9 Format
	6.4.5.3.10 srcFormat
	6.4.5.3.11 frameBuffer
	6.4.5.3.12 callback
	6.4.5.3.13 param

	6.4.5.4 Example

	6.4.6 Vision algorithm devices
	6.4.6.1 Device definition
	6.4.6.2 Operators
	6.4.6.2.1 Init
	6.4.6.2.2 Deinit
	6.4.6.2.3 Run
	6.4.6.2.4 InputNotify

	6.4.6.3 Capabilities
	6.4.6.3.1 Callback
	6.4.6.3.2 Param

	6.4.6.4 Private Data
	6.4.6.4.1 AutoStart
	6.4.6.4.2 Frames

	6.4.6.5 Example

	6.4.7 Voice algorithm devices
	6.4.7.1 Device definition
	6.4.7.2 Operators
	6.4.7.2.1 Init
	6.4.7.2.2 Deinit
	6.4.7.2.3 Run
	6.4.7.2.4 InputNotify

	6.4.7.3 Capabilities
	6.4.7.3.1 Callback
	6.4.7.3.2 Param

	6.4.7.4 Example

	6.4.8 Audio processing device
	6.4.8.1 Device definition
	6.4.8.2 Operators
	6.4.8.2.1 Init
	6.4.8.2.2 Deinit
	6.4.8.2.3 Start
	6.4.8.2.4 Stop
	6.4.8.2.5 Run
	6.4.8.2.6 InputNotify

	6.4.8.3 Capabilities
	6.4.8.3.1 Callback
	6.4.8.3.2 Param

	6.4.8.4 Example

	6.4.9 Flash devices
	6.4.9.1 Device definition
	6.4.9.2 Operators
	6.4.9.2.1 Init
	6.4.9.2.2 Deinit
	6.4.9.2.3 Format
	6.4.9.2.4 Save
	6.4.9.2.5 Append
	6.4.9.2.6 Read
	6.4.9.2.7 Make directory
	6.4.9.2.8 Make file
	6.4.9.2.9 Remove
	6.4.9.2.10 Rename
	6.4.9.2.11 Cleanup

	6.4.9.3 Example
	6.4.9.3.1 Littlefs device

	6.4.10 Multicore devices
	6.4.10.1 Device definition
	6.4.10.2 Operators
	6.4.10.2.1 Init
	6.4.10.2.2 Deinit
	6.4.10.2.3 Start
	6.4.10.2.4 Send

	6.4.10.3 FreeRTOS message buffer Device

	6.5 Events
	6.5.1 Overview
	6.5.1.1 Event triggers
	6.5.1.2 Types of events
	6.5.1.2.1 InferComplete events
	6.5.1.2.2 InputNotify events

	6.5.2 Event handlers
	6.5.2.1 Default handlers
	6.5.2.2 App-specific handlers

	7 Coffee machine
	7.1 Introduction
	7.2 Architecture
	7.3 Software block diagram
	7.4 Coffee machine CM7
	7.5 Main functionalities
	7.6 Boot sequence
	7.7 Board level initialization
	7.8 Framework managers
	7.9 Framework HAL devices
	7.10 Logging
	7.10.1 Log Task Init
	7.10.2 Log Macros

	7.11 Coffee Machine database
	7.11.1 Face recognition database usage
	7.11.2 User coffee information database usage

	7.12 Coffee machine CM4
	7.13 Main functionalities
	7.14 LVGL GUI screens and widgets
	7.15 LVGL and Vglite library
	7.16 Boot sequence
	7.17 Board level initialization
	7.18 LVGL image resource and icon resource loading
	7.19 Framework managers
	7.20 Framework HAL devices
	7.20.1 MipiGc2145 camera HAL device
	7.20.2 PxP graphics HAL device
	7.20.3 LVGLCoffeeMachine display HAL device
	7.20.4 UiCoffeeMachine UI output HAL device
	7.20.4.1 LVGL touch events
	7.20.4.2 Vision and Voice algorithm inference result

	7.20.5 RgbLed output HAL device
	7.20.6 MessageBuffer multicore HAL device
	7.20.7 ShellUsb input HAL device
	7.20.8 Standby LPM HAL device

	7.21 Logging
	7.21.1 Logging Task Init
	7.21.2 Logging Macros

	8 Elevator
	8.1 Introduction
	8.2 Architecture
	8.3 Software block diagram
	8.4 Elevator CM7
	8.5 Main functionalities
	8.6 Boot sequence
	8.7 Board level initialization
	8.8 Framework managers
	8.9 Framework HAL devices
	8.10 Logging
	8.10.1 Log task init
	8.10.2 Log usage

	8.11 Elevator database
	8.11.1 Face recognize database usage
	8.11.2 Elevator user information database usage

	8.12 Elevator CM4
	8.13 Main functionalities
	8.14 LVGL GUI screens and widgets
	8.15 LVGL and Vglite library
	8.16 Boot sequence
	8.17 Board level initialization
	8.18 LVGL image resource loading
	8.19 Framework managers
	8.20 Framework HAL devices
	8.20.1 MipiGc2145 camera HAL device
	8.20.2 PxP graphics HAL device
	8.20.3 LVGLElevator display HAL device
	8.20.4 UiElevator UI output HAL device
	8.20.4.1 LVGL touch events
	8.20.4.2 Vision and Voice algorithm inference result

	8.20.5 RgbLed output HAL device
	8.20.6 MessageBuffer multicore HAL device
	8.20.7 ShellUsb input HAL device
	8.20.8 Standby LPM HAL device

	8.21 Logging
	8.21.1 Logging task init
	8.21.2 Logging macros

	9 Smart panel
	9.1 Introduction
	9.2 Architecture
	9.3 Software block diagram
	9.4 Smart panel CM7
	9.4.1 Main functionalities
	9.4.2 Boot sequence
	9.4.3 Board level initialization
	9.4.4 Framework managers
	9.4.5 Framework HAL devices
	9.4.6 Logging
	9.4.6.1 Log Task Init
	9.4.6.2 Log Macros
	9.4.6.3 UART hardware connection
	9.4.6.4 Get UART log from Windows host
	9.4.6.5 Get UART log from Linux host

	9.4.7 Smart panel database
	9.4.7.1 Face recognize database usage
	9.4.7.2 User Thermostat setting database usage

	9.5 Smart Panel CM4
	9.5.1 Main functionalities
	9.5.2 LVGL GUI screens and widgets
	9.5.3 LVGL and Vglite library
	9.5.4 Boot sequence
	9.5.5 Board level initialization
	9.5.6 LVGL image resource and icon resource loading
	9.5.7 Framework managers
	9.5.8 Framework HAL devices
	9.5.8.1 MipiGc2145 camera HAL device
	9.5.8.2 PxP graphics HAL device
	9.5.8.3 LVGLHomePanel display HAL device
	9.5.8.4 UiHomePanel UI output HAL device
	9.5.8.4.1 LVGL touch events
	9.5.8.4.2 Vision and Voice algorithm inference result

	9.5.8.5 RgbLed output HAL device
	9.5.8.6 MessageBuffer multicore HAL device
	9.5.8.7 ShellUsb input HAL device
	9.5.8.8 Standby LPM HAL device

	9.5.9 Logging
	9.5.9.1 Logging Task Init
	9.5.9.2 Logging Macros
	9.5.9.3 UART hardware connection
	9.5.9.4 Get UART log from Windows host
	9.5.9.5 Get UART log from Linux host

	10 Customization
	10.1 How to develop a user application
	10.1.1 Introduction
	10.1.2 Build the LVGL GUI
	10.1.2.1 Design and create the GUI with NXP's free GUI Guider tool
	10.1.2.2 Integrate your generated LVGL GUI code

	10.1.3 Build the phoneme-based voice recognition model
	10.1.3.1 Voice recognition flow

	10.1.4 Face recognition and database operations
	10.1.4.1 Implement user case flow with face recognition results
	10.1.4.1.1 Start / stop the face recognition algorithm
	10.1.4.1.2 Handling the face recognition results

	10.1.4.2 Implement the user's profile database with face recognition
	10.1.4.2.1 Define user profile data structure and database ops
	10.1.4.2.2 Save user profile data into the database

	10.1.5 Implement the use case flow with gesture recognition results
	10.1.6 Implement multicore communication

	10.2 Application resource build
	10.2.1 Introduction
	10.2.2 How to use the resource generator tool
	10.2.3 Descriptions of the resource file
	10.2.3.1 Resource file type

	10.2.4 Update the device firmware based on resource generator output
	10.2.4.1 Update image index in custom.c
	10.2.4.2 Update icon index in hal_output_ui_home_panel.c
	10.2.4.3 Update music/prompt index in smart_tlhmi_mqs.c
	10.2.4.4 Update VIT model index in smart_tlhmi_vit.c
	10.2.4.5 Update all each type resource size in app_config.h

	10.3 Cyberon DSMT speech model instructions
	10.3.1 Getting started with phoneme-based voice engine tool
	10.3.2 Installation
	10.3.3 Load the project template
	10.3.4 Add a new command into the Coffee Machine demo
	10.3.4.1 Integrate the voice engine in MCUXpresso project

	10.3.5 Add a new language into the Coffee Machine demo
	10.3.6 Cyberon tools

	11 VIT speech model instructions
	11.1 Getting started with VIT
	11.2 Obtaining new VIT models
	11.3 Integrating a new VIT model
	11.4 Barge-in support
	11.5 Multilanguage support

	12 Gesture recognition
	12.1 Uvita gesture recognition setup
	12.1.1 1. input_height/input_wdith
	12.1.2 2. mem_size
	12.1.3 3. mem_pool
	12.1.4 4. fast_mem_size / fast_mem_pool

	12.2 Uvita gesture recognition usage

	13 Revision history
	14 Note about the source code in the document
	15 Legal information
	Contents

