
MCU-SMHMI-SDUG
Smart HMI Software Development User Guide
Rev. 1 — 23 May 2023 User guide

Document Information
Information Content

Keywords SLN-TLHMI-IOT, Human Machine Interface (HMI), IoT, MCU-SMHMI-SDUG

Abstract The purpose of this guide is to help developers better understand the software design and
architecture of the applications in order to more easily and efficiently implement applications using
the SLN-TLHMI-IOT

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

1 Introduction

Welcome to the Developer Guide for the SLN-TLHMI-IOT!

The purpose of this guide is to help developers better understand the software design and architecture of the
applications in order to more easily and efficiently implement applications using the SLN-TLHMI-IOT.

This guide covers such topics as the bootloader and the framework + HAL architecture design, as well as other
features that may be relevant to application development using SLN-TLHMI-IOT.

Check out the Smart HMI Getting Started Guide for an overview of the out of box features available in the SLN-
TLHMI-IOT applications.

2 Setup and installation

This section is focused on the setup and installation of the tools necessary to begin developing applications
using NXP's framework architecture.

Note: This guide focuses on MCUXpresso IDE for development.

2.1 MCUXpresso IDE
MCUXpresso IDE brings developers an easy-to-use Eclipse-based development environment for NXP
MCUs based on Arm Cortex-M cores, including its general-purpose crossover and Bluetooth-enabled MCUs.
MCUXpresso IDE offers advanced editing, compiling, and debugging features with the addition of MCU-
specific debugging views, code trace and profiling, multicore debugging, and integrated configuration tools.
MCUXpresso IDE debug connections support Freedom, Tower system, LPCXpresso, i.MX RT-based EVKs, and
your custom development boards with industry-leading open-source and commercial debug probes from NXP,
P&E Micro, and SEGGER.

For more information, see the NXP website

2.2 Install the toolchain
MCUXpresso IDE can be downloaded from the NXP website by using the below link:

Get MCUXpresso IDE

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
2 / 226

http://www.nxp.com/mcu-smhmi
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=MCUXPRESSO

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 1. Download MCUXpresso IDE

To download the correct version of IDE, check out the Smart HMI Getting Started Guide. Once the download
has been completed, follow the instructions in the installer to get started.

Note: There is a bug in version 11.5.1 of MCUXpresso IDE that prevents building projects for SLN-TLHMI-IOT,
so version 11.7.0 or greater is required.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
3 / 226

http://www.nxp.com/mcu-smhmi

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 2. Check MCUXpresso IDE version with v11.7.0

2.3 Install the SDK
To build projects using MCUXpresso IDE, install an SDK for the platform you intend to use. A compatible SDK
has the required dependencies and platform-specific drivers needed to compile projects.

A compatible SDK can be downloaded from the official NXP SDK builder

1. To build the SDK for your preferred setup, use MCUXpresso IDE to install the SDK.
2. To do this, open the application and click Download and Install SDKs on the MCUXpresso IDE welcome

screen as shown below:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
4 / 226

https://mcuxpresso.nxp.com/en/select

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 3. Download and Install SDKs
3. A catalog of all the SDKs that can be downloaded through MCUXpresso is available. These SDKs provide

device knowledge, drivers, middleware, and reference example applications for your development board or
MCU. Type evkmimxrt1170 in the filter section and download evkmimxrt1170 SDK. The Coffee machine
and Elevator applications were developed and tested on SDK 2.11.1, the Smart Panel application - on SDK
2.13.0.
Note: MCUXpresso does not support multiple SDKs installed.

Figure 4. Download RT1170 SDK
4. A prompt displays the license agreement associated with the 1170 SDK.
5. Read and accept the license to automatically start the SDK installation.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
5 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6. MCUXpresso proceeds to download the SDK.

Figure 5. Install RT1170 SDK

2.4 Import example projects
Note: To build example projects that you import regardless of how they are imported, you must have a
compatible MCUXpresso SDK package for SLN-TLHMI-IOT installed.

MCUXpresso IDE allows you open example projects from the source folder.

2.4.1 Import from Github

Note: Before you begin, make sure you have Git downloaded and installed on the machine you intend to use.

The latest software updates for the SLN-TLHMI-IOT application can be downloaded from our official Github
repository. Here, you find the most up-to-date version of the code that contains the newest features available for
the Smart TLHMI project.

To import the SLN-TLHMI-IOT Smart TLHMI application into MCUXpresso IDE using Github, perform the
following steps:

1. Clone the sln_tlhmi_iot repository. Master branch is used by default
• Cloning directly to your MCUXpresso workspace location is recommended, but not required.

2. In MCUXpresso, navigate to the File from Toolbar.
3. Click Open Projects from File System....
4. Select Directory....
5. Navigate to the file path of the project cloned in the first step and click Select Folder.
6. Check the box next to each project (bootloader, coffee_machine\cm4, coffee_machine

\cm7, coffee_machine\lvgl_vglite_lib, elevator\cm4, elevator\cm7, elevator
\lvgl_vglite_lib, home_panel\cm4, home_panel\cm7, home_panel\lvgl_vglite_lib)
you wish to import.

7. Click Finish

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
6 / 226

https://git-scm.com/downloads
https://github.com/NXP/sln_tlhmi_iot
https://github.com/NXP/sln_tlhmi_iot

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 6. Open SLN-TLHMI-IOT project

After following the above steps, confirm that the projects can be found in the Project Explorer panel to ensure
they were successfully imported.

Figure 7. Example projects

2.5 Dual-core debug
SLN-TLHMI-IOT runs under dual-core architecture. For more information on how to debug the dual-core
application, refer to AN13264.

2.6 JLink flash tool issue in MCUXpresso v11.7.0
When the MCUXpresso GUI Flash Tool is used to erase the whole chip, the SEGGER J-Flash tool is called to
do the real work.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
7 / 226

https://www.nxp.com.cn/docs/en/application-note/AN13264.pdf

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 8.  MCUX GUI flash

The J-Flash tool tries to erase two flash banks:

• bank 0 : 0x30000000
• bank 1 : 0x60000000

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
8 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Since there is only one bank on the board, it reports errors when trying to get information about bank 1 @
0x60000000.

Figure 9. MCUX GUI flash error

This error can be ignored as bank 0 is erased correctly.

3 Ivaldi

3.1 Automated manufacturing tools
This section provides an overview of MCUXpresso Secure Provisioning Tool and Ivaldi, prerequisites, platform
configuration, and open boot programming.

3.1.1 MCUXpresso Secure Provisioning Tool

The MCUXpresso Secure Provisioning Tool is a GUI-based application provided to simplify generation and
provisioning of bootable executables on NXP MCU devices. The graphical interface provides a streamlined
development flow, making it simpler to prepare, flash, and fuse images while leveraging and providing access
to existing utilities. Advanced scripting can be achieved using the command-line interface, while even more
advanced secure provisioning flows can be accomplished by modifying scripts generated by the tool. For more
information on how to use it, check the Getting Starting with MCUXpresso Secure Provisioning Tool.

3.1.2 About Ivaldi

If the manufacture needs a custom solution for flashing the board in production, we have developed a suite of
python scripts built on top of lightweight Secure Provisioning SDK (SPSDK).

Ivaldi is a package that is responsible for manufacturing and reprogramming without J-Link. It uses the serial
downloader mode within the RT117H boot ROM to communicate with an application called Flashloader that
is programmed into RT117H. It then communicates with a program called blhost that controls various parts
of the chip and flash. Ivaldi was created to focus on the build infrastructure of a customer’s development and
manufacturing cycle. Its primary focuses are:

• Factory programming and setting up a new device/product
• Generating AWS IoT Devices
• Creating certificate/key pairs for devices
• Associating policies with devices
• Signing images for OTA (Over-The-Air) and HAB (High Assurance Boot)
• Writing and Accessing OTP (One-Time Programmable) fuses

The following section gives information about the general flashing of a device without debugging tools.

Note: To use Ivaldi, put the board in Serial Download Mode. For doing that, move jumper J203 on the top of the
board into position “0”. For more information, see Smart HMI Hardware Development User Guide

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
9 / 226

https://www.nxp.com/design/software/development-software/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING
https://www.nxp.com/pages/getting-starting-with-mcuxpresso-secure-provisioning-tool:TIP-MCUXPRESSO-SECURE-PROVISIONING-TOOL
http://www.nxp.com/mcu-smhmi

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

3.1.3 Requirements

• Section 5.1.1 must be followed
• OpenSSL
• AWS CLI installed

– https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
– https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration

• Python 3.6.x
• Linux / Windows CMD / Ubuntu for Windows
• README.md from ivaldi root folder must be followed

3.1.4 Platform configuration

Ivaldi uses a platform configuration file Scripts/sln_platforms_config/sln_tlhmi_iot_config/
board_config.py. This file describes:

• The names of the binaries (from the Image_Binaries folder) which will be flashed:
– BOOTLOADER_NAME
– DEMO1_NAME
– DEMO1_NAME_RESOURCES
– DEMO2_NAME
– DEMO2_NAME_RESOURCES
– DEMO3_NAME
– DEMO3_NAME_RESOURCES

• Flash configurations:
– FLASH_TYPE
– FLASH_START_ADDR
– FLASH_SIZE

• Flash Map
– Binaries’ images addresses
– Filesystem starting address and size
– FICA table addresses

To configure Ivaldi to use specific image binaries from Image_Binaries folder, update Scripts/sln_
platforms_config/sln_tlhmi_iot_config/board_config.py file.

Note: Any changes in scripts/sln_platforms_config/sln_tlhmi_iot_config/board_config.py
(except binaries’ names) require updating the embedded code and configurations.

3.1.5 Open Boot Programming

The Open Boot Programming tool is responsible for creating a device and programming it with the correct
images, certificates, and artifacts. This method is a quick and easy way of taking a device/product from the
assembly line and getting it ready to ship. It is also good practice to run the Open Boot Programming script
before enabling the security features to ensure that all images and artifacts are in the working order. The Open
Boot Programming script must only be run when all the images and artifacts are obtained. Before running the
script, ensure that the following files and folders exist in the “Image_Binaries” directory of Ivaldi root and that
all the files mentioned in the board_config.py exist. After the script was executed, do not forget to exit the
serial downloader mode by moving back the J203 jumper.

A directory "Scripts/sln_tlhmi_iot_open_boot" within the Ivaldi package contains the “open_prog_full.py” script
and a README.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
10 / 226

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The README file contains build requirements for each image before running the script. If the requirements are
not fulfilled, it could cause the boot failure.

To program the firmware and artifacts, execute the open_prog_full.py script that performs the following
actions:

• Communicate with the BootROM to program Flashloader
• Create a device with

– Certificate
– Private Key
– Policy Attached in the cloud

• Erase the flash
• Generate littlefs format filesystem, that contains files specified in the littlefs_file_list.py
• Programming the images

– Bootloader
– demo1
– demo1_resources
– demo2
– demo2_resources
– demo3
– demo3_resources
– Program the FICA
– Program the littlefs

In the current open_prog_full.py python script, the littlefs is being generated to contain all the files
mentioned in littlefs_file_list.py. Four files are expected:

• Root CA certificate
• AppA sign certificate - validated by the CA certificate and used to sign all the images that are being written or

send for update
• AWS certificate - used to validate connection with AWS server
• AWK public key - used to communicate with AWS MQTT server

One drawback of the current littlefs implementation is that it does not support the attributes. It is used in the
SLN_TLHMI_IOT project to generate encrypted files.

Warning: Open programming script assumes that the policy is called tlhmi_deployment. Update the script
to use the correct policy name in the customers aws account..

In case there are no debugging probes or ports available on the board, the script can be used for development
purpose. Calling the script with the `-h` argument shows you all the possible combinations and how to use it at
full power. By default, the script does not write all 3 applications. To do that, call it with `-fbb -fbc` parameters. It
allows writing applications in bank B and C. Putting the `-awsd` parameter disables the AWS thing creation and
it will not obtain any certificate. For debugging purpose, it is recommended to have the image verification off. To
do it, call the script with `-ivd`.

Note: To be able to write anything in a NOR flash device, perform an erase operation before the write. The
erase operation is very costly and can take up to a couple of minutes.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
11 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

4 Bootloader

4.1 Introduction
The Smart HMI Project uses a "bootloader + main application" architecture to provide additional security and
update-related functionality to the main application. The bootloader handles all boot-related tasks including, but
not limited to:

• Launching the main application and, if necessary, initializing the peripherals
• Firmware updates using either the Mass Storage Device (MSD), Over-the-Air, or Over-the-Wire update

method
– Protects against update failures by using a primary and backup application "flash bank"

• Image certification/verification

4.1.1 Why use a bootloader?

By separating the boot process from the main application, the main application can be safely updated and
verified without the risk of creating an irrecoverable state due to a failed update, or running a malicious,
unauthorized, and unsigned firmware binary flashed by a bad actor. It is essential in any production application
to take precautions to ensure the integrity and stability of the firmware before, during, and after an update, and
the bootloader application is simply one measure to help provide this assurance.

The following sections describe how to use many of the bootloader's primary features to assist developer
interested in understanding, utilizing, and expanding them.

4.1.2 Application banks

The bootloader filesystem uses dual application "banks" referred to as "Bank A" and "Bank B" to provide a
backup/redundancy "known good" application to prevent bricking when flashing an update via either the MSD,
OTA, or OTW update method. For example, if an application update is being flashed via MSD to the Bank A
application bank, even if that update fails midway, Bank B still contains a fully operational backup.

In the SLN-TLHMI-IOT, Bank A is at 0x3010_0000, Bank B is at 0x3150_0000, while Bank C is at
0x3290_0000.

Providing an application binary built for the proper application bank address is crucial during MSD, OTA, and
OTW updates, and the failure will result in a failure to flash the binary.

Note: The bootloader does not automatically recover from a botched flashing procedure but reverts to the
alternate working application flash bank instead.

4.1.3 Logging

The bootloader supports debug logging over UART to help diagnose and debug issues that may arise while
using or modifying the bootloader. For example, the debug logger can be helpful when trying to understand why
an application update might have failed.

Logging is enabled by default in the Debug build mode configuration. The logging functionality, however, comes
with an increase in bootloader performance and can slow down the boot process by as much as 200 ms. As
a result, it may be desirable to disable debug logging in production applications. To disable logging to the
bootloader, simply build and run the bootloader in the Release build mode configuration. It can be done by
right-clicking on the bootloader project in the Project Explorer view and navigating to Build Configurations ->
Set Active -> Release.

To make use of the debug logging feature, use a UART->USB converter to:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
12 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Connect GND pin of converter to J202: Pin 8
• Connect TX pin of converter to J202: Pin 3
• Connect RX pin of converter to J202: Pin 4

Once the converter has been properly attached, connect to the board using a serial terminal emulator, for
example, PuTTY or Tera Term configured with the following serial settings:

• Speed: 115200
• Data: 8 Bit
• Parity: None
• Stop Bits: 1 bit
• Flow Control: None

4.2 Overview
The bootloader employs several different boot-up methods to augment the boot-up behavior. Currently, the
bootloader supports two primary boot modes:

• Normal Mode
• Mass Storage Device (MSD) Update Mode

Normal mode, as the name would imply, is the default boot mode in which the bootloader simply loads the main
application.

Mass Storage Device Update mode is a special boot mode in which the board enters an update state where
the board appears as a Mass Storage Device to a host PC device. In this mode, the bootloader is capable of
receiving and flashing a new binary by copying that binary to the board as one would for a regular USB storage
device.

More information on each of these modes can be found in the subsequent sections of this document.

4.2.1 How is boot mode determined?

To determine the boot mode, the bootloader checks several different boot flags, which are set based on various
conditions.

For each different boot mode (excluding Normal boot, which is taken by default), there is a different
corresponding boot flag. Boot flag gets set depending on the boot mode in question and the platform being
used. On the SLN-TLHMI-IOT, for example, the MSD boot flag is set when the SW0 button is held during bootup.

4.3 Normal boot
By default, if no other boot flags are set during the boot phase, the Normal boot mode is used. During Normal
boot, the bootloader boots to the "main" application, which is flashed at the current application bank flash
address (for more information, see Application Banks). For example, if the current flash bank is set to Bank A,
then the bootloader jumps to the flash address associated with Bank A and begins running the application at
that address.

The OOBE has a set of three applications that can be booted into at startup. By default, the application always
boots in the Bank A, which corresponds to the coffee_machine application. To change the boot application,
use buttons labeled SW1-SW3 when powering the board.

The following list shows the associations of boot application to switch.

• SW1 - Bank A - coffee_machine
• SW2 - Bank B - elevator
• SW3 - Bank C - smart_panel

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
13 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The decision to what application to jump is handled inside the bootloader. To reach the bootloader, a soft or
hard reset is needed.

For example, to boot in elevator application:

1. Unplug the board
2. Press and hold the SW2 button
3. Plug the board in.

From the bootloader's perspective, there is no information what application it is jumping into, because it uses
addresses and not names. After an update procedure, the application that was written in an inactive bank is
overwritten, so the links between banks and demos are not valid anymore.

4.3.1 Turn on Image Verification

In the OOBE bootloader demo, Image Verification is disabled to encourage developers to play with the code. If
Image Verification is enabled, Normal boot checks that the image certificate for the firmware image to run has
been signed by a trusted certificate authority to ensure that the application comes from a trusted source. Should
the signature check fail, the bootloader does not run the application to avoid executing untrusted, potentially
malicious firmware.

For more details regarding image verification, see Image Verification.

To enable the image verification, DISABLE_IMAGE_VERIFICATION must be set to 0 inside the
Preprocessors sections:

1. Within the MCUXpresso bootloader project, right-click the root project and navigate to Properties > C/C++
Build > Settings > Preprocessor.

2. Inside the Preprocessors section, change the MACRO DISABLE_IMAGE_VERIFICATION to “0” and click
the Apply and Close button as described in the figure below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
14 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 10. Enable image verification
3. After that change, rebuild the bootloader.
4. To flash the device with proper FICA and certificates, use Automated manufacturing tools (Ivaldi).

4.3.2 Disable Debug Console

In the OOBE bootloader demo, Debug Console is enabled to help developers test and debug their code. This
feature introduces unwanted message being displayed and increases the boot-up time. To disable this, set
ENABLE_LOGGING to 0 in FreeRTOSConfig.h

Note: The current implementation of the debug console adds about 150 ms to the boot time.

4.4 Mass Storage Device updates (MSD)
The MSD feature allows the device to be updated using USB instead of the SEGGER tool. Only the main
application or its resources (coffee_machine/elevator) can be flashed in this manner. If the bootloader must
be updated, the SEGGER tool or the Factory Programming flow is necessary. The MSD feature, by default,
bypasses the signature verification to simplify the development flow, since signing images can be unsuitable for
quick debugging and validation.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
15 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

4.4.1 Enabling MSD mode

To enable MSD mode on the SLN-TLHMI-IOT, press and hold the SW0 button while powering on the board.
If done correctly, the board's onboard LED changes to purple and begins blinking at an interval of roughly 1
second.

Note: As mentioned in the Smart HMI Getting Started Guide, to properly use `SW0` as a general-purpose
switch the `SW0` dip switch must be set as 0001.

Additionally, if connected to a Windows PC, your computer must make a sound indicating a new USB device
has been connected. After observing the LED blinking behavior, navigate to “My Computer”, and confirm that
the SLN-TLHMI-IOT kit has mounted as a Mass Storage Device as shown in the picture below.

Note: After dragging and dropping the binary, the LED turns green. Start the application after the LED turns off.

Figure 11. Bootloader MSD file explorer

The size of the new storage device is equal to the Bank Size of the device from which you subtract the
filesystem metadata.

4.4.2 Flashing a new binary

The binary size increases exponentially when adding the GUI resources. Almost 70 % of the total size is
occupied by these sounds and images. To speed up the development and to decrease the load on the updating
mechanism, the large images have been split into code and resources, both with fixed addresses in the flash.
Update operations can be done on individual components, or all together into a bundle.

Right now the MSD can be used to update:

• Main Application
• Resources
• Bundle update (Main Application + Resources)

4.4.2.1 Main application

To update the main application, a binary must be built for the address 0x30100000. Because of the remap
functionality enabled in the bootloader, this binary can be placed in each of the three banks, and still work as
it is running from the base address. The bootloader checks for the current unused bank and tries to write the
image in that specific bank. When dragging and dropping a binary for the main application, the bootloader
checks if the reset handler of the new image is a flash address. No other verification is done; the functionality's
correctness must be handled by the developer. After the new image has been written, a resource copy is done.
This means that during the update procedure, the resources will stay the same.

4.4.2.2 Resources

When updating the resources, the binary needs to be renamed into RES.bin. The bootloader contains a list of
known files, res.bin is one of those files. No verification is done on the resources binary.

In the same way as updating the main application, the bootloader checks for active bank and writes the binary
in the unused one. After the write is completed, the older firmware is copied, and the new bank is activated.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
16 / 226

http://www.nxp.com/mcu-smhmi

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 12. Update resources

4.4.2.3 Bundle

To update using the bundle method, a python script is used to generate the bundle. The script is part of the
ivaldi suite of scripts that are delivered to the customer. The script is called bundle_generate_tlhmi.py.
When calling it, two parameters must be set, both being the locations for two important files:

• bundle configuration file (-bf) - contains a list of files that are going to be fused to generate the bundle.
• board configuration file (-cf) - position of the files in flash to build the metadata.

In the released version of ivaldi, both bundle config and board config are placed under the platform config folder.
A full linux bash command to call this script looks like:

python bundle_generate_tlhmi.py -bf ../../../Scripts/sln_platforms_config/
sln_tlhmi_iot_config/ -cf ../../../Scripts/sln_platforms_config/
sln_tlhmi_iot_config/

After this, in the Scripts\ota_signing\sign\output folder, four files are present.

Figure 13. Update bundle_generate script

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
17 / 226

BANK A BANKB

2. Copy the current firmware in Bank B

Firmware Firmware

3. Make Bank B the current active bank

Free memory Free memory
............................... 44f---- Clearly established Resources start

address in the bank.
-----

Resources

bundle.bin

bundle.bin.sha256

I bundle.bin.sha256.txt

bundle.bundle.bin

1. Write the new resources to Bank B

Filesystem

6/20/2022 11 :38 PM

6/20/2022 11 :38 PM

6/20/2022 11 :38 PM

6/20/2022 11 :38 PM

BIN File

SHA256 File

Text Document

BIN File

Resources

18,671 KB

1 KB

1 KB

18,673 KB

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

For MSD only bundle.bin is of interest, the other three are relevant for Over-The-Air (OTA) updates, where
validation is an important feature. To update with the bundle.bin, drag and drop the binary. The name must
not be modified, as this name is part of a hardcoded list of known files.

Figure 14. Update bundle

For the bootloader to parse and write all the modules to their designated addresses, metadata must be added to
the package. Two types of metadata exist:

• Bundle metadata is placed at the end of the bundle and contains:
– Bundle size
– Number of modules
– Signature of the whole bundle

• Module metadata is placed after every module and contains:
– Module type (Application or Resources)
– Module starting address
– Module length
– Module signature

Upon completion, the board automatically reboots itself into the new firmware, which was flashed. To verify
this, open the serial CLI, type typing the version command, and check that the application is running from the
alternate flash bank.

4.5 Image Verification
Image Verification is a mechanism in which we validate that the image running has not been altered either by
internal or external factors.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
18 / 226

BANK A

Firmware

Resources

1. Write the
new bundle
in Bank B

,

BANKS

Firmware

2. Parse the
metadata, write
Firmware and
Resources at their
designated
addresses

BANKS

Firmware

Free memory '
Clearly established

Resources start
address in the

bank.

----+

Resources

3. Make Bank B the
current active bank

Filesystem

Resources

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

4.5.1 Application chain of trust

The basis of the security architecture implemented in the SLN-TLHMI-IOT has signed application images.
Signing requires the use of a Certificate Authority (CA). NXP has its own CA for signing applications at the
factory, but the CA is not something that is shared with customers.

The CA is used to create signing entities for applications as shown in the figure below. A certificate from the CA
is stored in the SLN-TLHMI-IOT’s filesystem and is used to verify the signatures of the signing entity certificates.
In addition, locally stored certificates from the signing entities are used to verify the signature of firmware
images coming in Over-the-Air (OTA) updates.

Figure 15. Chain of trust

4.5.2 Flash Image Configuration Area (FICA) and Image Verification

The FICA table is a section inside the filesystem that is responsible for describing the images that will be
booted. It contains information about the image and signatures of the applications that will be used to ensure
that only verified firmware is executed. This ensures malicious images cannot be executed without it being
signed with the certificate authority and certificate that is programmed into the filesystem. Before any image is
jumped to, it is first verified using the signature from its associated FICA entry.

• The bootloader uses the AppA FICA entry to validate the AppA image
• The bootloader uses the AppB FICA entry to validate the AppB image

Note: As mentioned when describing the application banks, `Bank C` is not used for redundancy in the update
mechanism, as such, it has no entry into the FICA table. The purpose of the bank is only to showcase all 3
applications without the need of reflashing the board.

Developers can turn on the image verification and reprogram the bootloader as shown in the Turning on image
verification section. To decrease the risks of an attack, have Image Verification on.

4.6 Application banks
For this project, we enabled three application flash banks, Bank A, Bank B, and Bank C. It is done to
showcase in our OOBE all projects (coffee_machine, elevator, smart_panel) simultaneously.

In a real-life scenario, only 2 banks are needed. In the updating mechanism that has been implemented, we use
2 banks by doing a ping-pong between Bank A and Bank B.

The SLN-TLHMI-IOT utilizes a series of dual "application flash banks" used as a redundancy mechanism when
updating the firmware via one of the bootloader's update mechanisms (see Section 4.4) or via the AWS OTA
mechanism.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
19 / 226

Signing entities

NXP Production
CA

Flash Bank A
Signing Entity

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

4.6.1 Banks

The application we developed for SLN-TLHMI has 2 inter-dependent parts:

• Application (code)
• Resources (icons, sounds, pictures)

So a bank is a reserved space in the flash that stores both of these components. The application running tries to
read resources from the same bank.

In the OOBE, the size of a bank is 20 MB (0x1400000), 7 MB (0x700000) for the code area and 13 MB
(0xD00000) for resources. If there is a need to increase or decrease this value, check fica_definitions.h

Figure 16. Bank components

4.6.2 Addresses

The flash address for each of the application flash banks is as follows:

• Bank A - 0x30100000
– Bank A App - 0x30100000
– Bank A resources - 0x30800000

• Bank B - 0x31500000
– Bank B App - 0x31500000
– Bank B resources - 0x31C00000

• Bank C - 0x32900000
– Bank C App - 0x32900000
– Bank C resources - 0x33000000

4.6.3 Remapping

The i.MXRT117H chip supports the flash remapping function, which allows users to remap flash address to the
FlexSPI interface. The flash remapping function is beneficial in the following use cases:

• To flash multiple firmware.
• To switch one of the firmware to run when the condition is met.
• To update the firmware in the wireless application (the usual process is to download the firmware to flash,

perform the validity check, and then switch to new firmware to run. The flash remapping function helps to
directly run the firmware wherever it locates to XIP flash.)

For more information, check: How to Use Flash Remapping Function

In older Solution's projects like SLN-VIZN3D-IOT and SLN-VIZNAS-IOT, the images were built for a specific
bank. With the enablement of the remapping functionality, all applications must be built having the Flash Starting
Address set to 0x30100000.

The updating mechanisms implemented in the bootloader or the main application leverage this feature.
Because of this, the updating procedure does not have to keep track of what bank the application is running
from. The binary that is going to be used for an update, is always going to be built with the Bank A memory
settings and is going to be placed in the non-active slot.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
20 / 226

..........

https://www.nxp.com/docs/en/application-note/AN12255.pdf
https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-3d-face-recognition:VIZN3D
https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-face-recognition-with-liveness-detection:SLN-VIZNAS-IOT

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Note: The OOBE is meant to showcase all 3 applications. After an update procedure, the application that was
written in a non-active bank is going to be overwritten.

4.6.3.1 Convert .axf to .bin

When building a project in MCUXpresso IDE, the default behavior is to create an .axf file. However, some of
the bootloader update mechanisms including MSD updates require the use of a .bin file.

Converting an .axf file to .bin can be done in MCUXpresso without any additional setup.

To perform this conversion, navigate to the project directory that contains your compiled project binary and right-
click the .axf file in that directory.

Note: The binary for your project is located in either the Debug or Release folder depending on your current
build config.

In the context menu, select Binary Utilities->Create binary.

Figure 17. Convert to binary
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
21 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Verify that the binary has been successfully created.

5 Over the air update

5.1 OTA (Over-the-Air) updates
The following section gives instructions on how to generate, sign, deploy, and update the firmware. It also
describes all the tools provided with this solution to give context to what is happening. This section assumes
that the SLN-TLHMI-IOT kit has been migrated to communicate with a non-NXP AWS IoT Cloud server and
the reader has access with the correct permissions. OTA (Over-the-Air) updates are the process of pushing
new firmware from a remote service down to a connected device. When it happens, the device programs the
new image into the flash and reboots into that image assuming all necessary checks have passed. As shown in
the architecture section of this document, there are two application partitions. The application is always going
to run into one of these sections. It means that the second section is free to write into without affecting the
existing image. It also ensures that the device is safe to jump into the new image without worrying about being
compromised assuming the relevant checks have been made. The SLN-TLHMI-IOT kit leverages the Amazon
OTA service within AWS IoT. This also leverages the Amazon FreeRTOS OTA client to check for updates and
download the image.

Figure 18. OTA high-level architecture

5.1.1 Migration guide

This section provides the steps to migrate the SLN-TLHMI-IOT kit to a developer's/organization's own fully
controlled AWS account. If the SLN-TLHMI-IOT kit is left connected to the default server, it is managed by NXP
and restricts the developer’s access and control of certain features. The unavailable features are described in
the SLN-TLHMI-IOT-DG.

The advantages of doing migrating are:

• Full control of OTA jobs and deployment
• Customization of firmware/cloud control

To fully use the aws environment, create an AWS Account.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
22 / 226

Create and Store OTA
sign application create AWS Job Update Avai lablel image to flash

I
e i

Authenticate Verify image in
Update bank

signed image OK flash
pointer and jump to

new app ci
l Fail

Abandon OTA
revert to

'
existing app

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

To communicate with AWS, the device must provide certain artifacts and securely connect to AWS IoT.
If the artifacts are provided on the cloud, the device cannot connect successfully. For steps to create an
Amazon “Thing”, see https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html The
communication between the device and the AWS IoT cloud is secured based on the private key and on the
device certificates created together with the Amazon “Thing”.

Note: These steps are not required, as our manufacturing tool scripts (Ivaldi) do all the necessary setups,
including “Thing” creation. For more details on Ivaldi, see Automated manufacturing tools.

5.1.1.1 RT117H firmware changes

This section provides an overview of steps to make the necessary source code changes to ensure that the
firmware communicates with the correct AWS Account.

As prerequisites:

• an AWS Account is created.
• the Get Started with MCUXpresso Tool suite and Building and Programming sections in the MCU-SMHMI-

SDUG guide are read.
• the projects are in your workspace and you are ready to make code changes

The change is required only in the coffee machine application. The changes are a must to ensure that the
device connects to the correct AWS Endpoint for OTA.

To get started:

1. Follow the IoT Console Sign-in online resource to log in to the desired account.
2. Navigate to the AWS IoT Core service which opens the console.
3. Within the AWS IoT Console, select the Settings button down toward the bottom left section of the page as

shown in Figure 19 below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
23 / 226

https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/setting-up.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 19. AWS IoT monitor console
Warning:
Ensure that the correct server location for the device that was created is used. If the wrong server is used, it
causes a connection issue.

4. It opens the Settings page that has controls for logging and events. At the top of the page,
there are Endpoint Settings. Copy the endpoint string, which has the following structure
"id".iot."server".amazon.com.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
24 / 226

aws ::: Services Q S20t ch_,..."l •••

Manage

► All devices

► Greengrass devices

► Remote actions

► Message Routing

Retained messages

► Security

► Fleet Hub

Device Software

Billing groups

e mgs

Learn

!Feature spotlight

Documentation 12:

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 20. AWS Custom endpoint URL
5. The endpoint is obtained and must be inserted into the firmware. Within the bootloader application, navigate

to the source > aws_clientcredential.h file. Within the aws_clientcredential.h file, locate the array
called clientcredentialMQTT_BROKER_ENDPOINT and change the existing contents to the endpoint
obtained from AWS IoT Endpoint Settings.

Figure 21. AWS broker endpoint update in aws_clientcredential.h for coffee_machine

5.1.1.2 Ivaldi guide

The following section describes the steps to set up the Ivaldi environment. This chapter assumes that the client
has already downloaded and unzipped the Ivaldi_sln_tlhmi_iot.zip package. For additional details,
check Section 3.1.

Perform the following steps to configure the Ivaldi environment.

Note: These steps must be executed only once. Ensure that none of the commands return errors. For
additional details, check the Ivaldi_sln_tlhmi_iot/README.md and Ivaldi_sln_tlhmi_iot/
Scripts/ota_signing/README.md files. The Ivaldi tool was tested on the below Operating Systems and
the corresponding Command-Line Interfaces:

• Linux – Bash CLI
• Windows – WSL (Windows subsystem for Linux)
• CLI
• Windows – CMD (Command Prompt) CLI

1. Install the following tools.
• OpenSSL # to check if installed: openssl version
• AWS CLI # to check if installed: aws --version

– Must be configured according to your account # to configure: aws configure
– https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
– https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
25 / 226

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Python 3.6.x
2. Set up the environment and install the requirements. Open a CLI (from the list mentioned above) and run

the below commands.
• cd Ivaldi_sln_tlhmi_iot/
• pip install virtualenv # installs the virtual environment tool
• virtualenv env # generates a new virtual environment
• source env/bin/activate # activates the virtual environment (on Linux or WSL)
• env\Scripts\activate # activates the virtual environment (on CMD)
• (env) pip install -r requirements.txt # installs the python dependencies
• (env) python setup.py install # setups the environment.

3. Generate the certificates. Adjust the below command’s parameters according to your needs (replace:
[code], [country], [state], [org]) and run it within the same terminal opened in the previous step. The
script below asks for the password several times, each time provide the same password. As a result, the
Ivaldi_sln_tlhmi_iot/Scripts/ ota_signing/ca/ folder containing all the required certificates is
created.
• cd Scripts/ota_signing/
• (env) python generate_signing_artifacts.py prod [code] [country] [state] [org]
Example: (env) python generate_signing_artifacts.py prod FR France Normandy NXP

4. Add the previously generated certificates in the filesystem that is going to be deployed on the board. To
do that, add the path for the file in Scripts/sln_platforms_config/sln_tlhmi_iot_config/
littlefs_file_list.py

5. Add the password provided in Step 3 to the ivaldi scripts. This approach of providing the password is not
recommended due to security reasons, but may be used for a quick test of the setup.
• Open the Scripts/ota_signing/sign/sign_me.py file and add the password on line 49 (example:

PKEY_PASS = 'my_password').
• Open the Scripts/ota_signing/sign/bundle_generate_tlhmi.py file and add the password on

line 139 (PKEY_PASS = 'my_password').
6. Test the environment by flashing an open boot device. Connect the device to the PC via USB. Make sure

you have all the required demos inside the Image Binaries folder and that the serial mode jumper is properly
set. Within the same terminal as before, run the below commands.
• (env) cd ../sln_tlhmi_iot_open_boot/
• (env) python open_prog_full.py

5.1.2 Preparing an OTA image

This section describes the steps to create a binary to update the demo app. When building an OTA image,
make sure to properly sign the image that will be sent. Image authentication is a key factor in the AWS high-
level architecture. As the SLN-TLHMI-IOT kit is built to communicate with an NXP demonstration AWS IoT
account, OTA is managed by NXP. For OTA to be managed by the developer, the Migration Guide must be
executed to provide access to an AWS IoT Core implementation for OTA management. Without this process,
OTA is not manageable for the developer. Before starting, check the Ivaldi tool

5.1.3 Building image

As mentioned before in Section 4.4 , the current bootloader enables the remapping feature that helps customers
easily deploy new images, without keeping track of the currently active bank. All bootable images must be built
with Flash address at 0x30100000. The current implementation supports update with the same image version
or an older version. Best practices dictate that the version must be always higher. To re-enable this functionality
set otaconfigAllowDowngrade to 0 inside the ota_config.h file.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
26 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

5.1.4 Sign Image

The following section describes what the NXP Application Image Signing Tool (Signing Tool) is and how to use
it. The Signing Tool is a python application that is responsible for using a signed Certificate Signing Request
(CSR) to sign the binaries and append the certificate to the binary ready to be deployed to the AWS IoT OTA
service. The Signing Tool requires Python3 to run. The following instructions assume that the README file
in the Ivaldi root directory has been followed to set up the Python virtual environment. If this is not done, the
scripts fail. Navigate to the Scripts/ota_signing directory inside Ivaldi. For more details, check the “QUICK
SETUP” section from the Scripts/ota_signing/README.md file.

5.1.4.1 Creating a root, intermediate pair with sign server, and certificates

A tool was created to generate all the artifacts needed for OTA signing. This tool is called
generate_signing_artifacts.py and was derived from publicly available information for generating CA
certificate artifacts. The generate_signing_artifacts.py takes 5 parameters that are all used to create
the artifacts. The ca_name is the entity where all the file names are labeled and used as the common name. It
asks you to enter a “pass phrase” and enter the same each time. Once generate_signing_artifacts.py
succeeds, a “ca” folder inside Scripts/ota_signing appears. Inside the “ca” folder you can find: “certs” and
“private” folders.

Inside the “certs” folder there are 3 files:

• “<ca_name>.app.a.crt.pem”
• “<ca_name>.app.b.crt.pem”
• “<ca_name>.root.ca.crt.pem”.

Inside the “private” folder there are 3 files:

• “<ca_name>.app.a.key.pem”
• “<ca_name>.app.b.key.pem”
• “<ca_name>.root.ca.key.pem”

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
27 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 22. generate_signing_artifacts.py description, usage, and logs

The script has been run from the Windows Linux subsystem, but it can be run from any terminal.

The Ivaldi tools should have access to the password used in the previous step for running the
generate_signing_artifacts.py script. To achieve this, two files must be modified:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
28 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Open the Scripts/ota_signing/sign/sign_me.py file and add the password on line 49 (example:
PKEY_PASS = 'my_password').

• Open the Scripts/ota_signing/sign/bundle_generate_tlhmi.py file and add the password on line
139 (PKEY_PASS = 'my_password').

Note: This approach of providing the password is not recommended due to security reasons, but may be used
for a quick test of the setup.

Navigate into the Scripts/ota_signing/sign folder and run the sign_me.py tool with the name of the
binary to sign (for example ais_ffs_demo binary) and the certificate name (for example, the prod.app.a that
we have generated in the previous step) for the entity.

5.1.4.2 Formatting the CA and the application certificate

For the device to be able to verify the image signature, it must have the root CA certificate. (ca/certs/
<cert_name>.root.ca.crt.pem) and the application certificate derived from the signing entity (ca/
certs/<cert_name>.app.a.crt.pem) .

The certificates do not have a specific address at which to be written, both need to be included in the filesystem.
The obtained filesystem is going to be transformed into binary format and loaded with the rest of the images. It
is done when running the open_prog_full.py script. Generate all the needed certificates before running the
script.

5.1.5 OTA Workflow with AWS IoT Console

On the device side, if the filesystem has been properly loaded and the board is connected to a WiFi network,
the application creates a secure MQTT connection with the AWS cloud. MQTT connection is used to receive
push update requests from the AWS cloud.

To use Amazon OTA, configure various roles to allow AWS IoT access to the S3 Bucket (this is the
server that holds your images). The following link was used by NXP to configure their OTA service:https://
docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html

To create an OTA Job, follow these steps:

1. Navigate to the following link: https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-
workflow.html. Focus on the area named “Use my custom-signed firmware image” as this is the process that
focuses on custom-signed image creation. No other way of deploying images is currently supported. Click
the Create job button inside the AWS IoT > Jobs tab.

2. A new window appears. Inside this window, select Create FreeRTOS OTA update job as shown in
Figure 23:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
29 / 226

https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-workflow.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-workflow.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 23. Create OTA job – Job types
3. The OTA Job Properties window appears. Provide a job name as shown Figure 24:

Figure 24. Create OTA job – Job name
4. The OTA File Configuration window appears. Specify the serial numbers of the devices to be updated.

Select the MQTT option as the protocol for file transfer as shown in Figure 25 :

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
30 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 25. Create OTA job – Devices to update and protocol for file transfer
5. Select the image that is going to be delivered to the remote device. To do this, select Use my custom

signed file and copy in the Signature textbox the content that has been obtained as the output of the
Signing Tool (sln_demo_new_img.bin.sha256.txt). The following fields must be properly set:
• Original hash algorithm - SHA-256
• Original encryption algorithm - RSA
• Path name of code signing certificate on device - app_a_sign_cert.dat (check littlefs_file_list.py for

the name of the file)

Check the images below for more information.

If a new image is going to be loaded, check Upload a new file, click Choose file and select the image. S3
storage address must be specified in the "S3 URL" field. If the loaded binary image already exists in the
location, the user can select the checkbox corresponding to Select an existing file and use the existing image.

The binary size increases exponentially when adding the GUI resources. Almost 70 % of the total size is
occupied by those. To speed up the development and to decrease the load on the updating mechanism, the
image has been split into code and resources, both with the fixed address in the flash. Update operation can
be done on components, or all together into a bundle. Right now the OTA can be used to update:

• Main Application
• Resources
• Bundle update (Main App + Resources)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
31 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 26. Create OTA job – File info
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
32 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Until now the configuration for the update was the same. The difference, as was for the MSD, is in the name of
the file that must be updated in the Path name of the file on the device. The files should be completed with:

• AppA , when updating the main application
• Resources, when updating only resources
• Bundle, update both at the same time

5.1.5.1 Update main application

Because of the remap functionality enabled in the bootloader, this binary can be placed in each of the three
banks and still work as it is running from the base address. When receiving an OTA request, the OTA_Agent
checks for the unused bank. The empty bank is erased to prepare it for the update. All the erase is done before
starting to receive actual data. It is a measure to work around the not-in-order MQTT packets' arrival. After the
new image has been written, verification is done to check the signature. Using the Signature field and Path
name of the code signing certificate on device field, the main application can start validating the new image.
If everything is right, a resource copy is done, and the empty bank is set as an active bank. It means that during
the update procedure the resources stay the same.

Figure 27. Update main application

5.1.5.2 Update resources

Similarly to updating the main application, the OTA_Agent on request checks for active bank and writes the
binary in the opposite one. A complete erase is done beforehand. After the write is completed, the older
firmware is copied, and the new bank is activated.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
33 / 226

BANK A BANKB

1. Write the new firmware in Bank B

Firmware Firmware

3. Make Bank B the current active bank

Free memory Free memory
••••••uo o uoouoouo o u••••••• -◄--

Clearly established Resources start
address in the bank.

---►

2. Copy the current resources to Bank B

Resources Resources

Filesystem

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 28. Update resources

5.1.5.3 Update with Bundle

To update with a bundle, a python script is used to generate the bundle. The script is part of the ivaldi suites of
scripts that are delivered to the customer. The script is called bundle_generate_tlhmi.py. When calling it,
two parameters must be set, both being the location of two important files:

• bundle configuration file (-bf) - contains a list of files that are going to be fused to generate the bundle
• board configuration file (-cf) - position of the files in flash to build the metadata.

After running the script, there is no need to pass the binary through the singing process as this script generates
a signature used by the device to validate the new image.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
34 / 226

BANK A BANKB

2. Copy the current firmware in Bank B

Firmware Firmware

3. Make Bank B the current active bank

Free memory Free memory
............................... •4-- Clearly established Resources start

address in the bank.
--•--

1. Write the new resources to Bank B

Resources Resources

Filesystem

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 29. Update bundle

The current firmware sets all the images in the right positions based on the metadata. After the parsing of the
bundle is complete and all images are placed accordingly to the fica_definitions.h file, the new bank is
activated.

After completion, the application reboots in self-test mode. For now, nothing is done in self-test mode except
checking for the version of the new application. Reboot to make sure self-test mode is not used.

6 Framework

6.1 Framework introduction
This section describes the architectural design of the framework. The application is primarily designed around
the use of a "framework" architecture that is composed of several different parts.

The constituent parts include:

• Device Managers
• Hardware Abstraction Layer (HAL) Devices
• Messages/Events

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
35 / 226

BANK A

Firmware

Resources

1. Write the
new bundle
in Bank B

,

BANKS

Firmware

2. Parse the
metadata, write
Firmware and
Resources at their
designated
addresses

BANKS

Firmware

Free memory '
Clearly established

Resources start
address in the

bank.

~

Resources

3. Make Bank B the
current active bank

Filesystem

Resources

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 30. Architecture Diagram

Each of these different components is discussed in detail in the following sections.

6.1.1 Design goals

The architectural design of the framework was centered around 3 primary goals:

1. Ease-of-use
2. Flexibility/Portability
3. Performance

In the course of project development, many problems can arise which hinder the speed of that development.
The framework architecture was designed to help combat those problems.

The framework is designed with the goal of speeding up the time to market for vision and other machine-
learning applications. To ensure a speedy time to market, it is critical that the software itself is easy to
understand and modify. Keeping this goal in mind, the architecture of the framework is easy to modify without
being restrictive, and without coming at the cost of performance.

6.1.2 Relevant files

The files which pertain to the framework architecture can primarily be found in the framework/ folder of the
specific application. Because the application is designed around the use of the framework architecture, it is
likely that the bulk of a developer's efforts will be focused on the contents of these folders.

6.2 Naming conventions
The framework code adheres to a set of naming conventions for making the code easily readable and
searchable using modern code completion tools.
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
36 / 226

Softw are

Hardware

..__u_1_..,] I Algorith m Call backs] I Featu re data base j [Cust om er specific services] Applicat ion

• Cam era Disp lay Algorith m Input Output - - Framework

r
M anager Manager Ma nager

r

rr rr rr
l1 l1 l1

Manager M an ager
r ..., r

~ ~
EJD 80

~ '- Core :

- ,--------. ,---------.. ,--------. ,----------HAL : \ __ I Camera Dev Driver] [Display Dev Driver] [~ Dev Driver] I Input Dev Driver] [Output Dev Drive~ _,-'/

..... ~ - - - - - - - -- -- -- - - - - -- - -- -- - -- - - - -- - -- - --- - --- - -- - - --- - -- - - - -- - - - - - - -- -- - - -- -- -- - - - --- - - - -- - -- - - - -- --- - ~-

Low level driver
CSI

Low level driver
MIPI CSl2

Low level driver
(SP I)

LCD

Low leve l driver
GPIO

GPIO Button IR Cam era] [3D Cam era] [

~----~

Low level driver
(USB)

UART

Low Level Driver

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Note: The naming conventions described below apply only to framework-related code that is primarily located
in the framework folder and source folder of the application.

6.2.1 Functions

Functions names follow the format of {APP/FWK/HAL}_{DevType}_{DevName}_{Action}.

For example:

hal_input_status_t HAL_InputDev_PushButtons_Start(const input_dev_t *dev);

To increase searchability using code completion tools, functions for each framework component have their own
prefix denoting the component they relate to:

• APP - app-specific function. Usually device registration or event handler-related.
• FWK - framework-specific function. Usually framework API function.
• HAL - HAL-specific function. Usually HAL device operators.

Additionally, an underscore _ may be placed in front of a function name to indicate that the function is
static/private.

Note: Static functions oftentimes exclude all but the underscore and the `Action` as the component, devType,
and devName are implicit.

For example:

static shell_status_t _VersionCommand(shell_handle_t shellContextHandle, int32_t
 argc, char **argv);
static shell_status_t _ResetCommand(shell_handle_t shellContextHandle, int32_t
 argc, char **argv);
static shell_status_t _SaveCommand(shell_handle_t shellContextHandle, int32_t
 argc, char **argv);
static shell_status_t _AddCommand(shell_handle_t shellContextHandle, int32_t
 argc, char **argv);
static shell_status_t _DelCommand(shell_handle_t shellContextHandle, int32_t
 argc, char **argv);

One of the above prefixes is the device type of the device defining the function.

• InputDev
• OutputDev
• CameraDev
• DisplayDev
• and so forth.

As the device type is the name of the device, the name must match the name of the device specified in the
filename.

For example:

hal_input_status_t HAL_InputDev_PushButtons_Start(const input_dev_t *dev);

The name of the device is the "action" performed on/by the device. It could be anything including Start, Stop,
Register, and so on.

Below are several examples of different function names:

void APP_InputDev_Shell_RegisterShellCommands(shell_handle_t shellContextHandle,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
37 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 input_dev_t *shellDev,
 input_dev_callback_t callback)
{
 s_InputCallback = callback;
 s_SourceShell = shellDev;
 s_ShellHandle = shellContextHandle;
 s_FrameworkRequest.respond = _FrameworkEventsHandler;
 SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(version));
 SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(reset));
 SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(save));
 SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(add));

int HAL_InputDev_PushButtons_Register()
{
 int error = 0;
 LOGD("input_dev_push_buttons_register");
 error = FWK_InputManager_DeviceRegister(&s_InputDev_PushButtons);
 return error;
}

hal_input_status_t HAL_InputDev_PushButtons_Init(input_dev_t *dev,
 input_dev_callback_t callback);
hal_input_status_t HAL_InputDev_PushButtons_Deinit(const input_dev_t *dev);
hal_input_status_t HAL_InputDev_PushButtons_Start(const input_dev_t *dev);
hal_input_status_t HAL_InputDev_PushButtons_Stop(const input_dev_t *dev);
hal_input_status_t HAL_InputDev_PushButtons_InputNotify(const input_dev_t *dev,
 void *param);

6.2.2 Variables

Local and global variables use camelCase.

static hal_output_status_t HAL_OutputDev_RgbLed_InferComplete(const output_dev_t
 *dev,

 output_algo_source_t source,
 void *inferResult)
{
 vision_algo_result_t *visionAlgoResult = (vision_algo_result_t
 *)inferResult;
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

Static variables are prefixed with s_PascalCase

For example:

static event_common_t s_CommonEvent;
static event_face_rec_t s_FaceRecEvent;
static event_recording_t s_RecordingEvent;
static input_event_t s_InputEvent;
static framework_request_t s_FrameworkRequest;
static input_dev_callback_t s_InputCallback;
static input_dev_t *s_SourceShell; /* Shell device that commands are sent over
 */
static shell_handle_t s_ShellHandle;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
38 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.2.3 Typedefs

Type definitions are written in snake_case and end in _t.

For example:

typedef struct
{
 fwk_task_t task;
 input_task_data_t inputData;
} input_task_t;

6.2.4 Enums

Enumerations are written in the the form kEventType_State.

For example:

typedef enum _rgb_led_color
{
 kRGBLedColor_Red, /*!< LED Red Color */
 kRGBLedColor_Orange, /*!< LED Orange Color */
 kRGBLedColor_Yellow, /*!< LED Yellow Color */
 kRGBLedColor_Green, /*!< LED Green Color */
 kRGBLedColor_Blue, /*!< LED Blue Color */
 kRGBLedColor_Purple, /*!< LED Purple Color */
 kRGBLedColor_Cyan, /*!< LED Cyan Color */
 kRGBLedColor_White, /*!< LED White Color */
 kRGBLedColor_Off, /*!< LED Off */
} rgbLedColor_t;

Enumerations for a status specifically must be written in the form kStatus_{Component}_{State}.

For example:

/*! @brief Error codes for input hal devices */
typedef enum _hal_input_status
{
 kStatus_HAL_InputSuccess = 0,
 /*!< Successfully */
 kStatus_HAL_InputError =
 MAKE_FRAMEWORK_STATUS(kStatusFrameworkGroups_Input, 1), /*!< Error occurs */
} hal_input_status_t;

6.2.5 Macros and Defines

Defines are written in all caps.

For example:

#define INPUT_DEV_PB_WAKE_GPIO BOARD_USER_BUTTON_GPIO
#define INPUT_DEV_PB_WAKE_GPIO_PIN BOARD_USER_BUTTON_GPIO_PIN
#define INPUT_DEV_SW1_GPIO BOARD_BUTTON_SW1_GPIO
#define INPUT_DEV_SW1_GPIO_PIN BOARD_BUTTON_SW1_PIN
#define INPUT_DEV_SW2_GPIO BOARD_BUTTON_SW2_GPIO
#define INPUT_DEV_SW2_GPIO_PIN BOARD_BUTTON_SW2_PIN

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
39 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#define INPUT_DEV_SW3_GPIO BOARD_BUTTON_SW3_GPIO
#define INPUT_DEV_SW3_GPIO_PIN BOARD_BUTTON_SW3_PIN
#define INPUT_DEV_PUSH_BUTTONS_IRQ GPIO13_Combined_0_31_IRQn
#define INPUT_DEV_PUSH_BUTTON_SW1_IRQ BOARD_BUTTON_SW1_IRQ
#define INPUT_DEV_PUSH_BUTTON_SW2_IRQ BOARD_BUTTON_SW2_IRQ
#define INPUT_DEV_PUSH_BUTTON_SW3_IRQ BOARD_BUTTON_SW3_IRQ

6.3 Device managers

6.3.1 Overview

As the name would imply, device managers are responsible for "managing" devices used by the system. Each
device type (input, output, and so on) has its own type-specific device manager.

A device manager serves two primary purposes:

• Initializing and starting each device registered to that manager
• Sending data to and receiving data from each device registered to that manager

This section avoids low-level implementation details of the device managers and instead focus on the device
manager APIs and the startup flow for the device managers. The device managers themselves are provided as
a library binary file to, in part, help abstract the underlying implementation details and encourage developers to
focus on the HAL devices being managed instead.

Note: The device managers themselves are provided as a library binary file in the framework folder, while the
APIs for each manager can be found in the framework/inc folder.

6.3.1.1 Initialization flow

Before a device manager can properly manage devices, it must follow a specific startup process. The startup
process for device managers is summarized as follows:

1. Initialize managers
2. Register each device to their respective manager
3. Start managers

This process is clearly demonstrated in the main function found in source/main.cpp

/*
 * @brief Application entry point.
 */
int main(void)
{
 /* Init board hardware. */
 APP_BoardInit();
 LOGD("[MAIN]:Started");
 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 // start
 vTaskStartScheduler();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
40 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 while (1)
 {
 LOGD("#");
 }

 return 0;
}

As part of a manager's start routine, the manager calls the init and start functions of each of its
registered devices.

Note: Developers must be concerned about adding/removing devices from the
APP_RegisterHalDevices() function as the init and start functions for each manager are already
called by default inside the APP_InitFramework() and APP_StartFramework() functions in main().

6.3.2 Vision input manager

The Vision input manager manages the input HAL devices that can be registered into the system.

6.3.2.1 APIs

6.3.2.1.1 FWK_InputManager_Init

/**
 * @brief Init internal structures for input manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_InputManager_Init();

6.3.2.1.2 FWK_InputManager_DeviceRegister

/**
 * @brief Register an input device. All input devices need to be registered
 before FWK_InputManager_Start is called.
 * @param dev Pointer to a display device structure
 * @return int Return 0 if registration was successful
 */
int FWK_InputManager_DeviceRegister(input_dev_t *dev);

6.3.2.1.3 FWK_InputManager_Start

/**
 * @brief Spawn Input manager task which will call init/start for all registered
 input devices
 * @return int Return 0 if the starting process was successful
 */
int FWK_InputManager_Start();

6.3.2.1.4 FWK_InputManager_Deinit

/**
 * @brief Denit internal structures for input manager.
 * @return int Return 0 if the deinit process was successful

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
41 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 */
int FWK_InputManager_Deinit();

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.3 Output manager

The Output manager manages the output HAL devices that can be registered into the system.

6.3.3.1 APIs

6.3.3.1.1 FWK_OutputManager_Init

/**
 * @brief Init internal structures for output manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_OutputManager_Init();

6.3.3.1.2 FWK_OutputManager_DeviceRegister

/**
 * @brief Register a display device. All display devices need to be registered
 before FWK_OutputManager_Start is called.
 * @param dev Pointer to an output device structure
 * @return int Return 0 if registration was successful
 */
int FWK_OutputManager_DeviceRegister(output_dev_t *dev);

6.3.3.1.3 FWK_OutputManager_Start

/**
 * @brief Spawn output manager task which will call init/start for all
 registered output devices.
 * @return int Return 0 if starting was successful
 */
int FWK_OutputManager_Start();

6.3.3.1.4 FWK_OutputManager_Deinit

/**
 * @brief DeInit internal structures for output manager.
 * @return int Return 0 if the deinit process was successful
 */
int FWK_OutputManager_Deinit();

Calling this function is unnecessary in most applications and should be used
 with caution.

/**
 * @brief A registered output device doesn't need to be also active. After the
 start procedure, the output device

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
42 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 * can register a handler of capabilities to receive events.
 * @param dev Device that register the handler
 * @param handler Pointer to a handler
 * @return int Return 0 if the registration of the event handler was successful
 */
int FWK_OutputManager_RegisterEventHandler(const output_dev_t *dev, const
 output_dev_event_handler_t *handler);

6.3.3.1.5 FWK_OutputManager_UnregisterEventHandler

/**
 * @brief A registered output device doesn't need to be also active. A device
 can call this function to unsubscribe
 * from receiving events
 * @param dev Device that unregister the handler
 * @return int Return 0 if the deregistration of the event handler was
 successful
 */
int FWK_OutputManager_UnregisterEventHandler(const output_dev_t *dev);

6.3.4 Camera manager

Camera manager manages the camera HAL devices that can be registered into the system.

6.3.4.1 APIs

6.3.4.1.1 FWK_CameraManager_Init

/**
 * @brief Init internal structures for Camera manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_CameraManager_Init();

6.3.4.1.2 FWK_CameraManager_DeviceRegister

/**
 * @brief Register a camera device. All camera devices need to be registered
 before FWK_CameraManager_Start is called
 * @param dev Pointer to a camera device structure
 * @return int Return 0 if registration was successful
 */
int FWK_CameraManager_DeviceRegister(camera_dev_t *dev);

6.3.4.1.3 FWK_CameraManager_Start

/**
 * @brief Spawn Camera manager task which will call init/start for all
 registered camera devices
 * @return int Return 0 if the starting process was successul
 */
int FWK_CameraManager_Start();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
43 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.3.4.1.4 FWK_CameraManager_Deinit

/**
 * @brief Deinit CameraManager
 * @return int Return 0 if the deinit process was successful
 */
int FWK_CameraManager_Deinit();

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.5 Display manager

The Display manager manages the display HAL devices that can be registered into the system.

6.3.5.1 APIs

6.3.5.1.1 FWK_DisplayManager_Init

/**
 * @brief Init internal structures for display manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_DisplayManager_Init();

6.3.5.1.2 FWK_DisplayManager_DeviceRegister

/**
 * @brief Register a display device. All display devices need to be registered
 before FWK_DisplayManager_Start is
 * called.
 * @param dev Pointer to a display device structure
 * @return int Return 0 if registration was successful
 */
int FWK_DisplayManager_DeviceRegister(display_dev_t *dev);

6.3.5.1.3 FWK_DisplayManager_Start

/**
 * @brief Spawn Display manager task which will call init/start for all
 registered display devices. Will start the flow
 * to recive frames from the camera.
 * @return int Return 0 if starting was successful
 */
int FWK_DisplayManager_Start();

6.3.5.1.4 FWK_DisplayManager_Deinit

/**
 * @brief Init internal structures for display manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_DisplayManager_Deinit();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
44 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.6 Vision algorithm manager

The Vision algorithm manager manages the vision algorithm HAL devices that can be registered into the
system.

6.3.6.1 APIs

6.3.6.1.1 FWK_VisionAlgoManager_Init

/**
 * @brief Init internal structures for VisionAlgo manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_VisionAlgoManager_Init();

6.3.6.1.2 FWK_VisionAlgoManager_DeviceRegister

/**
 * @brief Register a vision algorithm device. All algorithm devices need to be
 registered before
 * FWK_VisionAlgoManager_Start is called
 * @param dev Pointer to a vision algo device structure
 * @return int Return 0 if registration was successful
 */
int FWK_VisionAlgoManager_DeviceRegister(vision_algo_dev_t *dev);

6.3.6.1.3 FWK_VisionAlgoManager_Start

/**
 * @brief Spawn VisionAlgo manager task which will call init/start for all
 registered VisionAlgo devices
 * @return int Return 0 if the starting process was successul
 */
int FWK_VisionAlgoManager_Start();

6.3.6.1.4 FWK_VisionAlgoManager_Deinit

/**
 * @brief Deinit VisionAlgoManager
 * @return int Return 0 if the deinit process was successful
 */
int FWK_VisionAlgoManager_Deinit();

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.7 Voice algorithm manager

The Voice algorithm manager manages the voice algorithm HAL devices that can be registered into the system.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
45 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.3.7.1 APIs

6.3.7.1.1 FWK_VoiceAlgoManager_Init

/**
 * @brief Init internal structures for VisionAlgo manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_VoiceAlgoManager_Init();

6.3.7.1.2 FWK_VoiceAlgoManager_DeviceRegister

/**
 * @brief Register a voice algorithm device. All algorithm devices need to be
 registered before
 * FWK_VoiceAlgoManager_Start is called
 * @param dev Pointer to a vision algo device structure
 * @return int Return 0 if registration was successful
 */
int FWK_VoiceAlgoManager_DeviceRegister(voice_algo_dev_t *dev);

6.3.7.1.3 FWK_VoiceAlgoManager_Start

/**
 * @brief Spawn VisionAlgo manager task which will call init/start for all
 registered VisionAlgo devices
 * @return int Return 0 if the starting process was successful
 */
int FWK_VoiceAlgoManager_Start();

6.3.7.1.4 FWK_VoiceAlgoManager_Deinit

/**
 * @brief Deinit VisionAlgoManager
 * @return int Return 0 if the deinit process was successful
 */
int FWK_VoiceAlgoManager_Deinit();

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.8 Low-Power device manager

The Low-Power device manager is unique among the managers because it does not have the typical Init and
Start functions that the other managers do. Instead, the Low-Power Manager has APIs to register a device
(only one at a time), configure how the board should enter deep sleep, enable sleep mode, and more.

Note: Due to the unique nature of low-power devices being an abstract "virtual" device, only one LPM device
can be registered to the LPM manager at a time. However, there must be no need for more than one LPM
device because other devices can configure the current low-power mode states by using the Low-Power
Manager APIs.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
46 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.3.8.1 APIs

6.3.8.1.1 FWK_LpmManager_DeviceRegister

/**
 * @brief Register a low power mode device. Currently, only one low power mode
 device can be registered at a time.
 * @param dev Pointer to a low power mode device structure
 * @return int Return 0 if registration was successful
 */
int FWK_LpmManager_DeviceRegister(lpm_dev_t *dev);

6.3.8.1.2 FWK_LpmManager_RegisterRequestHandler

int FWK_LpmManager_RegisterRequestHandler(hal_lpm_request_t *req);

6.3.8.1.3 FWK_LpmManager_UnregisterRequestHandler

int FWK_LpmManager_UnregisterRequestHandler(hal_lpm_request_t *req);

6.3.8.1.4 FWK_LpmManager_RuntimeGet

int FWK_LpmManager_RuntimeGet(hal_lpm_request_t *req);

6.3.8.1.5 FWK_LpmManager_RuntimePut

int FWK_LpmManager_RuntimePut(hal_lpm_request_t *req);

6.3.8.1.6 FWK_LpmManager_RuntimeSet

int FWK_LpmManager_RuntimeSet(hal_lpm_request_t *req, int8_t count);

6.3.8.1.7 FWK_LpmManager_RequestStatus

int FWK_LpmManager_RequestStatus(unsigned int *totalUsageCount);

6.3.8.1.8 FWK_LpmManager_SetSleepMode

/**
 * @brief Configure the sleep mode to use when entering sleep
 * @param sleepMode sleep mode to use when entering sleep. Examples include SNVS
 and other "lighter" sleep modes
 * @return int Return 0 if successful
 */
int FWK_LpmManager_SetSleepMode(hal_lpm_mode_t sleepMode);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
47 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.3.8.1.9 FWK_LpmManager_EnableSleepMode

/**
 * @brief Configure sleep mode on/off status
 * @param enable used to set sleep mode on/off; true is enable, false is disable
 * @return int Return 0 if successful
 */
int FWK_LpmManager_EnableSleepMode(hal_lpm_manager_status_t enable);

6.3.9 Audio processing manager

The Audio processing manager manages the audio processing HAL devices that can be registered into the
system.

6.3.9.1 APIs

6.3.9.1.1 FWK_AudioProcessing_Init

/**
 * @brief Init Audio Processing manager
 *
 * @return int Return 0 if the init process was successful
 */
int FWK_AudioProcessing_Init(void);

6.3.9.1.2 FWK_AudioProcessing_DeviceRegister

/**
 * @brief Register an audio processing device
 *
 * @param dev Pointer to an Audio Processing device
 * @return int Return 0 if the register was successful
 */
int FWK_AudioProcessing_DeviceRegister(audio_processing_dev_t *dev);

6.3.9.1.3 FWK_AudioProcessing_Start

/**
 * @brief Start Audio Processing manager
 *
 * @return int Return 0 if the starting process was successful
 */
int FWK_AudioProcessing_Start(void);

6.3.9.1.4 FWK_AudioProcessing_Deinit

/**
 * @brief Deinit Audio Processing manager
 *
 * @return int Return 0 if the deit process was successful
 */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
48 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

int FWK_AudioProcessing_Deinit(void);

Note: Calling this function is unnecessary in most applications and must be used with caution.

6.3.10 Flash manager

The Flash manager is used to provide an abstraction for an underlying filesystem implementation.

Due to the unique nature of the filesystem being an abstract "virtual" device, only one flash device can be
registered at a time. However, generally there should be no need to have more than one filesystem. It means
the Flash manager's API functions essentially act as wrappers that call the operators of the underlying flash
HAL device.

Warning: Flash access is exclusive, one request at a time.

Note: When working with the Flash Manager, unlike most other managers, FWK_Flash_DeviceRegister
must be called _before_ FWK_Flash_Init.

6.3.10.1 Device APIs

6.3.10.1.1 FWK_Flash_DeviceRegister

/**
 * @brief Only one flash device is supported. Registered a flash filesystem
 device
 * @param dev Pointer to a flash device structure
 * @return int Return 0 if registration was successful
 */
int FWK_Flash_DeviceRegister(const flash_dev_t *dev);

Note: Unlike the flow for most other managers, this function must be called before FWK_Flash_Init.

6.3.10.1.2 FWK_Flash_Init

/**
 * @brief Init internal structures for flash.
 * @return int Return 0 if the init process was successful
 */
sln_flash_status_t FWK_Flash_Init();

6.3.10.1.3 FWK_Flash_Deinit

/**
 * @brief Deinit internal structures for flash.
 * @return int Return 0 if the init process was successful
 */
sln_flash_status_t FWK_Flash_Deinit();

6.3.10.2 Operations APIs

The Flash Manager and underlying flash HAL device define only a few operations in order to keep the API
simple and easy to implement. These API functions include:

• Format

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
49 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Save
• Delete
• Read
• Make Directory
• Make File
• Append
• Rename
• Cleanup

While it might limit filesystem functionality, it also helps to keep the code readable, portable, and maintainable.

Note: If the default list of APIs does not satisfy the requirements of a use case, the API can always be
extended or bypassed in the code directly.

6.3.10.2.1 FWK_Flash_Format

/**
 * @brief Format the filesystem
 * @return the status of formatting operation
 */
sln_flash_status_t FWK_Flash_Format();

6.3.10.2.2 FWK_Flash_Save

/**
 * @brief Save the data into a file from the file system
 * @param path Path of the file in the file system
 * @param buf Buffer which contains the data that is going to be saved
 * @param size Size of the buffer
 * @return the status of save operation
 */
sln_flash_status_t FWK_Flash_Save(const char *path, void *buf, unsigned int
 size);

6.3.10.2.3 FWK_Flash_Append

/**
 * @brief Append the data to an existing file.
 * @param path Path of the file in the file system
 * @param buf Buffer which contains the data that is going to be append
 * @param size Size of the buffer
 * @param overwrite Boolean parameter. If true the existing file will be
 truncated. Similar to SLN_flash_save
 * @return the status of append operation
 */
 sln_flash_status_t FWK_Flash_Append(const char *path, void *buf, unsigned int
 size, bool overwrite);

6.3.10.2.4 FWK_Flash_Read

/**
 * @brief Read from a file
 * @param path Path of the file in the file system

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
50 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 * @param buf Buffer in which to store the read value
 * @param offset If reading in chunks, set offset to file current position
 * @param size Size that was read.
 * @return the status of read operation
 */
sln_flash_status_t FWK_Flash_Read(const char *path, void *buf, unsigned int
 offset, unsigned int *size);

6.3.10.2.5 FWK_Flash_Mkdir

/**
 * @brief Make directory operation
 * @param path Path of the directory in the file system
 * @return the status of mkdir operation
 */
sln_flash_status_t FWK_Flash_Mkdir(const char *path);

6.3.10.2.6 FWK_Flash_Mkfile

/**
 * @brief Make file with specific attributes
 * @param path Path of the file in the file system
 * @param encrypt Specify if the files should be encrypted. Based on FS
 implementation
 * this param can be neglected
 * @return the status of mkfile operation
 */
sln_flash_status_t FWK_Flash_Mkfile(const char *path, bool encrypt);

6.3.10.2.7 FWK_Flash_Rm

/**
 * @brief Remove file
 * @param path Path of the file that shall be removed
 * @return the status of rm operation
 */
sln_flash_status_t FWK_Flash_Rm(const char *path);

6.3.10.2.8 FWK_Flash_Rename

/**
 * @brief Rename existing file
 * @param OldPath Path of the file that is renamed
 * @param NewPath New Path of the file
 * @return status of rename operation
 */
sln_flash_status_t FWK_Flash_Rename(const char *oldPath, const char *newPath);

6.3.10.2.9 FWK_Flash_Cleanup

/**

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
51 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 * @brief Cleanup function. Might imply defragmentation, erased unused sectors
 etc.
 *
 * @param timeout Time consuming operation. Set a time constrain to be sure that
 is not disturbing the system.
 * Timeout = 0 means no timeout
 * @return status of cleanup operation
 */
sln_flash_status_t FWK_Flash_Cleanup(uint32_t timeout);

6.3.11 Multicore manager

The Multicore manager manages the multicore HAL device that can be registered into the system. In the current
framework implementation, there are two ways of making a message multicore:

1. isMulticoreMessage flag set to 1
A message constructed with isMulticoreMessage set to 1, becomes automatically a multicast message and
is sent to both cores. The taskId field specifies the task that must handle the message from the other core.
The below code snip shows how the message is sent to both CM4/CM7 with the Multicore manager as the
man in the middle.

pVAlgoResMsg->multicore.isMulticoreMessage = 1;
pVAlgoResMsg->multicore.taskId = kFWKTaskID_Output;
FWK_Message_Put(kFWKTaskID_VisionAlgo, &pVAlgoResMsg);

If the message has been sent by the CM7/Camera_Manager, the message is sent to CM7/VisionAlgo and to
CM4/Output via Multicore Manager

FWK_Message_Put(kFWKTaskID_VisionAlgo, &pVAlgoResMsg);
├── Message send to CM7/kFWKTaskID_VisionAlgo
└── Message send to CM7/Multicore Manager -> Deep Copy -> Message send to
 CM4/Multicore Manager -> Message send to CM4/pVAlgoResMsg.taskId

2. isMulticoreMessage field set to 0
A message constructed with isMulticoreMessage set to 0 is a unicast message sent only to the task
specified in the FWK_Message_Put. If the task is Multicore, an additional taskId must be specified:

pAudioReqMsg->multicore.isMulticoreMessage = 0;
pAudioReqMsg->multicore.taskId = kFWKTaskID_Output;
FWK_Message_Put(kFWKTaskID_Multicore, &pAudioReqMsg);

If the message has been sent by the CM7/Camera_Manager, the message is sent only to CM4/Output via
Multicore Manager

FWK_Message_Put(kFWKTaskID_Multicore, &pAudioReqMsg);
└── Message send to CM7/Multicore Manager -> Deep Copy -> Message send to
 CM4/Multicore Manager -> Message send to CM4/pAudioReqMsg.taskId

When sending a message, a deep copy of the message is done by the Multicore Manager. The purpose of the
deep copy is to avoid sending references from untouchable regions (for example, CM7 sending a reference that
points to internal TCM memory that cannot be seen by CM4). Deep copy ensures that the messages are stored
in a shared buffer, therefore the messages must be small.

If bigger buffers must be sent, they have to be in a shared memory area and passed by reference (camera
buffers).

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
52 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.3.11.1 APIs

6.3.11.1.1 FWK_MulticoreManager_Init

/**
 * @brief Init internal structures for Multicore Manager
 * @return int Return 0 if the init process was successful
 */
int FWK_MulticoreManager_Init();

6.3.11.1.2 FWK_MulticoreManager_DeviceRegister

/**
 * @brief Register a Multicore device. Only one multicore device is supported.
 The dev needs to be registered before
 * FWK_MulticoreManager_Start is called
 * @param dev Pointer to a camera device structure
 * @return int Return 0 if registration was successful
 */
int FWK_MulticoreManager_DeviceRegister(multicore_dev_t *dev);

6.3.11.1.3 FWK_MulticoreManager_Start

/**
 * @brief Spawn Multicore manager task which will call init/start for all
 registered multicore devices
 * @param taskPriority the priority of the Multicore manager task
 * @return int Return 0 if the starting process was successful
 */
int FWK_MulticoreManager_Start(int taskPriority);

6.3.11.1.4 FWK_MulticoreManager_Deinit

/**
 * @brief Deinit MulticoreManager
 * @return int Return 0 if the deinit process was successful
 */
int FWK_MulticoreManager_Deinit();

6.4 HAL devices

6.4.1 Overview

One of the most important steps in the creation of any embedded software project is peripheral integration.
This step can often be one of the most time-intensive steps of the process. Additionally, peripheral drivers are
often heavily tied to the specific platform those drivers were originally written for. It makes upgrading/moving to
another platform difficult and costly.

The Hardware Abstraction Layer (HAL) component of the framework architecture was designed in direct
response to these issues.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
53 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

HAL devices are designed to be written "on top of" lower-level driver code, helping to increase code
understandability by abstracting many of the underlying details. HAL devices can be reused across different
projects and NXP platforms, increasing code reuse, which can help cut down on development time.

6.4.1.1 Device Registration

In order for a manager to communicate with a HAL device, that device must first be registered with its
respective manager. Registration of each HAL device takes place at the beginning of application startup when
main() calls the APP_RegisterHalDevices() function as shown below:

int main(void)
{
 /* Init board hardware. */
 APP_BoardInit();
 LOGD("[MAIN]:Started");
 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 // start
 vTaskStartScheduler();

 while (1)
 {
 LOGD("#");
 }

 return 0;
}

To register a device to its manager, each HAL device implements a registration function that is called prior to
starting the managers themselves. For example, the "register" function for the push button input device looks as
follows:

int HAL_InputDev_PushButtons_Register()
{
 int error = 0;
 LOGD("input_dev_push_buttons_register");
 error = FWK_InputManager_DeviceRegister(&s_InputDev_PushButtons);
 return error;
}

As HAL devices do not have header .h files associated with them, the registration function for each device is
exposed via the board_define.h file found inside the boards folder. To be registered on startup, each HAL
device must be added to the APP_RegisterHalDevices function in the board_hal_registration.c file.
The board_hal_registration.c file is also found in the boards folder.

6.4.1.2 Device Types

There are several different device types to encapsulate the various peripherals that a user may wish to
incorporate into their project. These device types include:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
54 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Input
• Output
• Camera
• Display
• VAlgo (Vision/Voice)

As well as a few others which are not listed here.

Each device type has specific methods and fields based on the unique characteristics of that device type. For
example, the camera HAL device definition looks as follows:

/**
 * @brief Callback function to notify camera manager that one frame is dequeued
 * @param dev Device structure of the camera device calling this function
 * @param event id of the event that took place
 * @param param Parameters
 * @param fromISR True if this operation takes place in an irq, 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*camera_dev_callback_t)(const camera_dev_t *dev, camera_event_t
 event, void *param, uint8_t fromISR);

/*! @brief Operation that needs to be implemented by a camera device */
typedef struct _camera_dev_operator
{
 /* initialize the dev */
 hal_camera_status_t (*init)(camera_dev_t *dev, int width, int height,
 camera_dev_callback_t callback, void *param);
 /* deinitialize the dev */
 hal_camera_status_t (*deinit)(camera_dev_t *dev);
 /* start the dev */
 hal_camera_status_t (*start)(const camera_dev_t *dev);
 /* enqueue a buffer to the dev */
 hal_camera_status_t (*enqueue)(const camera_dev_t *dev, void *data);
 /* dequeue a buffer from the dev */
 hal_camera_status_t (*dequeue)(const camera_dev_t *dev, void **data,
 pixel_format_t *format);
 /* postProcess a buffer from the dev */
 /*
 * Only do the minimum determination(data point and the format) of the frame
 in the dequeue.
 *
 * And split the CPU based post process(IR/Depth/... processing) to
 postProcess as they will eat CPU
 * which is critical for the whole system as camera manager is running with
 the highest priority.
 *
 * Camera manager will do the postProcess if there is a consumer of this
 frame.
 *
 * Note:
 * Camera manager will call multiple times of the posProcess of the same
 frame determinted by dequeue.
 * The HAL driver needs to guarantee the postProcess only do once for the
 first call.
 *
 */
 hal_camera_status_t (*postProcess)(const camera_dev_t *dev, void **data,
 pixel_format_t *format);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
55 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* input notify */
 hal_camera_status_t (*inputNotify)(const camera_dev_t *dev, void *data);
} camera_dev_operator_t;

/*! @brief Structure that characterize the camera device. */
typedef struct
{
 /* buffer resolution */
 int height;
 int width;
 int pitch;
 /* active rect */
 int left;
 int top;
 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* flip */
 flip_mode_t flip;
 /* swap byte per two bytes */
 int swapByte;
} camera_dev_static_config_t;

In many ways, HAL devices can be thought of as similar to interfaces in C++ and other object-oriented
languages.

6.4.1.3 Anatomy of a HAL device

HAL devices are made up of several components which can vary by device type. However, each HAL device
regardless of type has at least 3 components:

• id
• name
• operators

The id field is a unique device identifier that is assigned by the device's manager when the device is first
registered.

The name field is used to help identify the device during various function calls and when debugging.

The operators field is a struct that contains function pointers to each of the functions that the HAL device is
required to implement. The operators a device is required to implement vary based on the device type.

A HAL device's definition is stored in a struct that gets passed to that device's respective manager when the
device is registered. It gives the manager information about the device and allows the manager to call the
device's operators when necessary.

6.4.1.3.1 Operators

Operators are functions that "operate" on the device itself and are used by the device's manager to control the
device and/or augment its behavior. Operators are used for initializing, starting, and stopping devices, as well as
serving many other functions depending on the device.

As mentioned previously, the operators a HAL device must implement varies based on device type. For
example, input devices must implement an init, deinit, start, stop, and inputNotify function.

typedef struct
{

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
56 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* initialize the dev */
 hal_input_status_t (*init)(input_dev_t *dev, input_dev_callback_t callback);
 /* deinitialize the dev */
 hal_input_status_t (*deinit)(const input_dev_t *dev);
 /* start the dev */
 hal_input_status_t (*start)(const input_dev_t *dev);
 /* stop the dev */
 hal_input_status_t (*stop)(const input_dev_t *dev);
 /* notify the input_dev */
 hal_input_status_t (*inputNotify)(const input_dev_t *dev, void *param);
} input_dev_operator_t;

Generally, each device regardless of type has at least a start, stop, init, and deinit function. Additionally,
most devices also implement an inputNotify function that is used for event handling.

Note: Failing to implement a function does not prevent the HAL device from being registered, but is likely to
prevent certain functionality from working. For example, failing to provide an implementation for a HAL device's
start function prevents its respective manager from starting that device.

6.4.1.4 Configs

Note: This section describes a feature which is being developed.

Configs represent the individual, configurable attributes specific to a HAL device. The configs available for a
device varies from device to device, but can be altered during runtime via user input or by other devices and
can be saved to flash to retain the same value through power cycles.

For example, the HAL device for the IR/White LEDs may only have a "brightness" config, while a speaker
device may have configs for "volume", "left/right balance", and so on.

Note: Each device can have a maximum of MAXIMUM_CONFIGS_PER_DEVICE configs (see framework/
inc/fwk_common.h).

Each device config regardless of device type has the same fields:

• name
• expectedValue
• description
• value
• get
• set

6.4.1.4.1 Name

A string containing the name of the config. The string length must be less than
DEVICE_CONFIG_NAME_MAX_LENGTH.

char name[DEVICE_CONFIG_NAME_MAX_LENGTH];

6.4.1.4.2 ExpectedValue

A string that provides a description of the valid values associated with the config. The length of the string must
be less than DEVICE_CONFIG_EXPECTED_VAL_MAX_LENGTH.

char expectedValue[DEVICE_CONFIG_EXPECTED_VAL_MAX_LENGTH];

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
57 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.1.4.3 Description

A string that provides a description of the config. The length of the string should be less than DEVICE_CONFIG_
DESCRIPTION_MAX_LENGTH.

char description[DEVICE_CONFIG_DESCRIPTION_MAX_LENGTH];

6.4.1.4.4 Value

An int that stores the internal value of the config. The value must be set using the set function and retrieved
using the get function.

uint32_t value;

6.4.1.4.5 Get

A function that returns the value of the config.

status_t (*get)(char *valueToString);

6.4.1.4.6 Set

A function that sets the value of the config.

status_t (*set)(char *configName, uint32_t value);

6.4.2 Input devices

The Input HAL device provides an abstraction to implement various devices that may capture data in many
different ways, and the data can represent many different things. The Input HAL device definition is designed
to encapsulate everything from physical devices like push buttons, to "virtual" devices like a command-line
interface using UART.

Input devices are used to acquire external input data and forward that data to other HAL devices via the Input
Manager so that those devices can respond to that data accordingly. The Input Manager communicates to other
devices within the framework using inputNotify event messages. For more information about events and
event handling, see Events.

As with other device types, Input devices are controlled via their manager. The Input Manager is responsible
for managing all registered input HAL devices, and invoking input device operators (init, start, dequeue,
and so on) as necessary. Additionally, the Input Manager allows for multiple input devices to be registered and
operate at once.

6.4.2.1 Device definition

The HAL device definition for Input devices can be found under framework/hal_api/hal_input_dev.h
and is reproduced below:

/*! @brief Attributes of an input device */
typedef struct _input_dev
{
 /* unique id which is assigned by input manager during the registration */
 int id;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
58 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* operations */
 const input_dev_operator_t *ops;
 /* private capability */
 input_dev_private_capability_t cap;
} input_dev_t;

The device operators associated with input HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by an input device */
typedef struct
{
 /* initialize the dev */
 hal_input_status_t (*init)(input_dev_t *dev, input_dev_callback_t callback);
 /* deinitialize the dev */
 hal_input_status_t (*deinit)(const input_dev_t *dev);
 /* start the dev */
 hal_input_status_t (*start)(const input_dev_t *dev);
 /* start the dev */
 hal_input_status_t (*stop)(const input_dev_t *dev);
 /* notify the input_dev */
 hal_input_status_t (*inputNotify)(const input_dev_t *dev, void *param);
} input_dev_operator_t;

The device capabilities associated with input HAL devices are as shown below:

typedef struct
{
 /* callback */
 input_dev_callback_t callback;
} input_dev_private_capability_t;

6.4.2.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object
oriented-languages and are used by the Input Manager to set up, start, and so on, each of its registered input
devices.

For more information about operators, see Section 6.4.1.3.1.

6.4.2.2.1 Init

/* initialize the dev */
hal_input_status_t (*init)(input_dev_t *dev, input_dev_callback_t callback);

Initialize the input device.

Init should initialize any hardware resources the input device requires (I/O ports, IRQs, and so on), turn on the
hardware, and perform any other setup the device requires.

The callback function to the device's manager is typically installed as part of the Init function as well.

This operator will be called by the Input Manager when the Input Manager task first starts.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
59 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.2.2.2 Deinit

/* deinitialize the dev */
hal_input_status_t (*deinit)(const input_dev_t *dev);

"Deinitialize" the input device.

DeInit should release any hardware resources the input device uses (I/O ports, IRQs, and so on), turn off the
hardware, and perform any other shutdown the device requires.

This operator will be called by the Input Manager when the Input Manager task ends[1].

[1]The `DeInit` function generally will not be called under normal operation.

6.4.2.2.3 Start

/* start the dev */
hal_input_status_t (*start)(const input_dev_t *dev);

Start the input device.

The Start operator will be called in the initialization stage of the Input Manager's task after the call to the Init
operator. The startup of the display sensor and interface should be implemented in this operator. This includes,
for example, starting the interface and enabling the IRQ of the DMA used by the interface.

6.4.2.2.4 Stop

/* start the dev */
hal_input_status_t (*stop)(const input_dev_t *dev);

Stop the input device.

The Stop operator functions as the inverse of the Start function and is not called under normal operation.

6.4.2.2.5 InputNotify

/* notify the input_dev */
hal_input_status_t (*inputNotify)(const input_dev_t *dev, void *param);

Handle input events.

The InputNotify operator is called by the Input Manager whenever a kFWKMessageID_InputNotify
message received by and forwarded from the Input Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.2.3 Capabilities

typedef struct
{
 /* callback */
 input_dev_callback_t callback;
} input_dev_private_capability_t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
60 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the Input Manager. This callback function is typically installed via a device's init operator.

6.4.2.3.1 callback

/**
 * @brief callback function to notify input manager with an async event
 * @param dev Device structure
 * @param eventId Id of the event that took place
 * @param receiverList List with managers that should be notify
 * @param event Pointer to a event structure.
 * @param size If size is 0 event should be in a persistent memory zone else the
 framework will allocate memory for the
 * object Note the message delivery might go slow if the size is too much.
 * @param fromISR True if this operation takes place in an irq, 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*input_dev_callback_t)(const input_dev_t *dev,
 input_event_id_t eventId,
 unsigned int receiverList,
 input_event_t *event,
 unsigned int size,
 uint8_t fromISR);

Callback to the Input Manager.

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the Input Manager.

The Vision Algorithm manager provides the callback to the device when the init operator is called. As a result,
the HAL device should make sure to store the callback in the init operator's implementation.

static hal_input_status_t HAL_InputDev_PushButtons_Init(input_dev_t *dev,
 input_dev_callback_t callback)
{
 hal_input_status_t error = 0;

 /* PERFORM INIT FUNCTIONALITY HERE */

 /* Installing callback function from manager... */
 memset(&dev->cap, 0, sizeof(dev->cap));
 dev->cap.callback = callback;

 return ret;
}

The HAL device invokes this callback to notify the vision algorithm manager of specific events.

The definition for valgo_dev_callback_t is as shown below:

typedef int (*input_dev_callback_t)(const input_dev_t *dev,
 input_event_id_t eventId,
 unsigned int receiverList,
 input_event_t *event,
 unsigned int size,
 uint8_t fromISR);

The fields passed as part of the callback are described in more detail below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
61 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.2.3.2 EventId

typedef enum _input_event_id
{
 kInputEventID_Recv,
 kInputEventID_AudioRecv,
 kInputEventID_FrameworkRecv,
} input_event_id_t;

Describes the type of source event being sent/received.

6.4.2.3.3 ReceiverList

typedef enum _fwk_task_id
{
 kFWKTaskID_Camera = 0, /* This should always stay first */
 kFWKTaskID_Display,
 kFWKTaskID_VisionAlgo,
 kFWKTaskID_VoiceAlgo,
 kFWKTaskID_Output,
 kFWKTaskID_Input,
 kFWKTaskID_Audio,
 kFWKTaskID_APPStart, /* APP task ID should always start from here */
 kFWKTaskID_COUNT = (kFWKTaskID_APPStart + APP_TASK_COUNT)
} fwk_task_id_t;

List of device managers meant to receive the input event message.

6.4.2.3.4 Event

typedef struct _input_event
{
 union
 {
 /* Valid when message is kInputEventID_RECV */
 void *inputData;

 /* Valid when eventId is kInputEventID_AudioRECV */
 void *audioData;

 /* Valid when framework information is needed GET_FRAMEWORK_INFO*/
 framework_request_t *frameworkRequest;
 };
} input_event_t;

6.4.2.4 Example

The project has several input devices implemented for use as-is or for use as reference for implementing new
input devices. Source files for these input HAL devices can be found under framework/hal/input/.

Below is an example of a push button input HAL device driver:

static input_event_t inputEvent;

const static input_dev_operator_t s_InputDev_ExampleDevOps = {
 .init = HAL_InputDev_ExampleDev_Init,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
62 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 .deinit = HAL_InputDev_ExampleDev_Deinit,
 .start = HAL_InputDev_ExampleDev_Start,
 .stop = HAL_InputDev_ExampleDev_Stop,
 .inputNotify = HAL_InputDev_ExampleDev_InputNotify,
};

static input_dev_t s_InputDev_ExampleDev = {
 .name = "buttons",
 .ops = &s_InputDev_ExampleDevOps,
 .cap = {
 .callback = NULL
 },
};

/* here assume buttons push event will call this handler */
void HAL_InputDev_ExampleDev_EvtHandler(void)
{
 /* Add manager task list need notify, the id is from fwk_task_id_t.
 * Note: here can set not only one task manager.
 */
 receiverList = 1 << kFWKTaskID_Display;

 /* load input data */
 inputEvent.inputData = NULL;

 /* callback inputmanager notify the corresponding manager from receiverList
 */
 inputDev.cap.callback(&inputDev, kInputEventID_Recv, receiverList,
 &inputEvent, 0, fromISR);
}

hal_input_status_t HAL_InputDev_ExampleDev_Init(input_dev_t *dev,
 input_dev_callback_t callback)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* install manager callback for device */
 dev->cap.callback = callback;

 /* put hardware init here */

 return ret;
}

hal_input_status_t HAL_InputDev_ExampleDev_Deinit(const input_dev_t *dev)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* put device deinit here */

 return ret;
}

hal_input_status_t HAL_InputDev_ExampleDev_Start(const input_dev_t *dev)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* put device start here */

 return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
63 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

}

hal_input_status_t HAL_InputDev_ExampleDev_Stop(const input_dev_t *dev)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* put device stop here */

 return ret;
}

hal_input_status_t HAL_InputDev_ExampleDev_InputNotify(const input_dev_t *dev,
 void *param)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* add device notify handler here */

 return ret;
}

int HAL_InputDev_ExampleDev_Register(void)
{
 int ret = 0;
 ret = FWK_InputManager_DeviceRegister(&s_InputDev_ExampleDev);
 return ret;
}

6.4.3 Output devices

The Output HAL devices are used to represent any device that produces output (excluding specific devices that
have their own specific device types like cameras and displays).

The Output devices respond to events passed by other HAL devices and produce corresponding output. It
includes changing the UI overlay in response to a "face recognized" event or changing the volume of the
speaker in response to a specific shell command.

Multiple output devices can be registered at a time per the design of the framework.

6.4.3.1 Subtypes

Currently, output devices can be divided into 3 "subtypes" to better represent the specific nuances of a wider
variety of output devices without creating entirely new HAL device types:

• "General" output devices
• "Overlay/UI" output devices
• "Audio" output devices

6.4.3.1.1 General devices

"General"/generic output devices describe most output devices and include devices like LEDs.

6.4.3.1.2 UI devices

Overlay/UI output devices are used for output devices that act as an overlay that sits on top of a camera
preview surface.

Overlay/UI devices require a frame buffer to be allocated when initializing a device of this subtype.
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
64 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.3.1.3 Audio devices

Audio output HAL devices represent devices that act as recipients of audio data. Audio output HAL devices
typically process audio data so that they can play a sound in response to an event like a face being registered,
or sleep mode triggering.

6.4.3.2 Device definition

The HAL device definition for output devices can be found under framework/hal_api/hal_output_dev.h
and is reproduced below:

/*! @brief definition of an output device */
typedef struct _output_dev
{
 /* unique id and assigned by Output Manager when this device register */
 int id;
 /* device name */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* attributes */
 output_dev_attr_t attr;
 /* optional config for private configuration of special output device */
 hal_device_config configs[MAXIMUM_CONFIGS_PER_DEVICE];

 /* operations */
 const output_dev_operator_t *ops;
}output_dev_t;

The operators associated with output HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by an output device */
typedef struct _output_dev_operator
{
 /* initialize the dev */
 hal_output_status_t (*init)(const output_dev_t *dev);
 /* deinitialize the dev */
 hal_output_status_t (*deinit)(const output_dev_t *dev);
 /* start the dev */
 hal_output_status_t (*start)(const output_dev_t *dev);
 /* stop the dev */
 hal_output_status_t (*stop)(const output_dev_t *dev);

} output_dev_operator_t;

The device attributes associated with output HAL devices are as shown below:

/*! @brief Attributes of an output device */
typedef struct _output_dev_attr_t
{
 /* the type of output device */
 output_dev_type_t type;
 union
 {
 /* if the type of output device is OverlayUI, it need to allocate
 overlay surface */
 gfx_surface_t *pSurface;
 /* reserve for other type of output device*/
 void *reserve;
 };

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
65 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

} output_dev_attr_t;

6.4.3.3 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object-
oriented languages and are used by the Output Manager to set up, start, and so on, each of its registered
output devices.

For more information about operators, see Operators.

6.4.3.3.1 Init

hal_output_status_t (*init)(const output_dev_t *dev);

The Init function is used to initialize the output device, Init should initialize any hardware resources the
output device requires (I/O ports, IRQs, and so on), turn on the hardware, and perform any other setup the
device requires.

This operator will be called by the Output Manager when the Output Manager task first starts.

6.4.3.3.2 DeInit

hal_output_status_t (*deinit)(const output_dev_t *dev);

The DeInit function is used to initialize the output device, DeInit should release any hardware resources
the output device uses (I/O ports, IRQs, and so on), turn off the hardware, and perform any other shutdown the
device requires.

This operator will be called by the Output Manager when the Output Manager task ends[1].

[1]The `DeInit` function generally will not be called under normal operation.

6.4.3.3.3 Start

hal_output_status_t (*start)(const output_dev_t *dev);

Starts the output device. The Start method will usually call FWK_OutputManager_RegisterEvent
Handler to register event handlers with the Output Manager so that when the Output Manager receives an
output event (like an "inference complete" event or an "input notify" event), the corresponding event handler
function is executed.

This operator is called by the Output Manager when the Output Manager task first starts.

6.4.3.3.4 Stop

hal_output_status_t (*stop)(const output_dev_t *dev);

Stops the output device. The Stop method will usually call FWK_OutputManager_UnRegisterEvent
Handler to unregister an event handler from the Output Manager. It prevents the device's event handlers from
executing when an event is triggered.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
66 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.3.4 Attributes

6.4.3.4.1 Type

The type of output device. If the type is kOutputDevType_UI, the pSurface parameter must be set.
Otherwise, pSurface can safely be ignored.

output_dev_type_t type;

The type enum is shown below:

/*! @brief Types of output devices' callback messages */
typedef enum _output_dev_type
{
 kOutputDevType_UI, /* for Overlay UI */
 kOutputDevType_Audio, /* for Audio output */
 kOutputDevType_Other, /* for other general output, like LED, Console, etc
 */
} output_dev_type_t;

6.4.3.4.2 pSurface

The pSurface variable is used by Overlay/UI output devices to hold a frame buffer.

If the device type "subtype" is not a kOuptutDevType_UI device, then this parameter can be safely ignored.

gfx_surface_t * pSurface;

The gfx_surface struct is shown below:

typedef struct _gfx_surface
{
 int height; /* the height of surface */
 int width; /* the width of surface */
 int pitch; /* the pitch of surface */
 int left; /* the left coordinate of surface */
 int top; /* the top coordinate of surface */
 int right; /* the right coordinate of surface */
 int bottom; /* the bottom coordinate of surface */
 int swapByte; /* For each 16 bit word of surface framebuffer, set true to
 swap the two bytes. */
 pixel_format_t format; /* the pixel format of surface, like
 kPixelFormat_RGB565 */
 void *buf; /* the pointer for the framebuffer */
 void *lock; /* the mutex lock for the surface, is determined by hal and set
 to null if not use in hal*/
} gfx_surface_t;

6.4.3.5 Example

The project has several output devices implemented for use as-is or for use as a reference for implementing
new output devices. Source files for these output HAL devices can be found under framework/hal/output/.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
67 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Below is an example of the RGB LED HAL device driver framework/hal/output/hal_output_rgb_led.
c:

static hal_output_status_t HAL_OutputDev_RgbLed_Init(output_dev_t *dev);
static hal_output_status_t HAL_OutputDev_RgbLed_Start(const output_dev_t *dev);
static hal_output_status_t HAL_OutputDev_RgbLed_InferComplete(const output_dev_t
 *dev,

 output_algo_source_t source,
 void
 *inferResult);

const static output_dev_event_handler_t s_OutputDev_RgbLedHandler = {
 .inferenceComplete = HAL_OutputDev_RgbLed_InferComplete,
 .inputNotify = NULL,
};

/* output device operators*/
const static output_dev_operator_t s_OutputDev_RgbLedOps = {
 .init = HAL_OutputDev_RgbLed_Init,
 .deinit = NULL,
 .start = HAL_OutputDev_RgbLed_Start,
 .stop = NULL,
};

/* output device */
static output_dev_t s_OutputDev_RgbLed = {
 .name = "rgb_led",
 .attr.type = kOutputDevType_Other,
 .attr.reserve = NULL,
 .ops = &s_OutputDev_RgbLedOps,
};

/* RGB LED output device Init function*/
static hal_output_status_t HAL_OutputDev_RgbLed_Init(output_dev_t *dev)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* put RGB LED hardware initialization here*/
 ...
 return error;
}

/* RGB LED output device start function*/
static hal_output_status_t HAL_OutputDev_RgbLed_Start(const output_dev_t *dev)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* registered special event handler for this output device */
 if (FWK_OutputManager_RegisterEventHandler(dev,
 &s_OutputDev_RgbLedHandler) != 0)
 {
 error = kStatus_HAL_OutputError;
 }
 return error;
}

static hal_output_status_t HAL_OutputDev_RgbLed_InferComplete(const output_dev_t
 *dev,

 output_algo_source_t source,
 void *inferResult)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
68 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* algorithm_result_t is defined by special algorithm device registered into
 vision pipeline */
 algorithm_result_t *result = (algorithm_result_t *)inferResult;
 if (pResult != NULL)
 {
 /* do RGB LED hardware setting according to inference result from
 valgorithm manager*/
 ...
 }
 return error;
}

int HAL_OutputDev_RgbLed_Register()
{
 int error = 0;
 LOGD("output_dev_rgb_led_register");
 error = FWK_OutputManager_DeviceRegister(&s_OutputDev_RgbLed);
 return error;
}

An example of an Overlay UI Output device can be found at HAL/face_rec/hal_smart_lock_ui.c.

static hal_output_status_t HAL_OutputDev_OverlayUi_Init(const output_dev_t
 *dev);
static hal_output_status_t HAL_OutputDev_OverlayUi_Start(const output_dev_t
 *dev);
static hal_output_status_t HAL_OutputDev_OverlayUi_InferComplete(const
 output_dev_t *dev,

 output_algo_source_t source,
 void
 *infer_result);
static hal_output_status_t HAL_OutputDev_OverlayUi_InputNotify(const
 output_dev_t *dev, void *data);

/* Overlay UI surface */
static gfx_surface_t s_UiSurface;
/* the framebuffer for Overlay UI surface */
SDK_ALIGN(static char s_AsBuffer[UI_BUFFER_WIDTH * UI_BUFFER_HEIGHT *
 UI_BUFFER_BPP], 32);
/* event handler */
const static output_dev_event_handler_t s_OutputDev_UiHandler = {
 .inferenceComplete = HAL_OutputDev_OverlayUi_InferComplete,
 .inputNotify = HAL_OutputDev_OverlayUi_InputNotify,
};

/* output device operators */
const static output_dev_operator_t s_OutputDev_UiOps = {
 .init = HAL_OutputDev_OverlayUi_Init,
 .deinit = NULL,
 .start = HAL_OutputDev_OverlayUi_Start,
 .stop = NULL,
};

/* output device */
static output_dev_t s_OutputDev_Ui = {
 .name = "ui",
 .attr.type = kOutputDevType_UI,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
69 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 .attr.pSurface = &s_UiSurface,
 .ops = &s_OutputDev_UiOps,
};

/* Overlay UI output device Init function*/
static hal_output_status_t HAL_OutputDev_OverlayUi_Init(output_dev_t *dev)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* init overlay ui surface */
 s_UiSurface.left = 0;
 s_UiSurface.top = 0;
 s_UiSurface.right = UI_BUFFER_WIDTH - 1;
 s_UiSurface.bottom = UI_BUFFER_HEIGHT - 1;
 s_UiSurface.height = UI_BUFFER_HEIGHT;
 s_UiSurface.width = UI_BUFFER_WIDTH;
 s_UiSurface.pitch = UI_BUFFER_WIDTH * 2;
 s_UiSurface.format = kPixelFormat_RGB565;
 s_UiSurface.buf = s_AsBuffer;
 s_UiSurface.lock = xSemaphoreCreateMutex();

 return error;
}

/* Overlay UI output device start function*/
static hal_output_status_t HAL_OutputDev_OverlayUi_Start(const output_dev_t
 *dev)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* registered special event handler for this output device */
 if (FWK_OutputManager_RegisterEventHandler(dev, &s_OutputDev_UiHandler) !=
 0)
 error = kStatus_HAL_OutputError;
 return error;
}

/* Overlay UI inferenceComplete event handler function*/
static hal_output_status_t HAL_OutputDev_OverlayUi_InferComplete(const
 output_dev_t *dev,

 output_algo_source_t source,
 void
 *infer_result)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* algorithm_result_t is defined by special algorithm device registered into
 vision pipeline */
 algorithm_result_t *pResult = (algorithm_result_t *)infer_result;

 if (pResult != NULL)
 {
 /* lock overlay surface to avoid conflict with PXP composing overlay
 surface */
 if (s_UiSurface.lock)
 {
 xSemaphoreTake(s_UiSurface.lock, portMAX_DELAY);
 }

 /* draw overlay surface here according to inference result from
 valgorithm manager */
 ...

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
70 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* unlock */
 if (s_UiSurface.lock)
 {
 xSemaphoreGive(s_UiSurface.lock);
 }
 }
 return error;
}

/* Overlay UI inputNotify event handler function*/
static hal_output_status_t HAL_OutputDev_OverlayUi_InputNotify(const
 output_dev_t *dev, void *data)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 event_base_t eventBase = *(event_base_t *)data;

 if (eventBase != NULL)
 {
 /* lock overlay surface to avoid conflict with PXP composing overlay
 surface */
 if (s_UiSurface.lock)
 {
 xSemaphoreTake(s_UiSurface.lock, portMAX_DELAY);
 }

 /* draw overlay surface here according to input notify event from input
 manager*/
 ...

 /* unlock */
 if (s_UiSurface.lock)
 {
 xSemaphoreGive(s_UiSurface.lock);
 }
 }
 return error;
}

int HAL_OutputDev_UiSmartlock_Register()
{
 int error = 0;
 LOGD("output_dev_ui_smartlock_register");
 error = FWK_OutputManager_DeviceRegister(&s_OutputDev_Ui);
 return error;
}

6.4.4 Camera devices

The Camera HAL device provides an abstraction to represent many different camera devices which may have
different resolutions, color formats, and even connection interfaces.

For example, the same GC0308 RGB camera can connect with CSI or via a FlexIO interface.

A camera HAL device represents a camera sensor + interface,
meaning a separate device driver is required for the same camera sensor using
 different interfaces.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
71 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

As with other device types, camera devices are controlled via their manager. The Camera Manager is
responsible for managing all registered camera HAL devices, and invoking camera device operators (init,
start, dequeue, and so on) as necessary. Additionally, the Camera Manager allows for multiple camera
devices to be registered and operated at once.

6.4.4.1 Device definition

The HAL device definition for Camera devices can be found under framework/hal_api/
hal_camera_dev.h and is reproduced below:

typedef struct _camera_dev camera_dev_t;
/*! @brief Attributes of a camera device. */
struct _camera_dev
{
 /* unique id which is assigned by camera manager during registration */
 int id;
 /* state in which the device is found */
 hal_device_state_t state;
 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];

 /* operations */
 const camera_dev_operator_t *ops;
 /* static configs */
 camera_dev_static_config_t config;
 /* private capability */
 camera_dev_private_capability_t cap;
};

The device operators associated with camera HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a camera device */
typedef struct _camera_dev_operator
{
 /* initialize the dev */
 hal_camera_status_t (*init)(camera_dev_t *dev, int width, int height,
 camera_dev_callback_t callback, void *param);
 /* deinitialize the dev */
 hal_camera_status_t (*deinit)(camera_dev_t *dev);
 /* start the dev */
 hal_camera_status_t (*start)(const camera_dev_t *dev);
 /* enqueue a buffer to the dev */
 hal_camera_status_t (*enqueue)(const camera_dev_t *dev, void *data);
 /* dequeue a buffer from the dev */
 hal_camera_status_t (*dequeue)(const camera_dev_t *dev, void **data,
 pixel_format_t *format);
 /* postProcess a buffer from the dev */
 /*
 * Only do the minimum determination(data point and the format) of the frame
 in the dequeue.
 *
 * And split the CPU based post process(IR/Depth/... processing) to
 postProcess as they will eat CPU
 * which is critical for the whole system as Camera Manager is running with
 the highest priority.
 *
 * Camera Manager will do the postProcess if there is a consumer of this
 frame.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
72 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 *
 * Note:
 * Camera Manager will call multiple times of the posProcess of the same
 frame determinted by dequeue.
 * The HAL driver needs to guarantee the postProcess only do once for the
 first call.
 *
 */
 hal_camera_status_t (*postProcess)(const camera_dev_t *dev, void **data,
 pixel_format_t *format);
 /* input notify */
 hal_camera_status_t (*inputNotify)(const camera_dev_t *dev, void *data);
} camera_dev_operator_t;

The static configs associated with camera HAL devices are as shown below:

/*! @brief Structure that characterize the camera device. */
typedef struct
{
 /* buffer resolution */
 int height;
 int width;
 int pitch;
 /* active rect */
 int left;
 int top;
 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* flip */
 flip_mode_t flip;
 /* swap byte per two bytes */
 int swapByte;
} camera_dev_static_config_t;

The device capabilities associated with camera HAL devices are as shown below:

/*! @brief Structure that capability of the camera device. */
typedef struct
{
 /* callback */
 camera_dev_callback_t callback;
 /* param for the callback */
 void *param;
} camera_dev_private_capability_t;

6.4.4.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object-
oriented languages, and are used by the Camera Manager to set up, start, and so on, each of its registered
camera devices.

For more information about operators, see Section 6.4.1.3.1.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
73 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.4.2.1 Init

hal_camera_status_t (*init)(camera_dev_t *dev,
 int width,
 int height,
 camera_dev_callback_t callback,
 void *param);

Initialize the camera device.

Init should initialize any hardware resources the camera device requires (I/O ports, IRQs, and so on), turn on
the hardware, and perform any other setup the device requires.

This operator is called by the Camera Manager when the Camera Manager task first starts.

6.4.4.2.2 Deinit

hal_camera_status_t (*deinit)(camera_dev_t *dev);

"Deinitialize" the camera device.

DeInit must release any hardware resources the camera device uses (I/O ports, IRQs, and so on), turn off the
hardware, and perform any other shutdown the device requires.

This operator will be called by the Camera Manager when the Camera Manager task ends[1].

[1]The `DeInit` function generally will not be called under normal operation.

6.4.4.2.3 Start

hal_camera_status_t (*start)(const camera_dev_t *dev);

Start the camera device.

The Start operator will be called in the initialization stage of the Camera Manager's task after the call to
the Init operator. The startup of the camera sensor and interface should be implemented in this operator. It
includes, for example, starting the interface and enabling the IRQ of the DMA used by the interface.

6.4.4.2.4 Enqueue

hal_camera_status_t (*enqueue)(const camera_dev_t *dev,
 void *data);

Enqueue a single frame.

The Enqueue operator is called by the Camera Manager to submit an empty buffer into the camera device's
buffer queue. Once the submitted buffer is filled by the camera device, the camera device should call the
Camera Manager's callback function and pass a kCameraEvent_SendFrame event.

6.4.4.2.5 Dequeue

hal_camera_status_t (*enqueue)(const camera_dev_t *dev,
 void *data);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
74 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Dequeue a single frame.

The Dequeue operator will be called by the Camera Manager to get a camera frame from the device. The frame
address and the format will be determined by this operator.

6.4.4.2.6 PostProcess

hal_camera_status_t (*postProcess)(const camera_dev_t *dev,
 void **data,
 pixel_format_t *format);

Handles the post-processing of the camera frame.

The PostProcess operator is called by the Camera Manager to perform any required post-processing of the
camera frame. For example, if a frame must be converted from one format to another in some way before it is
useable by the display and/or a vision algorithm device, it would take place in the PostProcess operator.

6.4.4.2.7 InputNotify

hal_camera_status_t (*inputNotify)(const camera_dev_t *dev, void *data);

Handle input events.

The InputNotify operator is called by the Camera Manager whenever a kFWKMessageID_InputNotify
message is received by and forwarded from the Camera Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.4.3 Static configs

Static configs, unlike regular, dynamic configs, are set at compile time and cannot be changed on-the-fly.

6.4.4.3.1 Height

int height;

The height of the camera buffer.

6.4.4.3.2 Width

int width;

The width of the camera buffer.

6.4.4.3.3 Pitch

int pitch;

The total number of bytes in a single row of a camera frame.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
75 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.4.3.4 Left

int left;

The left edge of the active area in a camera buffer.

6.4.4.3.5 Top

int top;

The top edge of the active area in a camera buffer.

6.4.4.3.6 Right

int right;

The right edge of the active area in a camera buffer.

6.4.4.3.7 Bottom

int bottom;

The bottom edge of the active area in a camera buffer.

6.4.4.3.8 Rotate

typedef enum _cw_rotate_degree
{
 kCWRotateDegree_0 = 0,
 kCWRotateDegree_90,
 kCWRotateDegree_180,
 kCWRotateDegree_270
} cw_rotate_degree_t;

cw_rotate_degree_t rotate;

The rotate degree of the camera sensor.

6.4.4.3.9 Flip

typedef enum _flip_mode
{
 kFlipMode_None = 0,
 kFlipMode_Horizontal,
 kFlipMode_Vertical,
 kFlipMode_Both
} flip_mode_t;

flip_mode_t flip;

Determines whether to flip the frame while processing the frame for the algorithm and display.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
76 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.4.3.10 SwapByte

int swapByte;

Determines whether to enable swapping bytes while processing a frame for algorithm and display devices.

6.4.4.4 Capabilities

typedef struct
{
 /* callback */
 camera_dev_callback_t callback;
 /* param for the callback */
 void *param;
} camera_dev_private_capability_t;

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the Camera Manager. This callback function is typically installed via a device's init operator.

6.4.4.4.1 Callback

/**
* @brief Callback function to notify Camera Manager that one frame is dequeued
* @param dev Device structure of the camera device calling this function
* @param event id of the event that took place
* @param param Parameters
* @param fromISR True if this operation takes place in an irq, 0 otherwise
* @return 0 if the operation was successfully
*/
typedef int (*camera_dev_callback_t)(const camera_dev_t *dev,
 camera_event_t event,
 void *param,
 uint8_t fromISR);

camera_dev_callback_t callback;

Callback to the Camera Manager.

The HAL device invokes this callback to notify the Camera Manager of specific events like "frame dequeued."

The Camera Manager provides this callback to the device when the init operator is called. As a result, the
HAL device should make sure to store the callback in the init operator's implementation.

static hal_camera_status_t HAL_CameraDev_ExampleDev_Init(
 camera_dev_t *dev, int width, int height, camera_dev_callback_t callback,
 void *param)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 /* PERFORM INIT FUNCTIONALITY HERE */

 ...

 /* Installing callback function from manager... */
 dev->cap.callback = callback;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
77 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 return ret;
}

6.4.4.4.2 Param

void *param;

The parameter of the callback for kCameraEvent_SendFrame event. The Camera Manager provides the
parameter while calling the Init operator, so this param should be stored in the HAL device's struct as part of
the implementation of the Init operator.

This param should be provided when calling the [`Callback`](#callback) function.

6.4.4.5 Example

The project has several camera devices implemented for use as-is or for use as reference for implementing new
camera devices. Source files for these camera HAL devices can be found under framework/hal/camera.

Below is an example of the GC0308 RGB FlexIO camera HAL device driver framework/hal/camera/hal_
camera_flexio_gc0308.c.

hal_camera_status_t HAL_CameraDev_FlexioGc0308_Init(
 camera_dev_t *dev, int width, int height, camera_dev_callback_t callback,
 void *param);
static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Deinit(camera_dev_t *dev);
static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Start(const camera_dev_t
 *dev);
static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Enqueue(const camera_dev_t
 *dev, void *data);
static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Dequeue(const camera_dev_t
 *dev,
 void **data,
 pixel_format_t
 *format);
static int HAL_CameraDev_FlexioGc0308_Notify(const camera_dev_t *dev, void
 *data);

/* The operators of the FlexioGc0308 Camera HAL Device */
const static camera_dev_operator_t s_CameraDev_FlexioGc0308Ops = {
 .init = HAL_CameraDev_FlexioGc0308_Init,
 .deinit = HAL_CameraDev_FlexioGc0308_Deinit,
 .start = HAL_CameraDev_FlexioGc0308_Start,
 .enqueue = HAL_CameraDev_FlexioGc0308_Enqueue,
 .dequeue = HAL_CameraDev_FlexioGc0308_Dequeue,
 .inputNotify = HAL_CameraDev_FlexioGc0308_Notify,
};

/* FlexioGc0308 Camera HAL Device */
static camera_dev_t s_CameraDev_FlexioGc0308 = {
 .id = 0,
 .name = CAMERA_NAME,
 .ops = &s_CameraDev_FlexioGc0308Ops,
 .cap =
 {
 .callback = NULL,
 .param = NULL,
 },

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
78 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

};

hal_camera_status_t HAL_CameraDev_FlexioGc0308_Init(
 camera_dev_t *dev, int width, int height, camera_dev_callback_t callback,
 void *param)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;
 LOGD("camera_dev_flexio_gc0308_init");

 /* store the callback and param for late using*/
 dev->cap.callback = callback;
 dev->cap.param = param;

 /* init the low level camera sensor and interface */

 return ret;
}

static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Deinit(camera_dev_t *dev)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;
 /* Currently do nothing for the Deinit as we didn't support the runtime de-
registraion of the device */
 return ret;
}

static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Start(const camera_dev_t
 *dev)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 /* start the low level camera sensor and interface */

 return ret;
}

static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Enqueue(const camera_dev_t
 *dev, void *data)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 /* submit one free buffer into the camera's buffer queue */

 return ret;
}

static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Dequeue(const camera_dev_t
 *dev,
 void **data,
 pixel_format_t
 *format)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 /* get the buffer from camera's buffer queue and determine the format of the
 frame */

 return ret;
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
79 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

static int HAL_CameraDev_FlexioGc0308_Notify(const camera_dev_t *dev, void
 *data)
{
 int error = 0;
 event_base_t eventBase = *(event_base_t *)data;

 /* handle the events which are interested in */
 switch (eventBase.eventId)
 {
 default:
 break;
 }

 return error;
}

6.4.5 Display devices

The Display HAL device provides an abstraction to represent many different display panels which may have
different controllers, resolutions, color formats, and event connection interfaces.

Note: A display HAL device represents a display panel + interface. For example, the
hal_display_lcdif_rk024hh298.c is the display HAL device driver for the rk024hh298 panel with eLCDIF
interface. It means that a separate device driver is required for the same display using different interfaces.

As with other device types, display devices are controlled via their manager. The Display Manager is
responsible for managing all registered display HAL devices, and invoking display device operators (init,
start, and so on) as necessary.

6.4.5.1 Device definition

The HAL device definition for display devices can be found under framework/hal_api/
hal_display_dev.h and is reproduced below:

typedef struct _display_dev display_dev_t;
/*! @brief Attributes of a display device. */
struct _display_dev
{
 /* unique id which is assigned by Display Manager during the registration */
 int id;
 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* operations */
 const display_dev_operator_t *ops;
 /* private capability */
 display_dev_private_capability_t cap;
};

The operators associated with display HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a display device */
typedef struct _display_dev_operator
{
 /* initialize the dev */
 hal_display_status_t (*init)(
 display_dev_t *dev,
 int width, int height,
 display_dev_callback_t callback,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
80 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 void *param);
 /* deinitialize the dev */
 hal_display_status_t (*deinit)(const display_dev_t *dev);
 /* start the dev */
 hal_display_status_t (*start)(const display_dev_t *dev);
 /* blit a buffer to the dev */
 hal_display_status_t (*blit)(const display_dev_t *dev,
 void *frame,
 int width,
 int height);
 /* input notify */
 hal_display_status_t (*inputNotify)(const display_dev_t *dev, void *data);
} display_dev_operator_t;

The capabilities associated with display HAL devices are as shown below:

/*! @brief Structure that characterize the display device. */
typedef struct _display_dev_private_capability
{
 /* buffer resolution */
 int height;
 int width;
 int pitch;
 /* active rect */
 int left;
 int top;
 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* pixel format */
 pixel_format_t format;
 /* the source pixel format of the requested frame */
 pixel_format_t srcFormat;
 void *frameBuffer;
 /* callback */
 display_dev_callback_t callback;
 /* param for the callback */
 void *param;
} display_dev_private_capability_t;

6.4.5.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in object
oriented-languages, and are used by the Display Manager to set up, start, and so on, each of its registered
display devices.

For more information about operators, see Section 6.4.1.3.1.

6.4.5.2.1 Init

hal_display_status_t (*init)(display_dev_t *dev,
 int width,
 int height,
 display_dev_callback_t callback,
 void *param);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
81 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Initialize the display device.

Init should initialize any hardware resources the display device requires (I/O ports, IRQs, and so on), turn on
the hardware, and perform any other setup the device requires.

The callback function to the device's manager is typically installed as part of the Init function as well.

This operator will be called by the Display Manager when the Display Manager task first starts.

6.4.5.2.2 Deinit

hal_display_status_t (*deinit)(const display_dev_t *dev);

"Deinitialize" the display device.

DeInit should release any hardware resources the display device uses (I/O ports, IRQs, and so on), turn off
the hardware, and perform any other shutdown the device requires.

This operator will be called by the Display Manager when the Display Manager task ends.

Note: The `DeInit` function generally will not be called under normal operation.

6.4.5.2.3 Start

hal_display_status_t (*start)(const display_dev_t *dev);

Start the display device.

The Start operator is called in the initialization stage of the Display Manager's task after the call to the Init
operator. The startup of the display sensor and interface should be implemented in this operator. It includes, for
example, starting the interface and enabling the IRQ of the DMA used by the interface.

6.4.5.2.4 Blit

hal_display_status_t (*blit)(const display_dev_t *dev,
 void *frame,
 int width,
 int height);

Sends a frame to the display panel and "blits" the frame with any additional required components (UI overlay,
and so on).

Blit is called by the Display Manager once a previously requested frame of the matching srcFormat has been
sent by a camera device. The sending of the frame from the Display Manager to the display panel should be
take place in this operator.

kStatus_HAL_DisplaySuccess must be returned if the frame was successfully sent to the display panel.
After calling this operator, the Display Manager will request a new frame.

If the `Blit` operator is working in asynchronous mode, the hardware will
 continue sending the frame buffer even after the return of the `Blit` function
 call.
In this case, `kStatus_HAL_DisplayNonBlocking` should be returned instead,
and the Display Manager will not issue a new display frame request after this
 `Blit` call.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
82 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

To request a new frame, the device should invoke the Display Manager's callback
 using a `kDisplayEvent_RequestFrame` event to notify the completion of the
 sending of the previous frame.
Once the Display Manager sees this new request, it will requesting a new frame.

6.4.5.2.5 InputNotify

 hal_display_status_t (*inputNotify)(const display_dev_t *dev, void *data);

Handle input events.

The InputNotify operator is called by the Display Manager whenever a kFWKMessageID_InputNotify
message is received by and forwarded from the Display Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.5.3 Capabilities

/*! @brief Structure that characterizes the display device. */
typedef struct _display_dev_private_capability
{
 /* buffer resolution */
 int height;
 int width;
 int pitch;
 /* active rect */
 int left;
 int top;
 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* pixel format */
 pixel_format_t format;
 /* the source pixel format of the requested frame */
 pixel_format_t srcFormat;
 void *frameBuffer;
 /* callback */
 display_dev_callback_t callback;
 /* param for the callback */
 void *param;
} display_dev_private_capability_t;

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the Display Manager. This callback function is typically installed via a device's init operator.

Display devices also maintain information regarding the size of the display, pixel format, and other information
pertinent to the display.

6.4.5.3.1 Height

int height;

The height of the display buffer.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
83 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.5.3.2 Width

int width;

The width of the display buffer.

6.4.5.3.3 Pitch

int pitch;

The total number of bytes in one row of the display buffer.

6.4.5.3.4 Left

int left;

The left edge of the active area in the display frame buffer.

Note: The active area indicates the area of the display frame buffer that will be utilized.

6.4.5.3.5 Top

int top;

The top edge of the active area in the display frame buffer.

6.4.5.3.6 Right

int right;

The right edge of the active area in the display frame buffer.

6.4.5.3.7 Bottom

int bottom;

The bottom edge of the active area in the display frame buffer.

6.4.5.3.8 Rotate

typedef enum _cw_rotate_degree
{
 kCWRotateDegree_0 = 0,
 kCWRotateDegree_90,
 kCWRotateDegree_180,
 kCWRotateDegree_270
} cw_rotate_degree_t;

cw_rotate_degree_t rotate;

The rotate degree of the display frame buffer.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
84 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.5.3.9 Format

typedef enum _pixel_format
{
 /* 2d frame format */
 kPixelFormat_RGB,
 kPixelFormat_RGB565,
 kPixelFormat_BGR,
 kPixelFormat_Gray888,
 kPixelFormat_Gray888X,
 kPixelFormat_Gray,
 kPixelFormat_Gray16,
 kPixelFormat_YUV1P444_RGB, /* color display sensor */
 kPixelFormat_YUV1P444_Gray, /* ir display sensor */
 kPixelFormat_UYVY1P422_RGB, /* color display sensor */
 kPixelFormat_UYVY1P422_Gray, /* ir display sensor */
 kPixelFormat_VYUY1P422,

 /* 3d frame format */
 kPixelFormat_Depth16,
 kPixelFormat_Depth8,

 kPixelFormat_YUV420P,

 kPixelFormat_Invalid
} pixel_format_t;

The format of the display frame buffer.

6.4.5.3.10 srcFormat

The source format of the requested display frame buffer.

Because there may be multiple display devices operating at a time, the display checks the srcFormat property
of the frame to determine whether it is from the display device it is expecting. It prevents the display from
displaying a 3D depth image when the user expects an RGB image, for example.

6.4.5.3.11 frameBuffer

Pointer to the display frame buffer.

6.4.5.3.12 callback

/**
 * @brief callback function to notify Display Manager that an async event took
 place
 * @param dev Device structure of the display device calling this function
 * @param event id of the event that took place
 * @param param Parameters
 * @param fromISR True if this operation takes place in an irq, 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*display_dev_callback_t)(const display_dev_t *dev,
 display_event_t event,
 void *param,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
85 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 uint8_t fromISR);

display_dev_callback_t callback;

Callback to the Display Manager. The HAL device invokes this callback to notify the Display Manager of specific
events.

Currently, only the `kDisplayEvent_RequestFrame` event callback is implemented
 in the Display Manager.

The Display Manager provides this callback to the device when the init operator is called. As a result, the
HAL device must make sure to store the callback in the init operator's implementation.

hal_display_status_t HAL_DisplayDev_ExampleDev_Init(
 display_dev_t *dev, int width, int height, display_dev_callback_t callback,
 void *param)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;

 /* PERFORM INIT FUNCTIONALITY HERE */

 ...

 /* Installing callback function from manager... */
 dev->cap.callback = callback;

 return ret;
}

The HAL device invokes this callback to notify the Display Manager of specific events.

6.4.5.3.13 param

void *param;

The parameter of the Display Manager callback.

The `param` field is not currently used by the framework in any way.

6.4.5.4 Example

The project has several display devices implemented for use as-is or as reference for implementing new display
devices. The source files for these display HAL devices can be found under framework/hal/display.

Below is an example of the "rk024hh298" display HAL device driver framework/hal/display/hal_
display_lcdif_rk024hh298.c.

.

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Init(display_dev_t *dev,
 int width,
 int height,
 display_dev_callback_t
 callback,
 void *param);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
86 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Uninit(const display_dev_t
 *dev);
hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Start(const display_dev_t
 *dev);
hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Blit(const display_dev_t *dev,
 void *frame,
 int width,
 int height);
static hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_InputNotify(const
 display_dev_t *receiver,
 void *data);

/* The operators of the rk024hh298 Display HAL Device */
const static display_dev_operator_t s_DisplayDev_LcdifOps = {
 .init = HAL_DisplayDev_LcdifRk024hh2_Init,
 .deinit = HAL_DisplayDev_LcdifRk024hh2_Uninit,
 .start = HAL_DisplayDev_LcdifRk024hh2_Start,
 .blit = HAL_DisplayDev_LcdifRk024hh2_Blit,
 .inputNotify = HAL_DisplayDev_LcdifRk024hh2_InputNotify,
};

/* rk024hh298 Display HAL Device */
static display_dev_t s_DisplayDev_Lcdif = {
 .id = 0,
 .name = DISPLAY_NAME,
 .ops = &s_DisplayDev_LcdifOps,
 .cap = {
 .width = DISPLAY_WIDTH,
 .height = DISPLAY_HEIGHT,
 .pitch = DISPLAY_WIDTH * DISPLAY_BYTES_PER_PIXEL,
 .left = 0,
 .top = 0,
 .right = DISPLAY_WIDTH - 1,
 .bottom = DISPLAY_HEIGHT - 1,
 .rotate = kCWRotateDegree_0,
 .format = kPixelFormat_RGB565,
 .srcFormat = kPixelFormat_UYVY1P422_RGB,
 .frameBuffer = NULL,
 .callback = NULL,
 .param = NULL
 }
 };

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Init(display_dev_t *dev,
 int width,
 int height,
 display_dev_callback_t
 callback,
 void *param)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;

 /* init the capability */
 dev->cap.width = width;
 dev->cap.height = height;
 dev->cap.frameBuffer = (void *)&s_FrameBuffers[1];

 /* store the callback and param for late using */
 dev->cap.callback = callback;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
87 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* init the low level display panel and interface */

 return ret;
}

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Uninit(const display_dev_t
 *dev)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;
 /* Currently do nothing for the Deinit as we didn't support the runtime de-
registraion of the device */
 return ret;
}

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Start(const display_dev_t
 *dev)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;

 /* start the display pannel and the interface */

 return ret;
}

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Blit(const display_dev_t *dev,
 void *frame, int width, int height)
{
 hal_display_status_t ret = kStatus_HAL_DisplayNonBlocking;

 /* blit the frame to the real display pannel */

 return ret;
}

static hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_InputNotify(const
 display_dev_t *receiver, void *data)
{
 hal_display_status_t error = kStatus_HAL_DisplaySuccess;
 event_base_t eventBase = *(event_base_t *)data;
 event_status_t event_response_status = kEventStatus_Ok;

 /* handle the events which are interested in */
 if (eventBase.eventId == kEventID_SetDisplayOutputSource)
 {

 }

 return error;
}

6.4.6 Vision algorithm devices

The Vision Algorithm HAL device type represents an abstraction for computer vision algorithms which are used
for the analysis of digital images, videos, and other visual inputs.

The crux of the design for Vision Algorithm devices is the use of "infer complete" events that communicate
information about the results of inferencing that is handled by the device. For example, in the current
application, the Vision Algorithm may receive a camera frame containing a recognized face, perform an

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
88 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

inference on that data, and communicate a "face recognized" message to other devices so that they may act
accordingly. For more information about events and event handling, see Events.

Currently, only one vision algorithm device can be registered to the Vision Manager at a time per the design of
the framework.

6.4.6.1 Device definition

The HAL device definition for vision algorithm devices can be found under framework/hal_api/
hal_valgo_dev.h and is reproduced below:

/*! @brief definition of a vision algo device */
typedef struct _vision_algo_dev
{
 /* unique id which is assigned by vision algorithm manager during the
 registration */
 int id;
 /* name to identify */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* private capability */
 valgo_dev_private_capability_t cap;
 /* operations */
 vision_algo_dev_operator_t *ops;
 /* private data */
 vision_algo_private_data_t data;
} vision_algo_dev;

The operators associated with the vision algorithm HAL device are as shown below:

/*! @brief Operation that needs to be implemented by a vision algorithm device
 */
typedef struct
{
 /* initialize the dev */
 hal_valgo_status_t (*init)(vision_algo_dev_t *dev, valgo_dev_callback_t
 callback, void *param);
 /* deinitialize the dev */
 hal_valgo_status_t (*deinit)(vision_algo_dev_t *dev);
 /* run the inference */
 hal_valgo_status_t (*run)(const vision_algo_dev_t *dev, void *data);
 /* recv events */
 hal_valgo_status_t (*inputNotify)(const vision_algo_dev_t *receiver, void
 *data);

} vision_algo_dev_operator_t;

The capabilities associated with the vision algorithm HAL device are as shown below:

typedef struct _valgo_dev_private_capability
{
 /* callback */
 valgo_dev_callback_t callback;
 /* param for the callback */
 void *param;
} valgo_dev_private_capability_t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
89 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The private data fields associated with the vision algorithm HAL device are as shown below:

typedef struct
{
 int autoStart;
 /* frame type definition */
 vision_frame_t frames[kVAlgoFrameID_Count];
} vision_algo_private_data_t;

6.4.6.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object-
oriented languages and are used by the Vision Algorithm Manager to set up, start, and so on, its registered
vision algorithm device.

For more information about operators, see Section 6.4.1.3.1.

6.4.6.2.1 Init

hal_valgo_status_t (*init)(vision_algo_dev_t *dev, valgo_dev_callback_t
 callback, void *param);

Initialize the vision algorithm HAL device.

Init must initialize any hardware resources the device requires (I/O ports, IRQs, and so on), turn on the
hardware, and perform any other setup required by the device.

The callback function to the device's manager is typically installed as part of the Init function as well.

This operator is called by the vision algorithm manager when the output manager task first starts.

6.4.6.2.2 Deinit

hal_valgo_status_t (*deinit)(vision_algo_dev_t *dev);

The DeInit function is used to "deinitialize" the algorithm device. DeInit must release any hardware
resources the device uses (I/O ports, IRQs, and so on), turn off the hardware, and perform any other shutdown
required by the device.

This operator is called by the Vision Algorithm Manager when the Vision Algorithm Manager task ends.

Note: The `DeInit` function generally is not called under normal operation.

6.4.6.2.3 Run

hal_valgo_status_t (*run)(const voice_algo_dev_t *dev, void *data);

Begin running the vision algorithm.

The run operator is used to start running algorithm inference and processing camera frame data.

This operator is called by the Vision Algorithm manager when a "camera frame ready" message is received
from the Camera Manager and forwarded to the algorithm device via the Vision Algorithm Manager.

Once the Vision Algorithm device finishes processing the camera frame data, its manager forwards this
message to the Output Manager in the form of an "inference complete" message.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
90 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.6.2.4 InputNotify

hal_valgo_status_t (*inputNotify)(const vision_algo_dev_t *receiver, void
 *data);

Handle input events.

The InputNotify operator is called by the Vision Algorithm Manager whenever a
kFWKMessageID_InputNotify message is received and forwarded from the Vision Algorithm Manager's
message queue.

For more information regarding events and event handling, see Events.

6.4.6.3 Capabilities

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the Vision Algorithm Manager. This callback function is typically installed via a device's init operator.

6.4.6.3.1 Callback

/*!
 * @brief Callback function to notify managers the results of inference
 * valgo_dev* dev Pointer to an algorithm device
 * valgo_event_t event Event which took place
 * void* param Pointer to a struct of data that needs to be forwarded
 * unsigned int size Size of the struct that needs to be forwarded. If size = 0,
 param should be a pointer to a
 * persistent memory area.
 */

typedef int (*valgo_dev_callback_t)(int devId, valgo_event_t event, void *param,
 unsigned int size, uint8_t fromISR);

valgo_dev_callback_t callback;

Callback to the Vision Algorithm Manager.

The Vision Algorithm manager provides the callback to the device when the init operator is called. As a result,
the HAL device should make sure to store the callback in the init operator's implementation.

static hal_valgo_status_t HAL_VisionAlgoDev_ExampleDev_Init(vision_algo_dev_t
 *dev,
 valgo_dev_callback_t
 callback,
 void *param)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;

 /* PERFORM INIT FUNCTIONALITY HERE */

 ...

 /* Installing callback function from manager... */
 memset(&dev->cap, 0, sizeof(dev->cap));
 dev->cap.callback = callback;

 return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
91 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

}

The HAL device invokes this callback to notify the Vision Algorithm manager of specific events.

6.4.6.3.2 Param

void *param;

The param for the callback (optional).

6.4.6.4 Private Data

6.4.6.4.1 AutoStart

int autoStart;

The flag for automatic start of the algorithm.

If autoStart is 1, the Vision Algorithm Manager automatically starts requesting camera frames for this
algorithm device after its init operator is executed.

6.4.6.4.2 Frames

vision_frame_t frames[kVAlgoFrameID_Count];

The three kinds of frames that are currently supported by the vision framework are RGB, IR, and Depth images.

The vision algorithm device must specify information for each kind of frame so that the framework properly
converts and passes only the frames which correspond to this algorithm device's requirement.

For example, older Solution's projects like SLN-VIZN3D-IOT use both 3D Depth and IR camera images to
perform liveness detection and face recognition, while using RGB frames solely for use as user feedback help
with aligning a user's face, and so on. Therefore, the algorithm device must ensure that it is receiving only the
3D and IR frames and not any RGB frames.

The definition of vision_frame_t is as shown below:

typedef struct _vision_frame
{
 /* is supported by the device for this type of frame */
 /* Vision Algorithm Manager will only request the supported frame for this
 device */
 int is_supported;

 /* frame resolution */
 int height;
 int width;
 int pitch;

 /* rotate degree */
 cw_rotate_degree_t rotate;
 flip_mode_t flip;
 /* swap byte per two bytes */
 int swapByte;

 /* pixel format */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
92 / 226

https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-3d-face-recognition:VIZN3D

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 pixel_format_t format;

 /* the source pixel format of the requested frame */
 pixel_format_t srcFormat;
 void *data;
} vision_frame_t;

6.4.6.5 Example

As only one Vision Algorithm device can be registered at a time per the design of the framework, the project has
one Vision Algorithm device implemented.

Note: This example is implemented using NXP's OasisLite face recognition algorithm, which is the core vision
computing algorithm used in all projects.

This example is reproduced below:

static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Init(vision_algo_dev_t
 *dev,
 valgo_dev_callback_t
 callback,
 void *param);
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Deinit(vision_algo_dev_t
 *dev);
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Run(const
 vision_algo_dev_t *dev, void *data);
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_InputNotify(const
 vision_algo_dev_t *receiver, void *data);

/* vision algorithm device operators */
const static vision_algo_dev_operator_t s_VisionAlgoDev_OasisLiteOps = {
 .init = HAL_VisionAlgoDev_OasisLite_Init,
 .deinit = HAL_VisionAlgoDev_OasisLite_Deinit,
 .run = HAL_VisionAlgoDev_OasisLite_Run,
 .inputNotify = HAL_VisionAlgoDev_OasisLite_InputNotify,
};

/* vision algorithm device */
static vision_algo_dev_t s_VisionAlgoDev_OasisLite3D = {
 .id = 0,
 .name = "OASIS_3D",
 .ops = (vision_algo_dev_operator_t *)&s_VisionAlgoDev_OasisLiteOps,
 .cap = {.param = NULL},
};

/* vision algorithm device Init function*/
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Init(vision_algo_dev_t
 *dev,
 valgo_dev_callback_t
 callback,
 void *param)
{
 LOGI("++HAL_VisionAlgoDev_OasisLite_Init");
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;

 // init the device
 memset(&dev->cap, 0, sizeof(dev->cap));
 dev->cap.callback = callback;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
93 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* set parameters of the requested frames that this vision algorithm dev
 asks for*/
 /* for example oasisLite algorithm asks for two kind of frames: one is IR,
 the other is Depth */
 /* firstly set parameters of the requested IR frames */
 dev->data.autoStart = 1;
 dev->data.frames[kVAlgoFrameID_IR].height = OASIS_FRAME_HEIGHT;
 dev->data.frames[kVAlgoFrameID_IR].width = OASIS_FRAME_WIDTH;
 dev->data.frames[kVAlgoFrameID_IR].pitch = OASIS_FRAME_WIDTH * 3;
 dev->data.frames[kVAlgoFrameID_IR].is_supported = 1;
 dev->data.frames[kVAlgoFrameID_IR].rotate = kCWRotateDegree_0;
 dev->data.frames[kVAlgoFrameID_IR].flip = kFlipMode_None;
 dev->data.frames[kVAlgoFrameID_IR].format = kPixelFormat_BGR;
 dev->data.frames[kVAlgoFrameID_IR].srcFormat = kPixelFormat_Gray16;
 int oasis_lite_rgb_frame_aligned_size =
 SDK_SIZEALIGN(OASIS_FRAME_HEIGHT * OASIS_FRAME_WIDTH * 3, 64);
 dev->data.frames[kVAlgoFrameID_IR].data =
 pvPortMalloc(oasis_lite_rgb_frame_aligned_size);

 if (dev->data.frames[kVAlgoFrameID_IR].data == NULL)
 {
 OASIS_LOGE("[ERROR]: Unable to allocate memory for kVAlgoFrameID_IR.");
 ret = kStatus_HAL_ValgoMallocError;
 return ret;
 }
 /* secondly set parameters of the requested Depth frames */
 dev->data.frames[kVAlgoFrameID_Depth].height = OASIS_FRAME_HEIGHT;
 dev->data.frames[kVAlgoFrameID_Depth].width = OASIS_FRAME_WIDTH;
 dev->data.frames[kVAlgoFrameID_Depth].pitch = OASIS_FRAME_WIDTH * 2;
 dev->data.frames[kVAlgoFrameID_Depth].is_supported = 1;
 dev->data.frames[kVAlgoFrameID_Depth].rotate = kCWRotateDegree_0;
 dev->data.frames[kVAlgoFrameID_Depth].flip = kFlipMode_None;

 dev->data.frames[kVAlgoFrameID_Depth].format = kPixelFormat_Depth16;
 dev->data.frames[kVAlgoFrameID_Depth].srcFormat = kPixelFormat_Depth16;
 int oasis_lite_depth_frame_aligned_size =
 SDK_SIZEALIGN(OASIS_FRAME_HEIGHT * OASIS_FRAME_WIDTH * 2, 64);
 dev->data.frames[kVAlgoFrameID_Depth].data =
 pvPortMalloc(oasis_lite_depth_frame_aligned_size);

 if (dev->data.frames[kVAlgoFrameID_Depth].data == NULL)
 {
 OASIS_LOGE("Unable to allocate memory for kVAlgoFrameID_IR");
 ret = kStatus_HAL_ValgoMallocError;
 return ret;
 }

 /* do private Algorithm Init here */
 ...

 LOGI("--HAL_VisionAlgoDev_OasisLite_Init");
 return ret;
}

/* vision algorithm device DeInit function*/
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Deinit(vision_algo_dev_t
 *dev)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 LOGI("++HAL_VisionAlgoDev_OasisLite_Deinit");

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
94 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* release resource here */
 ...

 LOGI("--HAL_VisionAlgoDev_OasisLite_Deinit");
 return ret;
}

/* vision algorithm device inference run function*/
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Run(const
 vision_algo_dev_t *dev, void *data)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 OASIS_LOGI("++HAL_VisionAlgoDev_OasisLite_Run");

 vision_algo_result_t result;
 /* do inference run, derive meaningful information from the current frame
 data in dev private data */
 /* for example, oasisLite will inference according to two kinds of input
 frames:
 void* frame1 = dev->data.frames[kVAlgoFrameID_IR].data
 void* frame2 = dev->data.frames[kVAlgoFrameID_Depth].data
 result = oasisLite_run(frame1, frame2,);
 */
 ...

 /* execute algorithm manager callback to inform algorithm manager the result
 */
 if (dev != NULL && result != NULL && dev->cap.callback != NULL)
 {
 valgo_event_t valgo_event = {
 .eventId = kVAlgoEvent_RequestFrame,
 .eventInfo = kEventInfo_DualCore/Remote/Local,
 .data = data,
 .size = 0,
 .copy = 0};

 dev->cap.callback(dev->id, kVAlgoEvent_VisionResultUpdate, result,
 sizeof(vision_algo_result_t), 0);
 }

 OASIS_LOGI("--HAL_VisionAlgoDev_OasisLite_Run");
 return ret;
}

/* vision algorithm device InputNotify function*/
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_InputNotify(const
 vision_algo_dev_t *receiver, void *data)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 OASIS_LOGI("++HAL_VisionAlgoDev_OasisLite_InputNotify");
 event_base_t eventBase = *(event_base_t *)data;

 /* do proess according to different input notify event */
 ...

 LOGI("--HAL_VisionAlgoDev_OasisLite_InputNotify");
 return ret;
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
95 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

/* register vision algorithm device to vision algorithm manager */
int HAL_VisionAlgoDev_OasisLite3D_Register()
{
 int error = 0;
 LOGD("HAL_VisionAlgoDev_OasisLite3D_Register");
 error = FWK_VisionAlgoManager_DeviceRegister(
 &s_VisionAlgoDev_OasisLite3D);

 return error;
}

6.4.7 Voice algorithm devices

The Voice Algorithm HAL device type represents an abstraction to do voice recognition based on clean stream
AFE generated.

After the Voice Algorithm manager receives the clean stream, the Voice Algorithm Hal device run method is
called. If a voice command is detected, the device outputs the inference result and transfer result to the Output
HAL device through valgo_dev_callback_t callback. For more information about events and event
handling, see Events.

Currently, only one voice algorithm device can be registered to the Voice Manager at a time per the design of
the framework.

6.4.7.1 Device definition

The HAL device definition for voice algorithm devices can be found under framework/hal_api/
hal_valgo_dev.h and is reproduced below:

/*! @brief Attributes of a voice algo device */
struct _voice_algo_dev
{
 /* unique id which is assigned by algorithm manager during the registration
 */
 int id;
 /* name to identify */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* private capability */
 valgo_dev_private_capability_t cap;
 /* operations */
 voice_algo_dev_operator_t *ops;
 /* private data */
 voice_algo_private_data_t data;
};

The operators associated with the voice algorithm HAL device are as shown below:

/*! @brief Operation that needs to be implemented by a voice algorithm device */
typedef struct voice_algo_dev_operator_t
{
 /* initialize the dev */
 hal_valgo_status_t (*init)(voice_algo_dev_t *dev, valgo_dev_callback_t
 callback, void *param);
 /* deinitialize the dev */
 hal_valgo_status_t (*deinit)(voice_algo_dev_t *dev);
 /* start the dev */
 hal_valgo_status_t (*run)(const voice_algo_dev_t *dev, void *data);
 /* recv events */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
96 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 hal_valgo_status_t (*inputNotify)(const voice_algo_dev_t *receiver, void
 *data);

} voice_algo_dev_operator_t;

The capabilities associated with the voice algorithm HAL device are as shown below:

typedef struct _valgo_dev_private_capability
{
 /* callback */
 valgo_dev_callback_t callback;
 /* param for the callback */
 void *param;
} valgo_dev_private_capability_t;

The private data fields associated with the voice algorithm HAL device is as shown below:

typedef struct _voice_algo_private_data
{
} voice_algo_private_data_t;

6.4.7.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object-
oriented languages, and are used by the Voice Algorithm Manager to init, run, and so on its registered voice
algorithm device.

For more information about operators, see Section 6.4.1.3.1.

6.4.7.2.1 Init

hal_valgo_status_t (*init)(voice_algo_dev_t *dev, valgo_dev_callback_t callback,
 void *param);

Init the voice algorithm HAL device.

Init performs all setups the device requires, such as preparing memory for voice algorithm runtime
consumption, loading AI models, running library initialization API and so on.

The callback function to the device's manager is typically installed as part of the Init function as well.

This operator is called by the voice algorithm manager when the voice manager task first starts.

6.4.7.2.2 Deinit

hal_valgo_status_t (*deinit)(voice_algo_dev_t *dev);

The DeInit function is used to "deinitialize" the algorithm device. DeInit must release any hardware
resources the device uses (heap memory, handles created by device, and so on), turn off the hardware, and
perform any other shutdown required by the device.

This method is not called in AFE Manager based on current framework version.

Note: The `DeInit` function generally is not called under normal operation.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
97 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.7.2.3 Run

hal_valgo_status_t (*run)(const voice_algo_dev_t *dev, void *data);

Begin running the voice algorithm.

The run operator is used to start running algorithm inference and processing voice frame data.

This operator is called by the Voice Algorithm manager when the kFWKMessageID_VAlgoASRInputProcess
message is received from the AFE Manager and forwarded to the algorithm device via the Voice Algorithm
Manager.

Once the Voice Algorithm device finishes processing the voice frame data, its manager forwards the inference
result to the Output Manager. If Wake Word is detected, Voice manager forwards a message indicating length of
wake word to AFE manager.

6.4.7.2.4 InputNotify

hal_valgo_status_t (*inputNotify)(const voice_algo_dev_t *receiver, void *data);

Handle input events.

The InputNotify operator is called by the Voice Algorithm Manager whenever the
kFWKMessageID_InputNotify message is received and forwarded from the Voice Algorithm Manager's
message queue.

For more information regarding events and event handling, see Events.

6.4.7.3 Capabilities

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the Voice Algorithm Manager. This callback function is typically installed via a device's init operator.

6.4.7.3.1 Callback

/*!
 * @brief Callback function to notify managers the results of inference
 * valgo_dev* dev Pointer to an algorithm device
 * valgo_event_t event Event which took place
 * persistent memory area.
 */

typedef int (*valgo_dev_callback_t)(int devId, valgo_event_t event, void *param,
 unsigned int size, uint8_t fromISR);

valgo_dev_callback_t callback;

Callback to the Voice Algorithm Manager.

The Voice Algorithm manager provides the callback to the device when the init operator is called. As a result,
the HAL device must make sure to store the callback in the init operator's implementation.

The HAL device invokes this callback to notify the Voice Algorithm manager of specific events.

The event structure is the following.

/*! @brief Structure used to define an event.*/

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
98 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

typedef struct _valgo_event
{
 /* Eventid from the list above.*/
 valgo_event_id_t eventId;
 event_info_t eventInfo;
 /* Pointer to a struct of data that needs to be forwarded. */
 void *data;
 /* Size of the struct that needs to be forwarded. */
 unsigned int size;
 /* If copy is set to 1, the framework will forward a copy of the data. */
 unsigned char copy;
} valgo_event_t;

All the events, which are identifiable by the eventId, can be send to:

• both core in a broadcast manner by setting the eventInfo flag to kEventInfo_DualCore
• remote core by setting the eventInfo flag to kEventInfo_Remote
• local core by the eventInfo flag to kEventInfo_Local

In general, all supported message type can be used in conjunction with the copy field set to 1 in order to deep
copy the message. One exception is the kVAlgoEvent_AsrToAudioDump event, which we encourage to be
sent with the flag set to 0 in order to avoid copy on large buffers.

6.4.7.3.2 Param

void *param;

The param for the callback (optional).

6.4.7.4 Example

Because only one Voice Algorithm device can be registered at a time per the design of the framework, the SLN-
TLHMI-IOT project has two Voice Algorithm devices(DSMT/VIT) implemented.

Note: This example is implemented using the DSMT (DSpotter Modeling Tool) algorithm.

This example is reproduced below:

hal_valgo_status_t voice_algo_dev_asr_init(voice_algo_dev_t *dev,
 valgo_dev_callback_t callback, void *param)
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Deinit(vision_algo_dev_t
 *dev);
hal_valgo_status_t voice_algo_dev_asr_run(const voice_algo_dev_t *dev, void
 *data)
hal_valgo_status_t voice_algo_dev_input_notify(const voice_algo_dev_t *dev, void
 *data)

const static voice_algo_dev_operator_t voice_algo_dev_asr_ops = {
 .init = voice_algo_dev_asr_init,
 .deinit = NULL,
 .run = voice_algo_dev_asr_run,
 .inputNotify = voice_algo_dev_input_notify
};

static voice_algo_dev_t voice_algo_dev_asr = {
 .id = 0,
 .ops = (voice_algo_dev_operator_t *)&voice_algo_dev_asr_ops,
 .cap = {.param = NULL},

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
99 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

};

hal_valgo_status_t voice_algo_dev_asr_init(voice_algo_dev_t *dev,
 valgo_dev_callback_t callback, void *param)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 uint32_t timerId = 0;

 /* Set callback function */
 dev->cap.callback = callback;

 ...

 /* Initialize the ASR engine */
 initialize_asr();

 ...

 return ret;
}

/* voice algorithm device inference run function*/
hal_valgo_status_t voice_algo_dev_asr_run(const voice_algo_dev_t *dev, void
 *data)
{
 hal_valgo_status_t status = kStatus_HAL_ValgoSuccess;
 static asr_events_t asrEvent = ASR_SESSION_ENDED;
 struct asr_inference_engine *pInfWW;
 struct asr_inference_engine *pInfCMD;
 char **cmdString;
 int16_t *pi16Sample;

 msg_payload_t *audioIn = (msg_payload_t *)data;

 ...

 /* Wake Word detection. Check all enabled languages, but stop on first
 match. */
 for (pInfWW = s_AsrEngine.voiceControl.infEngineWW; pInfWW != NULL; pInfWW =
 pInfWW->next)
 {
 if (asr_process_audio_buffer(pInfWW->handler, pi16Sample,
 NUM_SAMPLES_AFE_OUTPUT, pInfWW->iWhoAmI_inf) == kAsrLocalDetected)

 {
 LOGI("Trust: %d, SGDiff: %d\r\n",
 s_AsrEngine.voiceControl.result.trustScore,
 s_AsrEngine.voiceControl.result.SGDiffScore);
 }
 }

 ...

 return status;
}

hal_valgo_status_t voice_algo_dev_input_notify(const voice_algo_dev_t *dev, void
 *data)
{
 hal_valgo_status_t error = kStatus_HAL_ValgoSuccess;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
100 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 event_voice_t event = *(event_voice_t *)data;
 const char *language_str = NULL;

 ...

 return error;
}

int HAL_VoiceAlgoDev_Asr_Register()
{
 int error = 0;
 LOGD("HAL_VoiceAlgoDev_Asr_Register");
 error = FWK_VoiceAlgoManager_DeviceRegister(&voice_algo_dev_asr);
 return error;
}

6.4.8 Audio processing device

Audio Processing Device is used for Audio Front End (AFE) processing. In the following sections, we abridge
'Audio Processing Device' as 'AFE device'. And also use 'AFE manager' instead of 'audio_processing manager'.

The AFE HAL device provides an abstraction to represent audio front-end (AFE) handling.

AFE provides several subalgorithm modules, finally outputting a clean stream for the ASR (Automatic Speech
Recognition) engine. AFE supports Beamformer, AEC, NS, and DOA. Beamformer eliminates reverberation
and background noise. AEC (Acoustic Echo Cancellation) can support multi-channel systems, which is used for
suppressing local speaker stream. DOA (Direction Of Arrival) tracking has 1-degree resolution.

The AFE device receives microphone streams and reference streams (speaker streams) and outputs a clean
stream for the ASR engine.

As with other device types, the AFE device is controlled via the AFE manager. The AFE manager is responsible
for managing all registered AFE HAL devices, and invoking AFE device operators (init, start, run, stop,
and so on) as necessary. Additionally, the AFE Manager allows for multiple AFE devices to be registered and
operate at once. Based on real project requirements, in most cases, only one AFE device is needed.

6.4.8.1 Device definition

The HAL device definition for AFE devices can be found under framework/hal_api/hal_audio_
processing_dev.h and is reproduced below:

typedef struct _audio_processing_dev audio_processing_dev_t;
/*! @brief Attributes of an audio processing device. */
struct _audio_processing_dev
{
 /* unique id which is assigned by audio processing manager during
 registration */
 int id;
 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* operations */
 const audio_processing_dev_operator_t *ops;
 /* private capability */
 audio_processing_dev_private_capability_t cap;
};

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
101 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The device operators associated with AFE HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a audio processing device
 */
typedef struct _audio_processing_dev_operator
{
 /* initialize the dev */
 hal_audio_processing_status_t (*init)(audio_processing_dev_t *dev,
 audio_processing_dev_callback_t callback);
 /* deinitialize the dev */
 hal_audio_processing_status_t (*deinit)(const audio_processing_dev_t *dev);
 /* start the dev */
 hal_audio_processing_status_t (*start)(const audio_processing_dev_t *dev);
 /* start the dev */
 hal_audio_processing_status_t (*stop)(const audio_processing_dev_t *dev);
 /* notify the audio_processing_dev_t */
 hal_audio_processing_status_t (*run)(const audio_processing_dev_t *dev, void
 *param);
 /* notify the audio_processing_dev_t */
 hal_audio_processing_status_t (*inputNotify)(const audio_processing_dev_t
 *dev, void *param);
} audio_processing_dev_operator_t;

The device capabilities associated with AFE HAL devices are as shown below:

/*! @brief Structure that capability of the AFE device. */
typedef struct _audio_processing_dev_private_capability
{
 /* callback */
 audio_processing_dev_callback_t callback;
} audio_processing_dev_private_capability_t;

6.4.8.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in
object-oriented languages, and are used by the AFE Manager to set up, start, and so on, each of its registered
AFE devices.

6.4.8.2.1 Init

hal_audio_processing_status_t (*init)(audio_processing_dev_t *dev,
 audio_processing_dev_callback_t callback);

Initialize the AFE device.

Init performs all setups that the device requires, such as preparing memory for AFE runtime consumption,
microphone number and position, and so on.

This operator is called by the AFE Manager when the AFE Manager task first starts.

6.4.8.2.2 Deinit

hal_audio_processing_status_t (*deinit)(const audio_processing_dev_t *dev);

De-initialize the AFE device.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
102 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

DeInit releases all memory resources allocated in initialization stage. Set all handles created to NULL.

This operator is not called in AFE Manager based on current framework version.

Note: The `DeInit` function is not called under normal operation.

6.4.8.2.3 Start

hal_audio_processing_status_t (*start)(const audio_processing_dev_t *dev);

Start the AFE device.

The Start operator is called in the initialization stage of the AFE Manager's task after the call to the Init
operator. Since AFE device is a pure software device, there is not Clock/GPIO, or any peripheral bus depended.
In most cases, the Start method can return kStatus_HAL_AudioProcessingSuccess directly.

6.4.8.2.4 Stop

hal_audio_processing_status_t (*stop)(const audio_processing_dev_t *dev);

Stop is reverted operation compared to Start. Return kStatus_HAL_AudioProcessingSuccess if there is
nothing needed to be done to device.

For the AFE device SDK implemented, this method returns kStatus_HAL_AudioProcessingSuccess
directly. And it is not called in AFE Manager based on current framework version.

6.4.8.2.5 Run

hal_audio_processing_status_t (*run)(const audio_processing_dev_t *dev, void
 *param);

Execute AFE engine for handling microphone stream and outputting clean stream.

The Run operator will be called by the AFE Manager to handle audio frame with 160 samples.

6.4.8.2.6 InputNotify

 hal_audio_processing_status_t (*inputNotify)(const audio_processing_dev_t *dev,
 void *param);

Handle input events.

The InputNotify operator is called by the AFE Manager whenever a kFWKMessageID_InputNotify
message is received by and forwarded from the AFE Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.8.3 Capabilities

typedef struct _audio_processing_dev_private_capability
{
 /* callback */
 audio_processing_dev_callback_t callback;
} audio_processing_dev_private_capability_t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
103 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the AFE Manager. This callback function is typically installed via a device's init operator.

6.4.8.3.1 Callback

/**
 * @brief Callback function to notify audio processing manager that an async
 event took place
 * @param dev Device structure of the audio processing device calling this
 function
 * @param event id of the event that took place
 * @return 0 if the operation was successfully
 */
typedef int (*audio_processing_dev_callback_t)(
 const audio_processing_dev_t *dev, audio_processing_event_t event, uint8_t
 fromISR);

Callback to the AFE Manager.

The HAL device invokes this callback to notify the AFE Manager of specific events like audio processing done
or audio dumping event.

The AFE Manager provides this callback to the device when the init operator is called. As a result, the HAL
device should make sure to store the callback in the init operator's implementation.

The event structure is as follows:

/*! @brief Structure used to define an event.*/
typedef struct _audio_processing_event
{
 /* Eventid from the list above.*/
 audio_processing_event_id_t eventId;
 event_info_t eventInfo;
 /* Pointer to a struct of data that needs to be forwarded. */
 void *data;
 /* Size of the struct that needs to be forwarded. */
 unsigned int size;
 /* If copy is set to 1, the framework will forward a copy of the data. */
 unsigned char copy;
} audio_processing_event_t;

As mentioned before, the events supported right now are Audio Processing Done and Audio Processing Dump.

• kAudioProcessingEvent_Done is an event used to signal that the processing done over the last chunk
has been finalized. Depending where the ASR is initiated, this message can be forward to:
– both core by setting the eventInfo flag to kEventInfo_DualCore
– remote core only by setting the eventInfo flag to kEventInfo_Remote
– local, by setting the eventInfo flag to kEventInfo_Local.

Note: To avoid high data traffic between cores, design the architecture of the system to have both the AFE and
ASR on the same core. For better performance, the `copy` flag must be set to 0.

• kAudioProcessingEvent_Dump is an event that is sent to an output device that can log the audio stream
on an output interface UART/USB/Wi-Fi/BLE. As mentioned before, this message can also be DualCore/

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
104 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Remote/Local, but it is better to have it as a local message due to high data transfer. If the design does not
support this, use reference and shared memory buffers, instead of deep copy the data .

hal_audio_processing_status_t audio_processing_afe_init(audio_processing_dev_t
 *dev,

 audio_processing_dev_callback_t callback)
{
 hal_audio_processing_status_t error = kStatus_HAL_AudioProcessingSuccess;

 sln_afe_status_t afeStatus = kAfeSuccess;
 sln_afe_config_t afeConfig = {0};

 dev->cap.callback = callback;

 afeConfig.numberOfMics = AUDIO_PDM_MIC_COUNT;
 afeConfig.afeMemBlock = s_afeExternalMemory;

 return error;
}

6.4.8.3.2 Param

void *param;

The parameter of the callback points to audio data AFE outputting.

6.4.8.4 Example

The SLN-TLHMI-IOT project implements one AFE device for use as-is or for use as reference for implementing
new AFE devices. Source files for these AFE HAL devices can be found under hal/voice/hal_audio_
processing_afe.c.

const static audio_processing_dev_operator_t audio_processing_afe_ops = {
 .init = audio_processing_afe_init,
 .deinit = audio_processing_afe_deinit,
 .start = audio_processing_afe_start,
 .stop = audio_processing_afe_stop,
 .run = audio_processing_afe_run,
 .inputNotify = audio_processing_afe_notify,
};

static audio_processing_dev_t audio_processing_afe = {
 .id = 1, .name = "AFE", .ops = &audio_processing_afe_ops, .cap = {.callback
 = NULL}};

hal_audio_processing_status_t audio_processing_afe_init(audio_processing_dev_t
 *dev,

 audio_processing_dev_callback_t callback)
{
 hal_audio_processing_status_t error = kStatus_HAL_AudioProcessingSuccess;
 /*
 * Prepare AFE memory and configuration parameters needed,
 * and then initialize AFE library.
 */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
105 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 return error;
}

hal_audio_processing_status_t audio_processing_afe_deinit(const
 audio_processing_dev_t *dev)
{
 hal_audio_processing_status_t error = kStatus_HAL_AudioProcessingSuccess;
 return error;
}

hal_audio_processing_status_t audio_processing_afe_start(const
 audio_processing_dev_t *dev)
{
 hal_audio_processing_status_t error = kStatus_HAL_AudioProcessingSuccess;
 return error;
}

hal_audio_processing_status_t audio_processing_afe_stop(const
 audio_processing_dev_t *dev)
{
 hal_audio_processing_status_t error = kStatus_HAL_AudioProcessingSuccess;
 return error;
}

hal_audio_processing_status_t audio_processing_afe_notify(const
 audio_processing_dev_t *dev, void *param)
{
 hal_audio_processing_status_t error = kStatus_HAL_AudioProcessingSuccess;
 event_voice_t event = *(event_voice_t *)param;

 /* Parse event structure and do further handling */

 return error;
}

hal_audio_processing_status_t audio_processing_afe_run(const
 audio_processing_dev_t *dev, void *param)
{
 hal_audio_processing_status_t error = kStatus_HAL_AudioProcessingSuccess;
 event_voice_t event = *(event_voice_t *)param;

 /* Parse event structure and execute AFE engine for handling microphone
 streams */

 return error;
}

6.4.9 Flash devices

The flash HAL device represents an abstraction used to implement a device that handles all operations dealing
with flash (permanent) storage.

Note: Even though the word "flash" is used in the terminology of this device, the user is technically capable
of implementing an FS that uses a volatile memory instead. One potential reason for doing so would be to run
logic/sanity checks on the filesystem API's before implementing them on a flash device. Ultimately, the flash
HAL device is useful for abstracting not only flash operations, but memory operations in general.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
106 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The flash HAL device is primarily used as a wrapper over an underlying filesystem, be it LittleFS, FatFS, and
so on. As a result, the Flash Manager only allows one flash device to be registered because there is usually no
need for multiple filesystems operating at the same time.

General information

Because only one flash device can be registered at a time, it means that API calls to the Flash Manager
essentially act as wrappers over the flash HAL device's operators.

In terms of functionality, the flash HAL device provides:

• Read/Write operations
• Cleanup methods to handle defragmentation and/or emptying flash sectors during idle time
• Information about underlying flash mapping and flash type

6.4.9.1 Device definition

The HAL device definition for flash devices can be found under framework/hal_api/hal_flash_dev.h
and is reproduced below:

/*! @brief Attributes of a flash device */
struct _flash_dev
{
 /* unique id */
 int id;
 /* operations */
 const flash_dev_operator_t *ops;
};

The device operators associated with flash HAL devices are as shown below:

/*! @brief Callback function to timeout check requester list busy status. */
typedef int (*lpm_manager_timer_callback_t)(lpm_dev_t *dev);

/*! @brief Operation that needs to be implemented by a flash device */
typedef struct _flash_dev_operator
{
 sln_flash_status_t (*init)(const flash_dev_t *dev);
 sln_flash_status_t (*deinit)(const flash_dev_t *dev);
 sln_flash_status_t (*format)(const flash_dev_t *dev);
 sln_flash_status_t (*save)(const flash_dev_t *dev, const char *path, void
 *buf, unsigned int size);
 sln_flash_status_t (*append)(const flash_dev_t *dev, const char *path, void
 *buf, unsigned int size, bool overwrite);
 sln_flash_status_t (*read)(const flash_dev_t *dev, const char *path, void
 *buf, unsigned int offset, unsigned int *size);
 sln_flash_status_t (*mkdir)(const flash_dev_t *dev, const char *path);
 sln_flash_status_t (*mkfile)(const flash_dev_t *dev, const char *path, bool
 encrypt);
 sln_flash_status_t (*rm)(const flash_dev_t *dev, const char *path);
 sln_flash_status_t (*rename)(const flash_dev_t *dev, const char *oldPath,
 const char *newPath);
 sln_flash_status_t (*cleanup)(const flash_dev_t *dev, unsigned int
 timeout_ms);
} flash_dev_operator_t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
107 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.9.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object
oriented-languages.

For more information about operators, see Section 6.4.1.3.1 .

6.4.9.2.1 Init

sln_flash_status_t (*init)(const flash_dev_t *dev);

Initialize the flash and filesystem.

Init must initialize any hardware resources required by the flash device (pins, ports, clock, and so on) In
addition to initializing the hardware, the init function should also mount the filesystem.

Note: An application that runs from flash (does XiP) must not initialize/deinitialize any hardware. If a hardware
change is truly needed, the change must be performed with caution.

Note: Some lightweight FS may not require mounting and can be prebuilt/preloaded on the flash instead.
Regardless, the `init` function must result in the filesystem being in a usable state.

6.4.9.2.2 Deinit

hal_lpm_status_t (*deinit)(const lpm_dev_t *dev);

"Deinitialize" the flash and filesystem.

DeInit must release any hardware resources a flash device might use (I/O ports, IRQs, and so on), turn off the
hardware, and perform any other shutdown the device requires.

6.4.9.2.3 Format

sln_flash_status_t (*format)(const flash_dev_t *dev);

Clean and format the filesystem.

6.4.9.2.4 Save

sln_flash_status_t (*save)(const flash_dev_t *dev, const char *path, void *buf,
 unsigned int size);

Save a file with the contents of buf to path in the filesystem.

6.4.9.2.5 Append

sln_flash_status_t (*append)(const flash_dev_t *dev, const char *path, void
 *buf, unsigned int size, bool overwrite);

Append the contents of buf to an existing file at path.

Setting overwrite equal to true causes append from the beginning of the file instead.

Note: `overwrite == true` makes this function nearly equivalent to the save function, the only difference is that
this does not create a new file.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
108 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.9.2.6 Read

sln_flash_status_t (*read)(const flash_dev_t *dev, const char *path, void *buf,
 unsigned int offset, unsigned int *size);

Read a file from the filesystem at path and storing the contents in buf.

To find the needed space for the buf, call read with buf set to NULL. In case there is not enough space in
memory to read the whole file, read with offset can be use while specifying the chunk size.

Note: It is up to the user to guarantee that the buffer supplied will fit the contents of the file being read.

6.4.9.2.7 Make directory

sln_flash_status_t (*mkdir)(const flash_dev_t *dev, const char *path);

Create a directory at path.

If the filesystem in use does not support directories,
this operator can be set to `NULL`.

6.4.9.2.8 Make file

sln_flash_status_t (*mkfile)(const flash_dev_t *dev, const char *path, bool
 encrypt);

Creates the file mentioned by the path. If the information needs to stored not in plain text, encryption can be
enabled.

6.4.9.2.9 Remove

sln_flash_status_t (*rm)(const flash_dev_t *dev, const char *path);

Remove the file at path.

If the filesystem in use does not support directories,
this operator can be set to `NULL`.

6.4.9.2.10 Rename

sln_flash_status_t (*rename)(const flash_dev_t *dev, const char *oldPath, const
 char *newPath);

Rename/move a file from oldPath to newPath.

6.4.9.2.11 Cleanup

sln_flash_status_t (*cleanup)(const flash_dev_t *dev, unsigned int timeout_ms);

Clean up the filesystem.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
109 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

This function is used to help minimize delays introduced by things like fragmentation caused during "erase
sector" operations that can lead to unwanted delays when searching for the next available sector.

timeout_ms specifies how much time to wait while performing cleanup. This helps prevent multiple HAL
devices calling cleanup and stalling the filesystem.

6.4.9.3 Example

As only one flash device can be registered at a time per the design of the framework, the project has only one
filesystem implemented.

The source file for this flash HAL device can be found at framework/hal/misc/hal_flash_littlefs.c.

In this example, we demonstrate a way to integrate Littlefs in our framework.

Littlefs is a lightweight file-system that is designed to handle random power failures. The architecture of the file-
system allows having directories and files. As a result, this example uses the following file layout:

root-directory
├── cfg
│ ├── Metadata
│ ├── fwk_cfg - stores framework related information.
│ └── app_cfg - stores app specific information.
├── oasis
│ ├── Metadata
│ └── faceFiles - the number of files that stores faces are up to 100
├── app_specific
└── wifi_info
 └── wifi_info

6.4.9.3.1 Littlefs device

static sln_flash_status_t _lfs_init()
{
 int res = kStatus_HAL_FlashSuccess;
 if (s_LittlefsHandler.lfsMounted)
 {
 return kStatus_HAL_FlashSuccess;
 }
 s_LittlefsHandler.lock = xSemaphoreCreateMutex();
 if (s_LittlefsHandler.lock == NULL)
 {
 LOGE("Littlefs create lock failed");
 return kStatus_HAL_FlashFail;
 }

 _lfs_get_default_config(&s_LittlefsHandler.cfg);
#if DEBUG
 BOARD_InitFlashResources();
#endif
 SLN_Flash_Init();
 if (res)
 {
 LOGE("Littlefs storage init failed: %i", res);
 return kStatus_HAL_FlashFail;
 }

 res = lfs_mount(&s_LittlefsHandler.lfs, &s_LittlefsHandler.cfg);
 if (res == 0)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
110 / 226

https://github.com/littlefs-project/littlefs

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 {
 s_LittlefsHandler.lfsMounted = 1;
 LOGD("Littlefs mount success");
 }
 else if (res == LFS_ERR_CORRUPT)
 {
 LOGE("Littlefs corrupt");
 lfs_format(&s_LittlefsHandler.lfs, &s_LittlefsHandler.cfg);
 LOGD("Littlefs attempting to mount after reformatting...");
 res = lfs_mount(&s_LittlefsHandler.lfs, &s_LittlefsHandler.cfg);
 if (res == 0)
 {
 s_LittlefsHandler.lfsMounted = 1;
 LOGD("Littlefs mount success");
 }
 else
 {
 LOGE("Littlefs mount failed again");
 return kStatus_HAL_FlashFail;
 }
 }
 else
 {
 LOGE("Littlefs error while mounting");
 }

 return res;
}

static sln_flash_status_t _lfs_cleanupHandler(const flash_dev_t *dev,
 unsigned int
 timeout_ms)
{
 sln_flash_status_t status = kStatus_HAL_FlashSuccess;
 uint32_t usedBlocks[LFS_SECTORS/32] = {0};
 uint32_t emptyBlocks = 0;
 uint32_t startTime = 0;
 uint32_t currentTime = 0;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 /* create used block list */
 lfs_fs_traverse(&s_LittlefsHandler.lfs, _lfs_traverse_create_used_blocks,
 &usedBlocks);

 startTime = sln_current_time_us();

 /* find next block starting from free.i */
 for (int i = 0; i < LFS_SECTORS; i++)
 {
 currentTime = sln_current_time_us();
 /* Check timeout */
 if ((timeout_ms) && (currentTime >= (startTime + timeout_ms * 1000)))
 {
 break;
 }

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
111 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 lfs_block_t block = (s_LittlefsHandler.lfs.free.i + i) % LFS_SECTORS;

 /* take next unused marked block */
 if (!_is_blockBitSet(usedBlocks, block))
 {
 /* If the block is marked as free but not yet erased, try to erase
 it */
 LOGD("Block %i is unused, try to erase it", block);
 _lfs_qspiflash_erase(&s_LittlefsConfigDefault, block);
 emptyBlocks += 1;
 }
 }

 LOGI("%i empty_blocks starting from %i available in %ims",
 emptyBlocks, s_LittlefsHandler.lfs.free.i,
 (sln_current_time_us() - startTime)/1000);

 _unlock();
 return status;
}

static sln_flash_status_t _lfs_formatHandler(const flash_dev_t *dev)
{
 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }
 lfs_format(&s_LittlefsHandler.lfs, &s_LittlefsHandler.cfg);
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_rmHandler(const flash_dev_t *dev, const char
 *path)
{
 int res;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_remove(&s_LittlefsHandler.lfs, path);
 if (res)
 {
 LOGE("Littlefs while removing: %i", res);
 _unlock();
 if (res == LFS_ERR_NOENT)
 {
 return kStatus_HAL_FlashFileNotExist;
 }

 return kStatus_HAL_FlashFail;
 }
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
112 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

static sln_flash_status_t _lfs_mkdirHandler(const flash_dev_t *dev, const char
 *path)
{
 int res;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_mkdir(&s_LittlefsHandler.lfs, path);

 if (res == LFS_ERR_EXIST)
 {
 LOGD("Littlefs directory exists: %i", res);
 _unlock();
 return kStatus_HAL_FlashDirExist;
 }
 else if (res)
 {
 LOGE("Littlefs creating directory: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_writeHandler(const flash_dev_t *dev, const char
 *path, void *buf, unsigned int size)
{
 int res;
 lfs_file_t file;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_opencfg(&s_LittlefsHandler.lfs, &file, path, LFS_O_CREAT,
 &s_FileDefault);
 if (res)
 {
 LOGE("Littlefs opening file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_write(&s_LittlefsHandler.lfs, &file, buf, size);
 if (res < 0)
 {
 LOGE("Littlefs writing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_close(&s_LittlefsHandler.lfs, &file);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
113 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 if (res)
 {
 LOGE("Littlefs closing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_appendHandler(const flash_dev_t *dev,
 const char *path,
 void *buf,
 unsigned int size,
 bool overwrite)
{
 int res;
 lfs_file_t file;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_opencfg(&s_LittlefsHandler.lfs, &file, path, LFS_O_APPEND,
 &s_FileDefault);
 if (res)
 {
 LOGE("Littlefs opening file: %i", res);
 _unlock();
 if (res == LFS_ERR_NOENT)
 {
 return kStatus_HAL_FlashFileNotExist;
 }
 return kStatus_HAL_FlashFail;
 }

 if (overwrite == true)
 {
 res = lfs_file_truncate(&s_LittlefsHandler.lfs, &file, 0);

 if (res < 0)
 {
 LOGE("Littlefs truncate file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }
 }

 res = lfs_file_write(&s_LittlefsHandler.lfs, &file, buf, size);
 if (res < 0)
 {
 LOGE("Littlefs writing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_close(&s_LittlefsHandler.lfs, &file);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
114 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 if (res)
 {
 LOGE("Littlefs closing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_readHandler(const flash_dev_t *dev, const char
 *path, void *buf, unsigned int size)
{
 int res;
 int offset = 0;
 lfs_file_t file;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }
 res = lfs_file_opencfg(&s_LittlefsHandler.lfs, &file, path, LFS_O_RDONLY,
 &s_FileDefault);
 if (res)
 {
 LOGE("Littlefs opening file: %i", res);
 _unlock();
 if (res == LFS_ERR_NOENT)
 {
 return kStatus_HAL_FlashFileNotExist;
 }
 return kStatus_HAL_FlashFail;
 }

 do
 {
 res = lfs_file_read(&s_LittlefsHandler.lfs, &file, (buf + offset),
 size);
 if (res < 0)
 {
 LOGE("Littlefs reading file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }
 else if (res == 0)
 {
 LOGD("Littlefs reading file \"%s\": Read only %d. %d bytes not found
 ", path, offset, size);
 break;
 }

 offset += res;
 size -= res;
 } while (size > 0);

 res = lfs_file_close(&s_LittlefsHandler.lfs, &file);
 if (res)
 {

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
115 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 LOGE("Littlefs closing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_renameHandler(const flash_dev_t *dev, const char
 *OldPath, const char *NewPath)
{
 int res;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_rename(&s_LittlefsHandler.lfs, OldPath, NewPath);
 if (res)
 {
 LOGE("Littlefs renaming file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

const static flash_dev_operator_t s_FlashDev_LittlefsOps = {
 .init = _lfs_init,
 .deinit = NULL,
 .format = _lfs_formatHandler,
 .append = _lfs_appendHandler,
 .save = _lfs_writeHandler,
 .read = _lfs_readHandler,
 .mkdir = _lfs_mkdirHandler,
 .rm = _lfs_rmHandler,
 .rename = _lfs_renameHandler,
 .cleanup= _lfs_cleanupHandler,
};

static flash_dev_t s_FlashDev_Littlefs = {
 .id = 0,
 .ops = &s_FlashDev_LittlefsOps,
};

int HAL_FlashDev_Littlefs_Init()
{
 int error = 0;
 LOGD("++HAL_FlashDev_Littlefs_Init");
 _lfs_init();

 LOGD("--HAL_FlashDev_Littlefs_Init");
 error = FWK_Flash_DeviceRegister(&s_FlashDev_Littlefs);

 FWK_LpmManager_RegisterRequestHandler(&s_LpmReq);
 return error;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
116 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

}

Note: The information presented here shows only the operators described above. For more information
regarding Littlefs configuration, FlexSPI configuration, optimization done, check the full code base.

6.4.10 Multicore devices

The multicore HAL device represents an abstraction used to implement a device that handles all multicore
message passing.

The multicore HAL device is primarily used as a wrapper over known multicore message libraries, be it MU/
Mailbox peripheral registers, rpmsg_lite, eRPC, and so on.

In terms of functionality, the multicore HAL device provides:

• Send operation
• Receive operation

6.4.10.1 Device definition

The HAL device definition for multicore devices can be found under framework/hal_api/hal_multicore_
dev.h and is reproduced below:

/*! @brief Attributes of a multicore device. */
struct _multicore_dev
{
 /* unique id which is assigned by multicore manager during the registration
 */
 int id;
 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* operations */
 const multicore_dev_operator_t *ops;
 /* private capability */
 multicore_dev_private_capability_t cap;
};

The device operators associated with multicore HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a multicore device */
typedef struct _multicore_dev_operator
{
 /* initialize the dev */
 hal_multicore_status_t (*init)(multicore_dev_t *dev,
 multicore_dev_callback_t callback, void *param);
 /* deinitialize the dev */
 hal_multicore_status_t (*deinit)(const multicore_dev_t *dev);
 /* start the dev */
 hal_multicore_status_t (*start)(const multicore_dev_t *dev);
 /* Multicore Send the message */
 hal_multicore_status_t (*send)(const multicore_dev_t *dev, void *data,
 unsigned int size);
 /* input notify */
 hal_multicore_status_t (*inputNotify)(const multicore_dev_t *dev, void
 *data);
} multicore_dev_operator_t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
117 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

In order to achieve a two-way communication between cores, hal devices must implement both send and
receive operations. The send is triggered by the multicore manager, while receive is async, the other core being
able to send at any moment. All async operations are handled within Multicore manager callback.

/**
 * @brief callback function to notify multicore manager that an async event took
 place
 * @param dev Device structure of the multicore device calling this function
 * @param event the event that took place
 * @param fromISR True if this operation takes place in an irq, 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*multicore_dev_callback_t)(const multicore_dev_t *dev,
 multicore_event_t event, uint8_t fromISR);

/*! @brief Structure that characterizes the multicore device. */
typedef struct _multicore_dev_private_capability
{
 /* callback */
 multicore_dev_callback_t callback;

} multicore_dev_private_capability_t;

6.4.10.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in object
oriented-languages.

For more information about operators, see Section 6.4.1.3.1.

6.4.10.2.1 Init

/* initialize the dev */
hal_multicore_status_t (*init)(multicore_dev_t *dev, multicore_dev_callback_t
 callback, void *param);

Init should initialize any hardware resources required by the multicore device (pins, ports, clock, and so on).

6.4.10.2.2 Deinit

/* deinitialize the dev */
hal_multicore_status_t (*deinit)(const multicore_dev_t *dev);

"Deinitialize" the multicore device.

DeInit should release any hardware resources a multicore device might use (I/O ports, IRQs, and so on), turn
off the hardware, and perform any other shutdown the device requires.

6.4.10.2.3 Start

/* start the dev */
hal_multicore_status_t (*start)(const multicore_dev_t *dev);

Start should start the flow. Handshake protocol can be implemented. The purpose of a handshake protocol is
to verify that both cores initialized properly the multicore unit.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
118 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.10.2.4 Send

/* Multicore Send the message */
hal_multicore_status_t (*send)(const multicore_dev_t *dev, void *data, unsigned
 int size);

Multicore manager passes a buffer to the underlying level. The multicore device must send the message,
characterized by the size, to the counterpart device from the other core. On the other side, after receiving the
message, the hal device is responsible to call the callback, to make the multicore manager aware of the new
message.

6.4.10.3 FreeRTOS message buffer Device

Message buffers from FreeRTOS are used for one-way communication between two threads. To create a two-
way communication, a send and receive task must be created on both cores. Multicore Manager acts as a send
task, while the receive task is created within the Hal device init. The receive task also inherits the priority
of the send task. The portable layer, mandatory for this message buffer solution to work in dual-core system, is
provided as part of the SDK middleware for RT1170 and is based on the MCMGR middleware. MCMGR uses
under the hood the MU peripheral.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
119 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 31. Step-by-step diagram

The send and receive tasks must be built having a non-blocking design pattern in mind. To have the best
response time, they must be initialized with the highest priority.

The number of shared buffers that must be allocated is two, one for each one-way communication. The size is
at least the maximum message size, after a deep copy has been performed. They must be allocated statically at
compile or a procedure to advertise between cores the address must be implemented.

• CM7/ Write Buffer = CM4/ Read Buffer
• CM4/ Write Buffer = CM7/ Read Buffer

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
120 / 226

lnitialiZethe mu lticore
manager, early inrt. Call th is

function as close to the reset
entJy as possible, (into the
startup sequence) to al low
Core Up event triggering

Multicore manager init
function to be cal led in the

application main. It registers
critica l and generic event

handlers

Register the application
event before starting the

secondary core

Trigger the secondary core
application execution. Pass tt,e
startupData to the secondary
core application. Either wait

unti l the secondary core reads
and confirms the startup data
(kMCMGR_Slart_Synchronous

mode) or does not wait
(kMCMGR_start_Asynchronous

mode)

Register the
RemoleExceptionEvent

hand ler

~
MCMGR~Eartylnrt()

RemoteCoreUpEvent message -. I

MCMGR lnil()

MCMGR_RegisterEvenl()

release the secondary core

MCMGR startCoreQ 1 tromtttereset ►.

~----'S---~~ RemoteCoreUpEventmessage MCMGR 'Earlylnil()
I

ISR ISR

FeedstartupDataEvent message

startuoDataEvent messaae

M CMG R_ GetStartu p□ata ()

FeedstartupDataEvent message

RemoteApplicationEvent message
MCMGR TriggerEventO I

MCMGR R gisterEvent()

RemoteExceptionEvent message

lnilialtze the mutticore
manager, early init. Ca ll this

function as close to the reset
entry as poss ible, (into the
startu p sequence) to all ow
CoreUp event triggering

Mutticore manager inil
function to be called in th e

application main. It registers
critical and generic event

handlers

Trigger a mechanism to get
the startup data from tt,e

primary core to the
secondary core.

Triggedhe application event
to signa l the primary core

some application state and
to pass the accompany data

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

For more information about RTOS Message Buffers API, check FreeRTOS documentation

void vGenerateMulticoreInterrupt(void *xUpdatedMessageBuffer)
{
 /* Trigger the inter-core interrupt using the MCMGR component.
 Pass the APP_MESSAGE_BUFFER_EVENT_DATA as data that accompany
 the kMCMGR_FreeRtosMessageBuffersEvent event. */
 (void)MCMGR_TriggerEventForce(kMCMGR_FreeRtosMessageBuffersEvent,
 kMulticore_DataEvent);
}

static void RemoteAppReadyEventHandler(uint16_t eventData, void *context)
{
 *(bool *)context = (bool)eventData;
}

static void FreeRtosMessageBuffersEventHandler(uint16_t eventData, void
 *context)
{
 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* Make sure the message has been addressed to us. Using eventData that
 accompany
 the event of the kMCMGR_FreeRtosMessageBuffersEvent type, we can
 distinguish
 different consumers. */
 if (kMulticore_DataEvent == eventData)
 {
 /* Call the API function that sends a notification to any task that is
 blocked on the xUpdatedMessageBuffer message buffer waiting for data to
 arrive. */
 (void)xMessageBufferSendCompletedFromISR(xReadMessageBuffer,
 &xHigherPriorityTaskWoken);
 }

 /* Normal FreeRTOS "yield from interrupt" semantics, where
 HigherPriorityTaskWoken is initialzed to pdFALSE and will then get set to
 pdTRUE if the interrupt unblocks a task that has a priority above that of
 the currently executing task. */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

 /* No need to clear the interrupt flag here, it is handled by the mcmgr. */
}

static void _HAL_MulticoreDev_MessageBuffer_RcvMsgHandler(void *param)
{
 /* Size to cover on MAX message. Can be lowered if we know what we send */
 static uint8_t pMessageBufferRcv[MB_STORAGE_BUFFER_SIZE];

 while (1)
 {
 size_t xReceivedBytes = xMessageBufferReceive(xReadMessageBuffer, (void
 *)pMessageBufferRcv,
 sizeof(pMessageBufferRcv),
 portMAX_DELAY);

 LOGI("Remote Message receive, size = %d", xReceivedBytes);
 if ((xReceivedBytes != 0) &&
 (s_MulticoreDev_MessageBuffer.cap.callback != NULL))
 {

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
121 / 226

https://www.freertos.org/RTOS-message-buffer-API.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 multicore_event_t multicore_event;
 multicore_event.eventId = kMulticoreEvent_MsgReceive;
 multicore_event.data = pMessageBufferRcv;
 multicore_event.size = xReceivedBytes;

 s_MulticoreDev_MessageBuffer.cap.callback(&s_MulticoreDev_MessageBuffer,
 multicore_event, false);
 }
 }
}

static hal_multicore_status_t HAL_MulticoreDev_MessageBuffer_Deinit(const
 multicore_dev_t *dev)
{
 hal_multicore_status_t status = kStatus_HAL_MulticoreSuccess;

 return status;
}

static hal_multicore_status_t HAL_MulticoreDev_MessageBuffer_Send(const
 multicore_dev_t *dev, void *data, uint32_t size)
{
 hal_multicore_status_t status = kStatus_HAL_MulticoreSuccess;

 if ((data != NULL) && (size != 0))
 {
 uint32_t streamFreeSpace =
 xStreamBufferSpacesAvailable(xWriteMessageBuffer);
 if (streamFreeSpace < size)
 {
 status = kStatus_HAL_MulticoreError;
 LOGE("Not enough space, free %x needed %x", streamFreeSpace, size);
 }

 if (status == kStatus_HAL_MulticoreSuccess)
 {
 (void)xMessageBufferSend(xWriteMessageBuffer, data, size, 0);
 LOGI("MulticoreDev_send: Send %d bytes", size);
 }
 }
 else
 {
 LOGD("MulticoreDev_send: Nothing to send");
 }

 return status;
}

static hal_multicore_status_t HAL_MulticoreDev_MessageBuffer_InputNotify(const
 multicore_dev_t *dev, void *data)
{
 hal_multicore_status_t status = kStatus_HAL_MulticoreSuccess;

 return status;
}

static hal_multicore_status_t HAL_MulticoreDev_MessageBuffer_Start(const
 multicore_dev_t *dev)
{
 hal_multicore_status_t status = kStatus_HAL_MulticoreSuccess;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
122 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* Wait until the secondary core application signals it is ready to
 communicate. */
 while (true != s_SecondCoreReady)
 {
 (void)MCMGR_TriggerEvent(kMCMGR_RemoteApplicationEvent, true);
 vTaskDelay(pdMS_TO_TICKS(10));
 };

 /* Send one more event to be sure the other core got it */
 (void)MCMGR_TriggerEvent(kMCMGR_RemoteApplicationEvent, true);

 if (xTaskCreate(_HAL_MulticoreDev_MessageBuffer_RcvMsgHandler,
 MULTICORE_RCV_TASK_NAME, MULTICORE_RCV_TASK_STACK,
 NULL, uxTaskPriorityGet(NULL), NULL) != pdPASS)
 {
 LOGE("[MessageBuffer] Task creation failed!.");
 while (1)
 ;
 }

 return status;
}

static hal_multicore_status_t
 HAL_MulticoreDev_MessageBuffer_Init(multicore_dev_t *dev,

 multicore_dev_callback_t callback,
 void *param)
{
 hal_multicore_status_t status = kStatus_HAL_MulticoreSuccess;
 LOGD("Start Multicore MessageBuffer INIT");

 s_MulticoreDev_MessageBuffer.cap.callback = callback;

 xWriteMessageBuffer = xMessageBufferCreateStatic(
 /* The buffer size in bytes. */
 MB_STORAGE_BUFFER_SIZE,
 /* Statically allocated buffer storage area. */
 &ucWriteMessageBufferStorage,
 /* Message buffer handle. */
 &xWriteMessageBufferStruct);

 (void)MCMGR_RegisterEvent(kMCMGR_FreeRtosMessageBuffersEvent,
 FreeRtosMessageBuffersEventHandler, ((void *)0));
 (void)MCMGR_RegisterEvent(kMCMGR_RemoteApplicationEvent,
 RemoteAppReadyEventHandler, (void *)&s_SecondCoreReady);

 /* We initied we are ready to rcv messages */
 LOGD("Exit Multicore MessageBuffer INIT");
 return status;
}

6.5 Events

6.5.1 Overview

Events are a means by which information is communicated between different devices via their managers.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
123 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.5.1.1 Event triggers

Events can correspond to many different happenings during the runtime of the application, and can include
things like:

• Button pressed
• Face detected
• Shell command received

When an event is triggered, the device that first received the event communicates that event to its manager, that
in turn notifies other managers designated to receive the event.

For example, when a button is pressed, a flow similar to the following takes place:

1. The "Push Button" HAL device receives an interrupt corresponding to the button that was pressed.
2. Inside the HAL device's interrupt handler, the device associates an event with the button that was pressed.
3. The HAL device specifies which managers should receive the event.
4. The HAL device forwards the event to its manager.

The code that corresponds to this scenario can be seen in the below excerpts from framework/hal/input/
hal_

input_push_buttons.c and source/event_handlers, respectively.

void _HAL_InputDev_IrqHandler(button_data_t *button, switch_press_type_t
 pressType)
{
 if (s_InputDev_PushButtons.cap.callback != NULL)
 {
 uint32_t receiverList;
 if (APP_InputDev_PushButtons_SetEvent(button->buttonId, pressType,
 &s_pEvent, &receiverList) == kStatus_Success)
 {
 s_inputEvent.inputData = s_pEvent;
 uint8_t fromISR = __get_IPSR();
 s_InputDev_PushButtons.cap.callback(&s_InputDev_PushButtons,
 kInputEventID_Recv, receiverList,
 &s_inputEvent, 0, fromISR);
 }
 else
 {
 LOGE("No valid event associated with SW%d button %s press", button-
>buttonId,
 pressType == kSwitchPressType_Short ? "short" : "long");
 }
 }
}

The "callback" function in the above code refers to an internal callback
 function inside the [Input Manager](../device_managers/input_manager.md)
which relays input events to each of the managers specified in an event's
 `receiverList`.

 switch (button)
 {
 case kSwitchID_1:
 if (pressType == kSwitchPressType_Long)
 {

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
124 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 LOGD("Long PRESS Detected.");
 unsigned int totalUsageCount;
 FWK_LpmManager_RequestStatus(&totalUsageCount);
 FWK_LpmManager_EnableSleepMode(kLPMManagerStatus_SleepEnable);
 }
 break;

 case kSwitchID_2:
 if ((pressType == kSwitchPressType_Short) || (pressType ==
 kSwitchPressType_Long))
 {
 *receiverList = 1 << kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId = kEventFaceRecID_DelUser;
 s_FaceRecEvent.delFace.hasName = false;
 s_FaceRecEvent.delFace.hasID = false;
 *event = &s_FaceRecEvent;
 }
 break;

 case kSwitchID_3:
 if ((pressType == kSwitchPressType_Short) || (pressType ==
 kSwitchPressType_Long))
 {
 *receiverList = 1 << kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId = kEventFaceRecID_AddUser;
 s_FaceRecEvent.addFace.hasName = false;
 *event = &s_FaceRecEvent;
 }
 break;

 default:
 ret = kStatus_Fail;
 break;
 }

 return ret;

6.5.1.2 Types of events

Events can be used to communicate all sorts of information, but the two types of events defined by default are
InferComplete events and InputNotify events.

Both types of events represent different information being communicated to and by the HAL devices.

6.5.1.2.1 InferComplete events

Inference events are used to indicate that a vision/voice algorithm HAL device has completed a stage in its
inference pipeline.

Note: Only output HAL devices can respond to `InferComplete` events. This is not true of `InputNotify` events.

In the current application, it can refer to several things, including:

• Face detected
• Face recognized
• Fake face detected

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
125 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Output HAL devices can respond to inference events by implementing an inferComplete method. When an
"InferComplete" event is triggered, the output manager attempts to call the inferComplete event handler of
each of its devices, (assuming the device has implemented an inferComplete function).

As part of the inferComplete function call, the output manager also communicates the HAL device from
which the event originated, the ID of the event received, as well as any additional information related to the
event that was generated.

For example, a "Face Recognized" event also includes the ID of the face being recognized. Below is an
example of how the RGB LED HAL device responds to several different events.

static hal_output_status_t HAL_OutputDev_RgbLed_InferComplete(const output_dev_t
 *dev,

 output_algo_source_t source,
 void *inferResult)
{
 vision_algo_result_t *visionAlgoResult = (vision_algo_result_t
 *)inferResult;
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 if (visionAlgoResult != NULL)
 {
 if (visionAlgoResult->id == kVisionAlgoID_OasisLite)
 {
 oasis_lite_result_t *result = &(visionAlgoResult->oasisLite);
 if (source == kOutputAlgoSource_Vision)
 {
 if ((result->face_recognized) && (result->face_id >= 0))
 {
 RGB_LED_SET_COLOR(kRGBLedColor_Green);
 }
 else if (result->face_count)
 {
 RGB_LED_SET_COLOR(kRGBLedColor_Red);
 }
 else
 {
 RGB_LED_SET_COLOR(kRGBLedColor_Off);
 }
 }
 }

For more information about handling events, see Event handlers.

6.5.1.2.2 InputNotify events

Input events are events that indicate that input has been received by an input HAL device.

Only input HAL devices can generate an "InputNotify" event.
However, all HAL devices
(with the exception of LPM, Flash, and Graphics devices)
are able to respond to an "InputNotify" event.

Examples of input events include:

• Button pressed
• Shell command received

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
126 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Wi-Fi/BLE input received

The event to generate for a given input is decided by the device which receives the input.

For example, the Push-Button device associates different events based on the different button presses and the
duration of those button presses, either long or short presses.

 switch (button)
 {
 case kSwitchID_1:
 if (pressType == kSwitchPressType_Long)
 {
 LOGD("Long PRESS Detected.");
 unsigned int totalUsageCount;
 FWK_LpmManager_RequestStatus(&totalUsageCount);
 FWK_LpmManager_EnableSleepMode(kLPMManagerStatus_SleepEnable);
 }
 break;

 case kSwitchID_2:
 if ((pressType == kSwitchPressType_Short) || (pressType ==
 kSwitchPressType_Long))
 {
 *receiverList = 1 << kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId = kEventFaceRecID_DelUser;
 s_FaceRecEvent.delFace.hasName = false;
 s_FaceRecEvent.delFace.hasID = false;
 *event = &s_FaceRecEvent;
 }
 break;

 case kSwitchID_3:
 if ((pressType == kSwitchPressType_Short) || (pressType ==
 kSwitchPressType_Long))
 {
 *receiverList = 1 << kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId = kEventFaceRecID_AddUser;
 s_FaceRecEvent.addFace.hasName = false;
 *event = &s_FaceRecEvent;
 }
 break;

 default:
 ret = kStatus_Fail;
 break;
 }

Alongside an input event, the HAL device from which the event originated may also relay additional information .
Depending on the event, this may correspond to the button that was pressed, the shell command and args that
were received, and so on.

In the above example, we can see that pressing the SW3 push-button generates a
kEventFaceRecID_AddUser event, specifying that there is no name for the face to add.

A list of general events can be found in `hal_event_descriptor_common.h`,
 while a list of face recognition-specific events can be found in
 `hal_event_descriptor_face_rec.h`.
It is recommended that new events be added to the
 `hal_event_descriptor_common.h` file.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
127 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

To respond to an "InputNotify" event, a HAL device must implement an inputNotify handler function. When
an "InputNotify" event is triggered, each manager which receives the event attempts to call the inputNotify
method of every one of its devices (assuming the device has implemented an inputNotify method).

For more information regarding event handlers, see Event handlers.

6.5.2 Event handlers

Because events are the primary means by which the framework communicates between devices, a mechanism
to respond to those events is necessary for them to be useful. Event handlers were created for this explicit
purpose.

There are two kinds of event handler:

• Default Handlers
• App-specific Handlers

Event handlers, like other device operators, are passed via the device's operator struct to its manager.

const static display_dev_operator_t s_DisplayDev_LcdifOps = {
 .init = HAL_DisplayDev_LcdifRk024hh2_Init,
 .deinit = HAL_DisplayDev_LcdifRk024hh2_Uninit,
 .start = HAL_DisplayDev_LcdifRk024hh2_Start,
 .blit = HAL_DisplayDev_LcdifRk024hh2_Blit,
 .inputNotify = HAL_DisplayDev_LcdifRk024hh2_InputNotify,
};

Each HAL device may define its own handlers for any given event. For example, a developer may want
the RGB LEDs to turn green when a face is recognized, but have the UI display a specific overlay for that
same event. To do it, the RGB Output HAL device and the UI Output HAL device can each implement an
InferComplete handler which will be called by their manager when an "InferComplete" event is received.

A HAL device does NOT have to implement an event handler for any specific event,
nor does it have to implement an `InputNotify` handler (applicable for most
 device types)
or an `InferComplete` handler (applicable only for output devices).

6.5.2.1 Default handlers

Default event handlers are exactly what their name would suggest -- the default means by which a device
handles events. A HAL device's default event handlers (InputNotify, InferComplete, and so on) can be
found in the HAL device driver itself.

Nearly every device has a default handler implemented, although most devices will only actually handle a few
types of events.

Note: Devices that do not have a handler implemented can be extended to have one by using a similar device
as an example.

static hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_InputNotify(const
 display_dev_t *receiver, void *data)
{
 hal_display_status_t error = kStatus_HAL_DisplaySuccess;
 event_base_t eventBase = *(event_base_t *)data;
 event_status_t event_response_status = kEventStatus_Ok;

 if (eventBase.eventId == kEventID_SetDisplayOutputSource)
 {

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
128 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 event_common_t event = *(event_common_t *)data;
 s_DisplayDev_Lcdif.cap.srcFormat =
 event.displayOutput.displayOutputSource;
 s_NewBufferSet = true;
 if (eventBase.respond != NULL)
 {
 eventBase.respond(eventBase.eventId, &event.displayOutput,
 event_response_status, true);
 }
 LOGI("[display_dev_inputNotify]: kEventID_SetDisplayOutputSource devID
 %d, srcFormat %d", receiver->id,
 event.displayOutput.displayOutputSource);
 }
 else if (eventBase.eventId == kEventID_GetDisplayOutputSource)
 {
 display_output_event_t display;
 display.displayOutputSource = s_DisplayDev_Lcdif.cap.srcFormat;
 if (eventBase.respond != NULL)
 {
 eventBase.respond(eventBase.eventId, &display,
 event_response_status, true);
 }
 LOGI("[display_dev_inputNotify]: kEventID_GetDisplayOutputSource devID
 %d, srcFormat %d", receiver->id,
 display.displayOutputSource);
 }

 return error;
}

Some devices will not handle any events at all and will instead return 0 after performing no action.

hal_camera_status_t HAL_CameraDev_CsiGc0308_InputNotify(const camera_dev_t *dev,
 void *data)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 return ret;
}

Alternatively, some devices which do not require an event handler may simply return a NULL pointer instead.

const static display_dev_operator_t s_DisplayDev_LcdifOps = {
 .init = HAL_DisplayDev_Lcdifv2Rk055ah_Init,
 .deinit = HAL_DisplayDev_Lcdifv2Rk055ah_Deinit,
 .start = HAL_DisplayDev_Lcdifv2Rk055ah_Start,
 .blit = HAL_DisplayDev_Lcdifv2Rk055ah_Blit,
 .inputNotify = NULL,
};

Managers will not call the InputNotify or other handler if that handler points to NULL.

A device's default handler whether for InputNotify events or InferComplete or otherwise can be
overridden by an "app-specific" handler.

6.5.2.2 App-specific handlers

App-specific handlers are device handlers which are defined for a specific "app".

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
129 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Not every device must implement an app-specific handler, but because default handlers are implemented using
WEAK functions, any device which has a default event handler can have that handler overridden.

Note: Some devices may not have implemented their default handlers using `WEAK` functions, but may be
updated to do so in the future.

For example, the IR + White LEDs may not require project-specific handlers because they will always react the
same way to a kEventID_SetConfig/kEventID_GetConfig command. Alternatively, an application may
wish to override and/or extend that default event handling behavior so that, for example, the LEDs increase in
brightness when an "Add Face" event is received.

To help denote an app-specific handler, App-specific handlers start with the APP prefix. If an app-specific
handler for a device exists, it can be found in source/event_handlers/{APP_NAME}_{DEV_TYPE}_{DEV_
NAME}.c

7 Coffee machine

7.1 Introduction
This Coffee Machine application demonstrates the Coffee machine use case with the following core
functionalities:

• Coffee machine GUI with touch support
• Local voice command to control the use cases of Coffee machine
• Face recognition to store user's coffee preferences automatically

For leveraging the full computational power of the RT117H, the image has been split into two images that are
running in parallel on the CM7 and CM4 cores. The Coffee Machine CM7 acts as an AI block, handling all the
machine learning operations, such as face recognition and voice command. The operation has been optimized
to obtain the best performance on this type of MCU. The Coffee Machine CM4 holds the user interaction
(display, shell, buttons). The CM4 image is loaded into the memory by the CM7 core.

By default, i.MX RT117H boot from CM7. By fusing BT_CORE_SEL (Bit 12 in 0x960), the chip switches to CM4
as the main core. For more info on this topic, check AN13264.

The Coffee Machine uses the following HW components and peripherals:

• 2 x PDM MIC - configured to work with 16 kHz sampling. The conversion to PCM is done in hardware using
the PDM microphone interface.

• 16 KHz raw data to RT117x MQS HW peripheral that generates PWM data output.
• External filtering and coupling.
• Analog audio amplifier
• MIPI GC2145 Camera - configured to work with 600x800 resolution.
• LCDIFV2 Rocktech RK055MHD091 - configured to work at the HD resolution of 1280x720

To change this configuration, check HAL code and Section 10.1

It uses NXP's below core technologies:

• LVGL-based GUI
• Local voice command algorithm
• Face recognition algorithm
• Dual-core architecture based on multicore manager (mcmgr) middleware component.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
130 / 226

https://www.nxp.com/docs/en/application-note/AN13264.pdf

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

7.2 Architecture

Figure 32. Architecture diagram

7.3 Software block diagram

Figure 33. Software diagram

It includes two projects as below:

• Host CM7 project

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
131 / 226

Framework
Display

MQS HAL .. Camera
Speaker

Vision A lgo HAL VoiceAlgo Touch

Result
Mic Voice 6!9Q HA L Notification

PxP
'---'

Message GPU2D

Peripherals CM7 IPC with Shared Memory CM4 Peripherals

CM7 (Visio n & Voice algorithm accelerator) : CM4 (UI & System control unit):

Framework

Vision algorithm with VGA input frames

Voice algorithm (AFE + ASR) with mic input

MOS audio playback

IPC communication with shared memory

Framework

CSI/MIPI Camera preview@VGA

LVGL GUI @720p with VGLite 2D GPU acceleration

Vision algorithm input frames color space conversion with PxP

Touch panel input

IPC communication with shared memory

i ____ Boot Loader ____ ! Multicore
Manager

Framework
Output

Manager
Algorilhm
Manager

Application Control

!_ OT¥ !~~~te __ !

:__ MSD _FW Update_ !

-

~

i
u.

.:cc;_

Middleware
Multi-Core
Manager

File-system

Serial-manager

MOTT

m_BedTLS

lwlP

LVGL

VGLite

H.264

Opus decode

Multicore
Manager HAL

Hardware Abstraction
Output Manager I

HAL
Algorithm Manager

HAL

ML Speech Engine Runtime Library

IP- VIT(Voice
___ xberen or Intelligent

Audio Front End Runtime Library

VoiceSeeker> Conve~ a

lud• ipn<h ... " r,o.,,., Technology)

Automatic Speech Recognition
Wake Words & Commands

Beamforming
Echo

Cancellation
and Barge-in

Full duplex
speaker phone

NXP Edge Ready Machine Vision Library
NXP Facial Biometric Authentication & Gesture Recognition API

Speaker

Cf)

0 :;;

NXP MCU inference engine

Face Detection

Face Quality

Face Recognition

Face Alignment

20 Liveness Algorithm

Gesture Recognition

Memorv ManaQement

CM7 Driver Layer

OMA FLASH Dual Core

.9
~ :;;:;; ii: ::::>

Cl CJ Cf) :;; :;;
0..0.. 0 w

Cf)

a >-wC::
a::O
<(:;;
::i:::W Cf):;;

GUI Shell Wi-Fi/BLE Voice Input

Mulbcore
Manager

Input
Manager

Framework
camera
Manager

Output
Manager

Oispley
Manager

Power Manager
Manager

Hardware Abstraction Layer

ii

Multicore
Manager HAL

Input Manager
HAL

Camera

N
ui
'1 ui
ii: C.)

~

Wi-Fi BLE

0 ti: □ Cf) <(
::::>

C.)
£:!

Camera Manager
HAL

Output Manager
HAL

CM4 Driver !:ayer

Display

ui u..

□
c;i

u ii:
-' ~

Display Manager
HAL

Power Manager
HAL

GPU LED

Cl

0..1 N :;;
Ir' ::::> ~ 0..

(9

Dual Core Touch

i Cl~
WO ::::> a:: :;; C.) :;; w <(w £:! Cf) vi:;;

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Slave CM4 project

Each project uses a two-layer architecture containing the Framework + HAL layer and the Application layer.
For the details, refer to the documentation on each project.

7.4 Coffee machine CM7
This Coffee Machine CM7 host project runs on the CM7 core.

It is linked to flash with the combination of the CM4 project.

The CM7 was designed to focus on the vision and voice algorithms' processing to get the best performance.

7.5 Main functionalities
• Vision algorithm
• Voice algorithm
• Audio playback
• Microphone stream input
• Multicore communication
• Littlefs format filesystem

7.6 Boot sequence
The "main" entry of this project is located in the ../coffee_machine/cm7/source/sln_smart_tlhmi_
cm7.cpp file. The basic boot-up flow is:

• Initialize board level
• Initialize framework
• Register HAL devices
• Start the framework
• Start the FreeRTOS scheduler

int main(void)
{
 /* init the board */
 APP_BoardInit();

 ...

 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 vTaskStartScheduler();

 for (;;)
 {
 }
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
132 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

7.7 Board level initialization
The board-level initialization is implemented in the APP_BoardInit() entry which is located in ../coffee_
machine/cm7/source/sln_smart_tlhmi_cm7.cpp. Below is the main flow:

• Relocate vector table into RAM
• Configure MPU, Clock, and Pins
• Debug console with hardware semaphore initialization
• System time stamp start
• Load resources from flash into the share memory region
• Multicore manager init and boot slave core

void APP_BoardInit(void)
{
 BOARD_RelocateVectorTableToRam();

 BOARD_ConfigMPU();
 BOARD_InitBootPins();
 BOARD_InitBootClocks();

 BOARD_InitDebugConsole();
 Time_Init(1);

 APP_LoadResource();

 /* Initialize the HW Semaphore */
 SEMA4_Init(BOARD_SEM4_BASE);

#if defined(ENABLE_MASTER) && ENABLE_MASTER
 /* Initialize MCMGR before calling its API */
 (void)MCMGR_Init();

 /* Boot Secondary core application */
 (void)MCMGR_StartCore(kMCMGR_Core1, (void *)(char *)CORE1_BOOT_ADDRESS, 0,
 kMCMGR_Start_Synchronous);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */
}

7.8 Framework managers
The below framework managers are enabled on the cm7 side with the following priorities:

• Vision algorithm manager - P3
• Voice algorithm manager - P3
• Audio processing manager - P2
• Input manager - P1
• Output manager - P4
• Multicore manager - P0
• Flash device manager

Where P0 is the highest priority and P4 is the least prioritized.

Note: Choosing the right priority for the manager is something that must be addressed based on the
requirements. Our recommendation is to keep Vision manager equal to or less than Voice manager, or the
audio sample can be lost.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
133 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Refer to the framework documentation (../framework/docs) for a detailed description of these framework
managers.

Note: To prepare the environment for other framework managers, initialize the filesystem and application
configuration first.

int APP_InitFramework(void)
{
 int ret = 0;

 HAL_FLASH_DEV_REGISTER(Littlefs, ret);
 HAL_OutputDev_SmartTlhmiConfig_Init();

 FWK_MANAGER_INIT(VisionAlgoManager, ret);
 FWK_MANAGER_INIT(VoiceAlgoManager, ret);
 FWK_MANAGER_INIT(AudioProcessing, ret);
 FWK_MANAGER_INIT(OutputManager, ret);
 FWK_MANAGER_INIT(InputManager, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 FWK_MANAGER_INIT(MulticoreManager, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

 return ret;
}

int APP_StartFramework(void)
{
 int ret = 0;

 FWK_MANAGER_START(VisionAlgoManager, VISION_ALGO_MANAGER_TASK_PRIORITY,
 ret);
 FWK_MANAGER_START(OutputManager, OUTPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(AudioProcessing, AUDIO_PROCESSING_TASK_PRIORITY, ret);
 FWK_MANAGER_START(InputManager, INPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(VoiceAlgoManager, VOICE_ALGO_MANAGER_TASK_PRIORITY, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 FWK_MANAGER_START(MulticoreManager, MULTICORE_MANAGER_TASK_PRIORITY, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

 return ret;
}

7.9 Framework HAL devices
The enabled HAL devices are configured in the ../coffee_machine/cm7/board/board_define.h file as
shown below:

#define ENABLE_INPUT_DEV_PdmMic
#define ENABLE_AUDIO_PROCESSING_DEV_Afe
#define ENABLE_DSMT_ASR
#define ENABLE_OUTPUT_DEV_MqsAudio
#define ENABLE_OUTPUT_DEV_SmartTlhmiConfig
#define ENABLE_VISIONALGO_DEV_Oasis_CoffeeMachine
#define ENABLE_FLASH_DEV_Littlefs
#define ENABLE_FACEDB
#define USE_CAMERA_MipiGc2145
#if defined(ENABLE_MASTER) && ENABLE_MASTER
#define ENABLE_MULTICORE_DEV_MessageBuffer

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
134 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

The registration of the enabled HAL devices is implemented in the APP_RegisterHalDevices(...) function
which is located in ../coffee_machine/cm7/source/sln_smart_tlhmi_cm7.cpp:

Note: APP_RegisterHalDevices(...) must be called after the framework initialization
APP_InitFramework(...) and before framework startup APP_StartFramework(...).

int APP_RegisterHalDevices(void)
{
 int ret = 0;

 HAL_OUTPUT_DEV_REGISTER(MqsAudio, ret);
 HAL_AUDIO_PROCESSING_DEV_REGISTER(Afe, ret);
 HAL_INPUT_DEV_REGISTER(PdmMic, ret);
 HAL_VOICEALGO_DEV_REGISTER(Asr, ret);
 HAL_VALGO_DEV_REGISTER(OasisCoffeeMachine, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */
 HAL_INPUT_DEV_REGISTER(WiFiAWAM510, ret);

 return ret;
}

7.10 Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document
located in ../coffee_machine/cm7/freertos/libraries/logging/README.md.

The CM7 and CM4 share the low-level LPUART12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of the LPUART12 peripheral. They share a low-level
timer to get the unified timestamp of the logging information.

7.10.1 Log Task Init

The application calls the xLoggingTaskInitialize(...) API to create the logging task in the main()
entry of this project and is located in ../coffee_machine/cm7/source/sln_smart_tlhmi_cm7.cpp:

xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE, LOGGING_TASK_PRIORITY,
 LOGGING_QUEUE_LENGTH);

7.10.2 Log Macros

There are four kinds of logging that can be used in both cm7 and cm4, which you can find in ../framework/
inc/fwk_log.h.

#ifndef LOGV
#define LOGV(fmt, args...) {implement...}
...
#endif

#ifndef LOGD
#define LOGD(fmt, args...) {implement...}
#endif

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
135 / 226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#ifndef LOGI
#define LOGI(fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE(fmt, args...) {implement...}
#endif

7.11 Coffee Machine database
The Coffee Machine application uses framework flash operations with the low-level littlefs filesystem to store
the recognized user-faces database and user coffee information. The detailed usage API is located in files ../
framework/hal/vision/hal_sln_facedb.h and ../coffee_machine/cm7/source/hal_sln_cof
feedb.h. The face database and user coffee information database entry are bound together using the user id.
The user id is a unique identifier on one device.

To make it easier for users to add their database with personal attributes, we split the face database from user
database. The user should create something similar with hal_sln_coffeedb.h and add attributes like in the
coffee_attribute_t structure.

7.11.1 Face recognition database usage

g_facedb_ops handles all kinds of face database operations.

typedef struct _facedb_ops
{
 facedb_status_t (*init)(uint16_t featureSize);
 facedb_status_t (*saveFace)(void);
 facedb_status_t (*addFace)(uint16_t id, char *name, void *face, int size);
 facedb_status_t (*delFaceWithId)(uint16_t id);
 facedb_status_t (*delFaceWithName)(char *name);
 facedb_status_t (*updNameWithId)(uint16_t id, char *name);
 facedb_status_t (*updFaceWithId)(uint16_t id, char *name, void *face, int
 size);
 facedb_status_t (*getFaceWithId)(uint16_t id, void **pFace);
 facedb_status_t (*getIdsAndFaces)(uint16_t *face_ids, void **pFace);
 facedb_status_t (*getIdWithName)(char *name, uint16_t *id);
 facedb_status_t (*genId)(uint16_t *new_id);
 facedb_status_t (*getIds)(uint16_t *face_ids);
 bool (*getSaveStatus)(uint16_t id);
 int (*getFaceCount)(void);
 char *(*getNameWithId)(uint16_t id);
} facedb_ops_t;

extern const facedb_ops_t g_facedb_ops;

7.11.2 User coffee information database usage

g_coffedb_ops handles all kinds of user information database operations.

ypedef enum _coffee_type
{
 Coffee_Espresso,
 Coffee_Americano,
 Coffee_Cappuccino,
 Caffee_Latte,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
136 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

} coffee_type_t;

typedef enum _coffee_size
{
 Coffee_Small,
 Coffee_Medium,
 Coffee_Large,
} coffee_size_t;

typedef enum _coffee_strength
{
 Coffee_Soft,
 Coffee_Mild,
 Coffee_Strong,
} coffee_strength_t;

typedef struct _coffee_attribute
{
 uint16_t id;
 uint8_t type;
 uint8_t size;
 uint8_t strength;
 uint8_t reserved[16];
} coffee_attribute_t;

typedef struct _coffeedb_ops
{
 coffeedb_status_t (*init)(void);
 coffeedb_status_t (*deinit)(void);
 coffeedb_status_t (*addWithId)(uint16_t id, coffee_attribute_t *attr);
 coffeedb_status_t (*delWithId)(uint16_t id);
 coffeedb_status_t (*updWithId)(uint16_t id, coffee_attribute_t *attr);
 coffeedb_status_t (*getWithId)(uint16_t id, coffee_attribute_t *attr);
} coffeedb_ops_t;

extern const coffeedb_ops_t g_coffedb_ops;

7.12 Coffee machine CM4
This Coffee Machine CM4 slave project runs on the CM4 core.

It is linked to SDRAM and is embedded into the CM7 project.

The CM7 project handles the loading of this CM4 project into SDRAM and launching it.

7.13 Main functionalities
• Main GUI based on LVGL with Vglite graphics acceleration
• Camera with 2D PxP graphics acceleration
• Display for the camera preview and LVGL GUI
• USB shell
• LED indicator
• Multicore with messaging and shared memory communication

7.14 LVGL GUI screens and widgets
All the LVGL GUI screens and widgets are generated with NXP's GUI Guider tools.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
137 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Refer the GUI Guider home page for more information.

7.15 LVGL and Vglite library
The LVGL and Vglite components are directly ported from RT1170 SDK and we did not modify them in our
solution.

Also the code for the LVGL GUI screens and widgets, which are generated by NXP's GUI guider, is not
frequently changed.

To speed up the building of the whole project, we moved these components into one static library and linked the
library into the CM4 application project.

This LVGL and Vglite library project is located in the coffee_machine/lvgl_vglite_lib folder.

7.16 Boot sequence
Below is the core boot up flow:

• Board level initialization
• Framework initialization
• HAL devices registration
• Framework startup
• FreeRTOS scheduler startup

The main() entry of this project is located in ../coffee_machine/cm4/source/sln_smart_tlhmi_
cm4.cpp file:

int main(void)
{
 /* init the board */
 APP_BoardInit();
 ...
 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 vTaskStartScheduler();
 for (;;)
 {
 } /* should never get here */
 return 0;
}

7.17 Board level initialization
The board level initialization is implemented in the APP_BoardInit() entry which is located in the ../
coffee_machine/cm4/source/sln_smart_tlhmi_cm4.cpp file.

Below is the main flow:

• MPU, Clock, and Pins configuration
• Multicore manager init and slave startup
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
138 / 226

https://www.nxp.com/design/software/development-software/gui-guider

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Peripherals initialization

void APP_BoardInit()
{
 BOARD_ConfigMPU();
 BOARD_BootClockRUN();
 BOARD_InitBootPins();

#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 uint32_t startupData, i;
 mcmgr_status_t status;
 (void)MCMGR_Init();
 /* Get the startup data */
 do
 {
 status = MCMGR_GetStartupData(&startupData);
 } while (status != kStatus_MCMGR_Success);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 ...
 BOARD_MIPIPanelTouch_I2C_Init();
 BOARD_InitEDMA();
 Time_Init(1);
}

7.18 LVGL image resource and icon resource loading
All the LVGL images, data, and icon data are merged into one continuous binary block with the 64 Bytes aligned
of each image/icon.

The cm7 loads this resource binary block into the dedicated memory region res_sh_mem.

The following two functions load each of these LVGL images and icons from this region during the boot.

Setup the LVGL images is implemented in ../coffee_machine/cm4/generated/gui_guider.c:

void setup_imgs(unsigned char *base)
{
 brewing_animimg_brewingf01.data = (base + 0);
 brewing_animimg_brewingf02.data = (base + 120000);
 brewing_animimg_brewingf03.data = (base + 240000);

}

Load the icons (../framework/hal/output/hal_output_ui_coffee_machine.c):

void LoadIcons(void *base)
{
 s_Icons[ICON_PROGRESS_BAR] = (base + 0);

 s_Icons[ICON_VIRTUAL_FACE_BLUE] = (base + 6720);
 s_Icons[ICON_VIRTUAL_FACE_GREEN] = (base + 364608);
 s_Icons[ICON_VIRTUAL_FACE_RED] = (base + 722496);
 // Icons Total: 0x00107c40 1080384
}

7.19 Framework managers
The below framework managers are enabled on the cm4 side with the following priorities:
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
139 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Low-power manager
• Camera manager - P2
• Display manager - P2
• Multicore manager - P0
• Output manager - P1
• Input manager - P2

Where P0 is the highest priority and P3 is the least prioritized.

For a more detailed description of these framework managers, refer to the framework documentation (../
framework/docs/introduction.md).

Framework initialization (../coffee_machine/cm4/source/sln_smart_tlhmi_cm4.cpp):

int APP_InitFramework(void)
{
 int ret = 0;

 FWK_MANAGER_INIT(LpmManager, ret);
 FWK_MANAGER_INIT(CameraManager, ret);
 FWK_MANAGER_INIT(DisplayManager, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 FWK_MANAGER_INIT(MulticoreManager, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 FWK_MANAGER_INIT(OutputManager, ret);
 FWK_MANAGER_INIT(InputManager, ret);

 return ret;
}

Framework startup (../coffee_machine/cm4/source/sln_smart_tlhmi_cm4.cpp):

int APP_StartFramework(void)
{
 int ret = 0;

 FWK_MANAGER_START(LpmManager, 0, ret);
 FWK_MANAGER_START(CameraManager, CAMERA_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(DisplayManager, DISPLAY_MANAGER_TASK_PRIORITY, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 FWK_MANAGER_START(MulticoreManager, MULTICORE_MANAGER_TASK_PRIORITY, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 FWK_MANAGER_START(OutputManager, OUTPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(InputManager, INPUT_MANAGER_TASK_PRIORITY, ret);

 return ret;
}

7.20 Framework HAL devices
The enabled HAL devices are configured in the ../coffee_machine/cm4/board/board_define.h file as
shown below:

#define ENABLE_GFX_DEV_Pxp
#define ENABLE_DISPLAY_DEV_LVGLCoffeeMachine
#define ENABLE_CAMERA_DEV_MipiGc2145
#define ENABLE_OUTPUT_DEV_RgbLed

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
140 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
#define ENABLE_MULTICORE_DEV_MessageBuffer
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
#define ENABLE_INPUT_DEV_ShellUsb
#define ENABLE_OUTPUT_DEV_UiCoffeeMachine
#define ENABLE_LPM_DEV_Standby

The registration of the enabled HAL devices is implemented in the APP_RegisterHalDevices(...) function
which is located in ../coffee_machine/cm4/source/sln_smart_tlhmi_cm4.cpp:

Note: APP_RegisterHalDevices(...) must be called after the framework initialization
APP_InitFramework(...) and before framework startup APP_StartFramework(...).

int APP_RegisterHalDevices(void)
{
 int ret = 0;

 HAL_GFX_DEV_REGISTER(Pxp, ret);
 HAL_DISPLAY_DEV_REGISTER(LVGLCoffeeMachine, ret);
 HAL_CAMERA_DEV_REGISTER(MipiGc2145, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 HAL_OUTPUT_DEV_REGISTER(RgbLed, ret);
 HAL_INPUT_DEV_REGISTER(ShellUsb, ret);
 HAL_OUTPUT_DEV_REGISTER(UiCoffeeMachine, ret);
 HAL_LPM_DEV_REGISTER(Standby, ret);
#ifdef ENABLE_OUTPUT_DEV_AudioDump
 HAL_OUTPUT_DEV_REGISTER(AudioDump, ret);
#endif /* ENABLE_OUTPUT_DEV_AudioDump */
 /* Add new HAL device registrations here */

 return ret;
}

7.20.1 MipiGc2145 camera HAL device

This HAL device driver is located in ../framework/hal/camera/hal_camera_mipi_gc2145.c.

Below is the configuration of this camera device located in ../coffee_machine/cm4/board/board_
define.h.

#ifdef ENABLE_CAMERA_DEV_MipiGc2145
#define CAMERA_DEV_MipiGc2145_BUFFER_COUNT 2
#define CAMERA_DEV_MipiGc2145_HEIGHT 600 // 720
#define CAMERA_DEV_MipiGc2145_WIDTH 800 // 1280
#define CAMERA_DEV_MipiGc2145_LEFT 0
#define CAMERA_DEV_MipiGc2145_TOP 0
#define CAMERA_DEV_MipiGc2145_RIGHT 799 // 1279
#define CAMERA_DEV_MipiGc2145_BOTTOM 599 // 719
#define CAMERA_DEV_MipiGc2145_ROTATE kCWRotateDegree_0
#define CAMERA_DEV_MipiGc2145_FLIP kFlipMode_None
#define CAMERA_DEV_MipiGc2145_SWAPBYTE 0
#define CAMERA_DEV_MipiGc2145_FORMAT kPixelFormat_YUV1P444_RGB
#define CAMERA_DEV_MipiGc2145_BPP 4
#endif /* ENABLE_CAMERA_DEV_MipiGc2145 */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
141 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

7.20.2 PxP graphics HAL device

This HAL device driver is located in ../framework/hal/misc/hal_graphics_pxp.c.

It represents the 2D graphics device to handle the 2D graphics operations.

7.20.3 LVGLCoffeeMachine display HAL device

This HAL device driver is located in ../framework/hal/display/hal_display_lvgl_coffeemachine.
c.

Below is the configuration of this display device located in ../coffee_machine/cm4/board/board_
define.h.

#ifdef ENABLE_DISPLAY_DEV_LVGLCoffeeMachine
#define DISPLAY_DEV_LVGLCoffeeMachine_BUFFER_COUNT 1
#define DISPLAY_DEV_LVGLCoffeeMachine_HEIGHT 640
#define DISPLAY_DEV_LVGLCoffeeMachine_WIDTH 480
#define DISPLAY_DEV_LVGLCoffeeMachine_StartX 80
#define DISPLAY_DEV_LVGLCoffeeMachine_StartY 50
#define DISPLAY_DEV_LVGLCoffeeMachine_LEFT 0
#define DISPLAY_DEV_LVGLCoffeeMachine_TOP 0
#define DISPLAY_DEV_LVGLCoffeeMachine_RIGHT 479
#define DISPLAY_DEV_LVGLCoffeeMachine_BOTTOM 639
#define DISPLAY_DEV_LVGLCoffeeMachine_ROTATE kCWRotateDegree_270
#define DISPLAY_DEV_LVGLCoffeeMachine_FORMAT kPixelFormat_RGB565
#ifdef ENABLE_CAMERA_DEV_MipiGc2145
#define DISPLAY_DEV_LVGLCoffeeMachine_SRCFORMAT kPixelFormat_YUV1P444_RGB
#else
#define DISPLAY_DEV_LVGLCoffeeMachine_SRCFORMAT kPixelFormat_UYVY1P422_RGB
#endif /* ENABLE_CAMERA_DEV_MipiGc2145 */
#define DISPLAY_DEV_LVGLCoffeeMachine_BPP 2
#endif /* ENABLE_DisplayDev_LVGLCoffeeMachine */

This LVGLCoffeeMachine-display-HAL-device launches the main LVGL task loop for the UI flashing.

static void _LvglTask(void *param)
{
#if LV_USE_LOG
 lv_log_register_print_cb(_PrintCb);
#endif /* LV_USE_LOG */

 lv_port_pre_init();
 lv_init();
 lv_port_disp_init();
 lv_port_indev_init();
 g_LvglInitialized = true;

 setup_imgs((unsigned char *)APP_LVGL_IMGS_BASE);
 setup_ui(&guider_ui);
 events_init(&guider_ui);
 custom_init(&guider_ui);
 while (1)
 {
 lv_task_handler();
 vTaskDelay(pdMS_TO_TICKS(5));
 }
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
142 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

It also handles the camera preview request from the framework in HAL_DisplayDev_LVGLCoffeeMachine_
Blit function:

hal_display_status_t HAL_DisplayDev_LVGLCoffeeMachine_Blit(const display_dev_t
 *dev, void *frame, int width, int height)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;
 LOGI("++HAL_DisplayDev_LVGLCoffeeMachine_Blit");

 // Show the new frame.
 void *lcdFrameAddr = s_LcdBuffer[0];
 static int camerPreviewLayerOn = 0;

 // enable camera preview layer in screen with camera preview.
 if (lv_scr_act() == guider_ui.home && g_PreviewMode == PREVIEW_MODE_CAMERA)
 {
 if (camerPreviewLayerOn == 0)
 {
 lv_enable_camera_preview(lcdFrameAddr, true);
 camerPreviewLayerOn = 1;
 }
 }
 else
 {
 // disable camera preview layer in screen without camera preview.
 if (camerPreviewLayerOn == 1)
 {
 camerPreviewLayerOn = 0;
 lv_enable_camera_preview(lcdFrameAddr, false);
 }
 }

 LOGI("--HAL_DisplayDev_LVGLCoffeeMachine_Blit");
 return ret;
}

7.20.4 UiCoffeeMachine UI output HAL device

This HAL device driver is located in ../framework/hal/output/hal_output_ui_coffee_machine.c.

The whole UI state machine is driven by this output HAL device with the below event sources:

7.20.4.1 LVGL touch events

All the event callbacks of the LVGL widget are implemented in ../coffee_machine/cm4/generated/
events_init.c.

7.20.4.2 Vision and Voice algorithm inference result

The vision and voice inference result is notified by the output manager with below HAL_OutputDev_UiCoffee
Machine_InferComplete operator:

static hal_output_status_t HAL_OutputDev_UiCoffeeMachine_InferComplete(const
 output_dev_t *dev,output_algo_source_t source,void *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 if (inferResult == NULL)
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
143 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 {
 return error;
 }

 coffee_machine_screen_id_t currentScreenId = get_current_screen();

 if (currentScreenId == SCR_INVALID)
 {
 return error;
 }

 if (source == kOutputAlgoSource_Vision)
 {
 _InferComplete_Vision(dev, inferResult, currentScreenId);
 }
 else if (source == kOutputAlgoSource_Voice)
 {
 _InferComplete_Voice(dev, inferResult, currentScreenId);
 }

 return error;
}

7.20.5 RgbLed output HAL device

This HAL device driver is located in ../framework/hal/output/hal_output_rgb_led.c.

It flashes the RGB led with different pattern according to the HAL_OutputDev_RgbLed_InferComplete or
HAL_OutputDev_RgbLed_InputNotify operators below:

static hal_output_status_t HAL_OutputDev_RgbLed_InferComplete(const output_dev_t
 *dev, output_algo_source_t source, void *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 uint32_t timerOn = 0;
 _SetLedColor(APP_OutputDev_RgbLed_InferCompleteDecode(source, inferResult,
 &timerOn));

 if (timerOn != 0)
 {
 xTimerChangePeriod(OutputRgbTimer, pdMS_TO_TICKS(timerOn), 0);
 }
 return error;
}

static hal_output_status_t HAL_OutputDev_RgbLed_InputNotify(const output_dev_t
 *dev, void *data)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 _SetLedColor(APP_OutputDev_RgbLed_InputNotifyDecode(data));

 return error;
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
144 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

7.20.6 MessageBuffer multicore HAL device

This HAL device driver is located in../framework/hal/misc/hal_multicore_messageBuffer.c.

It handles the multicore messaging based on the multicore manager message buffer mechanism.

Refer the ../framework/docs/hal_devices/multicore.md file in the framework documentation for the
detailed description of this HAL device.

7.20.7 ShellUsb input HAL device

This HAL device driver is located in ../framework/hal/input/hal_input_shell_cdc.c.

It populates one USB CDC device and generates the shell.

This driver only includes one weak shell command registration function as below:

__attribute__((weak)) void
 APP_InputDev_Shell_RegisterShellCommands(shell_handle_t shellContextHandle,
 input_dev_t shellDev, input_dev_callback_t callback)
{
}

The application must overwrite this function to register the exactly shell commands.

The implementation of this overwritten function for the Coffee Machine application is in ../coffee_
machine/cm4/source/event_handlers/smart_tlhmi_input_shell_commands.c:

void APP_InputDev_Shell_RegisterShellCommands(shell_handle_t shellContextHandle,
 input_dev_t *shellDev, input_dev_callback_t callback)
{
 s_InputCallback = callback;
 s_SourceShell = shellDev;
 s_ShellHandle = shellContextHandle;
 s_FrameworkRequest.respond = _FrameworkEventsHandler;

 if (s_ThingName == NULL)
 {
 APP_GetHexUniqueID(&s_ThingName);
 }

 SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(version));
 ...
}

7.20.8 Standby LPM HAL device

This HAL device driver is located in ../framework/hal/misc/hal_lpm_standby.c.

Refer to ../framework/docs/hal_devices/low_power.md in the framework documentation for the
detailed description of this LPM device.

This standby HAL device implements the standby mode of this application. The backlight is turned off and the
main display layer is disabled.

static void _EnterStandbyMode(void)
{
 LOGD("[Standby] Enter standby mode");
 BOARD_BacklightControl(0);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
145 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 lv_enable_ui_preview(0);
}

7.21 Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document
../coffee_machine/cm4/freertos/libraries/logging/README.md.

The CM7 and CM4 share the low-level LPUART12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of theLPUART12 peripheral.

They share a low-level timer to get the unified timestamp of the logging information.

7.21.1 Logging Task Init

Application calls xLoggingTaskInitialize(...) API to create the logging task in the main() entry of this
project is located in the ../coffee_machine/cm4/source/sln_smart_tlhmi_cm4.cpp file:

xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE, LOGGING_TASK_PRIORITY,
 LOGGING_QUEUE_LENGTH);

7.21.2 Logging Macros

The logging Macros are defined in ../framework/inc/fwk_log.h.

All the modules must use these unified logging Macros for logging.

#ifndef LOGV
#define LOGV(fmt, args...) {implement...}
...
#endif

#ifndef LOGD
#define LOGD(fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI(fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE(fmt, args...) {implement...}
#endif

8 Elevator

8.1 Introduction
This Elevator application demonstrates the elevator use case with the core functionalities:

• Elevator GUI with touch support
• Local voice command to control the use cases of the elevator
• Face recognition to store user's floor information automatically

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
146 / 226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

For leveraging the full computational power of the RT117H, the image has been split into two images that are
running in parallel on the CM7 and CM4 cores. The Elevator CM7 acts as an AI block, handling all the machine
learning operations, such as face recognition and voice command. The operation has been optimized to obtain
the best performance on this type of MCU. Elevator CM4 holds the user interaction (display, shell, buttons). The
CM4 image is loaded into memory by the CM7 core.

By default, i.MX RT117H is boot from CM7. By fusing BT_CORE_SEL (Bit 12 in 0x960), the chip switches to
CM4 as the main core. For more information on this topic, check AN13264.

The Elevator Application uses the following HW components and peripherals:

• 2 x PDM MIC - configured to work with 16 kHz sampling. The conversion to PCM is done in hardware using
the PDM microphone interface.

• 16 KHz raw data to RT117x MQS HW peripheral that generates PWM data output.
• External filtering and coupling.
• Analog audio amplifier.
• MIPI GC2145 Camera - configured to work at 600x800 resolution.
• LCDIFV2 Rocktech RK055MHD091 - configured to work at HD resolution of 1280x720.

To change this configuration, check HAL code and Section 10.1

8.2 Architecture

Figure 34. Architecture diagram

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
147 / 226

Speaker

Voice Algo
Result

Notification
Message

Display

Camera

Touch

GPU2D

Peripherals CM7 IPC with Shared Memory CM4 Peripherals

CM7 (Vision & Voice algorithm accelerator):

• Framework

Vision algorithm with VGA input frames

• Voice algorithm (AFE + ASR) with mic input

• MQS audio playback

• IPC communication with shared memory

CM4 (UI & System control unit):

• Framework

CSI/MIPI Camera preview@VGA

LVGL GUI @720p with VGLite 2D GPU acceleration

Vision algorithm input frames color space conversion with PxP

Touch panel input

IPC communication with shared memory

https://www.nxp.com/docs/en/application-note/AN13264.pdf

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

8.3 Software block diagram

Figure 35. Software diagram

It includes two projects as below:

• Host CM7 project

• Slave CM4 project

Each project uses two-layer architecture containing the Framework + HAL layer and the Application layer. For
details, refer to the documentation on each project.

8.4 Elevator CM7
This Elevator CM7 host project runs on the CM7 core. It is linked to flash with the combination of the CM4
project. CM7 was designed to focus on the vision and voice algorithms' processing to get the best performance.

8.5 Main functionalities
• Vision algorithm
• Voice algorithm
• Audio playback
• Microphone stream input
• Multicore communication
• Elevator database

8.6 Boot sequence
The "main" entry of this project is in the ../elevator/CM7/source/sln_smart_tlhmi_CM7.cpp file. The
basic boot up flow is:

• Initialize board level

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
148 / 226

~- ------~-----------~- --,
Boot Loader

Framework
Multicore Output Algorithm '------------------------' ' ---------------------,

: OTA FW Update :
l _____ ~ AWS loT ____ I

...,. ____ M_ana_ ge~ r _____ M_a_nag~ er~ _____ M_ an_age~ r ___ _

Hardware Atistraction· 1

!__ MSD _FW Update_ i Multicore Output Manager I Algorithm Manager
Manager HAL HAL HAL

Middleware ML Speech Engine Runtime Library Audio Front End Runtime Library

Multi-Core
Manager

File-system

VIT (Voice VoiceSeeker~ ConveFi'a ~Y.beren or Intelligent
I.tad• \pl'<hM ,,.,,j.,

Technology) Beamforming
Echo Full duplex

Automatic Speech Recognition Cancellation speaker phone
Wake Words & Commands and Barge-in

Serial-manager
NXP Edge Ready Machine Vision Library

MOTT NXP Facial Biometric Authentication & Gesture Recognition API

(/)

I? DLBedTLS
a::
~ lwlP LL

> NXP MCU inference engine

() Face Detection Face Alignment
·c: Face Quality 2D Liveness Algorithm
~

Face Recognition Gesture Recognition

LVGL
Memory Management

CM7 Driver Layer

VGLite Speaker DMA FLASH Dual Core

H.264

Opus decode

.E
a>-

:t wCl'.
en :::e:::e a: => a::0 a □ u en :::e :::e <i::::E
:::e 0..0.. a w :i:;W

en (/) :::e

Application Control

GUI Shell Wi-Fi/BLE Voice Input

Framework

Multicore camera Display
Manager Manager Manager

Input Oulpul Power Manager
Manager Manager Manager

Hardware Abstraction Layer
Multicore Camera Manager Dlsplay Manager

Manager HAL HAL HAL

Input Manager Output Manager Power Manager
HAL HAL HAL

CM4 Driver Layer

Camera Display GPU LED

N vi

~I
vi lJ_ □
'i vi u 15 c:;i

~l N :::e
~ a: => ~ a: u u 0..

:E
_J :E C!)

Wi-Fi BLE Dual Core Touch

:t a>-
0

~
WO:

15 => :::e a::0 u
en :::e w <I'.:;;

~ => en :i:w en::;;
--

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Initialize framework
• Register HAL devices
• Start the framework
• Start the freeRTOS scheduler

int main(void)
{
 /* init the board */
 APP_BoardInit();

 ...

 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 vTaskStartScheduler();

 for (;;)
 {
 }
}

8.7 Board level initialization
The board-level initialization is implemented in the APP_BoardInit() entry which is located in ../
elevator/CM7/source/sln_smart_tlhmi_CM7.cpp. Below is the main flow:

• Relocate vector table into RAM
• Configure MPU, Clock, and Pins
• Debug console with hardware semaphore initialization
• System time stamp start
• Load resource from flash into share memory region
• Multicore manager init and boot slave core

void APP_BoardInit(void)
{
 BOARD_RelocateVectorTableToRam();

 BOARD_ConfigMPU();
 BOARD_InitBootPins();
 BOARD_InitBootClocks();

 BOARD_InitDebugConsole();
 Time_Init(1);

 APP_LoadResource();

 /* Initialize the HW Semaphore */
 SEMA4_Init(BOARD_SEM4_BASE);

#if defined(ENABLE_MASTER) && ENABLE_MASTER
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
149 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* Initialize MCMGR before calling its API */
 (void)MCMGR_Init();

 /* Boot Secondary core application */
 (void)MCMGR_StartCore(kMCMGR_Core1, (void *)(char *)CORE1_BOOT_ADDRESS, 0,
 kMCMGR_Start_Synchronous);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */
}

8.8 Framework managers
The below framework managers are enabled in the CM7 side with the following priorities:

• Vision algorithm manager - P3
• Voice algorithm manager - P3
• Audio processing manager - P2
• Input manager - P1
• Output manager - P4
• Multicore manager - P0

Refer to the framework documentation (../framework/docs) for a detailed description of these framework
managers.

Note: To prepare the environment for other framework managers, initialize the filesystem and application
configuration first.

int APP_InitFramework(void)
{
 int ret = 0;

 HAL_FLASH_DEV_REGISTER(Littlefs, ret);
 HAL_OutputDev_SmartTlhmiConfig_Init();

 FWK_MANAGER_INIT(VisionAlgoManager, ret);
 FWK_MANAGER_INIT(VoiceAlgoManager, ret);
 FWK_MANAGER_INIT(AudioProcessing, ret);
 FWK_MANAGER_INIT(OutputManager, ret);
 FWK_MANAGER_INIT(InputManager, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 FWK_MANAGER_INIT(MulticoreManager, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

 return ret;
}

int APP_RegisterHalDevices(void)
{
 int ret = 0;

 HAL_OUTPUT_DEV_REGISTER(MqsAudio, ret);
 HAL_AUDIO_PROCESSING_DEV_REGISTER(Afe, ret);
 HAL_INPUT_DEV_REGISTER(PdmMic, ret);
 HAL_VOICEALGO_DEV_REGISTER(Asr, ret);
 HAL_VALGO_DEV_REGISTER(OasisElevator, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
150 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 return ret;
}

int APP_StartFramework(void)
{
 int ret = 0;

 FWK_MANAGER_START(VisionAlgoManager, VISION_ALGO_MANAGER_TASK_PRIORITY,
 ret);
 FWK_MANAGER_START(OutputManager, OUTPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(AudioProcessing, AUDIO_PROCESSING_TASK_PRIORITY, ret);
 FWK_MANAGER_START(InputManager, INPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(VoiceAlgoManager, VOICE_ALGO_MANAGER_TASK_PRIORITY, ret);
 // FWK_MANAGER_START(CameraManager, CAMERA_MANAGER_TASK_PRIORITY, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 FWK_MANAGER_START(MulticoreManager, MULTICORE_MANAGER_TASK_PRIORITY, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

 return ret;
}

8.9 Framework HAL devices
The enabled HAL devices are configured in the ../elevator/CM7/board/board_define.h file as shown
below:

#define ENABLE_INPUT_DEV_PdmMic
#define ENABLE_AUDIO_PROCESSING_DEV_Afe
#define ENABLE_DSMT_ASR
#define ENABLE_OUTPUT_DEV_MqsAudio
#define ENABLE_OUTPUT_DEV_SmartTlhmiConfig
#if defined(ENABLE_MASTER) && ENABLE_MASTER
#define ENABLE_MULTICORE_DEV_MessageBuffer
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

8.10 Logging
Both CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document ..
/coffee_machine/cm7/freertos/libraries/logging/README.md.

The CM7 and CM4 share low-level LPUART12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of LPUART12 peripheral. And they also share low-
level timer to get the unified timestamp of the logging information.

8.10.1 Log task init

The application calls the xLoggingTaskInitialize(...) API to create the logging task in the main()
entry of this project and is located in elevator/cm7/source/sln_smart_tlhmi_cm7.cpp:

xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE, LOGGING_TASK_PRIORITY,
 LOGGING_QUEUE_LENGTH);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
151 / 226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

8.10.2 Log usage

There are four kinds of logging that can use both CM7 and CM4, that you can find in ../framework/inc/
fwk_log.h.

#ifndef LOGV
#define LOGV(fmt, args...) {implement...}
...
#endif

#ifndef LOGD
#define LOGD(fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI(fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE(fmt, args...) {implement...}
#endif

8.11 Elevator database
The Elevator application uses framework flash operation with low-level littlefs filesystem to store the recognized
user-faces database and user elevator information. The detailed usage API is located in files ../framework/
vision/hal_sln_facedb.h and ../source/hal_sln_elevatordb.h. The face database and elevator
user information database entry are bound together using user id. The user id is a unique identifier on one
device.

To make it easier for users to add their own database with personal attributes, we split the face database from
user database. The user must create something similar with hal_sln_elevator.h and add attributes like in
the elevator_attr_t structure. If the purpose is to extend the current elevator database, use a reserved field
from the structure below.

8.11.1 Face recognize database usage

g_facedb_ops handles all kinds of face database operation.

typedef struct _facedb_ops
{
 facedb_status_t (*init)(uint16_t featureSize);
 facedb_status_t (*saveFace)(void);
 facedb_status_t (*addFace)(uint16_t id, char *name, void *face, int size);
 facedb_status_t (*delFaceWithId)(uint16_t id);
 facedb_status_t (*delFaceWithName)(char *name);
 facedb_status_t (*updNameWithId)(uint16_t id, char *name);
 facedb_status_t (*updFaceWithId)(uint16_t id, char *name, void *face, int
 size);
 facedb_status_t (*getFaceWithId)(uint16_t id, void **pFace);
 facedb_status_t (*getIdsAndFaces)(uint16_t *face_ids, void **pFace);
 facedb_status_t (*getIdWithName)(char *name, uint16_t *id);
 facedb_status_t (*genId)(uint16_t *new_id);
 facedb_status_t (*getIds)(uint16_t *face_ids);
 bool (*getSaveStatus)(uint16_t id);
 int (*getFaceCount)(void);
 char *(*getNameWithId)(uint16_t id);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
152 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

} facedb_ops_t;

extern const facedb_ops_t g_facedb_ops;

8.11.2 Elevator user information database usage

g_elevatordb_ops handles all kinds of user information database operation.

typedef struct _elevator_attribute
{
 uint16_t id;
 uint32_t floor;
 uint8_t reserved[16];
} elevator_attr_t;

typedef struct _elevatordb_ops
{
 elevatordb_status_t (*init)(void);
 elevatordb_status_t (*deinit)(void);
 elevatordb_status_t (*addWithId)(uint16_t id, elevator_attr_t *attr);
 elevatordb_status_t (*delWithId)(uint16_t id);
 elevatordb_status_t (*updWithId)(uint16_t id, elevator_attr_t *attr);
 elevatordb_status_t (*getWithId)(uint16_t id, elevator_attr_t *attr);
} elevatordb_ops_t;

extern const elevatordb_ops_t g_elevatordb_ops;

8.12 Elevator CM4
This Elevator CM4 slave project runs on the CM4 core.

It is linked to SDRAM and will be embedded into the CM7 project.

The CM7 project handles the loading of this CM4 project into SDRAM and launching it.

8.13 Main functionalities
• Main GUI based on LVGL with Vglite graphics acceleration
• Camera with 2D PxP graphics acceleration
• Display for the camera preview and LVGL GUI
• USB shell
• LED indicator
• Multicore with messaging and shared memory communication

8.14 LVGL GUI screens and widgets
All the LVGL GUI screens and widgets are generated with NXP's GUI Guider tools.

Refer to the GUI Guider home page for more detailed information.

8.15 LVGL and Vglite library
LVGL and Vglite components are directly ported from RT1170 SDK where we did not modify them in our
solution.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
153 / 226

https://www.nxp.com/design/software/development-software/gui-guider

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The code for LVGL GUI screens and widgets, which are generated by NXP's GUI guider, is not frequently
changed.

To speed up the building of the whole project, we moved these components into one static library and linked the
library to the CM4 application project.

This LVGL and Vglite library project is located in the ../elevator/lvgl_vglite_lib folder.

8.16 Boot sequence
Below is the core boot-up flow:

• Board level initialization
• Framework initialization
• HAL devices registration
• Framework startup
• FreeRTOS scheduler startup

The main() entry of this project is located in the ../elevator/cm4/source/sln_smart_tlhmi_cm4.cpp
file:

int main(void)
{
 /* init the board */
 APP_BoardInit();
 ...
 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 vTaskStartScheduler();
 for (;;)
 {
 } /* should never get here */
 return 0;
}

8.17 Board level initialization
The board level initialization is implemented in the APP_BoardInit() entry which is located in the ../
elevator/cm4/source/sln_smart_tlhmi_cm4.cpp file.

Below is the main flow:

• MPU, Clock, and Pins configuration
• Multicore manager init and slave startup
• Peripherals initialization

void APP_BoardInit()
{
 BOARD_ConfigMPU();
 BOARD_BootClockRUN();
 BOARD_InitBootPins();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
154 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 uint32_t startupData, i;
 mcmgr_status_t status;
 (void)MCMGR_Init();
 /* Get the startup data */
 do
 {
 status = MCMGR_GetStartupData(&startupData);
 } while (status != kStatus_MCMGR_Success);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 ...
 BOARD_MIPIPanelTouch_I2C_Init();
 BOARD_InitEDMA();
 Time_Init(1);
}

8.18 LVGL image resource loading
All the LVGL images, data, and icon data are merged into one continuous binary block with the 64 Bytes aligned
of each image/icon.

The cm7 loads this resource binary block into the dedicated memory region res_sh_mem.

The below two function loads each of these LVGL images and icons from this region during the boot.

Setup the LVGL images is implemented in ../elevator/cm4/generated/gui_guider.c:

void setup_imgs(void *base)
{
 _TLHMI_Elevator_Main_Screen_1280x720.data = (base + 0);
 _TLHMI_Elevator_Virtual_Face_Blue_180x180.data = (base +
 2764800);
 _TLHMI_Elevator_Button_Call_alpha_90x90.data = (base +
 2862016);

}

8.19 Framework managers
The below framework managers are enabled on the cm4 side:

• Low-power manager
• Camera manager
• Display manager
• Multicore manager
• Output manager
• Input manager

Refer to framework/docs/introduction.md for a more detailed description of these framework managers.

Framework initialization (../elevator/cm4/source/sln_smart_tlhmi_cm4.cpp) :

int APP_InitFramework(void)
{
 int ret = 0;

 FWK_MANAGER_INIT(LpmManager, ret);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
155 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 FWK_MANAGER_INIT(CameraManager, ret);
 FWK_MANAGER_INIT(DisplayManager, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 FWK_MANAGER_INIT(MulticoreManager, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 FWK_MANAGER_INIT(OutputManager, ret);
 FWK_MANAGER_INIT(InputManager, ret);

 return ret;
}

Framework startup (../elevator/cm4/source/sln_smart_tlhmi_cm4.cpp):

int APP_StartFramework(void)
{
 int ret = 0;

 FWK_MANAGER_START(LpmManager, 0, ret);
 FWK_MANAGER_START(CameraManager, CAMERA_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(DisplayManager, DISPLAY_MANAGER_TASK_PRIORITY, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 FWK_MANAGER_START(MulticoreManager, MULTICORE_MANAGER_TASK_PRIORITY, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 FWK_MANAGER_START(OutputManager, OUTPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(InputManager, INPUT_MANAGER_TASK_PRIORITY, ret);

 return ret;
}

8.20 Framework HAL devices
The enabled HAL devices are configured in the ../elevator/cm4/board/board_define.h file as below:

#define ENABLE_GFX_DEV_Pxp
#define ENABLE_DISPLAY_DEV_LVGLElevator
#define ENABLE_CAMERA_DEV_MipiGc2145
#define ENABLE_OUTPUT_DEV_RgbLed
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
#define ENABLE_MULTICORE_DEV_MessageBuffer
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
#define ENABLE_INPUT_DEV_ShellUsb
#define ENABLE_OUTPUT_DEV_UiElevator
#define ENABLE_LPM_DEV_Standby

The registration of the enabled HAL devices is implemented in the APP_RegisterHalDevices(...)
function, which is located in ../elevator/cm4/source/sln_smart_tlhmi_cm4.cpp

Note: The APP_RegisterHalDevices(...) must be called after the framework initialization
APP_InitFramework(...) and before framework startup APP_StartFramework(...).

int APP_RegisterHalDevices(void)
{
 int ret = 0;

 HAL_GFX_DEV_REGISTER(Pxp, ret);
 HAL_DISPLAY_DEV_REGISTER(LVGLElevator, ret);
 HAL_CAMERA_DEV_REGISTER(MipiGc2145, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
156 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 HAL_OUTPUT_DEV_REGISTER(RgbLed, ret);
 HAL_INPUT_DEV_REGISTER(ShellUsb, ret);
 HAL_OUTPUT_DEV_REGISTER(UiElevator, ret);
 HAL_LPM_DEV_REGISTER(Standby, ret);
 /* Add new HAL device registrations here */

 return ret;
}

8.20.1 MipiGc2145 camera HAL device

This HAL device driver is located in ../framework/hal/camera/hal_camera_mipi_gc2145.c

Below is the configuration of this camera device, which is located in ../elevator/cm4/board/board_
define.h

#ifdef ENABLE_CAMERA_DEV_MipiGc2145
#define CAMERA_DEV_MipiGc2145_BUFFER_COUNT 2
#define CAMERA_DEV_MipiGc2145_HEIGHT 600 // 720
#define CAMERA_DEV_MipiGc2145_WIDTH 800 // 1280
#define CAMERA_DEV_MipiGc2145_LEFT 0
#define CAMERA_DEV_MipiGc2145_TOP 0
#define CAMERA_DEV_MipiGc2145_RIGHT 799 // 1279
#define CAMERA_DEV_MipiGc2145_BOTTOM 599 // 719
#define CAMERA_DEV_MipiGc2145_ROTATE kCWRotateDegree_0
#define CAMERA_DEV_MipiGc2145_FLIP kFlipMode_None
#define CAMERA_DEV_MipiGc2145_SWAPBYTE 0
#define CAMERA_DEV_MipiGc2145_FORMAT kPixelFormat_YUV1P444_RGB
#define CAMERA_DEV_MipiGc2145_BPP 4
#endif /* ENABLE_CAMERA_DEV_MipiGc2145 */

8.20.2 PxP graphics HAL device

This HAL device driver is located in ../framework/hal/misc/hal_graphics_pxp.c

It represents the 2D graphics device to handle the 2D graphics operations.

8.20.3 LVGLElevator display HAL device

This HAL device driver is located in ../framework/hal/display/hal_display_lvgl_elevator.c

Below is the configuration of this display device, which is located in the ../elevator/cm4/board/board_
define.h

#ifdef ENABLE_DISPLAY_DEV_LVGLElevator
#define DISPLAY_DEV_LVGLElevator_BUFFER_COUNT 1
#define DISPLAY_DEV_LVGLElevator_HEIGHT 640
#define DISPLAY_DEV_LVGLElevator_WIDTH 480
#define DISPLAY_DEV_LVGLElevator_StartX 80
#define DISPLAY_DEV_LVGLElevator_StartY 50
#define DISPLAY_DEV_LVGLElevator_LEFT 0
#define DISPLAY_DEV_LVGLElevator_TOP 0
#define DISPLAY_DEV_LVGLElevator_RIGHT 479
#define DISPLAY_DEV_LVGLElevator_BOTTOM 639
#define DISPLAY_DEV_LVGLElevator_ROTATE kCWRotateDegree_270
#define DISPLAY_DEV_LVGLElevator_FORMAT kPixelFormat_RGB565

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
157 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#ifdef ENABLE_CAMERA_DEV_MipiGc2145
#define DISPLAY_DEV_LVGLElevator_SRCFORMAT kPixelFormat_YUV1P444_RGB
#else
#define DISPLAY_DEV_LVGLElevator_SRCFORMAT kPixelFormat_UYVY1P422_RGB
#endif
#define DISPLAY_DEV_LVGLElevator_BPP 2
#endif /* ENABLE_DisplayDev_LVGLElevator */

This LVGLElevator display HAL device launches the main LVGL task loop for the UI flashing.

static void _LvglTask(void *param)
{
#if LV_USE_LOG
 lv_log_register_print_cb(_PrintCb);
#endif /* LV_USE_LOG */

 lv_port_pre_init();
 lv_init();
 lv_port_disp_init();
 lv_port_indev_init();
 g_LvglInitialized = true;

 setup_imgs((unsigned char *)APP_LVGL_IMGS_BASE);
 setup_ui(&guider_ui);
 events_init(&guider_ui);
 custom_init(&guider_ui);
 while (1)
 {
 lv_task_handler();
 vTaskDelay(pdMS_TO_TICKS(5));
 }
}

8.20.4 UiElevator UI output HAL device

This HAL device driver is located in ../framework/hal/output/hal_output_ui_elevator.c

The whole UI state machine is driven by this output HAL device with the below event sources:

8.20.4.1 LVGL touch events

All the event callbacks of the LVGL widget are implemented in ../elevator/cm4/generated/events_
init.c

8.20.4.2 Vision and Voice algorithm inference result

The vision and voice inference result is notified by the output manager with below HAL_OutputDev_Ui
Elevator_InferComplete operator:

static hal_output_status_t HAL_OutputDev_UiElevator_InferComplete(const
 output_dev_t *dev,output_algo_source_t source,void *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 if (inferResult == NULL)
 {
 return error;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
158 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 }

 if (source == kOutputAlgoSource_Vision)
 {
 _InferComplete_Vision(dev, inferResult);
 }
 else if (source == kOutputAlgoSource_Voice)
 {
 _InferComplete_Voice(dev, inferResult);
 }

 return error;
}

8.20.5 RgbLed output HAL device

This HAL device driver is located in ../framework/hal/output/hal_output_rgb_led.c

It flashes the RGB led with different pattern according to the HAL_OutputDev_RgbLed_InferComplete or
HAL_OutputDev_RgbLed_InputNotify operators below:

static hal_output_status_t HAL_OutputDev_RgbLed_InferComplete(const output_dev_t
 *dev, output_algo_source_t source, void *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 uint32_t timerOn = 0;
 _SetLedColor(APP_OutputDev_RgbLed_InferCompleteDecode(source, inferResult,
 &timerOn));

 if (timerOn != 0)
 {
 xTimerChangePeriod(OutputRgbTimer, pdMS_TO_TICKS(timerOn), 0);
 }
 return error;
}

static hal_output_status_t HAL_OutputDev_RgbLed_InputNotify(const output_dev_t
 *dev, void *data)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 _SetLedColor(APP_OutputDev_RgbLed_InputNotifyDecode(data));

 return error;
}

8.20.6 MessageBuffer multicore HAL device

This HAL device driver is located in ../framework/hal/misc/hal_multicore_messageBuffer.c

It handles multicore messaging based on the multicore manager message buffer mechanism.

For the detailed description of this HAL device, refer to ../framework/docs/hal_devices/multicore.m
d in the framework documentation.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
159 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

8.20.7 ShellUsb input HAL device

This HAL device driver is located in ../framework/hal/input/hal_input_shell_cdc.c

It populates one USB CDC device and generates the shell.

This driver only includes one weak shell command registration function as below:

__attribute__((weak)) void
 APP_InputDev_Shell_RegisterShellCommands(shell_handle_t shellContextHandle,
 input_dev_t shellDev, input_dev_callback_t callback)
{
}

The application must overwrite this function to register the exactly shell commands.

You can find the implementation of this overwritten function for the Elevator application from ../elevator/
cm4/source/event_handlers/smart_tlhmi_input_shell_commands.c:

void APP_InputDev_Shell_RegisterShellCommands(shell_handle_t shellContextHandle,
 input_dev_t *shellDev, input_dev_callback_t callback)
{
 s_InputCallback = callback;
 s_SourceShell = shellDev;
 s_ShellHandle = shellContextHandle;
 s_FrameworkRequest.respond = _FrameworkEventsHandler;

 if (s_ThingName == NULL)
 {
 APP_GetHexUniqueID(&s_ThingName);
 }

 SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(version));
 ...
}

8.20.8 Standby LPM HAL device

This HAL device driver is located in ../framework/hal/misc/hal_lpm_standby.c.

For the detailed description of this LPM device, refer to ../framework/docs/hal_devices/low_power.
md in the framework documentation.

This standby HAL device implements the standby mode of this application. The backlight is turned off and the
main display layer is disabled.

static void _EnterStandbyMode(void)
{
 LOGD("[Standby] Enter standby mode");
 BOARD_BacklightControl(0);
 lv_enable_ui_preview(0);
}

8.21 Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
160 / 226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document ..
/elevator/cm4/freertos/libraries/logging/README.md

The CM7 and CM4 share low-level LPUART12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of LPUART12 peripheral.

They share a low-level timer to get the unified timestamp of the logging information.

8.21.1 Logging task init

Application calls xLoggingTaskInitialize(...) API to create the logging task in the main() entry of this
project is located in the ../elevator/cm4/source/sln_smart_tlhmi_cm4.cpp:

xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE, LOGGING_TASK_PRIORITY,
 LOGGING_QUEUE_LENGTH);

8.21.2 Logging macros

The logging Macros are defined in ../framework/inc/fwk_log.h.

All the modules must use these unified logging Macros for logging.

#ifndef LOGV
#define LOGV(fmt, args...) {implement...}
...
#endif

#ifndef LOGD
#define LOGD(fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI(fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE(fmt, args...) {implement...}
#endif

9 Smart panel

9.1 Introduction
This Smart Panel application demonstrates the smart control panel use case with the following core
functionalities:

• Smart panel GUI (including thermostat, security, and audio player mini applications) with touch support
• Local voice command to control the use cases of a Smart panel
• Face recognition to store the user's thermostat preferences and store security users
• Hand gesture recognition to control the Audio Player mini-application

For leveraging the full computational power of the RT117H, the application image is split into two images that
are running in parallel on the CM7 and CM4 cores. The Smart Panel CM7 acts as an AI block, handling all the
machine learning tasks, such as face recognition, voice command, and gesture recognition. The operation is
optimized to obtain the best performance on this type of MCU. The Smart Panel CM4 holds the user interaction
(display, shell, buttons). The CM4 image is loaded into the memory by the CM7 core.
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
161 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

By default, i.MX RT117H boot from CM7. By fusing BT_CORE_SEL (Bit 12 in 0x960), the chip switches to CM4
as the main core. For details, see AN13264.

The Smart Panel uses the following HW components and peripherals:

• 2 x PDM MIC - configured to work with 16 kHz sampling. The conversion to PCM is done in hardware using
the PDM microphone interface.

• 16 KHz raw data to RT117x MQS HW peripheral that generates PWM data output.
• External filtering and coupling
• Analog audio amplifier
• MIPI GC2145 Camera - configured to work with 600x800 resolution.
• Flexio GC0308 IR Camera - configured to work with 640x480 resolution.
• LCDIFV2 Rocktech RK055MHD091 - configured to work at the HD resolution of 1280x720

To change this configuration, check the HAL code and section Section 10.1.

It uses NXP's below core technologies:

• LVGL-based GUI
• Local voice command algorithm
• Face recognition algorithm
• Gesture recognition algorithm
• Dual-core architecture based on the multi-core manager (mcmgr) middleware component.

9.2 Architecture

Figure 36. Smart panel software architecture

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
162 / 226

SLN-TLHMI-IOT (I.MX RT117H) EDGEREADY SOLUTION SOFTWARE ARCHITECTURE

Speake

IR Camera

Vision Algo
Result ..

Voice Algo
Result

Notification
Message

Framework

Camera HAL

Display HAL
Touch

Graphics HAL

Peripherals CM7 IPC with Shared Memory CM4 Peripherals

CM7 (Vision & Voice algorithm accelerator): CM4 (UI & System control unit):

• Framework • Framework

• Vision algorithm with VGA input frames (RGB + IR) • CSI/MIPI Camera preview @VGA

• Gesture algorithm with VGA input frames • LVGL GUI @720p with VGLite 20 GPU acceleration

• Voice algorithm (AFE + ASR) with mic input • Vision algorithm input frames color space conversion with PxP

• MQS audio playback • Touch panel input

• IPC commun ication with shared memory • IPC communication with shared memory

https://www.nxp.com/docs/en/application-note/AN13264.pdf

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

9.3 Software block diagram

Figure 37. Smart panel software diagram

It includes two projects:

• Host CM7 project

• Slave CM4 project

Each project uses a two-layer architecture containing the Framework + HAL layer and the Application layer.
For the details, refer to the documentation on each project.

9.4 Smart panel CM7
This Smart panel CM7 host project runs on the CM7 core.

It is linked to flash with the combination of the CM4 project.

The CM7 was designed to focus on the vision, gesture, and voice algorithms processing to get the best
performance.

9.4.1 Main functionalities

• Vision algorithm
• Gesture algorithm
• Voice algorithm
• Audio playback
• Microphone stream input
• Multicore communication
• Littlefs format filesystem

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
163 / 226

~- ------~-----------~- --,
Boot Loader

Framework
Multicore Output Algorithm '------------------------' ' ---------------------,

: OTA FW Update :
l _____ ~ AWS loT ____ I

...,. ____ M_ana_ ge~ r _____ M_a_nag~ er~ _____ M_ an_age~ r ___ _

Hardware Atistraction· 1

!__ MSD _FW Update_ i Multicore Output Manager I Algorithm Manager
Manager HAL HAL HAL

Middleware ML Speech Engine Runtime Library Audio Front End Runtime Library

Multi-Core
Manager

File-system

VIT (Voice VoiceSeeker~ ConveFi'a ~Y.beren or Intelligent
I.tad• \pl'<hM ,,.,,j.,

Technology) Beamforming
Echo Full duplex

Automatic Speech Recognition Cancellation speaker phone
Wake Words & Commands and Barge-in

Serial-manager
NXP Edge Ready Machine Vision Library

MOTT NXP Facial Biometric Authentication & Gesture Recognition API

(/)

I? DLBedTLS
a::
~ lwlP LL

> NXP MCU inference engine

() Face Detection Face Alignment
·c: Face Quality 2D Liveness Algorithm
~

Face Recognition Gesture Recognition

LVGL
Memory Management

CM7 Driver Layer

VGLite Speaker DMA FLASH Dual Core

H.264

Opus decode

.E
a>-

:t wCl'.
en :::e:::e a: => a::0 a □ u en :::e :::e <i::::E
:::e 0..0.. a w :i:;W

en (/) :::e

Application Control

GUI Shell Wi-Fi/BLE Voice Input

Framework

Multicore camera Display
Manager Manager Manager

Input Oulpul Power Manager
Manager Manager Manager

Hardware Abstraction Layer
Multicore Camera Manager Dlsplay Manager

Manager HAL HAL HAL

Input Manager Output Manager Power Manager
HAL HAL HAL

CM4 Driver Layer

Camera Display GPU LED

N vi

~I
vi lJ_ □
'i vi u 15 c:;i

~l N :::e
~ a: => ~ a: u u 0..

:E
_J :E C!)

Wi-Fi BLE Dual Core Touch

:t a>-
0

~
WO:

15 => :::e a::0 u
en :::e w <I'.:;;

~ => en :i:w en::;;
--

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

9.4.2 Boot sequence

The "main" entry of this project is located in the ../home_panel/cm7/source/sln_smart_tlhmi_cm7.
cpp file. The basic boot-up flow is:

• Initialize board-level hardware
• Initialize framework
• Register HAL devices
• Start the framework
• Start the FreeRTOS scheduler

int main(void)
{
 /* init the board */
 APP_BoardInit();

 ...

 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 vTaskStartScheduler();

 for (;;)
 {
 }
}

9.4.3 Board level initialization

The board-level initialization is implemented in the APP_BoardInit() entry located in ../home_panel/cm7/
source/sln_smart_tlhmi_cm7.cpp. Below is the main flow:

• Relocate vector table into RAM
• Configure MPU, Clock, and Pins
• Debug console with hardware semaphore initialization
• System timestamp start
• Config FlexIO camera DMA
• Load resource from flash into the shared memory region
• Multicore manager init and boot slave core

void APP_BoardInit(void)
{
 BOARD_RelocateVectorTableToRam();

 BOARD_ConfigMPU();
 BOARD_InitBootPins();
 BOARD_InitBootClocks();

 BOARD_InitDebugConsole();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
164 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 Time_Init(1);

 BOARD_FlexioCameraConfigDMA();

 APP_LoadResource();

 /* Initialize the HW Semaphore */
 SEMA4_Init(BOARD_SEM4_BASE);

#if defined(ENABLE_MASTER) && ENABLE_MASTER
 /* Initialize MCMGR before calling its API */
 (void)MCMGR_Init();

 /* Boot Secondary core application */
 (void)MCMGR_StartCore(kMCMGR_Core1, (void *)(char *)CORE1_BOOT_ADDRESS, 0,
 kMCMGR_Start_Synchronous);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */
}

9.4.4 Framework managers

The below framework managers are enabled in the cm7 side with the following priorities:

• Vision algorithm manager - P3
• Voice algorithm manager - P3
• Audio processing manager - P2
• Input manager - P1
• Output manager - P3
• Camera manager - P2
• Multicore manager - P0
• Flash device manager

Where P0 is the highest priority and P4 is the least prioritized.

Note: Choosing the right priority for the manager is something that must be addressed based on the
requirements. Our recommendation is to keep the Vision manager equal to or less than Voice manager, or the
audio sample can be lost.

Refer to the framework chapter for a detailed description of these framework managers.

Note: To prepare the environment for other framework managers, initialize the filesystem and application
configuration first.

int APP_InitFramework(void)
{
 int ret = 0;

 HAL_FLASH_DEV_REGISTER(Littlefs, ret);
 HAL_OutputDev_SmartTlhmiConfig_Init();

 FWK_MANAGER_INIT(VisionAlgoManager, ret);
 FWK_MANAGER_INIT(OutputManager, ret);
 FWK_MANAGER_INIT(AudioProcessing, ret);
 FWK_MANAGER_INIT(InputManager, ret);
 FWK_MANAGER_INIT(VoiceAlgoManager, ret);
 FWK_MANAGER_INIT(CameraManager, ret);

#if defined(ENABLE_MASTER) && ENABLE_MASTER

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
165 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 FWK_MANAGER_INIT(MulticoreManager, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

 return ret;
}

int APP_StartFramework(void)
{
 int ret = 0;

 FWK_MANAGER_START(VisionAlgoManager, VISION_ALGO_MANAGER_TASK_PRIORITY,
 ret);
 FWK_MANAGER_START(OutputManager, OUTPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(AudioProcessing, AUDIO_PROCESSING_TASK_PRIORITY, ret);
 FWK_MANAGER_START(InputManager, INPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(VoiceAlgoManager, VOICE_ALGO_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(CameraManager, CAMERA_MANAGER_TASK_PRIORITY, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 FWK_MANAGER_START(MulticoreManager, MULTICORE_MANAGER_TASK_PRIORITY, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

 return ret;
}

9.4.5 Framework HAL devices

The enabled HAL devices are configured in the ../home_panel/cm7/board/board_define.h file as
shown below:

#define ENABLE_INPUT_DEV_PdmMic
#define ENABLE_AUDIO_PROCESSING_DEV_Afe
#define ENABLE_VIT_ASR
#define ENABLE_OUTPUT_DEV_MqsStreamerAudio
#define ENABLE_OUTPUT_DEV_SmartTlhmiConfig
#define ENABLE_VISIONALGO_DEV_Oasis_HomePanel
#define ENABLE_VISIONALGO_DEV_Uvita_Gesture
#define ENABLE_FLASH_DEV_Littlefs
#define ENABLE_FACEDB
#define ENABLE_CAMERA_DEV_FlexioGc0308
#if defined(ENABLE_MASTER) && ENABLE_MASTER
#define ENABLE_MULTICORE_DEV_MessageBuffer
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

The registration of the enabled HAL devices is implemented in the APP_RegisterHalDevices(...) function
which is located in ../home_panel/cm7/source/sln_smart_tlhmi_cm7.cpp:

Note: The APP_RegisterHalDevices(...) must be called after the framework initialization
APP_InitFramework(...) and before framework startup APP_StartFramework(...).

int APP_RegisterHalDevices(void)
{
 int ret = 0;

 HAL_OUTPUT_DEV_REGISTER(MqsAudio_Streamer, ret);
 HAL_AUDIO_PROCESSING_DEV_REGISTER(Afe, ret);
 HAL_INPUT_DEV_REGISTER(PdmMic, ret);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
166 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 HAL_VOICEALGO_DEV_REGISTER(Asr_VIT, ret);
 HAL_CAMERA_DEV_REGISTER(FlexioGc0308, ret);
 HAL_VALGO_DEV_REGISTER(UvitaGestureRecognition, ret);
 HAL_VALGO_DEV_REGISTER(OasisHomePanel, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */
 HAL_INPUT_DEV_REGISTER(WiFiAWAM510, ret);

 return ret;
}

9.4.6 Logging

Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document
located in ../home_panel/cm7/aws_iot/amazon-freertos/libraries/logging/README.md.

The CM7 and CM4 share the low-level LPUART12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of the LPUART12 peripheral. They share a low-level
timer to get the unified timestamp of the logging information.

9.4.6.1 Log Task Init

The application calls the xLoggingTaskInitialize(...) API to create the logging task in the main()
entry of this project and is located in ../home_panel/cm7/source/sln_smart_tlhmi_cm7.cpp:

xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE, LOGGING_TASK_PRIORITY,
 LOGGING_QUEUE_LENGTH);

9.4.6.2 Log Macros

There are four kinds of logging that can be used in both cm7 and cm4, which you can find in ../framework/
inc/fwk_log.h.

#ifndef LOGV
#define LOGV(fmt, args...) {implement...}
...
#endif

#ifndef LOGD
#define LOGD(fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI(fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE(fmt, args...) {implement...}
#endif

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
167 / 226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

9.4.6.3 UART hardware connection

The Smart panel application prints the log to the LPUART12 port. The tx/rx pins of LPUART12 are connected
to J202, at the back of the board (pin3-RX and pin4-TX). Connect the LPUART12 tx/rx pins to a TTL USB serial
adapter (LPUART12 rx pin to USB adapter tx pin, LPUART12 tx pin to USB adapter rx pin), and connect the
TTL USB serial adapter to a USB port on the host machine (Windows or Linux based).

9.4.6.4 Get UART log from Windows host

For a Windows host system, find the corresponding COM port number from the Windows "Device Manager" for
the newly connected TTL USB serial adapter. Using a terminal emulator program (for example, putty) to connect
to the COM port, setting the speed to 115200 Hz.

9.4.6.5 Get UART log from Linux host

For a Linux host system, Connect to the serial port (usually /dev/ttyUSBx) using a Linux terminal emulator
program (for example, Minicom), use 115200 8N1 as the serial port setting for the serial communication.

9.4.7 Smart panel database

The Smart panel application uses framework flash operations with a low-level littlefs filesystem to store
persistent user information. There are two kinds of users in the Smart panel application, the thermostat users
(including the recognized user-faces database and user-preferred thermostat setting database) and the security
users (only including the user-faces database) . The detailed usage API is located in files ../framework/
hal/vision/hal_sln_facedb.h and ../home_panel/cm7/source/hal_sln_thermostatdb.h.
The face database and user thermostat setting information database entry are bound together using user id.
The user id is a unique identifier on one device. The security user database API is in ../home_panel/cm7/
source/hal_sln_security_facedb.h that only stores the user face data.

To make it easier for users to add their database with personal attributes, we split the face database from user
database. The user must create something similar with hal_sln_thermostatdb.h and add attributes like in
the thermostat_attribute_t structure.

9.4.7.1 Face recognize database usage

g_facedb_ops handles all kinds of thermostat user face database operation. g_security_facedb_ops
handles all kinds of thermostat user face database operation.

typedef struct _facedb_ops
{
 facedb_status_t (*init)(uint16_t featureSize);
 facedb_status_t (*saveFace)(void);
 facedb_status_t (*addFace)(uint16_t id, char *name, void *face, int size);
 facedb_status_t (*delFaceWithId)(uint16_t id);
 facedb_status_t (*delFaceWithName)(char *name);
 facedb_status_t (*updNameWithId)(uint16_t id, char *name);
 facedb_status_t (*updFaceWithId)(uint16_t id, char *name, void *face, int
 size);
 facedb_status_t (*getFaceWithId)(uint16_t id, void **pFace);
 facedb_status_t (*getIdsAndFaces)(uint16_t *face_ids, void **pFace);
 facedb_status_t (*getIdWithName)(char *name, uint16_t *id);
 facedb_status_t (*genId)(uint16_t *new_id);
 facedb_status_t (*getIds)(uint16_t *face_ids);
 bool (*getSaveStatus)(uint16_t id);
 int (*getFaceCount)(void);
 char *(*getNameWithId)(uint16_t id);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
168 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

} facedb_ops_t;

extern const facedb_ops_t g_facedb_ops;
extern const facedb_ops_t g_security_facedb_ops;

9.4.7.2 User Thermostat setting database usage

g_thermostatdb_ops handles all kinds of thermostat user information database operation.

typedef enum _thermostatdb_status
{
 kThermostatDBStatus_Success,
 kThermostatDBStatus_Failed,
 kThermostatDBStatus_MallocFail,
 kThermostatDBStatus_MetaDataFail,
 kThermostatDBStatus_DbLoadFail,
 kThermostatDBStatus_LockFail
} thermostatdb_status_t;

typedef enum _thermostat_mode
{
 kThermostat_Auto,
 kThermostat_Cold,
 kThermostat_Heat,
} thermostat_mode_t;

typedef enum _thermostat_speed
{
 kThermostatFan_On,
 kThermostatFan_Off,
 kThermostatFan_Low,
 kThermostatFan_Med,
 kThermostatFan_High,
} thermostat_fan_speed_t;
typedef struct _thermostat_attribute
{
 uint16_t id;
 uint8_t mode;
 uint8_t fan_speed;
 uint8_t temperature[TEMPERATURE_VALUE_SIZE];
 uint8_t reserved[16];
} thermostat_attribute_t;

typedef struct _thermostatdb_ops
{
 thermostatdb_status_t (*init)(void);
 thermostatdb_status_t (*deinit)(void);
 thermostatdb_status_t (*addWithId)(uint16_t id, thermostat_attribute_t
 *attr);
 thermostatdb_status_t (*delWithId)(uint16_t id);
 thermostatdb_status_t (*updWithId)(uint16_t id, thermostat_attribute_t
 *attr);
 thermostatdb_status_t (*getWithId)(uint16_t id, thermostat_attribute_t
 *attr);
} thermostatdb_ops_t;

extern const thermostatdb_ops_t g_thermostatdb_ops;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
169 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

9.5 Smart Panel CM4
This Smart Panel CM4 slave project runs on the CM4 core.

It is linked to SDRAM and is embedded into the CM7 project.

The CM7 project handles the loading of this CM4 project into SDRAM and launching of it.

9.5.1 Main functionalities

• Main GUI based on LVGL with Vglite graphics acceleration
• Camera with 2D PxP graphics acceleration
• Display for the camera preview and LVGL GUI
• USB shell
• LED indicator
• Multicore with messaging and shared memory communication

9.5.2 LVGL GUI screens and widgets

All the LVGL GUI screens and widgets are generated with NXP's GUI Guider tools.

Refer to the GUI Guider home page for more information.

9.5.3 LVGL and Vglite library

The LVGL and Vglite components are directly ported from RT1170 SDK and we did not modify them in our
solution.

Also the code for the LVGL GUI screens and widgets, which are generated by NXP's GUI guider, is not
frequently changed.

To speed up the building of the whole project, we moved these components into one static library and linked the
library into the CM4 application project.

This LVGL and Vglite library project is located in the ../home_panel/lvgl_vglite_lib folder.

9.5.4 Boot sequence

Below is the core boot up flow:

• Board level initialization
• Framework initialization
• HAL devices registration
• Framework startup
• FreeRTOS scheduler startup

The main() entry of this project is located in the ../home_panel/cm4/source/sln_smart_tlhmi_cm4.
cpp file:

int main(void)
{
 /* init the board */
 APP_BoardInit();
 ...
 /* init the framework*/
 APP_InitFramework();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
170 / 226

https://www.nxp.com/design/software/development-software/gui-guider

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 vTaskStartScheduler();
 for (;;)
 {
 } /* should never get here */
 return 0;
}

9.5.5 Board level initialization

The board level initialization is implemented in the APP_BoardInit() entry located in the ../home_panel/
cm4/source/sln_smart_tlhmi_cm4.cpp file.

Below is the main flow:

• MPU, Clock, and Pins configuration
• Multicore manager init and slave startup
• Peripherals initialization

void APP_BoardInit()
{
 BOARD_ConfigMPU();
 BOARD_BootClockRUN();
 BOARD_InitBootPins();

#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 uint32_t startupData, i;
 mcmgr_status_t status;
 (void)MCMGR_Init();
 /* Get the startup data */
 do
 {
 status = MCMGR_GetStartupData(&startupData);
 } while (status != kStatus_MCMGR_Success);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 ...
 BOARD_MIPIPanelTouch_I2C_Init();
 BOARD_InitEDMA();
 Time_Init(1);
}

9.5.6 LVGL image resource and icon resource loading

All the LVGL images, data, and icon data are merged into one continuous binary block with the 64 Bytes aligned
of each image/icon.

The cm7 loads this resource binary block into the dedicated memory region res_sh_mem.

The following two functions load each of these LVGL images and icons from this region during the boot.

Setup the LVGL images is implemented in ../home_panel/cm4/custom/custom.c:

void setup_imgs(unsigned char *base)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
171 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

{
 _audio_player_background_1280x720.data = (base + 0);
 _audio_player_mic_off_70x112.data = (base + 1843200);
 _audio_player_next_140x214.data = (base + 1858880);

}

Load the icons ../framework/hal/output/hal_output_ui_home_panel.c:

void LoadIcons(void *base)
{
 s_Icons[ICON_PROGRESS_BAR] = (base + 0);
}

9.5.7 Framework managers

The below framework managers are enabled on the cm4 side with the following priorities:

• Low-power manager
• Camera manager - P2
• Display manager - P2
• Multicore manager - P0
• Output manager - P0
• Input manager - P2

Where P0 is the highest priority and P3 is the least prioritized.

For a more detailed description of these framework managers, refer to the Section 6 chapter.

Framework initialization ../home_panel/cm4/source/sln_smart_tlhmi_cm4.cpp

int APP_InitFramework(void)
{
 int ret = 0;

 FWK_MANAGER_INIT(LpmManager, ret);
 FWK_MANAGER_INIT(CameraManager, ret);
 FWK_MANAGER_INIT(DisplayManager, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 FWK_MANAGER_INIT(MulticoreManager, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 FWK_MANAGER_INIT(OutputManager, ret);
 FWK_MANAGER_INIT(InputManager, ret);

 return ret;
}

Framework startup ../home_panel/cm4/source/sln_smart_tlhmi_cm4.cpp

int APP_StartFramework(void)
{
 int ret = 0;

 FWK_MANAGER_START(LpmManager, 0, ret);
 FWK_MANAGER_START(CameraManager, CAMERA_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(DisplayManager, DISPLAY_MANAGER_TASK_PRIORITY, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 FWK_MANAGER_START(MulticoreManager, MULTICORE_MANAGER_TASK_PRIORITY, ret);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
172 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 FWK_MANAGER_START(OutputManager, OUTPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(InputManager, INPUT_MANAGER_TASK_PRIORITY, ret);

 return ret;
}

9.5.8 Framework HAL devices

The enabled HAL devices are configured in the ../home_panel/cm4/board/board_define.h file as
shown below:

#define ENABLE_GFX_DEV_Pxp
#define ENABLE_DISPLAY_DEV_LVGLHomePanel
#define ENABLE_CAMERA_DEV_MipiGc2145
#define ENABLE_OUTPUT_DEV_RgbLed
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
#define ENABLE_MULTICORE_DEV_MessageBuffer
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
#define ENABLE_INPUT_DEV_ShellUsb
#define ENABLE_OUTPUT_DEV_UiHomePanel
#define ENABLE_LPM_DEV_Standby
#define ENABLE_OUTPUT_DEV_IrWhiteLeds

The registration of the enabled HAL devices is implemented in the APP_RegisterHalDevices(...) function
located in home_panel/cm4/source/sln_smart_tlhmi_cm4.cpp:

Note: The APP_RegisterHalDevices(...) must be called after the framework initialization
APP_InitFramework(...) and before framework startup APP_StartFramework(...).

int APP_RegisterHalDevices(void)
{
 int ret = 0;

 HAL_GFX_DEV_REGISTER(Pxp, ret);
 HAL_DISPLAY_DEV_REGISTER(LVGLHomePanel, ret);
 HAL_CAMERA_DEV_REGISTER(MipiGc2145, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 HAL_OUTPUT_DEV_REGISTER(RgbLed, ret);
 HAL_INPUT_DEV_REGISTER(ShellUsb, ret);
 HAL_OUTPUT_DEV_REGISTER(UiHomePanel, ret);
 HAL_LPM_DEV_REGISTER(Standby, ret);
 HAL_OUTPUT_DEV_REGISTER(IrWhiteLeds, ret);
#ifdef ENABLE_OUTPUT_DEV_AudioDump
 HAL_OUTPUT_DEV_REGISTER(AudioDump, ret);
#endif /* ENABLE_OUTPUT_DEV_AudioDump */
 /* Add new HAL device registrations here */

 return ret;
}

9.5.8.1 MipiGc2145 camera HAL device

This HAL device driver is located in ../framework/hal/camera/hal_camera_mipi_gc2145.c.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
173 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Below is the configuration of this camera device located in ../home_panel/cm4/board/board_define.h.

#ifdef ENABLE_CAMERA_DEV_MipiGc2145
#define CAMERA_DEV_MipiGc2145_BUFFER_COUNT 2
#define CAMERA_DEV_MipiGc2145_HEIGHT 600 // 720
#define CAMERA_DEV_MipiGc2145_WIDTH 800 // 1280
#define CAMERA_DEV_MipiGc2145_LEFT 0
#define CAMERA_DEV_MipiGc2145_TOP 0
#define CAMERA_DEV_MipiGc2145_RIGHT 799 // 1279
#define CAMERA_DEV_MipiGc2145_BOTTOM 599 // 719
#define CAMERA_DEV_MipiGc2145_ROTATE kCWRotateDegree_0
#define CAMERA_DEV_MipiGc2145_FLIP kFlipMode_None
#define CAMERA_DEV_MipiGc2145_SWAPBYTE 0
#define CAMERA_DEV_MipiGc2145_FORMAT kPixelFormat_YUV1P444_RGB
#define CAMERA_DEV_MipiGc2145_BPP 4
#endif /* ENABLE_CAMERA_DEV_MipiGc2145 */

9.5.8.2 PxP graphics HAL device

This HAL device driver is located in ../framework/hal/misc/hal_graphics_pxp.c.

It represents the 2D graphics device to handle the 2D graphics operations.

9.5.8.3 LVGLHomePanel display HAL device

This HAL device driver is located in ../framework/hal/display/hal_display_lvgl_homepanel.c.

Below is the configuration of this display device located in ../home_panel/cm4/board/board_define.h.

#ifdef ENABLE_DISPLAY_DEV_LVGLHomePanel
#define DISPLAY_DEV_LVGLHomePanel_BUFFER_COUNT 1
#define DISPLAY_DEV_LVGLHomePanel_HEIGHT 640
#define DISPLAY_DEV_LVGLHomePanel_WIDTH 480
#define DISPLAY_DEV_LVGLHomePanel_StartX 110
#define DISPLAY_DEV_LVGLHomePanel_StartY 30
#define DISPLAY_DEV_LVGLHomePanel_LEFT 0
#define DISPLAY_DEV_LVGLHomePanel_TOP 0
#define DISPLAY_DEV_LVGLHomePanel_RIGHT 479
#define DISPLAY_DEV_LVGLHomePanel_BOTTOM 639
#define DISPLAY_DEV_LVGLHomePanel_ROTATE kCWRotateDegree_270
#define DISPLAY_DEV_LVGLHomePanel_FORMAT kPixelFormat_RGB565
#ifdef ENABLE_CAMERA_DEV_MipiGc2145
#define DISPLAY_DEV_LVGLHomePanel_SRCFORMAT kPixelFormat_YUV1P444_RGB
#else
#define DISPLAY_DEV_LVGLHomePanel_SRCFORMAT kPixelFormat_UYVY1P422_RGB
#endif /* ENABLE_CAMERA_DEV_MipiGc2145 */
#define DISPLAY_DEV_LVGLHomePanel_BPP 2
#endif /* ENABLE_DisplayDev_LVGLHomePanel */

This LVGLHomePanel-display-HAL-device launches the main LVGL task loop for the UI flashing.

static void _LvglTask(void *param)
{
#if LV_USE_LOG
 lv_log_register_print_cb(_PrintCb);
#endif /* LV_USE_LOG */

 lv_port_pre_init();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
174 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 lv_init();
 lv_port_disp_init();
 lv_port_indev_init();
 g_LvglInitialized = true;

 setup_imgs((unsigned char *)APP_LVGL_IMGS_BASE);
 setup_ui(&guider_ui);
 events_init(&guider_ui);
 custom_init(&guider_ui);
 while (1)
 {
 LVGL_LOCK();
 lv_task_handler();
 LVGL_UNLOCK();
 vTaskDelay(pdMS_TO_TICKS(10));
 }
}

It also handles the camera preview request from the framework in the
HAL_DisplayDev_LVGLHomePanel_Blit function:

hal_display_status_t HAL_DisplayDev_LVGLHomePanel_Blit(const display_dev_t *dev,
 void *frame, int width, int height)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;
 LOGI("++HAL_DisplayDev_LVGLHomePanel_Blit");

 // Show the new frame.
 void *lcdFrameAddr = s_LcdBuffer[0];
 static int camerPreviewLayerOn = 0;

 // enable camera preview layer in screen with camera preview.
 if (s_EnableCameraPreview && (g_PreviewMode == PREVIEW_MODE_CAMERA))
 {
 if (camerPreviewLayerOn == 0)
 {
 lv_enable_camera_preview(lcdFrameAddr, true);
 camerPreviewLayerOn = 1;
 }
 }
 else
 {
 // disable camera preview layer in screen without camera preview.
 if (camerPreviewLayerOn == 1)
 {
 camerPreviewLayerOn = 0;
 lv_enable_camera_preview(lcdFrameAddr, false);
 }
 }

 if (camerPreviewLayerOn)
 {
 ret = kStatus_HAL_DisplayRequestFrame;
 }

 LOGI("--HAL_DisplayDev_LVGLHomePanel_Blit");
 return ret;
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
175 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

9.5.8.4 UiHomePanel UI output HAL device

This HAL device driver is located in ../framework/hal/output/hal_output_ui_home_panel.c.

The whole UI state machine is driven by this output HAL device with the below event sources:

9.5.8.4.1 LVGL touch events

All the event callbacks of the LVGL widget are implemented in ../home_panel/cm4/generated/events_
init.c.

9.5.8.4.2 Vision and Voice algorithm inference result

The vision (face and gesture) and voice inference result is notified by the output manager with below HAL_
OutputDev_UiHomePanel_InferComplete operator:

static hal_output_status_t HAL_OutputDev_UiHomePanel_InferComplete(const
 output_dev_t *dev,

 output_algo_source_t source,
 void
 *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 if (inferResult == NULL)
 {
 return error;
 }

#if AQT_TEST
 if(source == kOutputAlgoSource_Voice)
 {
 _control_audio_player(inferResult);
 }
#endif /* AQT_TEST */

 LVGL_LOCK();
 home_panel_screen_id_t currentScreenId = get_current_screen();

 if (currentScreenId == kScreen_Num)
 {
 LVGL_UNLOCK();
 return error;
 }

 if (source == kOutputAlgoSource_Vision)
 {
 _InferComplete_Vision(dev, inferResult, currentScreenId);
 }

 else if (source == kOutputAlgoSource_Voice)
 {
 _InferComplete_Voice(dev, inferResult, currentScreenId);
 }
 LVGL_UNLOCK();
 return error;
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
176 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

9.5.8.5 RgbLed output HAL device

This HAL device driver is located in ../framework/hal/output/hal_output_rgb_led.c.

It flashes the RGB LED with different patterns according to the HAL_OutputDev_RgbLed_InferComplete or
HAL_OutputDev_RgbLed_InputNotify operators below:

static hal_output_status_t HAL_OutputDev_RgbLed_InferComplete(const output_dev_t
 *dev, output_algo_source_t source, void *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 uint32_t timerOn = 0;
 _SetLedColor(APP_OutputDev_RgbLed_InferCompleteDecode(source, inferResult,
 &timerOn));

 if (timerOn != 0)
 {
 xTimerChangePeriod(OutputRgbTimer, pdMS_TO_TICKS(timerOn), 0);
 }
 return error;
}

static hal_output_status_t HAL_OutputDev_RgbLed_InputNotify(const output_dev_t
 *dev, void *data)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 _SetLedColor(APP_OutputDev_RgbLed_InputNotifyDecode(data));

 return error;
}

9.5.8.6 MessageBuffer multicore HAL device

This HAL device driver is located in ../framework/hal/misc/hal_multicore_messageBuffer.c.

It handles the multicore messaging based on the multicore manager message buffer mechanism.

Refer the "framework-> HAL_devices -> Multicore devices" part in the framework chapter for the detailed
description of this HAL device.

9.5.8.7 ShellUsb input HAL device

This HAL device driver is located in ../framework/hal/input/hal_input_shell_cdc.c.

It populates one USB CDC ACM device and implements a shell command interface.

This driver only includes one weak shell command registration function as below:

__attribute__((weak)) void
 APP_InputDev_Shell_RegisterShellCommands(shell_handle_t shellContextHandle,
 input_dev_t shellDev, input_dev_callback_t callback)
{
}

The application must overwrite this function to register the application-specific shell commands.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
177 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The implementation of this overwritten function for the Smart Panel application is in ../home_panel/cm4/
source/event_handler/smart_tlhmi_input_shell_commands.c:

void APP_InputDev_Shell_RegisterShellCommands(shell_handle_t shellContextHandle,
 input_dev_t *shellDev, input_dev_callback_t callback)
{
 s_InputCallback = callback;
 s_SourceShell = shellDev;
 s_ShellHandle = shellContextHandle;
 s_FrameworkRequest.respond = _FrameworkEventsHandler;

 if (s_ThingName == NULL)
 {
 APP_GetHexUniqueID(&s_ThingName);
 }

 SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(version));
 ...
}

9.5.8.8 Standby LPM HAL device

This HAL device driver is located in ../framework/hal/misc/hal_lpm_standby.c.

Refer to framework -> HAL Devices/docs/hal_devices/low_power.md in the framework
documentation for the detailed description of this LPM device.

This standby HAL device implements the standby mode of this application. The backlight is turned off and the
main display layer is disabled.

static void _EnterStandbyMode(void)
{
 LOGD("[Standby] Enter standby mode");
 BOARD_BacklightControl(0);
 lv_enable_ui_preview(0);
}

9.5.9 Logging

Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find the detailed document
../home_panel/cm4/freertos/libraries/logging/README.md.

The CM7 and CM4 share low-level LPUART12 peripheral for the logging output. The hardware semaphore
mechanism is used to guarantee the concurrence access of the LPUART12 peripheral.

They share a low-level timer to get the unified timestamp of the logging information.

9.5.9.1 Logging Task Init

Application calls xLoggingTaskInitialize(...) API to create the logging task in the main() entry of this
project is located in the ../coffee_machine/cm4/source/sln_smart_tlhmi_cm4.cpp file:

xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE, LOGGING_TASK_PRIORITY,
 LOGGING_QUEUE_LENGTH);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
178 / 226

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

9.5.9.2 Logging Macros

The logging Macros are defined in ../framework/inc/fwk_log.h.

All the modules must use these unified logging Macros for logging.

#ifndef LOGV
#define LOGV(fmt, args...) {implement...}
...
#endif

#ifndef LOGD
#define LOGD(fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI(fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE(fmt, args...) {implement...}
#endif

9.5.9.3 UART hardware connection

The Smart Panel application prints the log to the LPUART12 port. The tx/rx pins of LPUART12 are connected
to J202, at the back of the board (pin3-RX and pin4-TX). Connect the LPUART12 tx/rx pins to a TTL USB serial
adapter (LPUART12 rx pin to USB adapter tx pin, LPUART12 tx pin to USB adapter rx pin), and connect the
TTL USB serial adapter.

9.5.9.4 Get UART log from Windows host

For a Windows host system, find the corresponding COM port number from the Windows "Device Manager" for
the newly connected TTL USB serial adapter. Using terminal emulator program (for example, putty) to connect
to the COM port, setting the speed to 115200 Hz.

9.5.9.5 Get UART log from Linux host

For a Linux host system, Connect to the serial port (usually /dev/ttyUSBx) using a Linux terminal emulator
program (for example, Minicom), use 115200 8N1 as the serial port setting for the serial communication.

10 Customization

10.1 How to develop a user application

10.1.1 Introduction

We created the template to demonstrate the Smart HMI application with multicore, LVGL GUI, Face
Recognition, Gesture Recognition, and Far-Field Voice Recognition AI/ML algorithms integrated.

You can leverage this template to quickly build your own applications:

• Implement multicore cooperation for higher performance

• Create your fancy GUI with open-source LVGL library
• Use the Face Recognition as the user identity
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
179 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Use the Gesture Recognition as the touchless interface
• Use the Far-Field Voice Recognition as the touchless interface

10.1.2 Build the LVGL GUI

LVGL is a free and open-source embedded graphic library with features that enable you to create embedded
GUIs with intuitive graphical elements, beautiful visual effects, and a low memory footprint. The complete
graphic framework includes various widgets for you to use in the creation of your GUI, and supports more
advanced functions such as animations and antialiasing.

To learn more about LVGL, visit the following link.

10.1.2.1 Design and create the GUI with NXP's free GUI Guider tool

GUI Guider is a user-friendly graphical user interface development tool from NXP that enables rapid
development of high quality displays with the open-source LVGL graphics library. GUI Guider's drag-and-drop
editor makes it easy to utilize features of LVGL such as widgets, animations, and styles to create a GUI with
minimal or no coding at all.

To learn more about GUI Guider, visit https://www.nxp.com/design/software/development-software/gui-
guider:GUI-GUIDER

You can also refer to our full GUI Guider project for Coffee Machine and Elevator demo as below:

-- Coffee Machine (/coffee_machine/gui_guider/TLHMI_Coffee_Demo_LGVLv8_Landscape.
guiguider)

-- Elevator (/elevator/gui_guider/TLHMI_Elevator_Demo.guiguider)

10.1.2.2 Integrate your generated LVGL GUI code

The whole GUI code is running in the CM4 core and is built into the CM4 project.

By default, the function below is the main entry of the whole LVGL GUI located in your generated GUI code ../
coffee_machine/cm4/generated/gui_guider.c.

void setup_ui(lv_ui *ui)
{
 setup_scr_standby(ui);
 lv_scr_load(ui->standby);
}

We created the LVGL Display HAL device to handle the LVGL initialization and the GUI launch. The void
setup_ui(lv_ui *ui) is called in this HAL device, therefore you must replace the "generated" folder with
your GUI code in the CM4 project, and the whole UI be launched during the startup.

You can also refer the LVGL Display HAL device implementation for the Coffee Machine demo and Elevator
demo as below:

-- Coffee Machine hal_display_lvgl_coffeemachine.c

-- Elevator hal_display_lvgl_elevator.c

To learn more about the Display HAL device, refer to the display.md file.

Note: There is an Application Note to introduce the detailed steps to integrate the LVGL GUI codes to the
smart HMI platform.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
180 / 226

https://lvgl.io/
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER
https://www.nxp.com/design/designs/nxp-edgeready-smart-hmi-solution-based-on-i-mx-rt117h-with-ml-vision-voice-and-graphical-ui:SLN-TLHMI-IOT-RD

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

10.1.3 Build the phoneme-based voice recognition model

We enabled the Far-Field Voice Recognition by phoneme-based Automatic Speech Recognition (ASR) engine.
NXP provides two inference engines (VIT/DSMT) for ASR.

We created two Voice Algorithm HAL devices to handle the whole voice recognition based on VIT and DSMT
respectively.

• VIT Voice Algorithm HAL device implementation hal_voice_algo_vit_asr.c

• DSMT Voice Algorithm HAL device implementation hal_voice_algo_dsmt_asr.c

By default, Coffee Machine and Elevator Apps are built with DSMT Voice Algorithm HAL device and Smart
Panel App is built with VIT Voice Algorithm HAL device.

• Coffee Machine voice recognition models: ../../coffee_machine/cm7/local_voice/ folder

• Elevator voice recognition models: ../../elevator/cm7/local_voice folder

• Smart Panel voice recognition models: ../../home_panel/cm7/local_voice/oob_demo_vit/ folder

VIT is total NXP intellectual property. We can get its basic knowledge from the VIT main page. For more
information on how to build your VIT phoneme-based voice engine, refer to vit_instructions.md.

DSMT is provided by NXP partner Cyberon. For more information on how to build your DSMT phoneme-based
voice engine, refer to dsmt_instructions.md

10.1.3.1 Voice recognition flow

For more information, refer to the Smart Panel App implementation. VIT inference engine recognizes voice
command based on VIT model. VIT_Process returns the detection status by VIT_DetectionResults.

 VIT_Status = VIT_Process(VITHandle, cleanSound, &VIT_DetectionResults);

Detection status is defined as follows:

/* VIT Detection Status
 * Status returned by VIT_Process() API.
 * Indicates if the Wake Word or a Voice Command has been detected on the
 frame processed
 */
typedef enum
{
 VIT_NO_DETECTION = 0, // Nothing detected
 VIT_WW_DETECTED = 1, // WakeWord Detected
 VIT_VC_DETECTED = 2, // a Voice Command Detected
 VIT_DUMMY_DETECTION = PL_MAXENUM
}VIT_DetectionStatus_en;

Based on the value of VIT_DetectionResults, check Wake Word of Command information.

 if (VIT_DetectionResults == VIT_WW_DETECTED)
 {
 VIT_Status = VIT_GetWakeWordFound(VITHandle, &s_WakeWord);
 ...
 }
 else if (VIT_DetectionResults == VIT_VC_DETECTED)
 {
 /* Retrieve id of the Voice Command detected

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
181 / 226

https://www.nxp.com/design/software/embedded-software/voice-intelligent-technology:VOICE-INTELLIGENT-TECHNOLOGY

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 String of the Command can also be retrieved (when WW and CMDs
 strings are integrated in Model) */
 VIT_Status = VIT_GetVoiceCommandFound(VITHandle, &s_VoiceCommand);
 ...

If voice recognition result is true even confirmed by confirmDetectedCommand, not triggered by Residual
noise from board speaker, the recognition result is sent to output device by static void voice_algo_
asr_result_notify(asr_inference_result_t *result, uint32_t utteranceLength).

If the value of utteranceLength is not 0, there is another message created for AFE device to calibrate AFE
algorithm.

After output device receives voice recognition result, _InferComplete_Voice handles all voice commands.

static hal_output_status_t _InferComplete_Voice(const output_dev_t *dev,
 void *inferResult,
 home_panel_screen_id_t
 currentScreenId)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 asr_inference_result_t *voiceAlgoResult = (asr_inference_result_t
 *)inferResult;
 LOGD("[UI] Screen:%d voice command status:%d cmd:%d", currentScreenId,
 voiceAlgoResult->status,
 voiceAlgoResult->keywordID);
 ...

The user can customize the UI actions based on different product design. The field of keywordID in
asr_inference_result_t is used to store command ID.

typedef struct _asr_inference_result
{
 asr_voice_detect_status_t status;
 asr_language_t language;
 int32_t keywordID;
 asr_inference_t demo;
} asr_inference_result_t;

The voice inference engine runs in CM7 and the whole Voice algorithm HAL device and voice models are built
into CM7 project.

10.1.4 Face recognition and database operations

The face recognition algorithm and database operations are both implemented in the framework.

There are two kinds of databases used in the application:

• The face feature database is used to store the user's face feature data when recognized by the face
recognition algorithm

• The user's profile database is used to store the user's application-specific data (for example, user's confect
selection in the coffee machine demo).

When a user is recognized, a unique face_id is generated, and it can be used as the search key to the face
feature database and user's profile database.

The face recognition algorithm and database operations are both running on the CM7 and built into CM7
project.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
182 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

You can refer to the implementation for the Coffee Machine demo, Elevator demo and the Smart Panel demo as
below:

• Face recognition algorithm for Coffee Machine: hal_vision_algo_oasis_coffeemachine.c
• Face recognition algorithm for Elevator: hal_vision_algo_oasis_coffeemachine.c
• Face recognition algorithm for Elevator: hal_vision_algo_oasis_homepanel.c
• Face feature database: hal_sln_facedb.c

We have implemented the framework flash APIs based on the little fs. You can define the user's profile data
structure and implement the user's profile database base on these well-defined APIs.

You can refer to the user's profile database implementation as below:

• User's profile database for Coffee Machine: hal_sln_coffeedb.c
• User's profile database for Elevator: hal_sln_elevatordb.c
• User's thermostat profile database for HomePanel: hal_sln_thermostatdb.c

10.1.4.1 Implement user case flow with face recognition results

The face recognition algorithm and database operations are running on the CM7 core (for example, ../../
framework/hal/vision/hal_vision_algo_coffee_machine.c) it is controlled by the UI HAL output
device (for example, ../../framework/hal/output/hal_output_ui_coffee_machine.c), which runs
on the CM4 CORE.

10.1.4.1.1 Start / stop the face recognition algorithm

The UI hal output device controls the start / stop of the face recognition algorithm according to the application UI
flow logic, for example, when the application enters into the user register screen trying to register a new user.

uint8_t UI_EnterScreen_Callback(screen_t screenId)
{
 switch (screenId)
 {
 case kScreen_Home:
 {
 ...

 _StopFaceRec(0);
 }
 ...
 case kScreen_Standby:
 {
 _StopFaceRec(1);
 }
 }
}

_StopFaceRec sends a event_face_rec_t to the face recognition algorithm that starts/stops the face
recognition algorithm.

static void _StopFaceRec(int stop)
{
 static event_face_rec_t s_FaceRecEvent;
 output_event_t output_event = {0};

 output_event.eventId = kOutputEvent_VisionAlgoInputNotify;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
183 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 output_event.data = &s_FaceRecEvent;
 output_event.copy = 1;
 output_event.size = sizeof(s_FaceRecEvent);
 output_event.eventInfo = kEventInfo_Remote;

 // notify the face rec to start
 s_FaceRecEvent.eventBase.eventId = kEventFaceRecID_OasisSetState;

 if (stop)
 {
 s_FaceRecEvent.oasisState.state = kOASISLiteState_Stopped;
 }
 else
 {
 s_FaceRecEvent.oasisState.state = kOASISLiteState_Running;
 }
 uint8_t fromISR = __get_IPSR();
 s_OutputDev_UiCoffeeMachine.cap.callback(s_OutputDev_UiCoffeeMachine.id,
 output_event, fromISR);
}

When the face recognition algorithm receives the event, it starts / stops the face recognition processing
accordingly. When starting the face recognition process, it requests camera frames to do the recognition.

static hal_valgo_status_t HAL_VisionAlgoDev_OasisCoffeeMachine_InputNotify(const
 vision_algo_dev_t *receiver,
 void
 *data)
{
 switch (eventBase.eventId)
 {
 ...
 case kEventFaceRecID_OasisSetState:
 {
 if (start)
 {
 _oasis_start();
 }
 else if (stop)
 {
 _oasis_stop();
 }
 }
 }

}

When receiving a camera frame, the face recognition algorithm does the recognition, and it reports the result
back to the UI HAL output device.

static hal_valgo_status_t HAL_VisionAlgoDev_OasisCoffeeMachine_Run(const
 vision_algo_dev_t *dev, void *data)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;

 if (s_OasisCoffeeMachine.currRunFlag != OASIS_RUN_FLAG_NUM &&
 s_OasisCoffeeMachine.currRunFlag != OASIS_RUN_FLAG_STOP)
 {
 ...

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
184 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 int oasis_ret = OASISLT_run_extend(s_OasisCoffeeMachine.pframes,
 s_OasisCoffeeMachine.currRunFlag,
 s_OasisCoffeeMachine.config.minFace,
 &s_OasisCoffeeMachine);
 ...
 /* Take decision regarding the inference results */
 _process_inference_result(&s_OasisCoffeeMachine);
 }
 ...
}

10.1.4.1.2 Handling the face recognition results

The UI HAL output device starts application-specific logic when receiving a face recognition result. For example,
in the coffee machine demo, we ask the user whether to save the coffee selection to the database after we
recognize a new user. Or if we recognize an already registered user, we update the coffee selection on the UI to
the previous selection.

static hal_output_status_t _InferComplete_Vision(const output_dev_t *dev, void
 *inferResult, screen_t currentScreenId)
{
 ...
 if ((pResult->face_recognized) && (pResult->face_id != INVALID_FACE_ID))
 {
 // store the user's selection
 coffee_result_t *pAttr = (coffee_result_t *)pResult->userData;
 s_Recognized = 1;
 s_UserId = pResult->face_id;
 s_UserCoffeeType = pAttr->coffeeType;
 s_UserCoffeeSize = pAttr->coffeeSize;
 s_UserCoffeeStrength = pAttr->coffeeStrength;
 ...
 // update the UI to user's coffee selection
 gui_home_set_language(_ConvertASRLanguageToUILanguage(s_UserLanguage));
 gui_set_home_coffee_type(s_UserCoffeeType);
 gui_set_home_coffee_size(s_UserCoffeeSize);
 gui_set_home_coffee_strength(s_UserCoffeeStrength);
 }
 ...
}

10.1.4.2 Implement the user's profile database with face recognition

The user profile database is a separate database (besides the face feature database), it is used to store
application-specific data for a user. We use the face_id as the key to the user profile database, which is
generated after the face recognition algorithm recognizes a new user.

10.1.4.2.1 Define user profile data structure and database ops

For the coffee machine demo, we use the following data structure to remember a user's coffee selection
hal_sln_coffeedb.h. The detailed implementation of the database API is in hal_sln_coffeedb.c.

typedef struct _coffee_attribute
{
 uint16_t id;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
185 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 uint8_t type;
 uint8_t size;
 uint8_t strength;
 uint8_t language;
 uint8_t reserved[15];
} coffee_attribute_t;

typedef struct _coffeedb_ops
{
 coffeedb_status_t (*init)(void);
 coffeedb_status_t (*deinit)(void);
 coffeedb_status_t (*addWithId)(uint16_t id, coffee_attribute_t *attr);
 coffeedb_status_t (*delWithId)(uint16_t id);
 coffeedb_status_t (*updWithId)(uint16_t id, coffee_attribute_t *attr);
 coffeedb_status_t (*getWithId)(uint16_t id, coffee_attribute_t *attr);
} coffeedb_ops_t;

extern const coffeedb_ops_t g_coffedb_ops;

10.1.4.2.2 Save user profile data into the database

When the face recognition algorithm detects a new user, the UI output HAL device decides when to save the
user's face feature data and the user profile data after receiving the face recognition result. For example, in
coffee machine demo, after the user confirms to save the coffee selection, an event with the user's coffee
selection is sent to the face recognition algorithm.

static hal_output_status_t _InferComplete_Voice(const output_dev_t *dev, void
 *inferResult, screen_t currentScreenId)
{
 ...
 case (VOICE_CMD_CONFIRM):
 {
 if (s_IsWaitingRegisterSelection)
 {
 coffee_type_t curType = get_coffee_type();
 coffee_size_t curSize = get_coffee_size();
 coffee_strength_t curStrength = get_coffee_strength();
 asr_language_t language =
 _ConvertUILanguageToASRLanguage(get_language());
 _RegisterCoffeeSelection(curType, curSize, curStrength,
 language);
 }
 }
}

static void _RegisterCoffeeSelection(coffee_type_t type,
 coffee_size_t size,
 coffee_strength_t strength,
 asr_language_t language)
{
 static event_smart_tlhmi_t s_TlhmiEvent;
 LOGD("[UI] Register user:%d coffee selection %d:%d:%d:%d", s_UserId, type,
 size, strength, language);

 output_event_t output_event = {0};

 output_event.eventId = kOutputEvent_VisionAlgoInputNotify;
 output_event.data = &s_TlhmiEvent;
 output_event.copy = 1;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
186 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 output_event.size = sizeof(s_TlhmiEvent);
 output_event.eventInfo = kEventInfo_Remote;

 s_TlhmiEvent.eventBase.eventId =
 kEventFaceRecId_RegisterCoffeeSelection;
 s_TlhmiEvent.eventBase.eventInfo =
 kEventInfo_Remote;
 s_TlhmiEvent.regCoffeeSelection.id = s_UserId;
 s_TlhmiEvent.regCoffeeSelection.coffeeInfo.coffeeType = type;
 s_TlhmiEvent.regCoffeeSelection.coffeeInfo.coffeeSize = size;
 s_TlhmiEvent.regCoffeeSelection.coffeeInfo.coffeeStrength = strength;
 s_TlhmiEvent.regCoffeeSelection.coffeeInfo.language = language;

 uint8_t fromISR = __get_IPSR();
 s_OutputDev_UiCoffeeMachine.cap.callback(s_OutputDev_UiCoffeeMachine.id,
 output_event, fromISR);
}

When the face recognition algorithm receives the event, it saves the user face feature data and the user profile
data, using the face_id as the key for both databases.

static hal_valgo_status_t HAL_VisionAlgoDev_OasisCoffeeMachine_InputNotify(const
 vision_algo_dev_t *receiver, void *data)
{
 ...
 case kEventFaceRecId_RegisterCoffeeSelection:
 {
 s_pFacedbOps->addFace(s_faceId, NULL, s_pFaceFeature,
 OASISLT_getFaceItemSize());
 s_pCoffeedbOps->addWithId(s_faceId, &attr);
 }
 ...
}

10.1.5 Implement the use case flow with gesture recognition results

The gesture recognition is only used in Smart Panel APP. The use case flow is handled in the UI Output HAL
device implemented in the file hal_output_ui_home_panel.c. The basic process of the use case flow for
gesture recognition is:

• Start the gesture control by enabling it with calling the API _EnableGestureControl(true)
• Trigger the user's use cases with the inference results of gesture recognition model
• End the gesture control by disabling it with calling _EnableGestureControl(false)

The inference result-related information is defined as a data struct for the use case flow. See below:

typedef struct
{
 bool has_hand; /**< whether the hand is detected
 or not; */
 DetBox_t box; /**< hand location: left, top,
 right, bottom. */
 float conf; /**< hand confidence. */
 hand_lr left_right; /**< left hand or right hand. */
 gesture_type gtype; /**< gesture type. */
 float handmark[HAND_LANDMARK_NUMBER * 3]; /**< hand landmark location: x1,
 y1, z1, x2, y2, z2... */
} uvita_gesture_out;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
187 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The process of triggering the use cases with the results from the gesture algorithm model is implemented in the
function _InferComplete_VisionAudioPlayer():

• Check whether the hand is detected first. For example:

 if (pHandResult->hand.has_hand == true)

• If detected, trigger the different use cases according to the gesture type, such as fist, palm. For example:

if (pHandResult->hand.gtype == GESTURE_FIST)
{
 //implement your use case
}

The user can implement the APP use ce on the corresponding gesture type. For more details, check the file
hal_output_ui_home_panel.c.

10.1.6 Implement multicore communication

For better performance, different tasks are running on m4 and m7 core. Both cores must communicate with
each other for cooperation. Based on framework design, both cores communicate via events covering different
framework managers and HAL devices. On Smart HMI platform, the multicore communication mechanism has
been built and there has implemented many multicore communications with many defined events in the APPs.
A user can implement multicore communication in the application. Below is the guidance for it.

The event type indicating multicore communication is defined in the fwk_common.h:

typedef enum _event_info
{
 kEventInfo_DualCore = 0, /* default */
 kEventInfo_Local,
 kEventInfo_Remote,
 kEventInfo_Invalid
} event_info_t;

The default value kEventInfo_DualCore means that the event is sent to both cores M4 and M7.
kEventInfo_Local means the local core and kEventInfo_Remote means the other core. Usually,
kEventInfo_Remote used for multicore communication in APP.

There could be a little difference from the event definitions on the different HAL devices for multicore
communication. But they have common control information, for example the event struct is defined for output
device as below:

typedef struct _output_event
{
 /* Eventid from the list above.*/
 output_event_id_t eventId;
 event_info_t eventInfo;
 /* Pointer to a struct of data that needs to be forwarded. */
 void *data;
 /* Size of the struct that needs to be forwarded. */
 unsigned int size;
 /* If copy is set to 1, the framework will forward a copy of the data. */
 unsigned char copy;
} output_event_t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
188 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Below is a simple and typical example from Elevator APP to show how to send an event on the output device
for multicore communication. The function of the example codes is that the M4 core is notifying the output
device on M7 core to stop playing the prompt.

void StopPrompt(void)
{
 static event_common_t s_StopPromptEvent;
 LOGD("[UI] Stop prompt");

 output_event_t output_event = {0};

 output_event.eventId = kOutputEvent_OutputInputNotify;
 output_event.data = &s_StopPromptEvent;
 output_event.copy = 1;
 output_event.size = sizeof(s_StopPromptEvent);
 output_event.eventInfo = kEventInfo_Remote;

 s_StopPromptEvent.eventBase.eventId = kEventID_StopPrompt;

 uint8_t fromISR = __get_IPSR();
 s_OutputDev_UiElevator.cap.callback(s_OutputDev_UiElevator.id, output_event,
 fromISR);
}

In the above codes, the eventID value indicates the event case handled by the output device. The "data" is the
information that the specific event required to be handled, here is to stop prompt. The eventInfo value indicates
that the event must be sent to the other core, that is multicore communication.

Finally, a new eventID value could be required for the user case. Suggest to define it in the head
file - smart_tlhmi_event_descriptor.h under the path source/event_handlers/ of
each APP for the application layer, for example, the eventID definitions for smart Home which is in
smart_tlhmi_event_descriptor.h:

typedef enum _event_smart_tlhmi_id
{
 kEventID_HomePanelType = kEventType_App,
 kEventID_SetKeyboardOverlay,
 kEventID_GetPreviewMode,
 kEventID_SetPreviewMode,
 kEventID_MediaPlayer_TrackInfo,
 kEventID_MediaPlayer_TrackPosition,
 kEventID_MediaPlayerInfo,
 kEventFaceRecId_RegisterSecuirtyUser,
 kEventFaceRecId_RespondAddUser,
 kEventFaceRecId_RespondUpdateUser,
 kEventFaceRecId_RespondAddSecurityUser,
 kEventFaceRecId_RespondUpdateSecurityUser,
 kEventFaceRecId_DelSecurityUser,
 kEventID_SmartTLHMIID_COUNT
} event_smart_tlhmi_id_t;

10.2 Application resource build

10.2.1 Introduction

This chapter focuses on usages of the resource generator tool used to pack some resource files into a binary
file. In TLHMI project, there are some huge resource files, such as pictures used by LVGL, prompts, and music

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
189 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

files used by audio player, significant VIT model files used in Smart Panel App. To reduce compiler linking time
cost, it is a good practice to extract these resource files from the project, and build them into an independent
binary file.

10.2.2 How to use the resource generator tool

We can generate the resource binary file by running a script file which locates in second-level directory
of App root. Provide two build versions for the resource generator tool. The one suffixed with bat is built
for Windows. The other one suffixed with sh is used for Linux. This chapter is written based on Linux
environment. For Coffee Machine App, navigate to ./coffee_machine/resource/ and run bash
coffee_machine_resource_build.sh

Look into the script file, it actually leverages the ../../tools/resource_build/resource_build tool
and provide required parameters.

Figure 38.  Resource build tool

resource_build executable binary supports three parameters:

• description file: the name of description file
• binary filename (optional): by default, the name of generated binary file is "resources.bin"
• image file format (optional): by default, it is set to 0 (LV_COLOR_16_SWAP == 0). Image data layout is little-

endian. Otherwise image data layout is big-endian.

In most cases, no changes are needed to the resource generator tool. Run the script with default parameters,
update the description file based on specified projects.

10.2.3 Descriptions of the resource file

The description file contains the directory information of resource files. Update the directory information based
on where the used resource file is. There are four types of resource in the description file: image/icon/sound/
model. Follow the above resource type order during updating resource directory information.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
190 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 39.  Resource description file

10.2.3.1 Resource file type

• Image file

The image files are generated by GUI-Guide and automatically saved in the gui_guide/generated/
images folder. The latest GUI-Guide can be found at this address: GUI-Guide Tool

const uint8_t _Americano_250x250_map[] = {
#if LV_COLOR_DEPTH == 16 && LV_COLOR_16_SWAP == 0
 0xff, 0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0xff, ...
#endif
#if LV_COLOR_DEPTH == 16 && LV_COLOR_16_SWAP != 0
 0xff, 0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0xff, ...
#endif
};

• Icon file

Icon files are automatically generated by the GUI-Guide Tool.

#ifndef _NXP_LOGO_H_
#define _NXP_LOGO_H_

#define NXP_LOGO_W 240
#define NXP_LOGO_H 86

static const unsigned short nxp_logo_240x86[] = {
 0xFDA4, 0xFD83, 0xFD83, 0xFD83, 0xFD83, 0xFD83, 0xFD83, 0xFD83, ...
};
#endif /* _NXP_LOGO_H_ */

• Audio file

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
191 / 226

https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The audio header files can be generated by free tools, such as xxd, Audacity, or WAVToCode.

/**
* Written by WAVToCode
* FileName: Can_I_help.h
* Signed: Yes
* No. of channels: 1
* No. of samples: 14211
* Bits/Sample: 16
**/

#define WW_DETECT_EN_LEN sizeof(ww_detect_en)

short ww_detect_en[14211] = {
 0, 0, 0, 1, -2, 2, -1, 0, /* 0-7 */
 1, -1, 1, -2, 2, -1, 0, 1, /* 8-15 */
 ...
 2, 0, -1}; /* 14208-14210 */

Note: In Coffee Machine and Elevator, audio files are in 16 KHz/16 bit/Mono Wav formate. Audio files in
Smart Panel are 48 KHz/16 Bit/Mono MP3 formate. Since audio resource file in Smart panel is very significant,
compress audio resource into MP3 from Wav to save flash memory resource. Smart Panel App has integrated
MP3 stream decoder.

• VIT Model file

VIT model is generated by the VIT online tool. For details, see vit_instructions.md.

Note: Update the model array type as const unsigned char. By default, the array is defined with
the aligned attribute. resource_build has considered the model-aligned requirement very well.
resource_build does not understand the macros defined in vit.h, so update the array type manually.

/*
VIT_Model version : v4.8.0

WakeWord supported :
 WW_Id : WW_Name
 1 : HEY NXP

Voice Commands supported
 Cmd_Id : Cmd_Name
 0 : UNKNOWN
 1 : THERMOSTAT
 2 : SECURITY
 3 : AUDIO PLAYER
*/

const unsigned char VIT_Model_Main_Menu_en[] = {
0xa2, 0x34, 0xfe, 0xab, 0x00, 0x08, 0x04, 0x00, 0x02, 0x00, 0x03, 0x00, 0x01,
 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x68, 0x05, 0x00, 0x00, 0x04,
...
0x0c, 0x63, 0x0c, 0x65, 0x0c, 0x67, 0x0c, 0x69, 0x0c, 0x6b, 0x0c, 0x6d, 0x0c,
 0x6f, 0x0c, 0x71, 0x0c, 0x75, 0x0c, 0x77, 0x0c, 0x79, 0x0c, 0x7b, 0x0c,
0x7d, 0x0c, 0x80, 0x0c, 0x84, 0x0c, 0x86, 0x0c, 0x88, 0x0c, 0x8a, 0x0c, 0x0a,
 0x00, 0x2c, 0x01, 0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0xc0, 0x3f, 0x66,
0x66, 0xc6, 0x3f, 0xba, 0x89, 0xed, 0x56, };

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
192 / 226

https://vit.nxp.com

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

10.2.4 Update the device firmware based on resource generator output

After resource generator runs successfully, it generates a file named resource_information_table.txt
containing binary resource layout information. Reference this file to update the device firmware. Otherwise
device firmware cannot parse resource binary correctly.

In case we are referencing smart panel application, the file of resource_information_table.txt consists
of 4 parts:

• Image index list

Figure 40.  Image index list

• Icon index list

Figure 41. Icon index list

• Music/Prompt index list

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
193 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 42. Music/Prompt index list

• VIT model index list

Figure 43. VIT model index list

• Each type resource total size

Figure 44. Resource size

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
194 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

10.2.4.1 Update image index in custom.c

Figure 45. Update image index

10.2.4.2 Update icon index in hal_output_ui_home_panel.c

Figure 46. Update icon index

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
195 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

10.2.4.3 Update music/prompt index in smart_tlhmi_mqs.c

Figure 47. Update music/prompt index

10.2.4.4 Update VIT model index in smart_tlhmi_vit.c

Figure 48. Update VIT model index

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
196 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

10.2.4.5 Update all each type resource size in app_config.h

Figure 49. Update resource size

10.3 Cyberon DSMT speech model instructions

10.3.1 Getting started with phoneme-based voice engine tool

NXP partners with Cyberon for generating phoneme-based voice engines. The voice engine supports speaker-
independent recognition and there is no need to collect speech data for training specific commands in advance.
With the generation tool, you can create your own custom voice engine by simply typing text.

The TLHMI solution supports Far-Field voice recognition enabled by phoneme-based Automatic Speech
Recognition (ASR) engine, digital signal processing (DSP), and audio front end (AFE). This chapter describes:

1. How to create or modify phoneme-based voice engine in various languages
2. How to integrate a generated voice engine into TLHMI solution software
3. Guide for voice recognition improvement
4. Technical specification information of the voice engine

10.3.2 Installation

The generation tool requires you to log in. To get access to the tool, contact NXP (local-commands@nxp.com)
with the following information.

1. Company name
2. User’s name
3. User’s company email address
4. Physical address (MAC address) of PC network interface.

We reach out to let you know when the account is created. The installation package for Cyberon DSpotter
Modeling Tool (DSMT) V2 can be found at this address: DSpotter Modeling Tool

The installation package contains the following items.

1. Cyberon DSpotter Modeling Tool (DSMT) V2
2. DSpotter Offline Test Tool V2
3. DSpotter Online Test Tool V2 You are required to install all of them. While installing the modeling tool, you

are prompted to install the offline / online test tools.

Install the Cyberon DSpotter GarbGen Tool from this address: DSpotter GarbGen Tool

10.3.3 Load the project template

Note: This guide focuses on exemplifying how DSMT tool works by using the Coffee Machine demo template
for English language.

First, copy the coffee_machine/oob_demo_en.dsmt file in the MCUXpresso project at the location below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
197 / 226

mailto:local-commands@nxp.com
https://tool.cyberon.com.tw/DSMT_V2/index.php?lang=en
https://tool.cyberon.com.tw/DSpotterGarbGenTool/index.php?lang=en

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 50.  Coffee Machine DSMT en template

Ensure that the DSpotter Modeling Tool (DSMT) is installed. To load the project template:

1. Launch the application.
2. A window prompts you to enter your credentials. Log in with your credentials.
3. Click File > Load Project

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
198 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 51. Load DSMT template
4. Open the DSMT project previously copied into the workspace.

Figure 52. Coffee Machine DSMT en template

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
199 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

10.3.4 Add a new command into the Coffee Machine demo

Note: For an easier demonstration, we remove the garbage words here. Delete all entries after "Deregister"
command.

To add a command into the Coffee Machine demo:

1. Click CMD_COFFEE_MACHINE tab on the DSMT tool.
2. Type a new command, then press on "Add". For example, "Mochaccino". This command is inserted at the

end, as shown below (this is the reason for which we have deleted the garbage words, we would have
needed to press the "Up" button for more than 300 times to bring the new command on the position from the
image below.)

Figure 53. Mochaccino at the end
3. Edit CmdMapId from -1 to the one used for the other commands of this command group, which is 2. To do

this, double-click the command.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
200 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 54. Mochaccino at the end good cmdMapId
4. Save the project (by pressing Ctrl + S or clicking the Save Project button.)

10.3.4.1 Integrate the voice engine in MCUXpresso project

If the DSMT template was copied into the folder mentioned above, the binary containing the speech model is
automatically updated when you save the DSMT project.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
201 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 55. Updated dsmt binary

We now must update a few things in the firmware to add support for the new command. For the sake of the
example, we do the same action on the GUI for Mochaccino as we are doing for Cappuccino.

1. Update IndexCommands_dsmt.h. Increase the total number of commands by 1 and also add an action in
action_coffee_machine_en, specifying that we have the same action as for Cappuccino.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
202 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 56. Update IndexCommands_dsmt
2. Update IndexToCommand_en.h. Add a string representation of the new command.

Figure 57. Update IndexToCommand_en
3. Build and flash the project. You must now be able to see the command "Mochaccino" being detected and

also triggering the same action as the "Cappuccino" command.

10.3.5 Add a new language into the Coffee Machine demo

1. Open DSMT and login

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
203 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 58. Dsmt login
2. File -> New Project. Use the name oob_demo_it, choose the Italian language. Click OK.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
204 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 59. New dsmt project
3. Use the default settings. Click OK.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
205 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 60. New dsmt project settings
4. When asked about the Folder where the project should be saved, go to the workspace location of the cm7

Coffee Machine demo project -> local_voice folder.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
206 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 61. New dsmt project folder
5. Rename Group_1 to WW by selecting Group -> Rename.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
207 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 62. Rename group1
6. Add a simple wake word - let us use "Ciao NXP". By default CmdMapId has value -1. Change that to value

1 by double-clicking the wake word.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
208 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 63. Add it wake word
7. Add a new group by selecting Group -> Insert. Change the group name to CMD_COFFEE_MACHINE.

Add the commands below and change CmdMapId value to 2 for all of them.
Inizia, Annulla, Confermare, Caffè espresso, Caffè americano, Cappuccino, Caffè Latte, Piccolo, Medio,
Grande, Leggero, Mite, Forte, Annullare la registrazione.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
209 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 64. Add it commands
8. Very important: Check the MapID checkbox, otherwise the binary we must integrate into our project will not

be generated.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
210 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 65. Add it commands
9. Save the DSMT project (Ctrl + S or File -> Save project).

10. Now we modify the source code to use the newly generated Italian speech model. It is easier to replace one
of the existing models, like French.
• create IndexToCommand_it.h

Figure 66. Index to cmd it

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
211 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Replace the following symbols in your workspace:
• ASR_FRENCH with ASR_ITALIAN
• NUMBER_OF_COFFEE_MACHINE_CMDS_FR with NUMBER_OF_COFFEE_MACHINE_CMDS_IT (must add

that in IndexCommands_dsmt.h). NUMBER_OF_COFFEE_MACHINE_CMDS_IT should be 14.
• action_coffee_machine_fr with the equivalent action_coffee_machine_it
• action_coffee_machine_fr can be removed from IndexCommands_dsmt.h
• In IndexCommands_dsmt.h include IndexToCommand_it.h instead of IndexToCommand_fr.h
• action_coffee_machine_it must be defined, as shown below

Figure 67. Coffee machine it commands
• replace oob_demo_fr_begin with oob_demo_it_begin everywhere in the workspace
• use oob_demo_it_pack_WithMapID.bin in local_voice_model.s

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
212 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 68. Index to cmd it
11. Replace s_memPoolWLangFr with s_memPoolWLangIt.
12. Delete the cm7 debug folder and rebuild afterward. Flash the project. You must now be able to interact with

the dev kit through voice.

10.3.6 Cyberon tools

Check the video tutorials: Cyberon demos

11 VIT speech model instructions

11.1 Getting started with VIT
VIT is based on state-of-the-art deep learning and speech recognition technologies. The Smart Panel App uses
VIT as Audio Speech Recognition technology. Below source codeblocks referenced are copied from the Smart
panel App.

11.2 Obtaining new VIT models
First effective way is to create a model by VIT online tool. An nxp.com account is needed for logging to this
website. The online tool support maximum amount of command is 12. If you need to create more commands or
require some help for tuning more to get better recognition performance, email to local‑commands@nxp.com
and explain the requirements as detailed as possible. For example, if you need help with creating a model, write

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
213 / 226

https://www.youtube.com/playlist?list=PLTEknqO5GAbrDX5NMs-P6b9THWwamgVBo
https://vit.nxp.com/#/generate

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

down your Wake word and command list and let us know your product usage. There is a FAQ list that may be
useful for you: https://vit.nxp.com/#/faq.

11.3 Integrating a new VIT model
After obtaining new models, pack new models into the home_panel_resource.bin file. Regarding the usage
of resource build tool, refer to home_panel_resource.

• Update resource file indexes in home_panel_resource.txt

Figure 69. Resource file indexes

• Execute resource pack tool In Linux environment, Execute bash home_panel_resource.sh. For Windows
environment, run ./home_panel_resource.bat

• Extract model position information in resource binary file After resource pack tool is successfully executed,
Two files are generated: home_panel_resource.bin and resource_information_table.txt. In the
resource_information_table.txt file, read the model position/size and models total size.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
214 / 226

https://vit.nxp.com/#/faq

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 70. Model information in resource information table

• Update model size and position into device firmware.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
215 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 71. Update model size and position

• Update total model size in the appConfig.h file.

Figure 72. Update total model size in appConfig.h

• Update command ID in the IndexCommands.h file. A better practice is to define action ID matching UI
designs. For example, in Smart Panel App, there are three voice commands detectable on the main menu
panel.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
216 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 73. Update command ID in IndexCommands.h

There is a copy of IndexCommands.h in cm4 project, since UI device is running on cm4 and it needs these
action IDs to update display.

• Update the array used for converting command ID to action ID in IndexCommands_vit.h Some developers
may would like to use command ID instead of action ID directly. In real practice, to get better voice
performance, we may need to tune models many times. And the command ID may be changed during model
tuning. After model ID being changed, need to update the below arrays, without any changes into UI code.

Figure 74. Update the array in IndexCommands_vit.h

We can get all command ID from model header file.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
217 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 75. all command ID

• Finally Flash programs into board. rebuild Smart Panel App and flash binary at 0x30100000. Flash
home_panel_resource.bin binary at 0x30800000.
Note: Assume only one App runs on board.

11.4 Barge-in support
When audio player is playing back, AEC feature is enabled automatically to support Barge-in feature.

11.5 Multilanguage support
VIT does not support listening for multiple wake words from different languages at the same time, as it is
the case with DSMT. Therefore, you are able to say only one wake word at a time. To change to a different
language, use the language menu from the display.

12 Gesture recognition

Gesture recognition is a topic in computer science and language technology with the goal of interpreting human
gestures via mathematical algorithms. It is a subdiscipline of computer vision. Gestures can originate from any
body motion or state, but commonly originate from the face or hand.

NXP developed their own gesture recognition library that provides access to the following features:

1. Hand detection
2. Hand landmark detection - optimized Google Hand landmark model
3. Gesture recognition

All models are quantized using NXP's NanoAI technology and are optimized for the ARMv7-CortexM7. The
memory footprint is as follows:

• text memory - 1.26 MB
• RAM - 1.48 MB + (height * width * 3)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
218 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

By default, the Smart Panel application uses the Gesture recognition library found under cm7/libs/uvita_
gesture/libuvita_gesture_cm7.a. The gesture recognition can be disabled by commenting the
ENABLE_VISIONALGO_DEV_Uvita_Gesture from board_define.h.

12.1 Uvita gesture recognition setup
In the current .c/.cpp working file include "uvita_gesture.h, to set up the gesture recognition,
initialize it by calling uvita_gesture_init. For proper initialization, the following parameters must be set
beforehand:

12.1.1 1. input_height/input_wdith

Maximum height and width of the input frame.

12.1.2 2. mem_size

To get the right memory size needed by the library, call uvita_gesture_get_buf_size(height, width)
where height and width are maximum input frames.

12.1.3 3. mem_pool

Memory pool allocated having the size mentioned in the mem_size field

12.1.4 4. fast_mem_size / fast_mem_pool

Uvita library is optimized to store and maintain often used variables inside a fast memory. Depending on the
type of memory provided here, performance can be improved considerably. For M7 core, allocate this memory
pool inside DTCM for best results.

Note: In order to obtain considerable improvements, fast_mem_size should be at least 32 KB.

void Init(void)
{
 /* memory configuration */
 init_para.mem_pool = NULL;
 init_para.mem_size = uvita_gesture_get_buf_size(UVITA_FULL_FRAME_H,
 UVITA_FULL_FRAME_W);
 PRINTF("uvita requires memory size: %d\r\n", init_para.mem_size);

 char* mempool = (char*)pvPortMalloc(init_para.mem_size);
 if (mempool == NULL) {
 PRINTF("uvita malloc error\r\n");
 }

 init_para.mem_pool = mempool;
 init_para.fast_mem_size = DTC_OPTIMIZE_BUFFER_SIZE;
 init_para.fast_mem_pool = s_DTCOPBuf;

 /* uvita initialization */
 ret = uvita_gesture_init(&init_para);
 if (ret != UVITA_SUCCESS) {
 PRINTF("uvita initialization error: %d\r\n", ret);
 }
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
219 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

12.2 Uvita gesture recognition usage
After the setup stage, we can provide frames to the inference engine in order to get the results. Uvita library run
function is uvita_gesture_run. As mentioned before, the library performs 3 types of operation.

Hand detection is done over the det_frame provided as second parameter of the run function (det_frame).
The buffer should be a low-resolution image, of recommended size 192*256, situated in a fast memory area.

If the hand has been found in the det_frame, the algorithm moves forward to step 2 and 3. These operations
are done on high-resolution image for better distance recognition and higher accuracy. The library places 21
hand markers and recognizes up to 13 gestures:

typedef enum
{
 GESTURE_OK = 0,
 GESTURE_FIST,
 GESTURE_ONE,
 GESTURE_VICTORY,
 GESTURE_THREE,
 GESTURE_FOUR,
 GESTURE_PALM,
 GESTURE_THUMB_UP,
 GESTURE_PINKY_UP,
 GESTURE_ROCK_ROLL,
 GESTURE_CALL_ME,
 GESTURE_PREVIOUS,
 GESTURE_NEXT,
 GESTURE_NONE
} gesture_type;

The inference results are returned via 3 parameters of the run function *hout. The structure contains
information about hand presence, hand position, hand identification, hand gesture, and hand landmarks:

typedef struct
{
 bool has_hand; /**< whether the hand is detected
 or not; */
 DetBox_t box; /**< hand location: left, top,
 right, bottom. */
 float conf; /**< hand confidence. */
 hand_lr left_right; /**< left hand or right hand. */
 gesture_type gtype; /**< gesture type. */
 float handmark[HAND_LANDMARK_NUMBER * 3]; /**< hand landmark location: x1,
 y1, z1, x2, y2, z2... */
} uvita_gesture_out;

For more information regarding hand markers, check Google Media Pipe

Figure 76.  Hand markers example

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
220 / 226

https://developers.google.com/mediapipe/solutions/vision/hand_landmarker

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

13 Revision history

Table 1 summarizes the revisions of this document.

Revision number Date Substantive changes

1 23 May 2023 Section 9 and Section 12 are
added. Section 2, Section 3,

Section 10 are modified.

0 25 October 2022 Initial release

Table 1. Revision history

14 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
221 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

15 Legal information

15.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

15.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

15.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.
i.MX — is a trademark of NXP B.V.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
222 / 226

mailto:PSIRT@nxp.com

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Tower — is a trademark of NXP B.V.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
223 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Contents
1 Introduction ... 2
2 Setup and installation ...2
2.1 MCUXpresso IDE .. 2
2.2 Install the toolchain ..2
2.3 Install the SDK .. 4
2.4 Import example projects 6
2.4.1 Import from Github .. 6
2.5 Dual-core debug .. 7
2.6 JLink flash tool issue in MCUXpresso

v11.7.0 ... 7
3 Ivaldi ... 9
3.1 Automated manufacturing tools 9
3.1.1 MCUXpresso Secure Provisioning Tool 9
3.1.2 About Ivaldi ..9
3.1.3 Requirements ...10
3.1.4 Platform configuration10
3.1.5 Open Boot Programming10
4 Bootloader ... 12
4.1 Introduction .. 12
4.1.1 Why use a bootloader? 12
4.1.2 Application banks .. 12
4.1.3 Logging .. 12
4.2 Overview ..13
4.2.1 How is boot mode determined?13
4.3 Normal boot ... 13
4.3.1 Turn on Image Verification14
4.3.2 Disable Debug Console15
4.4 Mass Storage Device updates (MSD) 15
4.4.1 Enabling MSD mode 16
4.4.2 Flashing a new binary 16
4.4.2.1 Main application ...16
4.4.2.2 Resources ..16
4.4.2.3 Bundle ..17
4.5 Image Verification .. 18
4.5.1 Application chain of trust 19
4.5.2 Flash Image Configuration Area (FICA) and

Image Verification .. 19
4.6 Application banks .. 19
4.6.1 Banks ...20
4.6.2 Addresses ..20
4.6.3 Remapping ...20
4.6.3.1 Convert .axf to .bin ...21
5 Over the air update ...22
5.1 OTA (Over-the-Air) updates22
5.1.1 Migration guide .. 22
5.1.1.1 RT117H firmware changes 23
5.1.1.2 Ivaldi guide .. 25
5.1.2 Preparing an OTA image26
5.1.3 Building image ... 26
5.1.4 Sign Image .. 27
5.1.4.1 Creating a root, intermediate pair with sign

server, and certificates27
5.1.4.2 Formatting the CA and the application

certificate ..29
5.1.5 OTA Workflow with AWS IoT Console 29
5.1.5.1 Update main application 33

5.1.5.2 Update resources .. 33
5.1.5.3 Update with Bundle ... 34
6 Framework ... 35
6.1 Framework introduction 35
6.1.1 Design goals ..36
6.1.2 Relevant files ... 36
6.2 Naming conventions .. 36
6.2.1 Functions ... 37
6.2.2 Variables .. 38
6.2.3 Typedefs .. 39
6.2.4 Enums ..39
6.2.5 Macros and Defines .. 39
6.3 Device managers ...40
6.3.1 Overview ..40
6.3.1.1 Initialization flow .. 40
6.3.2 Vision input manager41
6.3.2.1 APIs ... 41
6.3.3 Output manager ...42
6.3.3.1 APIs ... 42
6.3.4 Camera manager ...43
6.3.4.1 APIs ... 43
6.3.5 Display manager ..44
6.3.5.1 APIs ... 44
6.3.6 Vision algorithm manager45
6.3.6.1 APIs ... 45
6.3.7 Voice algorithm manager45
6.3.7.1 APIs ... 46
6.3.8 Low-Power device manager 46
6.3.8.1 APIs ... 47
6.3.9 Audio processing manager48
6.3.9.1 APIs ... 48
6.3.10 Flash manager ...49
6.3.10.1 Device APIs ... 49
6.3.10.2 Operations APIs .. 49
6.3.11 Multicore manager ...52
6.3.11.1 APIs ... 53
6.4 HAL devices .. 53
6.4.1 Overview ..53
6.4.1.1 Device Registration ..54
6.4.1.2 Device Types ... 54
6.4.1.3 Anatomy of a HAL device56
6.4.1.4 Configs ...57
6.4.2 Input devices ... 58
6.4.2.1 Device definition .. 58
6.4.2.2 Operators ...59
6.4.2.3 Capabilities .. 60
6.4.2.4 Example ...62
6.4.3 Output devices ...64
6.4.3.1 Subtypes ..64
6.4.3.2 Device definition .. 65
6.4.3.3 Operators ...66
6.4.3.4 Attributes ..67
6.4.3.5 Example ...67
6.4.4 Camera devices ...71
6.4.4.1 Device definition .. 72
6.4.4.2 Operators ...73

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
224 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.4.3 Static configs ... 75
6.4.4.4 Capabilities .. 77
6.4.4.5 Example ...78
6.4.5 Display devices ..80
6.4.5.1 Device definition .. 80
6.4.5.2 Operators ...81
6.4.5.3 Capabilities .. 83
6.4.5.4 Example ...86
6.4.6 Vision algorithm devices88
6.4.6.1 Device definition .. 89
6.4.6.2 Operators ...90
6.4.6.3 Capabilities .. 91
6.4.6.4 Private Data ...92
6.4.6.5 Example ...93
6.4.7 Voice algorithm devices96
6.4.7.1 Device definition .. 96
6.4.7.2 Operators ...97
6.4.7.3 Capabilities .. 98
6.4.7.4 Example ...99
6.4.8 Audio processing device101
6.4.8.1 Device definition .. 101
6.4.8.2 Operators ... 102
6.4.8.3 Capabilities .. 103
6.4.8.4 Example ...105
6.4.9 Flash devices ...106
6.4.9.1 Device definition .. 107
6.4.9.2 Operators ... 108
6.4.9.3 Example ...110
6.4.10 Multicore devices ...117
6.4.10.1 Device definition .. 117
6.4.10.2 Operators ... 118
6.4.10.3 FreeRTOS message buffer Device119
6.5 Events ..123
6.5.1 Overview .. 123
6.5.1.1 Event triggers .. 124
6.5.1.2 Types of events ... 125
6.5.2 Event handlers ...128
6.5.2.1 Default handlers .. 128
6.5.2.2 App-specific handlers 129
7 Coffee machine ... 130
7.1 Introduction .. 130
7.2 Architecture ..131
7.3 Software block diagram 131
7.4 Coffee machine CM7132
7.5 Main functionalities .. 132
7.6 Boot sequence ...132
7.7 Board level initialization 133
7.8 Framework managers133
7.9 Framework HAL devices 134
7.10 Logging .. 135
7.10.1 Log Task Init .. 135
7.10.2 Log Macros ..135
7.11 Coffee Machine database136
7.11.1 Face recognition database usage136
7.11.2 User coffee information database usage 136
7.12 Coffee machine CM4137
7.13 Main functionalities .. 137
7.14 LVGL GUI screens and widgets137
7.15 LVGL and Vglite library138

7.16 Boot sequence ...138
7.17 Board level initialization 138
7.18 LVGL image resource and icon resource

loading ... 139
7.19 Framework managers139
7.20 Framework HAL devices 140
7.20.1 MipiGc2145 camera HAL device 141
7.20.2 PxP graphics HAL device142
7.20.3 LVGLCoffeeMachine display HAL device 142
7.20.4 UiCoffeeMachine UI output HAL device143
7.20.4.1 LVGL touch events .. 143
7.20.4.2 Vision and Voice algorithm inference result ... 143
7.20.5 RgbLed output HAL device144
7.20.6 MessageBuffer multicore HAL device145
7.20.7 ShellUsb input HAL device145
7.20.8 Standby LPM HAL device145
7.21 Logging .. 146
7.21.1 Logging Task Init ... 146
7.21.2 Logging Macros ... 146
8 Elevator .. 146
8.1 Introduction .. 146
8.2 Architecture ..147
8.3 Software block diagram 148
8.4 Elevator CM7 ...148
8.5 Main functionalities .. 148
8.6 Boot sequence ...148
8.7 Board level initialization 149
8.8 Framework managers150
8.9 Framework HAL devices 151
8.10 Logging .. 151
8.10.1 Log task init ... 151
8.10.2 Log usage ..152
8.11 Elevator database ..152
8.11.1 Face recognize database usage152
8.11.2 Elevator user information database usage153
8.12 Elevator CM4 ...153
8.13 Main functionalities .. 153
8.14 LVGL GUI screens and widgets153
8.15 LVGL and Vglite library153
8.16 Boot sequence ...154
8.17 Board level initialization 154
8.18 LVGL image resource loading 155
8.19 Framework managers155
8.20 Framework HAL devices 156
8.20.1 MipiGc2145 camera HAL device 157
8.20.2 PxP graphics HAL device157
8.20.3 LVGLElevator display HAL device 157
8.20.4 UiElevator UI output HAL device 158
8.20.4.1 LVGL touch events .. 158
8.20.4.2 Vision and Voice algorithm inference result ... 158
8.20.5 RgbLed output HAL device159
8.20.6 MessageBuffer multicore HAL device159
8.20.7 ShellUsb input HAL device160
8.20.8 Standby LPM HAL device160
8.21 Logging .. 160
8.21.1 Logging task init .. 161
8.21.2 Logging macros ... 161
9 Smart panel ... 161
9.1 Introduction .. 161

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 23 May 2023
225 / 226

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

9.2 Architecture ..162
9.3 Software block diagram 163
9.4 Smart panel CM7 .. 163
9.4.1 Main functionalities .. 163
9.4.2 Boot sequence ...164
9.4.3 Board level initialization 164
9.4.4 Framework managers165
9.4.5 Framework HAL devices 166
9.4.6 Logging .. 167
9.4.6.1 Log Task Init .. 167
9.4.6.2 Log Macros ..167
9.4.6.3 UART hardware connection168
9.4.6.4 Get UART log from Windows host168
9.4.6.5 Get UART log from Linux host168
9.4.7 Smart panel database 168
9.4.7.1 Face recognize database usage168
9.4.7.2 User Thermostat setting database usage 169
9.5 Smart Panel CM4 .. 170
9.5.1 Main functionalities .. 170
9.5.2 LVGL GUI screens and widgets170
9.5.3 LVGL and Vglite library170
9.5.4 Boot sequence ...170
9.5.5 Board level initialization 171
9.5.6 LVGL image resource and icon resource

loading ... 171
9.5.7 Framework managers172
9.5.8 Framework HAL devices 173
9.5.8.1 MipiGc2145 camera HAL device 173
9.5.8.2 PxP graphics HAL device174
9.5.8.3 LVGLHomePanel display HAL device174
9.5.8.4 UiHomePanel UI output HAL device176
9.5.8.5 RgbLed output HAL device177
9.5.8.6 MessageBuffer multicore HAL device177
9.5.8.7 ShellUsb input HAL device177
9.5.8.8 Standby LPM HAL device178
9.5.9 Logging .. 178
9.5.9.1 Logging Task Init ... 178
9.5.9.2 Logging Macros ... 179
9.5.9.3 UART hardware connection179
9.5.9.4 Get UART log from Windows host179
9.5.9.5 Get UART log from Linux host179
10 Customization ..179
10.1 How to develop a user application179
10.1.1 Introduction .. 179
10.1.2 Build the LVGL GUI180
10.1.2.1 Design and create the GUI with NXP's free

GUI Guider tool ... 180
10.1.2.2 Integrate your generated LVGL GUI code180
10.1.3 Build the phoneme-based voice recognition

model ... 181
10.1.3.1 Voice recognition flow181
10.1.4 Face recognition and database operations 182
10.1.4.1 Implement user case flow with face

recognition results ..183
10.1.4.2 Implement the user's profile database with

face recognition ... 185

10.1.5 Implement the use case flow with gesture
recognition results ..187

10.1.6 Implement multicore communication 188
10.2 Application resource build 189
10.2.1 Introduction .. 189
10.2.2 How to use the resource generator tool190
10.2.3 Descriptions of the resource file 190
10.2.3.1 Resource file type ..191
10.2.4 Update the device firmware based on

resource generator output 193
10.2.4.1 Update image index in custom.c 195
10.2.4.2 Update icon index in hal_output_ui_home_

panel.c ... 195
10.2.4.3 Update music/prompt index in smart_tlhmi_

mqs.c ... 196
10.2.4.4 Update VIT model index in smart_tlhmi_

vit.c ...196
10.2.4.5 Update all each type resource size in app_

config.h .. 197
10.3 Cyberon DSMT speech model instructions197
10.3.1 Getting started with phoneme-based voice

engine tool ... 197
10.3.2 Installation ..197
10.3.3 Load the project template197
10.3.4 Add a new command into the Coffee

Machine demo ... 200
10.3.4.1 Integrate the voice engine in MCUXpresso

project .. 201
10.3.5 Add a new language into the Coffee

Machine demo ... 203
10.3.6 Cyberon tools .. 213
11 VIT speech model instructions 213
11.1 Getting started with VIT213
11.2 Obtaining new VIT models 213
11.3 Integrating a new VIT model 214
11.4 Barge-in support .. 218
11.5 Multilanguage support 218
12 Gesture recognition .. 218
12.1 Uvita gesture recognition setup 219
12.1.1 1. input_height/input_wdith 219
12.1.2 2. mem_size .. 219
12.1.3 3. mem_pool ..219
12.1.4 4. fast_mem_size / fast_mem_pool 219
12.2 Uvita gesture recognition usage 220
13 Revision history .. 221
14 Note about the source code in the

document ... 221
15 Legal information .. 222

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 23 May 2023
Document identifier: MCU-SMHMI-SDUG

	1 Introduction
	2 Setup and installation
	2.1 MCUXpresso IDE
	2.2 Install the toolchain
	2.3 Install the SDK
	2.4 Import example projects
	2.4.1 Import from Github

	2.5 Dual-core debug
	2.6 JLink flash tool issue in MCUXpresso v11.7.0

	3 Ivaldi
	3.1 Automated manufacturing tools
	3.1.1 MCUXpresso Secure Provisioning Tool
	3.1.2 About Ivaldi
	3.1.3 Requirements
	3.1.4 Platform configuration
	3.1.5 Open Boot Programming

	4 Bootloader
	4.1 Introduction
	4.1.1 Why use a bootloader?
	4.1.2 Application banks
	4.1.3 Logging

	4.2 Overview
	4.2.1 How is boot mode determined?

	4.3 Normal boot
	4.3.1 Turn on Image Verification
	4.3.2 Disable Debug Console

	4.4 Mass Storage Device updates (MSD)
	4.4.1 Enabling MSD mode
	4.4.2 Flashing a new binary
	4.4.2.1 Main application
	4.4.2.2 Resources
	4.4.2.3 Bundle

	4.5 Image Verification
	4.5.1 Application chain of trust
	4.5.2 Flash Image Configuration Area (FICA) and Image Verification

	4.6 Application banks
	4.6.1 Banks
	4.6.2 Addresses
	4.6.3 Remapping
	4.6.3.1 Convert .axf to .bin

	5 Over the air update
	5.1 OTA (Over-the-Air) updates
	5.1.1 Migration guide
	5.1.1.1 RT117H firmware changes
	5.1.1.2 Ivaldi guide

	5.1.2 Preparing an OTA image
	5.1.3 Building image
	5.1.4 Sign Image
	5.1.4.1 Creating a root, intermediate pair with sign server, and certificates
	5.1.4.2 Formatting the CA and the application certificate

	5.1.5 OTA Workflow with AWS IoT Console
	5.1.5.1 Update main application
	5.1.5.2 Update resources
	5.1.5.3 Update with Bundle

	6 Framework
	6.1 Framework introduction
	6.1.1 Design goals
	6.1.2 Relevant files

	6.2 Naming conventions
	6.2.1 Functions
	6.2.2 Variables
	6.2.3 Typedefs
	6.2.4 Enums
	6.2.5 Macros and Defines

	6.3 Device managers
	6.3.1 Overview
	6.3.1.1 Initialization flow

	6.3.2 Vision input manager
	6.3.2.1 APIs
	6.3.2.1.1 FWK_InputManager_Init
	6.3.2.1.2 FWK_InputManager_DeviceRegister
	6.3.2.1.3 FWK_InputManager_Start
	6.3.2.1.4 FWK_InputManager_Deinit

	6.3.3 Output manager
	6.3.3.1 APIs
	6.3.3.1.1 FWK_OutputManager_Init
	6.3.3.1.2 FWK_OutputManager_DeviceRegister
	6.3.3.1.3 FWK_OutputManager_Start
	6.3.3.1.4 FWK_OutputManager_Deinit
	6.3.3.1.5 FWK_OutputManager_UnregisterEventHandler

	6.3.4 Camera manager
	6.3.4.1 APIs
	6.3.4.1.1 FWK_CameraManager_Init
	6.3.4.1.2 FWK_CameraManager_DeviceRegister
	6.3.4.1.3 FWK_CameraManager_Start
	6.3.4.1.4 FWK_CameraManager_Deinit

	6.3.5 Display manager
	6.3.5.1 APIs
	6.3.5.1.1 FWK_DisplayManager_Init
	6.3.5.1.2 FWK_DisplayManager_DeviceRegister
	6.3.5.1.3 FWK_DisplayManager_Start
	6.3.5.1.4 FWK_DisplayManager_Deinit

	6.3.6 Vision algorithm manager
	6.3.6.1 APIs
	6.3.6.1.1 FWK_VisionAlgoManager_Init
	6.3.6.1.2 FWK_VisionAlgoManager_DeviceRegister
	6.3.6.1.3 FWK_VisionAlgoManager_Start
	6.3.6.1.4 FWK_VisionAlgoManager_Deinit

	6.3.7 Voice algorithm manager
	6.3.7.1 APIs
	6.3.7.1.1 FWK_VoiceAlgoManager_Init
	6.3.7.1.2 FWK_VoiceAlgoManager_DeviceRegister
	6.3.7.1.3 FWK_VoiceAlgoManager_Start
	6.3.7.1.4 FWK_VoiceAlgoManager_Deinit

	6.3.8 Low-Power device manager
	6.3.8.1 APIs
	6.3.8.1.1 FWK_LpmManager_DeviceRegister
	6.3.8.1.2 FWK_LpmManager_RegisterRequestHandler
	6.3.8.1.3 FWK_LpmManager_UnregisterRequestHandler
	6.3.8.1.4 FWK_LpmManager_RuntimeGet
	6.3.8.1.5 FWK_LpmManager_RuntimePut
	6.3.8.1.6 FWK_LpmManager_RuntimeSet
	6.3.8.1.7 FWK_LpmManager_RequestStatus
	6.3.8.1.8 FWK_LpmManager_SetSleepMode
	6.3.8.1.9 FWK_LpmManager_EnableSleepMode

	6.3.9 Audio processing manager
	6.3.9.1 APIs
	6.3.9.1.1 FWK_AudioProcessing_Init
	6.3.9.1.2 FWK_AudioProcessing_DeviceRegister
	6.3.9.1.3 FWK_AudioProcessing_Start
	6.3.9.1.4 FWK_AudioProcessing_Deinit

	6.3.10 Flash manager
	6.3.10.1 Device APIs
	6.3.10.1.1 FWK_Flash_DeviceRegister
	6.3.10.1.2 FWK_Flash_Init
	6.3.10.1.3 FWK_Flash_Deinit

	6.3.10.2 Operations APIs
	6.3.10.2.1 FWK_Flash_Format
	6.3.10.2.2 FWK_Flash_Save
	6.3.10.2.3 FWK_Flash_Append
	6.3.10.2.4 FWK_Flash_Read
	6.3.10.2.5 FWK_Flash_Mkdir
	6.3.10.2.6 FWK_Flash_Mkfile
	6.3.10.2.7 FWK_Flash_Rm
	6.3.10.2.8 FWK_Flash_Rename
	6.3.10.2.9 FWK_Flash_Cleanup

	6.3.11 Multicore manager
	6.3.11.1 APIs
	6.3.11.1.1 FWK_MulticoreManager_Init
	6.3.11.1.2 FWK_MulticoreManager_DeviceRegister
	6.3.11.1.3 FWK_MulticoreManager_Start
	6.3.11.1.4 FWK_MulticoreManager_Deinit

	6.4 HAL devices
	6.4.1 Overview
	6.4.1.1 Device Registration
	6.4.1.2 Device Types
	6.4.1.3 Anatomy of a HAL device
	6.4.1.3.1 Operators

	6.4.1.4 Configs
	6.4.1.4.1 Name
	6.4.1.4.2 ExpectedValue
	6.4.1.4.3 Description
	6.4.1.4.4 Value
	6.4.1.4.5 Get
	6.4.1.4.6 Set

	6.4.2 Input devices
	6.4.2.1 Device definition
	6.4.2.2 Operators
	6.4.2.2.1 Init
	6.4.2.2.2 Deinit
	6.4.2.2.3 Start
	6.4.2.2.4 Stop
	6.4.2.2.5 InputNotify

	6.4.2.3 Capabilities
	6.4.2.3.1 callback
	6.4.2.3.2 EventId
	6.4.2.3.3 ReceiverList
	6.4.2.3.4 Event

	6.4.2.4 Example

	6.4.3 Output devices
	6.4.3.1 Subtypes
	6.4.3.1.1 General devices
	6.4.3.1.2 UI devices
	6.4.3.1.3 Audio devices

	6.4.3.2 Device definition
	6.4.3.3 Operators
	6.4.3.3.1 Init
	6.4.3.3.2 DeInit
	6.4.3.3.3 Start
	6.4.3.3.4 Stop

	6.4.3.4 Attributes
	6.4.3.4.1 Type
	6.4.3.4.2 pSurface

	6.4.3.5 Example

	6.4.4 Camera devices
	6.4.4.1 Device definition
	6.4.4.2 Operators
	6.4.4.2.1 Init
	6.4.4.2.2 Deinit
	6.4.4.2.3 Start
	6.4.4.2.4 Enqueue
	6.4.4.2.5 Dequeue
	6.4.4.2.6 PostProcess
	6.4.4.2.7 InputNotify

	6.4.4.3 Static configs
	6.4.4.3.1 Height
	6.4.4.3.2 Width
	6.4.4.3.3 Pitch
	6.4.4.3.4 Left
	6.4.4.3.5 Top
	6.4.4.3.6 Right
	6.4.4.3.7 Bottom
	6.4.4.3.8 Rotate
	6.4.4.3.9 Flip
	6.4.4.3.10 SwapByte

	6.4.4.4 Capabilities
	6.4.4.4.1 Callback
	6.4.4.4.2 Param

	6.4.4.5 Example

	6.4.5 Display devices
	6.4.5.1 Device definition
	6.4.5.2 Operators
	6.4.5.2.1 Init
	6.4.5.2.2 Deinit
	6.4.5.2.3 Start
	6.4.5.2.4 Blit
	6.4.5.2.5 InputNotify

	6.4.5.3 Capabilities
	6.4.5.3.1 Height
	6.4.5.3.2 Width
	6.4.5.3.3 Pitch
	6.4.5.3.4 Left
	6.4.5.3.5 Top
	6.4.5.3.6 Right
	6.4.5.3.7 Bottom
	6.4.5.3.8 Rotate
	6.4.5.3.9 Format
	6.4.5.3.10 srcFormat
	6.4.5.3.11 frameBuffer
	6.4.5.3.12 callback
	6.4.5.3.13 param

	6.4.5.4 Example

	6.4.6 Vision algorithm devices
	6.4.6.1 Device definition
	6.4.6.2 Operators
	6.4.6.2.1 Init
	6.4.6.2.2 Deinit
	6.4.6.2.3 Run
	6.4.6.2.4 InputNotify

	6.4.6.3 Capabilities
	6.4.6.3.1 Callback
	6.4.6.3.2 Param

	6.4.6.4 Private Data
	6.4.6.4.1 AutoStart
	6.4.6.4.2 Frames

	6.4.6.5 Example

	6.4.7 Voice algorithm devices
	6.4.7.1 Device definition
	6.4.7.2 Operators
	6.4.7.2.1 Init
	6.4.7.2.2 Deinit
	6.4.7.2.3 Run
	6.4.7.2.4 InputNotify

	6.4.7.3 Capabilities
	6.4.7.3.1 Callback
	6.4.7.3.2 Param

	6.4.7.4 Example

	6.4.8 Audio processing device
	6.4.8.1 Device definition
	6.4.8.2 Operators
	6.4.8.2.1 Init
	6.4.8.2.2 Deinit
	6.4.8.2.3 Start
	6.4.8.2.4 Stop
	6.4.8.2.5 Run
	6.4.8.2.6 InputNotify

	6.4.8.3 Capabilities
	6.4.8.3.1 Callback
	6.4.8.3.2 Param

	6.4.8.4 Example

	6.4.9 Flash devices
	6.4.9.1 Device definition
	6.4.9.2 Operators
	6.4.9.2.1 Init
	6.4.9.2.2 Deinit
	6.4.9.2.3 Format
	6.4.9.2.4 Save
	6.4.9.2.5 Append
	6.4.9.2.6 Read
	6.4.9.2.7 Make directory
	6.4.9.2.8 Make file
	6.4.9.2.9 Remove
	6.4.9.2.10 Rename
	6.4.9.2.11 Cleanup

	6.4.9.3 Example
	6.4.9.3.1 Littlefs device

	6.4.10 Multicore devices
	6.4.10.1 Device definition
	6.4.10.2 Operators
	6.4.10.2.1 Init
	6.4.10.2.2 Deinit
	6.4.10.2.3 Start
	6.4.10.2.4 Send

	6.4.10.3 FreeRTOS message buffer Device

	6.5 Events
	6.5.1 Overview
	6.5.1.1 Event triggers
	6.5.1.2 Types of events
	6.5.1.2.1 InferComplete events
	6.5.1.2.2 InputNotify events

	6.5.2 Event handlers
	6.5.2.1 Default handlers
	6.5.2.2 App-specific handlers

	7 Coffee machine
	7.1 Introduction
	7.2 Architecture
	7.3 Software block diagram
	7.4 Coffee machine CM7
	7.5 Main functionalities
	7.6 Boot sequence
	7.7 Board level initialization
	7.8 Framework managers
	7.9 Framework HAL devices
	7.10 Logging
	7.10.1 Log Task Init
	7.10.2 Log Macros

	7.11 Coffee Machine database
	7.11.1 Face recognition database usage
	7.11.2 User coffee information database usage

	7.12 Coffee machine CM4
	7.13 Main functionalities
	7.14 LVGL GUI screens and widgets
	7.15 LVGL and Vglite library
	7.16 Boot sequence
	7.17 Board level initialization
	7.18 LVGL image resource and icon resource loading
	7.19 Framework managers
	7.20 Framework HAL devices
	7.20.1 MipiGc2145 camera HAL device
	7.20.2 PxP graphics HAL device
	7.20.3 LVGLCoffeeMachine display HAL device
	7.20.4 UiCoffeeMachine UI output HAL device
	7.20.4.1 LVGL touch events
	7.20.4.2 Vision and Voice algorithm inference result

	7.20.5 RgbLed output HAL device
	7.20.6 MessageBuffer multicore HAL device
	7.20.7 ShellUsb input HAL device
	7.20.8 Standby LPM HAL device

	7.21 Logging
	7.21.1 Logging Task Init
	7.21.2 Logging Macros

	8 Elevator
	8.1 Introduction
	8.2 Architecture
	8.3 Software block diagram
	8.4 Elevator CM7
	8.5 Main functionalities
	8.6 Boot sequence
	8.7 Board level initialization
	8.8 Framework managers
	8.9 Framework HAL devices
	8.10 Logging
	8.10.1 Log task init
	8.10.2 Log usage

	8.11 Elevator database
	8.11.1 Face recognize database usage
	8.11.2 Elevator user information database usage

	8.12 Elevator CM4
	8.13 Main functionalities
	8.14 LVGL GUI screens and widgets
	8.15 LVGL and Vglite library
	8.16 Boot sequence
	8.17 Board level initialization
	8.18 LVGL image resource loading
	8.19 Framework managers
	8.20 Framework HAL devices
	8.20.1 MipiGc2145 camera HAL device
	8.20.2 PxP graphics HAL device
	8.20.3 LVGLElevator display HAL device
	8.20.4 UiElevator UI output HAL device
	8.20.4.1 LVGL touch events
	8.20.4.2 Vision and Voice algorithm inference result

	8.20.5 RgbLed output HAL device
	8.20.6 MessageBuffer multicore HAL device
	8.20.7 ShellUsb input HAL device
	8.20.8 Standby LPM HAL device

	8.21 Logging
	8.21.1 Logging task init
	8.21.2 Logging macros

	9 Smart panel
	9.1 Introduction
	9.2 Architecture
	9.3 Software block diagram
	9.4 Smart panel CM7
	9.4.1 Main functionalities
	9.4.2 Boot sequence
	9.4.3 Board level initialization
	9.4.4 Framework managers
	9.4.5 Framework HAL devices
	9.4.6 Logging
	9.4.6.1 Log Task Init
	9.4.6.2 Log Macros
	9.4.6.3 UART hardware connection
	9.4.6.4 Get UART log from Windows host
	9.4.6.5 Get UART log from Linux host

	9.4.7 Smart panel database
	9.4.7.1 Face recognize database usage
	9.4.7.2 User Thermostat setting database usage

	9.5 Smart Panel CM4
	9.5.1 Main functionalities
	9.5.2 LVGL GUI screens and widgets
	9.5.3 LVGL and Vglite library
	9.5.4 Boot sequence
	9.5.5 Board level initialization
	9.5.6 LVGL image resource and icon resource loading
	9.5.7 Framework managers
	9.5.8 Framework HAL devices
	9.5.8.1 MipiGc2145 camera HAL device
	9.5.8.2 PxP graphics HAL device
	9.5.8.3 LVGLHomePanel display HAL device
	9.5.8.4 UiHomePanel UI output HAL device
	9.5.8.4.1 LVGL touch events
	9.5.8.4.2 Vision and Voice algorithm inference result

	9.5.8.5 RgbLed output HAL device
	9.5.8.6 MessageBuffer multicore HAL device
	9.5.8.7 ShellUsb input HAL device
	9.5.8.8 Standby LPM HAL device

	9.5.9 Logging
	9.5.9.1 Logging Task Init
	9.5.9.2 Logging Macros
	9.5.9.3 UART hardware connection
	9.5.9.4 Get UART log from Windows host
	9.5.9.5 Get UART log from Linux host

	10 Customization
	10.1 How to develop a user application
	10.1.1 Introduction
	10.1.2 Build the LVGL GUI
	10.1.2.1 Design and create the GUI with NXP's free GUI Guider tool
	10.1.2.2 Integrate your generated LVGL GUI code

	10.1.3 Build the phoneme-based voice recognition model
	10.1.3.1 Voice recognition flow

	10.1.4 Face recognition and database operations
	10.1.4.1 Implement user case flow with face recognition results
	10.1.4.1.1 Start / stop the face recognition algorithm
	10.1.4.1.2 Handling the face recognition results

	10.1.4.2 Implement the user's profile database with face recognition
	10.1.4.2.1 Define user profile data structure and database ops
	10.1.4.2.2 Save user profile data into the database

	10.1.5 Implement the use case flow with gesture recognition results
	10.1.6 Implement multicore communication

	10.2 Application resource build
	10.2.1 Introduction
	10.2.2 How to use the resource generator tool
	10.2.3 Descriptions of the resource file
	10.2.3.1 Resource file type

	10.2.4 Update the device firmware based on resource generator output
	10.2.4.1 Update image index in custom.c
	10.2.4.2 Update icon index in hal_output_ui_home_panel.c
	10.2.4.3 Update music/prompt index in smart_tlhmi_mqs.c
	10.2.4.4 Update VIT model index in smart_tlhmi_vit.c
	10.2.4.5 Update all each type resource size in app_config.h

	10.3 Cyberon DSMT speech model instructions
	10.3.1 Getting started with phoneme-based voice engine tool
	10.3.2 Installation
	10.3.3 Load the project template
	10.3.4 Add a new command into the Coffee Machine demo
	10.3.4.1 Integrate the voice engine in MCUXpresso project

	10.3.5 Add a new language into the Coffee Machine demo
	10.3.6 Cyberon tools

	11 VIT speech model instructions
	11.1 Getting started with VIT
	11.2 Obtaining new VIT models
	11.3 Integrating a new VIT model
	11.4 Barge-in support
	11.5 Multilanguage support

	12 Gesture recognition
	12.1 Uvita gesture recognition setup
	12.1.1 1. input_height/input_wdith
	12.1.2 2. mem_size
	12.1.3 3. mem_pool
	12.1.4 4. fast_mem_size / fast_mem_pool

	12.2 Uvita gesture recognition usage

	13 Revision history
	14 Note about the source code in the document
	15 Legal information
	Contents

