



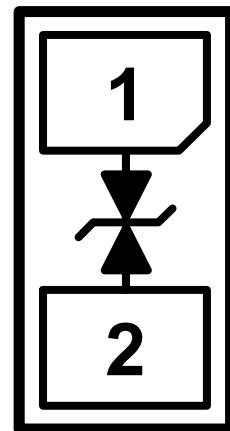
## Features

- ESD protection for one line with bi-directional
- Provide transient protection for the protected line to  
**IEC 61000-4-2 (ESD)  $\pm 15\text{kV}$  (air) /  $\pm 11\text{kV}$  (contact)**
- **IEC 61000-4-5 (Lightning) 3A (8/20 $\mu\text{s}$ )**
- **Ultra-low capacitance: 0.18pF typical**
- For low operating voltage applications: **1.5V and below**
- **0201 small DFN package** saves board space
- Fast turn-on and low clamping voltage
- Solid-state silicon-avalanche and active circuit triggering technology
- **Green part**
- **AEC-Q101 qualified**

## Applications

- Automotive Multi-Gig Ethernet
- Advanced Driver Assistance Systems (ADAS)
- Automotive backbone communications
- Gateway
- Infotainment
- USB4, USB3.1 and USB3.0 interfaces

## Description


AZ959S-01F is a design which includes a bi-directional ESD rated clamping cell to protect high-speed data interfaces in an electronic system. The AZ959S-01F has been specifically designed to protect sensitive components which are connected to data and transmission lines from over-voltage caused by Electrostatic Discharging (ESD), Lightning, and Cable Discharge Event (CDE).

AZ959S-01F is a unique design which includes proprietary clamping cell with ultra-low capacitance in a small package. During transient conditions, the proprietary clamping cell prevents over-voltage on the control/data lines, protecting any downstream components.

AZ959S-01F is bi-directional and may be used on lines where the signal swings above and below ground.

AZ959S-01F may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 ( $\pm 15\text{kV}$  air,  $\pm 8\text{kV}$  contact discharge).

## Circuit Diagram / Pin Configuration



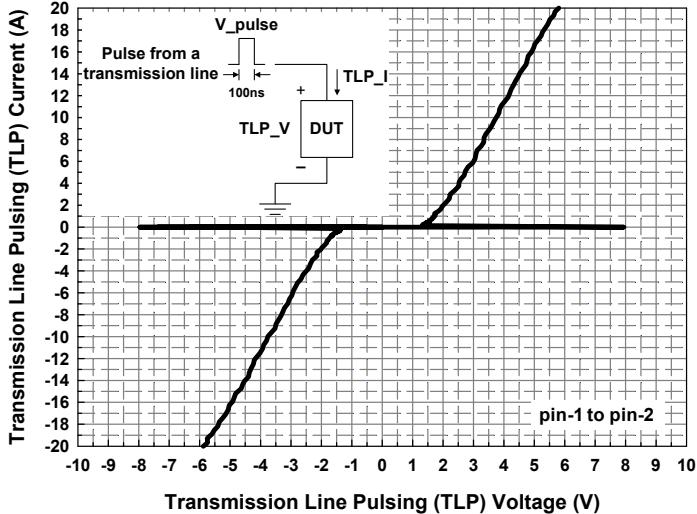
**DFN0603P2Y (Bottom View)**  
**(0.6mm x 0.3mm x 0.3mm)**



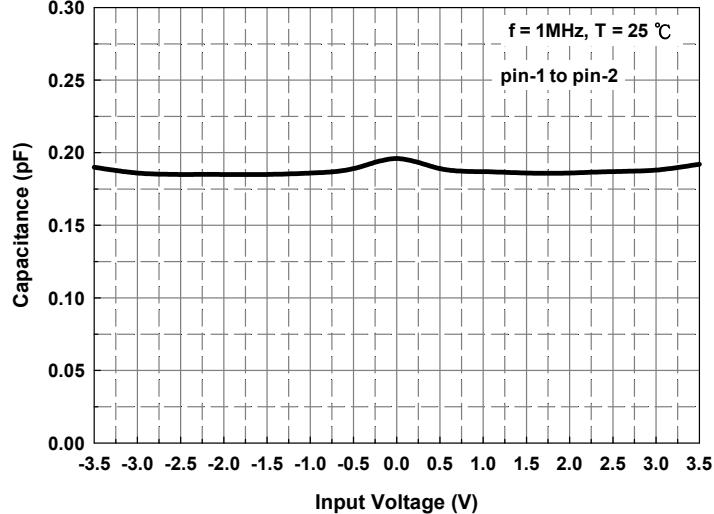
## Specifications

| Absolute Maximum Ratings               |             |               |      |
|----------------------------------------|-------------|---------------|------|
| Parameter                              | Symbol      | Rating        | Unit |
| Peak Pulse Current ( $t_p=8/20\mu s$ ) | $I_{pp}$    | 3             | A    |
| Operating Voltage                      | $V_{DC}$    | $\pm 1.65$    | V    |
| ESD per IEC 61000-4-2 (Air)            | $V_{ESD-1}$ | $\pm 15$      |      |
| ESD per IEC 61000-4-2 (Contact)        | $V_{ESD-2}$ | $\pm 11$      | kV   |
| ESD per ISO 10605 330pF/330Ω (Contact) | $V_{ESD-3}$ | $\pm 10$      | kV   |
| ESD per ISO 10605 150pF/2kΩ (Contact)  | $V_{ESD-4}$ | $\pm 20$      | kV   |
| ESD per ISO 10605 330pF/2kΩ (Contact)  | $V_{ESD-5}$ | $\pm 20$      | kV   |
| Lead Soldering Temperature             | $T_{SOL}$   | 260 (10 sec.) | °C   |
| Operating Temperature                  | $T_{OP}$    | -55 to +125   | °C   |
| Storage Temperature                    | $T_{STO}$   | -55 to +150   | °C   |

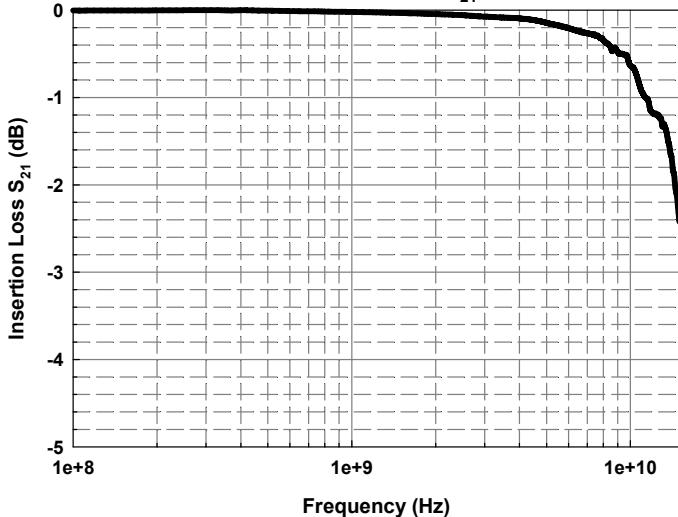
| Electrical Characteristics     |               |                                                                  |      |      |     |      |
|--------------------------------|---------------|------------------------------------------------------------------|------|------|-----|------|
| Parameter                      | Symbol        | Condition                                                        | Min  | Typ  | Max | Unit |
| Reverse Stand-Off Voltage      | $V_{RWM}$     | $T=25$ °C.                                                       | -1.5 |      | 1.5 | V    |
| Reverse Leakage Current        | $I_{Leak}$    | $V_{RWM} = \pm 1.5V, T=25$ °C.                                   |      |      | 100 | nA   |
|                                |               | $V_{RWM} = \pm 1.5V, T=125$ °C.                                  |      |      | 1   | μA   |
| Reverse Breakdown Voltage      | $V_{BV}$      | $I_{BV} = 100\mu A, T=25$ °C.                                    | 4    |      |     | V    |
| ESD Clamping Voltage (Note 1)  | $V_{CL-ESD}$  | IEC 61000-4-2 +8kV ( $I_{TLP} = 16A$ ), contact mode, $T=25$ °C. |      | 5    |     | V    |
| ESD Dynamic Turn on Resistance | $R_{dynamic}$ | IEC 61000-4-2 0~+8kV, contact mode, $T=25$ °C.                   |      | 0.23 |     | Ω    |
| Channel Input Capacitance      | $C_{IN}$      | $V_R = 0V, f = 1MHz, T=25$ °C.                                   |      | 0.18 |     | pF   |
|                                |               | $V_R = 0V, f = 1MHz, T=125$ °C.                                  |      | 0.25 |     | pF   |


Note 1: ESD Clamping Voltage was measured by Transmission Line Pulsing (TLP) System.

TLP conditions:  $Z_0 = 50\Omega$ ,  $t_p = 100ns$ ,  $t_r = 1ns$ .




## Typical Characteristics


Transmission Line Pulsing (TLP) Measurement



Typical Variation of  $C_{IN}$  vs.  $V_{IN}$



Insertion Loss  $S_{21}$





## Application Information

The AZ959S-01F is designed to protect one line against system ESD pulse by clamping it to an acceptable reference. It provides bi-directional protection.

The usage of the AZ959S-01F is shown in Fig. 1. Protected line, such as data line, control line, or power line, is connected at pin 1. The pin 2 is connected to a ground plane on the board. In order to minimize parasitic inductance in the board traces, all path lengths connected to the pins of AZ959S-01F should be kept as short as possible.

In order to obtain enough suppression of ESD induced transient, a good circuit board is critical. Thus, the following guidelines are recommended:

- Minimize the path length between the protected lines and the AZ959S-01F.
- Place the AZ959S-01F near the input terminals or connectors to restrict transient coupling.
- The ESD current return path to ground should be kept as short as possible.
- Use ground planes whenever possible.
- NEVER route critical signals near board edges and near the lines which the ESD transient easily injects to.

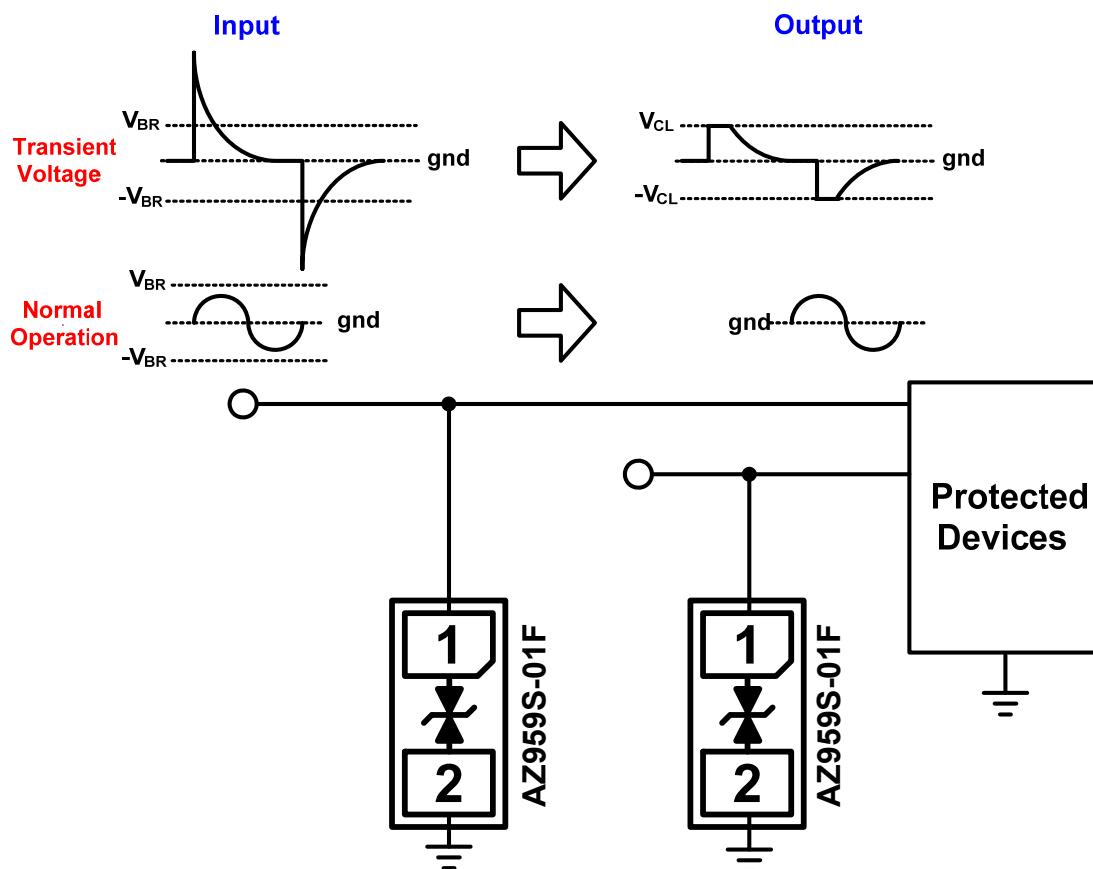
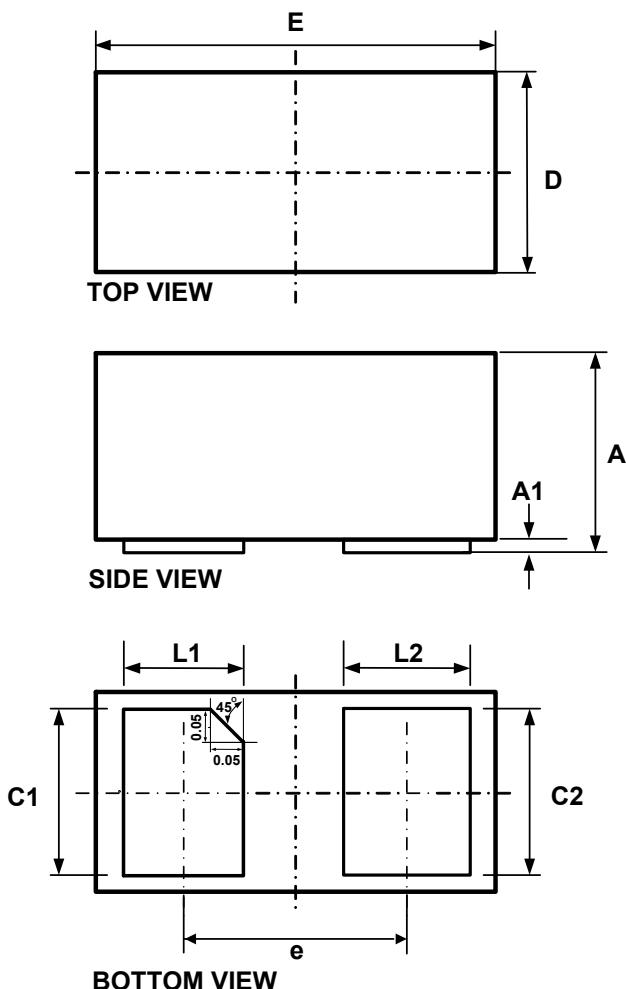
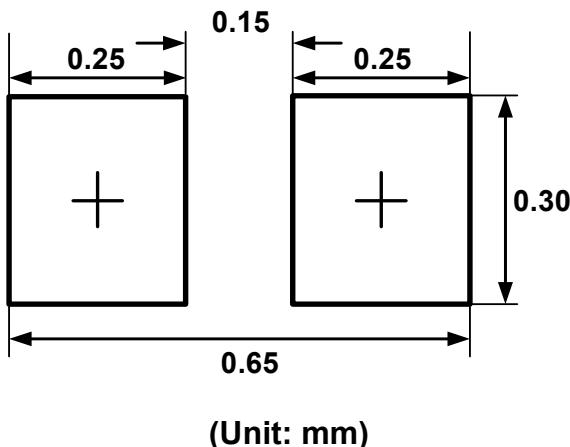




Fig. 1

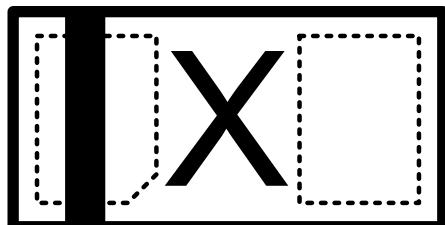



## Mechanical Details

### DFN0603P2Y PACKAGE DIAGRAMS



| SYMBOL | MILLIMETERS |      |      |
|--------|-------------|------|------|
|        | MIN.        | NOM. | MAX. |
| E      | 0.55        | 0.60 | 0.65 |
| D      | 0.25        | 0.30 | 0.35 |
| A      | 0.28        | 0.30 | 0.32 |
| A1     | 0.00        | 0.02 | 0.05 |
| L1     | 0.13        | 0.18 | 0.23 |
| L2     | 0.14        | 0.19 | 0.24 |
| C1/C2  | 0.20        | 0.25 | 0.30 |
| e      | 0.35 BSC    |      |      |


## Land Layout



### Notes:

This LAND LAYOUT is for reference purposes only. Please consult your manufacturing partners to ensure your company's PCB design guidelines are met.

## Marking Code



X = Device Code

| Part Number                    | Marking Code |
|--------------------------------|--------------|
| AZ959S-01F.R7G<br>(Green Part) | X            |

Note. Green means Pb-free, RoHS, and Halogen free compliant.



## Ordering Information

| PN#            | Material | Type | Reel size | MOQ         | MOQ/internal box    | MOQ/carton              |
|----------------|----------|------|-----------|-------------|---------------------|-------------------------|
| AZ959S-01F.R7G | Green    | T/R  | 7 inch    | 12,000/reel | 4 reels= 48,000/box | 6 boxes =288,000/carton |

## Revision History

| Revision            | Modification Description |
|---------------------|--------------------------|
| Revision 2023/02/08 | Formal Release.          |
|                     |                          |
|                     |                          |
|                     |                          |
|                     |                          |
|                     |                          |