

Features

- ESD protection for one line with bi-directional
- Provide transient protection for the protected line to
 IFC 64000 4.2 (FSP) ±45kV (circ) (±42kV (contex)

IEC 61000-4-2 (ESD) ±15kV (air) / ±12kV (contact) IEC 61000-4-5 (Lightning) 5A (8/20µs)

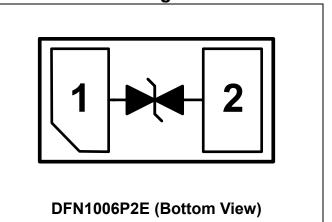
- Ultra-low capacitance: 0.2pF typical
- For low operating voltage applications: 2.0V and below
- 0402 small DFN package saves board space
- Fast turn-on and low clamping voltage
- Solid-state silicon-avalanche and active circuit triggering technology
- Green part
- AEC-Q101 qualified

Applications

- Automotive Multi-Gig Ethernet
- Advanced Driver Assistance Systems (ADAS)
- Automotive backbone communications
- Gateway
- Infotainment
- USB3.1 and USB3.0 interfaces
- USB Type-C interface
- DisplayPort interface
- SerDes: GMSL, FPD-Link, LVDS

Description

AZ952S-01F is a design which includes a bi-directional ESD rated clamping cell to protect high-speed data interfaces in an electronic system. The AZ952S-01F has been specifically designed to protect sensitive components which are connected to data and transmission lines from over-voltage caused by Electrostatic


Discharging (ESD), Lightning, and Cable Discharge Event (CDE).

AZ952S-01F is a unique design which includes proprietary clamping cell with ultra-low capacitance in a small package. During transient conditions, the proprietary clamping cell prevents over-voltage on the control lines, or data lines, protecting any downstream components.

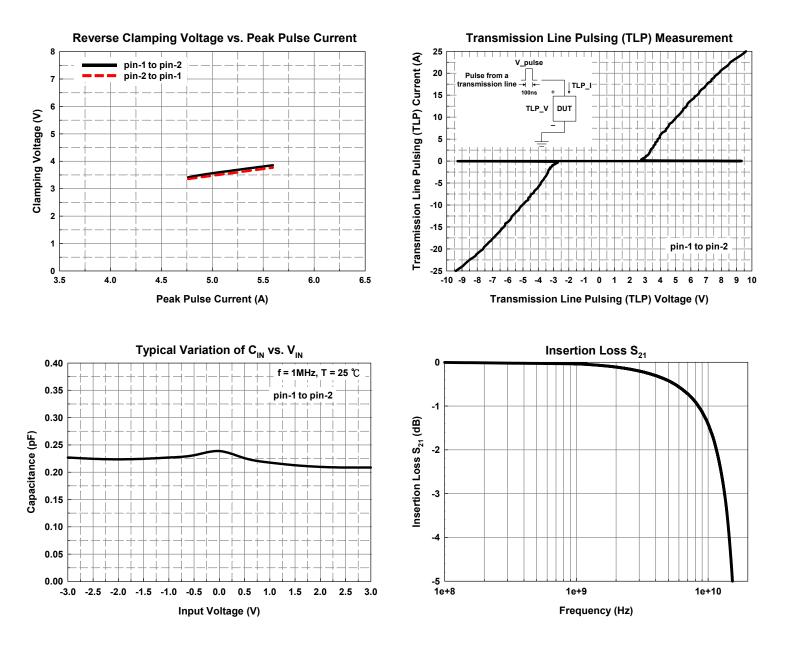
AZ952S-01F is bi-directional and may be used on lines where the signal swings above and below ground.

AZ952S-01F may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (\pm 15kV air, \pm 8kV contact discharge).

Circuit Diagram / Pin Configuration

Specifications

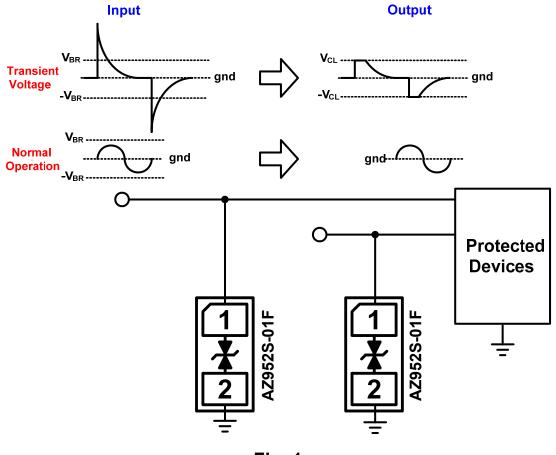
Absolute Maximum Ratings				
Parameter	Symbol	Rating	Unit	
Peak Pulse Current (tp=8/20µs)	I _{PP}	5	А	
Operating Voltage	V _{DC}	±2.2	V	
ESD per IEC 61000-4-2 (Air)	V _{ESD-1}	±15	kV	
ESD per IEC 61000-4-2 (Contact)	V _{ESD-2}	±12	κv	
ESD per ISO 10605 330pF/330 Ω (Contact)	V _{ESD-3}	±10	kV	
ESD per ISO 10605 150pF/2kΩ (Contact)	V _{ESD-4}	±15	kV	
ESD per ISO 10605 330pF/2kΩ (Contact)	V _{ESD-5}	±15	kV	
Lead Soldering Temperature	T _{SOL}	260 (10 sec.)	°C	
Operating Temperature	T _{OP}	-55 to +125	°C	
Storage Temperature	T _{STO}	-55 to +150	°C	


Electrical Characteristics						
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Reverse Stand-Off Voltage	V_{RWM}	T=25 °C.	-2		2	V
Reverse Leakage		V _{RWM} = ±2V, T=25 °C.			100	nA
Current	I _{Leak}	V _{RWM} = ±2V, T=125 °C.			500	nA
Reverse Breakdown Voltage	V_{BV}	I _{BV} = 1mA, T=25 °C.	5.5		10	V
Surge Clamping Voltage	$V_{\text{CL-surge}}$	I _{PP} = 5A, t _p = 8/20μs, T=25°C.		3.6		V
ESD Clamping Voltage (Note 1)	V _{CL-ESD}	IEC 61000-4-2 +8kV (I _{TLP} = 16A), contact mode, T=25 °C.		6.5		V
ESD Dynamic Turn on Resistance	R _{dynamic}	IEC 61000-4-2 0~+8kV, contact mode, T=25 °C.		0.25		Ω
Channel Input	C	V _R = 2V, f = 1MHz, T=25 °C.		0.20		pF
Capacitance	C _{IN}	V _R = 2V, f = 1MHz, T=125 °C.		0.30		pF

Note 1: ESD Clamping Voltage was measured by Transmission Line Pulsing (TLP) System.

TLP conditions: Z_0 = 50 Ω , t_p = 100ns, t_r = 1ns.

Typical Characteristics

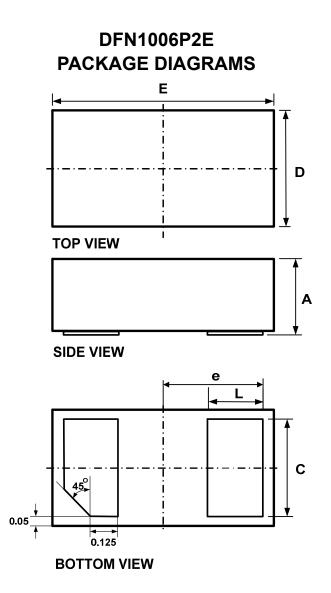


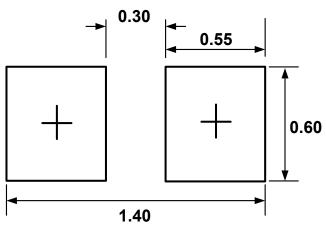
Application Information

The AZ952S-01F is designed to protect one line against system ESD pulse by clamping it to an acceptable reference. It provides bi-directional protection.

The usage of the AZ952S-01F is shown in Fig. 1. Protected line, such as data line or control line, is connected at pin 1. The pin 2 is connected to a ground plane on the board. In order to minimize parasitic inductance in the board traces, all path lengths connected to the pins of AZ952S-01F should be kept as short as possible. In order to obtain enough suppression of ESD induced transient, a good circuit board is critical. Thus, the following guidelines are recommended:

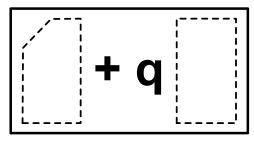
- Minimize the path length between the protected lines and the AZ952S-01F.
- Place the AZ952S-01F near the input terminals or connectors to restrict transient coupling.
- The ESD current return path to ground should be kept as short as possible.
- Use ground planes whenever possible.
- NEVER route critical signals near board edges and near the lines which the ESD transient easily injects to.





Mechanical Details

Symbol	Millimeters			
	Min.	Max.		
E	0.95	1.05		
D	0.55	0.65		
Α	0.45	0.55		
е	0.45	BSC		
L	0.20	0.30		
С	0.45	0.55		



(Unit: mm)

Notes:

This LAND LAYOUT is for reference purposes only. Please consult your manufacturing partners to ensure your company's PCB design guidelines are met.

Marking Code

Top View

q = Device Code

Part Number	Marking Code
AZ952S-01F.R7GR (Green Part)	q

Note. Green means Pb-free, RoHS, and Halogen free compliant.

Ordering Information

PN#	Material	Туре	Reel size	MOQ	MOQ/internal box	MOQ/carton
AZ952S-01F.R7GR	Green	T/R	7 inch	12,000/reel	4 reels= 48,000/box	6 boxes =288,000/carton

Revision History

Revision	Modification Description
Revision 2022/12/26	Formal Release.