

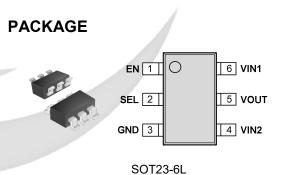
Product Specification

DESCRIPTION

The GLF4028 is an integrated power multiplexer switch with dual independent power switches connected to a single output pin to enable seamless transition between two input sources.

The GLF4028 provides a manual selection mode by the combination of the logic input pins of EN and SEL. The EN input pin is used along with the select (SEL) input pin to select VIN1 only, select VIN2 only, or turn both switches off.

The GLF4028 features an ultra-efficient I_QSmart^{TM} technology that offers quiescent current (I_Q) and shutdown current (I_{SD}) in the industry. Low R_{ON} reduces conduction losses while low I_Q and I_{SD} solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

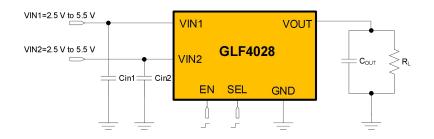

The GLF4028 blocks any cross-conduction current between two input power sources. When the switch is disabled, the GLF4028 prevents the reverse current to the input source from the output at any higher VOUT than VIN condition.

FEATURES

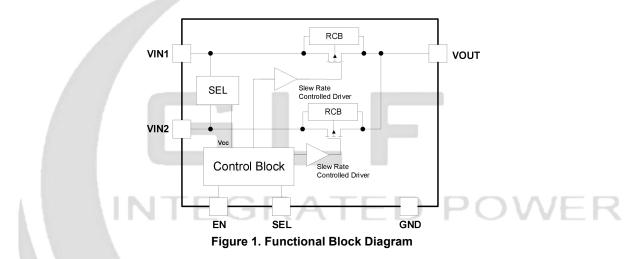
- Two-Input and Single-Output Power Multiplexer Switch
- Supply Voltage Range: 2.5 V to 5.5 V
- R_{ON}: 97 mΩ Typ. at 5.5 V_{IN1} or V_{IN2}
 105 mΩ Typ. at 4.5 V_{IN1} or V_{IN2}
- 2 A Continuous Output Current Capability Per Channel
- Ultra-Low Supply Current at Operation $I_Q: \ 3 \ \mu A \ Typ \ at \ 5.5 \ V_{IN}$
- Ultra-Low Stand-by Current I_{SD} : 5 nA Typ at 5.5 V_{IN}
- Smart Control Pins
 I_{EN} and I_{SEL} : 3 nA Typ at V_{EN} or V_{SEL} > V_{IH}
 R_{EN} and R_{SEL} : 500 kΩ Typ
- No Cross Conduction Between Two Inputs
- Reverse Current Blocking when Disabled
- Operating Temperature Range: -40 °C to 85 °C
- HBM: 6 kV, CDM: 2 kV

APPLICATIONS

- Smart Devices
- Smart Home Electronics



DEVICE ORDERING INFORMATION


Part Number	Part Number Top Mark		Output Current, IOUT	Ultra-low I_Q at 5.5 V_{IN}		
GLF4028-T2G7	EP	97 mΩ	2 A	3 μΑ		

APPLICATION DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

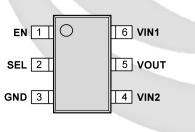


Figure 2. SOT23-6L

PIN DEFINITION

	Pin #	Name	Description					
	1	EN	Enable to control the switch. Do not leave the EN pin floating.					
	2	SEL	Input Source Selection. Do not leave the SEL pin floating.					
	3GND4VIN25VOUT		Ground					
			Switch Input 2					
			Switch Output					
	6	VIN1	Switch Input 1					

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

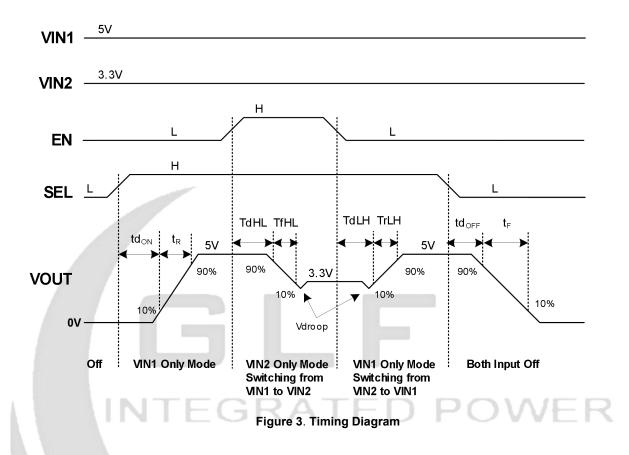
Symbol	Pa	arameter	Min.	Max.	Unit	
VIN1, VIN2 VOUT, EN	Each Pin Voltage Range to GND	Each Pin Voltage Range to GND				
IOUT	Maximum Continuous Switch Current	Maximum Continuous Switch Current				
PD	Power Dissipation at T _A = 25°C		1.0	W		
T _{STG}	Storage Junction Temperature	-65	150	°C		
TA	Operating Temperature Range	Operating Temperature Range				
θ _{JC}	Thermal Resistance, Junction to Case	2		90	°C/W	
θյΑ	Thermal Resistance, Junction to Ambient			180	°C/W	
ESD	Electrostatic Discharge Canability	Human Body Model, JESD22-A114	6		kV	
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		κv	

Notes: 1. The thermal resistance depends on the PCB layout and heat dissipation.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
VIN1, VIN2	Supply Voltage	2.5	5.5	V
TA	Ambient Operating Temperature	-40	+85	°C

ELECTRICAL CHARACTERISTICS


 V_{IN1} = V_{IN2} = 2.5 V to 5.5 V and T_A = 25°C. Unless otherwise noted

Symbol	Parameter	Conditions		Min.	Тур	Max	Unit
Basic Oper	ation						
la1, la2	Quiescent Current	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	4.5	μΑ	
		As above, $T_A = 85^{\circ}C^{(1)}$			4		
		V _{IN1,2} = 5.5 V, V _{OUT} = GND, EN = SI	EL = 0 V		5	20	
$I_{SD1,} I_{SD2}$	Shutdown Current	$V_{IN1,2}$ = 5.5 V, V_{OUT} = GND, EN = S T_A =85 °C ⁽¹⁾	$V_{IN1,2} = 5.5 \text{ V}, V_{OUT} = \text{GND}, \text{EN} = \text{SEL} = 0 \text{ V},$ T _A =85 °C ⁽¹⁾				nA
			T _A = 25 °C		97	107	
Ron		V_{IN1} or V_{IN2} = 5.5 V, I_{OUT} = 500 mA	T _A = 85 °C ⁽¹⁾		115		-
			T _A = 25 °C		105	118	
	On-Resistance	V_{IN1} or V_{IN2} = 4.5 V, I_{OUT} = 500 mA T_A = 85 °C (125		mΩ
		V _{IN1} or V _{IN2} = 3.3 V, I _{OUT} = 300 mA			120	135	
		V_{IN1} or V_{IN2} = 2.5 V, I_{OUT} = 100 mA			145	162	
V _{IH}	EN, SEL Input Logic High Voltage			1.2			V
VIL	EN, SEL Input Logic Low Voltage					0.4	V
$I_{\text{EN}}, I_{\text{SEL}}$	EN, SEL Current	V_{EN} or $V_{SEL} > V_{IH}$, Enabled			3	20	nA
Ren, Rsel	EN, SEL Pulldown Resistance (1)	V_{EN} or $V_{SEL} < V_{IL}$, Disabled	PO	S	500	R	kΩ
I _{RVS}	Reverse Current ⁽¹⁾	$V_{IN1} = V_{IN2} = 0 V, V_{OUT} = 5.5 V, EN = S$	EL=0 V		2.5		μA
Switching (Characteristics ⁽²⁾						
t _{dON}	Turn-On Delay				250		
t _R	VOUT Rise Time]	-		340		
TdHL	High-low Delay ⁽¹⁾				3		μs
TfHL	High-low Fall Time ⁽¹⁾				6		
Vdroop	Voltage Droop ⁽¹⁾	V _{IN1} = 5 V, V _{IN2} = 3.3 RL=150 Ω, C _{OUT} =1.0			120		mV
TdLH	Low-high Delay ⁽¹⁾		P"		7		
TrLH	Low-high Rise Time (1)				4		
tdoff	Turn-Off Delay ⁽¹⁾				13		μs
t _F	VOUT Fall Time ⁽¹⁾		Ī		350		

Notes: 1. By design; characterized, not production tested. 2. $t_{ON} = t_{dON} + t_R$, $t_{OFF} = t_{dOFF} + t_F$

TIMING DIAGRAM AND TRUTH TABLE

SEL	EN	Function	VOUT
0	0	Both switches are off	High-Z
1	0	Only VIN1 is selected	VIN1
1	1	Only VIN2 is selected	VIN2

Table 1. Truth Table of Input Source Selection

TYPICAL PERFORMANCE CHARACTERISTICS

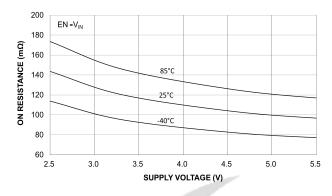
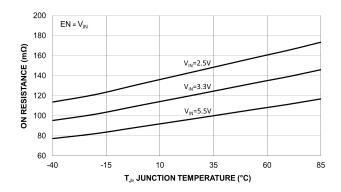
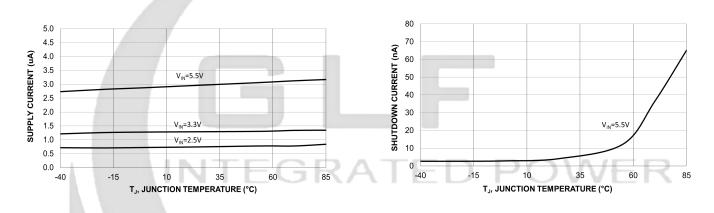




Figure 4. On-Resistance vs. Supply Voltage

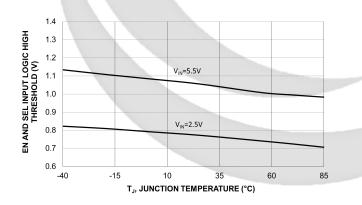


Figure 8. EN and SEL Input Logic High Threshold vs. Temperature

Figure 7. Shutdown Current vs. Temperature

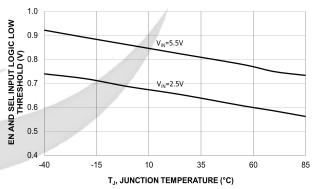


Figure 9. EN and SEL Input Logic Low Threshold vs. Temperature

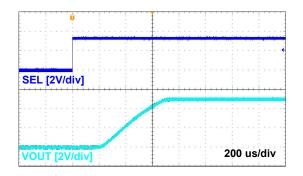


Figure 10. Turn-On Response V_{IN1}=5 V, C_{IN}=0.1 \ \mu\text{F}, C_{OUT}=1.0 \ \mu\text{F}, R_L=150 \ \Omega

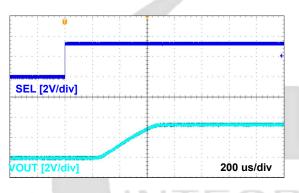
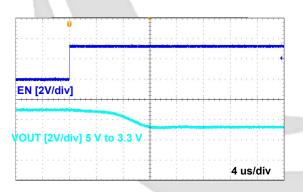



Figure 12. Turn-On Response V_{IN1}=3.3 V, C_{IN}=0.1 μF, C_{OUT}=1.0 μF, R_L=150 Ω

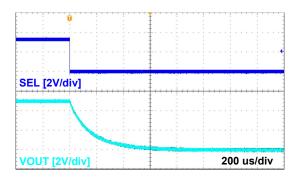


Figure 11. Turn-Off Response V_{IN1}=5 V, C_{IN}=0.1 \ \mu\text{F}, C_{OUT}=1.0 \ \mu\text{F}, R_L=150 \ \Omega

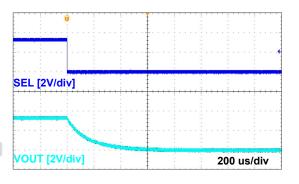


Figure 13. Turn-Off Response V_{IN1}=3.3 V, C_{IN}=0.1 μF, C_{OUT}=1.0 μF, R_L=150 Ω

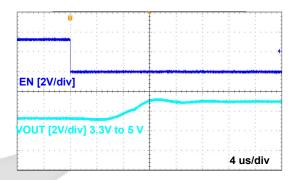


Figure 15. V_{OUT} Switchover from 3.3 V to 5 V V_{IN1}=5 V, V_{IN2}=3.3 V C_{IN}= C_{OUT}=1.0 μ F, R_L=150 Ω

 			20) ms/div
	VIN1 [1V/div] VIN2 [1V/div] Iout [50mA/div]			
	+++++++++++++++++++++++++++++++++++++++	 +++++		
	[]	 		
	VOUT [1V/div]	 		
	Ī	 		

Figure 16. Reverse Current Blocking When Disabled $V_{IN1} = V_{IN2} = 0 V$, $V_{OUT} = 0 V$ to 4.5 V, $C_{IN} = C_{OUT} = 1.0 \mu F$, EN=SEL=0 V

APPLICATION INFORMATION

The GLF4028 is a fully integrated 2 A Power Mux with a fixed slew rate control to limit the inrush current during device turn on. The GLF4028 also has a wide voltage operating range from 2.5 V to 5.5 V. In the off state, the GLF4028 consumes very low leakage current to avoid unwanted power drain from limited input power supplies.

Input Source Selection

By changing the state of the SEL and EN pins, the GLF4028 offers a manual input selection mode. In each mode, the VOUT connects to one input source.

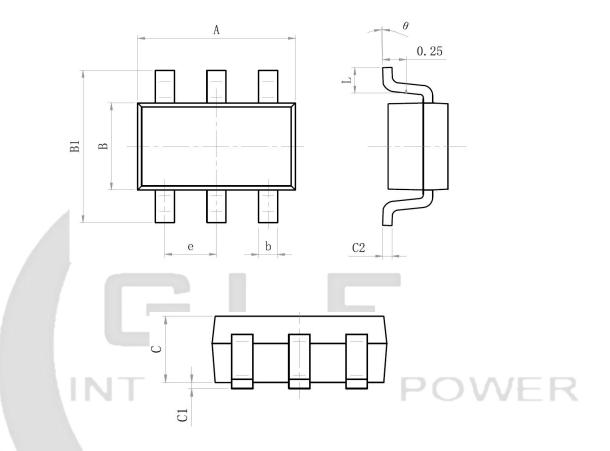
Input Capacitor

A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

Output Capacitor

An output capacitor is recommended to minimize voltage undershoot on the output pin during the transition when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be placed close to the VOUT and GND pins.

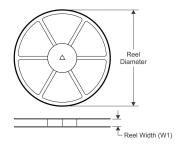
Reverse Current Blocking

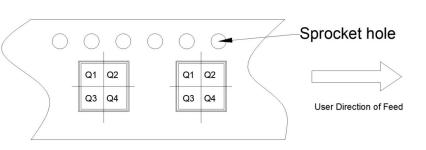

The GLF4028 also prevents the reverse current from the output voltage when both switches are turned off at EN = SEL = 0 V.

Board Layout

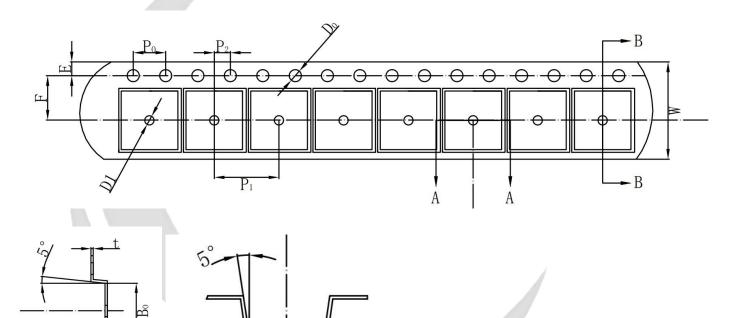
All traces should be as short as possible to minimize parasitic inductance effect. Wide traces for VIN, VOUT, and GND will help reduce signal degradation and parasitic effects during dynamic operations as well as improve the thermal performance at high load current.

PACKAGE OUTLINE




Size Mark	Min(mm)	Max(mm)	Size Mark	Min(mm)	Max(mm)
А	2.82	3.02	С	1.05	1.15
е	0.9	95 (BSC)	C1	0.03	0.15
b	0.28	0.45	C2	0.12	0.23
В	1.50	1.70	L	0.35	0.55
B1	2.60	3.00	θ	0°	8°

TAPE AND REEL INFORMATION


REEL DIMENSIONS

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

							-	-			
Device	Package	Pins	SPQ	Reel Diameter (mm)	Reel Width W1	A0	В0	К0	P1	w	Pin1
GLF4028-T2G7	SOT23-6	6	3000	178	9	3.25	3.30	1.38	4	8	Q3

Ao

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape

Ko

P1: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status			
Target Specification					
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification			
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production			

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, misuse, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.