

GLF73610 Ultra-Efficient, Optimized I₀Smart[™] Battery Protection IC with Full Protections

Product Specification

DESCRIPTION

The GLF73610 is a family of I_QSmart^{TM} ultraefficient, full battery protection ICs with an accurate over charge/discharge voltage, shipping mode, over charge/discharge current, and short circuit protection for lithiumlon/Polymer battery safety.

The over charge and discharge voltage protections keep a rechargeable battery working within the desired safe operating condition. When the battery is charged past the over voltage detection level, the GLF73610 charging switch opens in a preset delay time. As the battery voltage decreases below the over discharge detection voltage level, the GLF73610 discharging switch is turned off immediately to cut off the battery power rail, consuming an ultra-low leakage current (IsD) to save the In addition, when the load current batterv. reaches the Isc short circuit protection level, the GLF73610 is turned off and will maintain the off state to avoid any serious damage to system. The short circuit delay time avoids any false trigger which might open the switch.

The GLF73610 provides a shipping mode pin to prevent smart devices with a non-removable battery from discharging during the shipping period. When a charged battery cell is connected the GLF73610 remains in the off state and consumes an ultra-low leakage current (I_{SD}) until the V_{ON} voltage is applied to VOUT pin. Note that the GLF73610 is activated only by a V_{ON} voltage from a charger output.

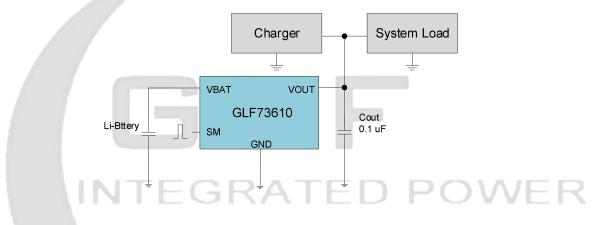
FEATURES

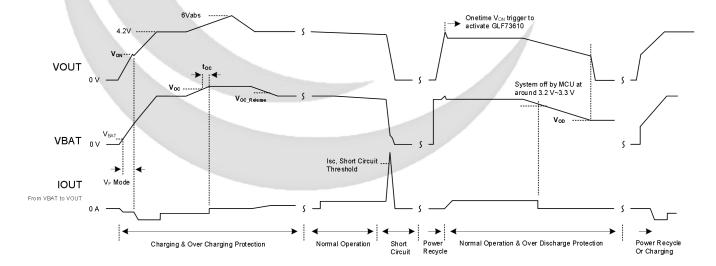
- Over Charge Detection Voltage, Voc
- Monitor Vout to release Voc
- V_{OD}, Over Discharge Detection: 2.80 V_{BAT}
- I_{OC}, Over Charge Current Detection: 330 mA
- I_{OD}, Over Discharge Current Detection: 76 mA
- Short Circuit Protection
- 1.5 A Continuous Charging Current Capability from VOUT to VBAT Pin
- Activated by Applying V_{ON} to the VOUT Pin from Charger
- Shipping Mode Implementation
- Low R_{ON}: 62 m $\Omega\,$ Typ. @ 3.7 V_{BAT}
- $I_Q = 1.48 \ \mu A Typ @ 3.7 V_{BAT}$
- Shutdown Current

0

- \circ I_{SD} = 6 nA Typ. @ V_{BAT} < V_{OD}
- \circ I_{SD} = 8 nA Typ. @ V_{BAT} = 3.7 V, Shipping Mode
 - I_{SD} = 10 nA Typ. @ V_{BAT} = 4.2 V, Shipping Mode
- Latch-off at Over Discharge Detection and Short Circuit Protection. Apply V_{ON} to VOUT pin to turn on
- 0 V Battery Minimum Voltage for Charging
- Patent Pending Circuit Architecture
- HBM: 8 kV, CDM: 2 kV
- 0.97 mm x 0.97 mm x 0.55 mm Chip Scale Package
 4 Bumps, 0.5 mm Pitch

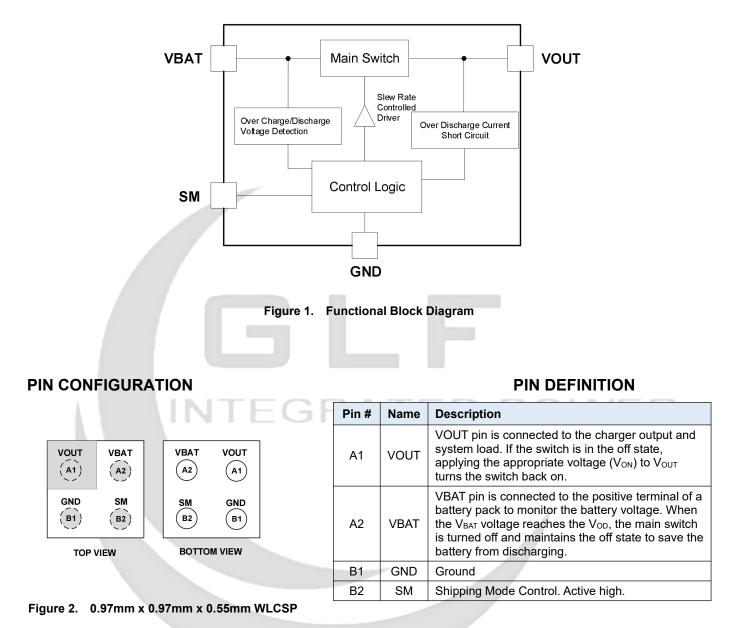
APPLICATIONS


- BLE Wireless Earphone
- Hearing Aid
- Wearables and Smart IoT Devices


DEVICE INFORMATION

Part Number	Top Mark	R _{ON} (Typ.) V _{BAT} =3.7 V	Over Charge Detection V _{oc}	Over Discharge Detection V _{OD}	Over Charge Current I _{oc}	Over Discharge Current I _{op}	Short Circuit Current, I _{SC}
GLF73610-DE23C	FD		4.275V				
GLF73610-CE23C	BY	60 O	4.450V	2.80 V	330mA	76 mA	250 mA
GLF73610-GE23C GLF73610-HE23C	FG	62 mΩ	4.475V				250 MA
	FH		4.525V				

APPLICATION DIAGRAM



OPERATION DIAGRAM

GLF73610 Ultra-Efficient, Optimized I_QSmart[™] Battery Protection IC with Full Protections

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

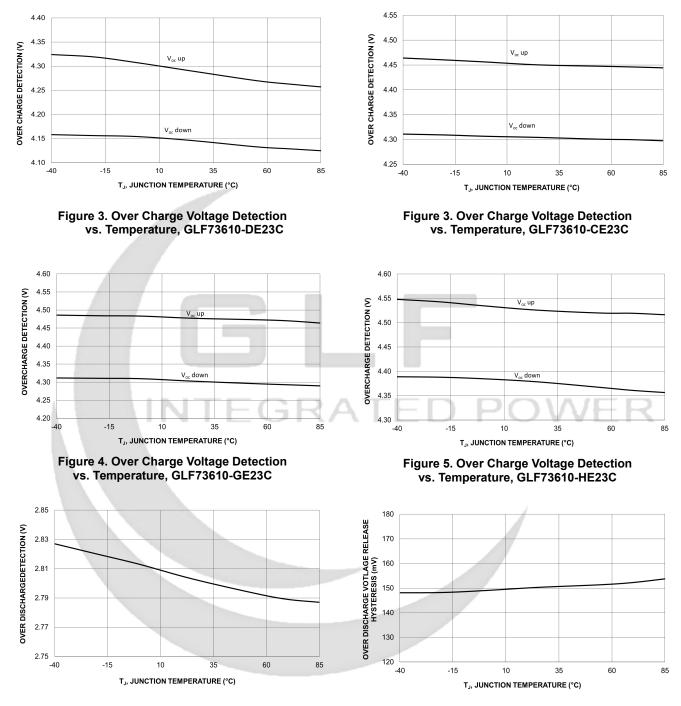
Symbol	Pa	Min	Мах	Unit			
V _{BAT} , V _{OUT} , SM	Each Pin Voltage Range to GND		- 0.3	6	V		
I _{BAT}	Switch Continuous Current between V	/BAT and VOUT		1.5	A		
PD	Power Dissipation at $T_A = 25^{\circ}C$	Power Dissipation at $T_A = 25^{\circ}C$					
T _{STG}	Storage Junction Temperature	- 65	150	°C			
TA	Operating Temperature Range	- 40	85	°C			
θ _{JA}	Thermal Resistance, Junction to Ambi		85	°C/W			
500	Electrostatic Discharge Conshility	Human Body Model, JESD22-A114	8		kV		
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		κv		

ELECTRICAL CHARACTERISTICS

Values are at V_{BAT} = 3.6 V, T_A = 25°C unless otherwise noted.

Symbol	Parameter	Conditions			Тур	Max	Units	
		GLF73610-DE23C	V _{BAT} increases until switch turns off	4.250	4.275	4.300		
			Ta= 55 °C ⁽¹⁾		4.268	_		
	INIE	GLF73610-CE23C switch turns off		4.425	4.450	4.475		
			Ta= 55 °C ⁽¹⁾		4.444			
Voc	Over Charge Voltage Detection	GLF73610-GE23C	V _{BAT} increases until switch turns off	4.450	4.475	4.500		
		Ta= 55 °C ⁽¹⁾		(4.471			
		GLF73610-HE23C	V _{BAT} increases until switch turns off	4.500	4.525	4.550		
			Ta= 55 °C ⁽¹⁾		4.520			
V _{OC_HYS}	Over Charge Voltage Protection Release Hysteresis	VBAT decreases and	switch turns on		150		mV	
t _{voc}	Over Charge Voltage Protection Delay Time	V_{BAT} > V_{OC} , Blanking time until switch turns off			560		ms	
		V _{BAT} decreases until switch turns off		2.72	2.80	2.90		
Vod	Over Discharge Voltage Detection	Ta=55 °C ⁽¹⁾			2.79		V	
Vod_hys	Over Discharge Voltage Protection Release Hysteresis	VBAT increases and switch turns on V_{BAT} < V_{OD} , Blanking time until switch turns off			150		mV	
t _{VOD}	Over Discharge Voltage Protection Delay Time				40		ms	
N (1)	ON Voltage applied to VOUT to turn	V_{OUT} to turn on switch, $V_{BAT} \ge 3.1 V$			3.6			
Von ⁽¹⁾	on switch	Ta= 55 °C			3.6		V	
l _{oc}	Over Charge Current Detection			260	330	400	mA	
tioc	Over Charge Current Detection				40		ms	

GLF73610 Ultra-Efficient, I_QSmart[™] Battery Protection IC with Shipping Mode


	Delay Time							
I _{OD}	Over Discharge Current Detection			50	76	98	m/	
t _{IOD}	Over Discharge Current Detection Delay Time				20		m	
Isc	Short Circuit Current Detection				250		m/	
tsc	Short Circuit Delay Time				400		με	
		V _{BAT} = 3.7 V, I _{OUT} = 0 mA, Sv	witch = ON		1.48			
		V _{BAT} = 4.2 V, I _{OUT} = 0 mA, Sv	witch = ON		1.55		μΑ	
Ιq	Quiescent Current with Switch On	V _{BAT} = 4.2 V, I _{OUT} = 0 mA, Sv	witch = ON					
		Ta= 55°C ⁽¹⁾			1.66			
		V _{BAT} = 4.2 V, V _{OUT} = 0 V, Sh	nipping Mode		10			
	Shutdown Current from VBAT When Main Switch is Off	V _{BAT} = 3.7 V, V _{OUT} = 0 V, Shipping Mode			8		nA	
I _{SD}		V _{BAT} = 2.5 V, V _{OUT} = 0 V			6			
		$V_{BAT} = 2.5 \text{ V}, V_{OUT} = 0 \text{ V}, \text{Ta}=55 \text{ °C}^{(1)}$			8			
		V _{BAT} = 4.2 V, I _{OUT} = 500 mA	Ta= 25 °C		58			
	On-Resistance		Ta= 55 °C ⁽¹⁾		62		 mΩ	
Ron			Ta= 25 °C		62			
		V _{BAT} = 3.7 V, I _{OUT} = 500 mA	Ta= 55 °C ⁽¹⁾		66			
		V _{BAT} = 3.3 V, I _{OUT} = 500 mA	Ta= 25 °C		67			
t _{OFF} ⁽¹⁾	Turn-Off Time	C _{OUT} = 0.1 μF, R _{OUT} = 150 Ω	$P_{\rm OUT} = V_{\rm OD}$ to 0 V	DV	34	R	μ	
V _{SM}	SM Input Logic High Voltage	V _{BAT} = 2.5 V to 5.5 V		1.2			V	
t _{SM}	SM pulse width	V _{BAT} = 3.3 V to 4.2 V			20		m	
td _{SM}	Shipping Mode Delay	V _{BAT} = 3.3 V to 4.2 V		570	610	650	m	
R _{SM}	SM pull down resistance	Internal Resistance			400		k۵	
toc: 1 F	3v design: characterized, not production tes	tod		y	1	1	ı	

Notes: 1. By design; characterized, not production tested. 2. All values of delay timing were characterized but not tested in production.

TYPICAL PERFORMANCE CHARACTERISTICS

POWER

INTEGRATED

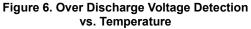
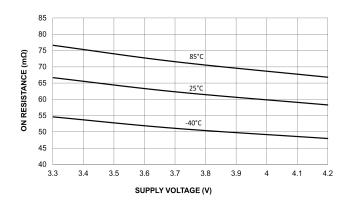



Figure 7. Over Discharge Voltage Detection Release Hysteresis vs. Temperature

INTEGRATED

Figure 8. On-Resistance vs. Supply Voltage

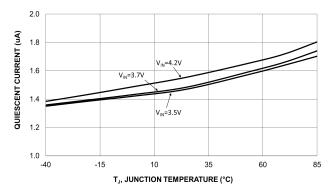


Figure 9. Quiescent Current vs. Temperature

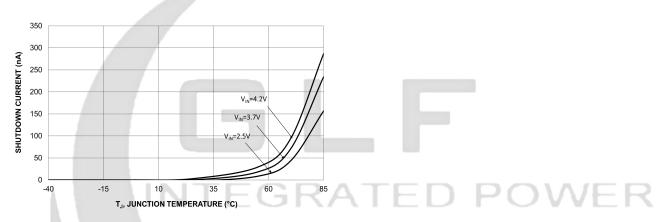


Figure 9. Shutdown Current vs. Temperature

APPLICATION INFORMATION

The GLF73610 is an I_QSmart[™] ultra-efficient battery protection IC with the accurate over charge voltage, shipping mode, over charge current, and short circuit protection for lithium-lon/Polymer battery safety. The best-in-class efficiency makes it ideal for the design of hearing devices, wearable devices, and tiny IoT devices.

Charging Activation and 0 V Battery Charging

The GLF73610 is activated to turn on the main charging switch only by applying the on voltage (V_{ON}) to the VOUT pin, when a charger IC is enabled. The minimum battery voltage to charge is 0 V. With a deeply discharged battery, the GLF73610 does not turn on both the charge and discharge path and the pre-charge current flows through an internal diode until the battery voltage reaches the over discharge voltage detection level (V_{OD}). As the battery voltage increases beyond the over discharge voltage detection, the charge and discharge path switches will be fully activated to reduce the voltage drop and save power dissipation during both constant-current and constant-voltage charging modes.

Over Charging and Discharging Voltage Protection

When the voltage of a battery increases to the over-charge voltage detection level (V_{OC}), the charge path is turned off to stop charging the battery after a preset over-charge detection delay time (t_{OC}) in order to avoid a false trigger. The charging path is turned on again when the VOUT voltage falls by 150 mV. The charging path is not turned off if the battery voltage returns to a voltage less than the detection level within the delay time. The charging path turns on again as the battery voltage decreases below the over-charge release voltage level ($V_{OC} - V_{OC_HYS}$). When the voltage of a battery decreases to the over-discharge detection voltage level, the GLF73610 discharging path is turned off consuming an ultra-low leakage current to save the battery. The GLF73610 remains in the off state until a higher voltage is applied to the VOUT pin.

Over Charging and Discharging Current, Short Circuit Protection

If an over-charging current is detected during the constant current charging mode, the GLF73610 will shut off the charging path in a preset detection delay time. When the over-discharging current condition occurs for the detection delay(t_{IOD}), the discharge path turns off. During the operation, if the discharge current from the battery exceeds the short circuit detection level (I_{SC}), the discharging path will be turned off after a preset delay time (t_{SC}) in order to avoid a false detection. After the short circuit protection event, the GLF73610 maintains in the off state and needs a power recycle of a system to apply V_{ON} to VOUT pin in order to be reactivated.

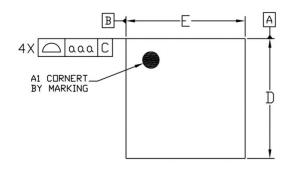
Shipping Mode

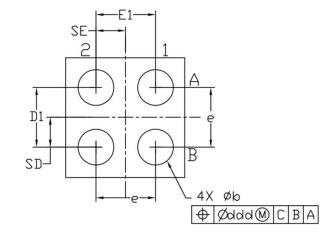
The GLF73610 provides system designers with the SM pin to turn off safely both discharging and charging path to prevent a pre-charged battery capacity from discharging at all. During the shipping mode when the GLF73610 is completely off, it consumes an ultra-low current to maintain the battery capacity. The GLF73610 is activated again by applying V_{ON} to the VOUT pin when a charger is applied.

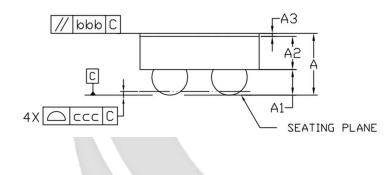
Input and Output Capacitors

Input and output capacitors are not required for GLF73610 operation. However, a 0.1µF capacitor is recommended to be placed close to the VBAT and VOUT pins in order to mitigate any unexpected electrical noise or the transient voltage peak caused by a hot-plugging voltage source.

Board Layout


All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VBAT, VOUT, and GND will help reduce voltage drops, and parasitic effects during dynamic operation as well as improve the thermal performance at high load currents.



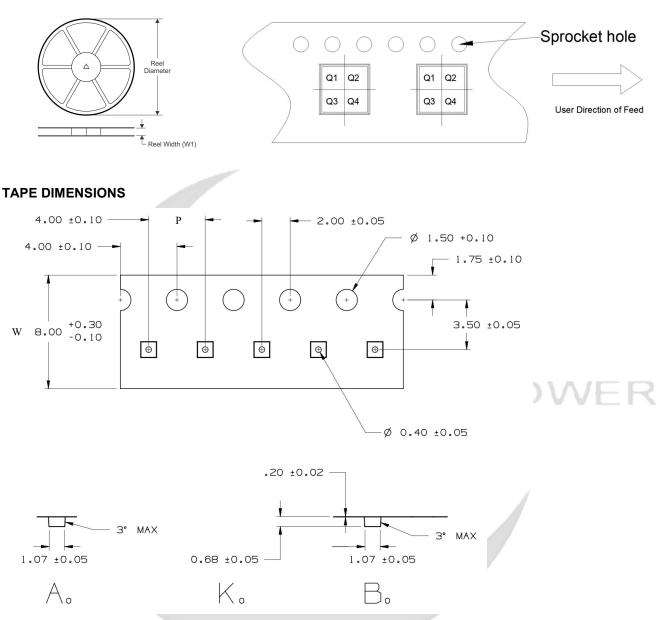

PACKAGE OUTLINE

INTEGRA

TED POWER

Dimensional Ref.								
REF.	Min.	Nom.	Max.					
А	0.500	0.550	0.600					
A1	0.225	0.250	0.275					
A2	0.255	0.275	0.300					
Α3	0.020	0.025	0.030					
D	0.960	0.970	0.985					
E	0.960	0.970	0.985					
D1	0.450	0.500	0.550					
E1	0.450	0.500	0.550					
Ь	0.260	0.310	0.360					
е	0	.500 BS	С					
SD	0	.250 BS	С					
SE	0	.250 BS	С					
Τc	ol. of Fo	rm&Pos	sition					
ааа								
ррр								
ССС		0.05						
ddd	-	0.05						

Notes


- 1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES)
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 3. A3: BACKSIDE LAMINATION

TAPE AND REEL INFORMATION

REEL DIMENSIONS

INTEGRATED POWER

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

Device	Package	Pins	SPQ	Reel Diameter(mm)	Reel Width W1	A0	В0	К0	Р	w	Pin1
GLF73610	WLCSP	4	3000	180	9	1.07	1.07	0.68	4	8	Q1

Remark:

A0: Dimension designed to accommodate the component width

B0: Dimension designed to accommodate the component length

C0: Dimension designed to accommodate the component thickness

W: Overall width of the carrier tape

P: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.