

## **GLF1511** 4 A, Ultra Low Ron N-channel Load Switch with wide Input Voltage Range and Reverse Current Blocking

**Product Specification** 

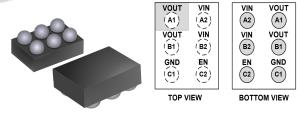
## DESCRIPTION

The GLF1511 load switch is a fully integrated 4 A NMOS load switch with  $I_QSmart^{TM}$  advanced technology. The device is ideal for the mobile computing and data storage markets as a high performance solution for load switch applications.

The GLF1511 provides a constant low onresistance of 13 m $\Omega$  at the full input voltage range. The fixed rise time helps prevent undesirable inrush current when turned on and the internal EN pin pulldown resistor ensures the device remains in the shutdown mode when disabled. In shutdown mode the GLF1511 consumes ultra-low current at the wide input supply voltage.

The GLF1511 features a reverse current blocking protection. When the GLF1511 is disabled, it prevents reverse current flowing from the output to the input source.

The GLF1511 is available in a wafer level chip scale package (WLCSP) measuring 0.97 mm x 1.47 mm x 0.55 mm with a 0.5 mm pitch. This allows the user to save board space.


## FEATURES

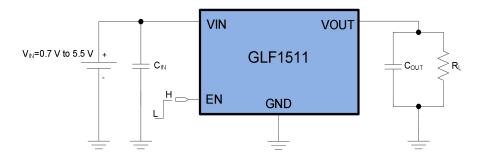
- Supply Voltage Range: 0.7 V to 5.5 V
- Low R<sub>ON</sub>: 13 mΩ Typ
- IOUT Max: 4 A
- Ultra-Low IQ:
  - $\circ~$  2  $\mu A$  Typ at 0.7  $V_{IN}$
  - $\circ$  14  $\mu$ A Typ at 3.3 V<sub>IN</sub>
  - $\circ$  30 µA Typ at 5.5 V<sub>IN</sub>
- - $\circ$  0.030  $\mu$ A Typ at 5.5 V<sub>IN</sub>
- Controlled VOUT Turn-on Time
- Internal EN Pull-Down Resistor
- Integrated Output Discharge Switch
- Reverse Current Blocking Protection When
  Disabled
- Operating Temperature Range: 40 °C to 105 °C
- HBM: 8 kV, CDM: 2 kV
- 0.97 mm x 1.47 mm x 0.55 mm, 6 Bumps Wafer Level Chip Scale Package

## **APPLICATIONS**

- Data Storage, SSD
- Wearables
- Low Power Subsystems

## PACKAGE

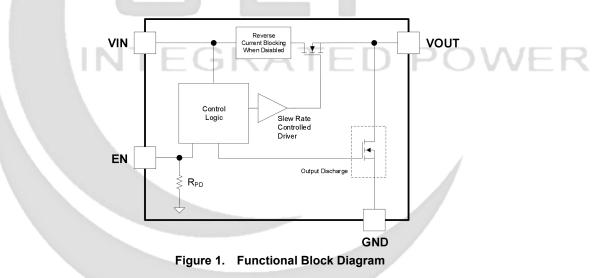



0.97 mm x 1.47 mm x 0.55 mm, 0.5 mm Pitch



#### GLF1511 4 A, Ultra Low Ron N-channel Load Switch wide input voltage Bange and Bayerse Current Block

R with wide input voltage Range and Reverse Current Blocking


## **APPLICATION DIAGRAM**



## **DEVICE ORDERING INFORMATION**

| Part Number | Top Mark | R₀₀ Typ.<br>at Vin Range | Output<br>Discharge | EN<br>Activity |
|-------------|----------|--------------------------|---------------------|----------------|
| GLF1511     | FL       | 13 mΩ                    | 250 Ω               | High           |

## FUNCTIONAL BLOCK DIAGRAM



## **PIN CONFIGURATION**

| VOUT     | VIN  |  | VIN   | VOUT |
|----------|------|--|-------|------|
| (A1)     | (A2) |  | (A2)  | (A1) |
| VOUT     | VIN  |  |       | VOUT |
| (B1)     | (B2) |  | (B2)  | (B1) |
| GND      | EN   |  | EN    | GND  |
| (C1)     | (C2) |  |       |      |
|          |      |  |       |      |
| TOP VIEW |      |  | вотто |      |
|          |      |  |       |      |

## **PIN DEFINITION**

| Pin #  | Name            | Description                         |
|--------|-----------------|-------------------------------------|
| A1, B1 | Vout            | Switch Output                       |
| A2, B2 | V <sub>IN</sub> | Switch Input. Supply Voltage for IC |
| C1     | GND             | Ground                              |
| C2     | EN              | Enable to control the switch        |

Figure 2. 0.97 mm x 1.47 mm x 0.55 mm WLCSP



4 A, Ultra Low Ron N-channel Load Switch

**ER** with wide input voltage Range and Reverse Current Blocking

#### **ABSOLUTE MAXIMUM RATINGS**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol                                               | Pa                                        | Min.                              | Max. | Unit |    |
|------------------------------------------------------|-------------------------------------------|-----------------------------------|------|------|----|
| V <sub>IN</sub> , V <sub>OUT</sub> , V <sub>EN</sub> | Each Pin Voltage Range to GND             | -0.3                              | 6    | V    |    |
| lout                                                 | Maximum Continuous Switch Curren          | ıt                                |      | 4    | A  |
| PD                                                   | Power Dissipation at $T_A = 25 \degree C$ |                                   | 1    | W    |    |
| T <sub>STG</sub>                                     | Storage Junction Temperature              |                                   | -65  | 150  | °C |
| T <sub>A</sub>                                       | Operating Temperature Range               |                                   | -40  | 105  | °C |
| θ <sub>JA</sub>                                      | Thermal Resistance, Junction to Am        |                                   | 85   | °C/W |    |
| FOD                                                  | Electrostatio Discharge Conschility       | Human Body Model, JESD22-A114     | 8    |      |    |
| ESD                                                  | Electrostatic Discharge Capability        | Charged Device Model, JESD22-C101 | 2    |      | kV |

## **RECOMMENDED OPERATING CONDITIONS**

Over operating temperature, unless otherwise noted

| V <sub>IN</sub> Input Supply Voltage      0.7      5.5      V        V <sub>OUT</sub> Output Voltage Range      0      5.5      V | Symbol          | Parameter            | Min. | Max. | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|------|------|------|
| V <sub>OUT</sub> Output Voltage Range 0 5.5 V                                                                                     | V <sub>IN</sub> | Input Supply Voltage | 0.7  | 5.5  | V    |
|                                                                                                                                   | Vout            | Output Voltage Range | 0    | 5.5  | V    |

## **ELECTRICAL CHARACTERISTICS**

 $V_{IN}$  = 0.7 V to 5.5 V and  $T_A$  = 25 °C unless otherwise noted.

| Symbol                           | Parameter                   | Conditions                                                                              |                                                                        | Min. | Тур.  | Max. | Unit |
|----------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|-------|------|------|
| Basic Ope                        | eration                     |                                                                                         |                                                                        |      |       |      |      |
|                                  |                             | $EN = V_{IN}, I_{OUT} = 0 \text{ mA}, V_{IN} = 0.7 \text{ V}$                           |                                                                        |      | 2     | 4    |      |
|                                  |                             | $EN = V_{IN}$ , $I_{OUT} = 0$ mA, $V_{IN} = 1.0V$                                       | EN = V <sub>IN</sub> , I <sub>OUT</sub> = 0 mA, V <sub>IN</sub> = 1.0V |      |       |      |      |
|                                  |                             | $EN = V_{IN}$ , $I_{OUT} = 0$ mA, $V_{IN} = 2.5$ V                                      |                                                                        |      | 9     |      |      |
| Ι <sub>Q</sub>                   | Quiescent Current           | $EN = V_{IN}$ , $I_{OUT}$ = 0 mA, $V_{IN}$ = 3.3 V                                      |                                                                        |      | 14    |      |      |
|                                  |                             | EN = V <sub>IN</sub> , I <sub>OUT</sub> = 0 mA, V <sub>IN</sub> = 5.5 V                 |                                                                        |      | 30    | 50   |      |
|                                  |                             | EN = V <sub>IN</sub> , I <sub>OUT</sub> = 0 mA, V <sub>IN</sub> = 5.5 V                 | T <sub>A</sub> = 85 °C <sup>(1)</sup>                                  |      | 54    |      | μA   |
|                                  |                             | EIV = VIN, IOUT = 0 IIIA, VIN = 3.3 V                                                   | $T_A$ = 105 °C <sup>(1)</sup>                                          |      | 105   |      |      |
|                                  |                             | EN = Disable, $I_{OUT}$ = 0 mA, $V_{IN}$ = 0.7 V                                        |                                                                        |      | 0.015 |      |      |
| I <sub>SD</sub> Shutdown Current | Shutdown Current            | EN = Disable, $I_{OUT}$ = 0 mA, $V_{IN}$ = 5.5 V                                        |                                                                        |      | 0.030 |      |      |
|                                  | Shutdown Current            | EN = Disable, I <sub>OUT</sub> = 0 mA, V <sub>IN</sub> = 5.5 V                          | T <sub>A</sub> = 85 °C <sup>(1)</sup>                                  |      | 0.83  |      |      |
|                                  |                             | EN = DISADIE, $I_{OUT}$ = 0 mA, $V_{IN}$ = 5.5 V T <sub>A</sub> = 105 °C <sup>(1)</sup> |                                                                        |      | 2.85  |      |      |
|                                  |                             | T <sub>A</sub> = 25 °C                                                                  |                                                                        |      | 13    | 20   |      |
| Ron                              | On-Resistance               | $V_{\text{IN}}\text{=}0.7$ V to 5.5 V, $I_{\text{OUT}}\text{=}$ 200 mA                  | T <sub>A</sub> = 85 °C <sup>(1)</sup>                                  |      | 16    |      | mΩ   |
|                                  |                             |                                                                                         | T <sub>A</sub> = 105 °C <sup>(1)</sup>                                 |      | 17    |      |      |
| R <sub>DSC</sub>                 | Output Discharge Resistance | V <sub>EN</sub> = Low , I <sub>FORCE</sub> = 2 mA                                       |                                                                        |      | 250   |      | Ω    |
|                                  |                             | V <sub>IN</sub> = 0.7 V to 1.5 V                                                        |                                                                        | 1.1  |       |      |      |
| Vih                              | EN Input Logic High Voltage | V <sub>IN</sub> = 1.5 V to 5.5 V                                                        |                                                                        | 0.5  |       |      | V    |
| N/                               |                             | $V_{IN}$ = 0.7 V to 1.5 V                                                               |                                                                        |      |       | 0.15 | V    |
| V <sub>IL</sub>                  | EN Input Logic Low Voltage  | V <sub>IN</sub> = 1.5 V to 5.5 V                                                        |                                                                        |      |       | 0.3  |      |
| Ren                              | EN pull-down resistance     | V <sub>EN</sub> = 3.3 V                                                                 |                                                                        |      | 10    |      | MΩ   |
| I <sub>EN</sub>                  | EN Current                  | V <sub>EN</sub> = 5.5 V                                                                 |                                                                        |      |       | 0.8  | μA   |



4 A, Ultra Low Ron N-channel Load Switch

with wide input voltage Range and Reverse Current Blocking

| Switchin              | g Characteristics <sup>(1), (2)</sup> |                                                                          |     |         |
|-----------------------|---------------------------------------|--------------------------------------------------------------------------|-----|---------|
| V <sub>IN</sub> = 0.7 | V, T <sub>A</sub> =25 °C              |                                                                          |     |         |
| t <sub>dON</sub>      | Turn-On Delay                         |                                                                          | 145 |         |
| t <sub>R</sub>        | V <sub>OUT</sub> Rise Time            |                                                                          | 190 | ]       |
| $t_{dOFF}$            | Turn-Off Delay                        | R <sub>L</sub> =150 Ω, C <sub>IN</sub> =1.0 μF, C <sub>OUT</sub> =0.1 μF | 38  | - µs    |
| t⊨                    | V <sub>OUT</sub> Fall Time            |                                                                          | 17  |         |
| V <sub>IN</sub> = 1.1 | V, T <sub>A</sub> =25 °C              |                                                                          |     |         |
| $t_{\text{dON}}$      | Turn-On Delay                         |                                                                          | 120 |         |
| t <sub>R</sub>        | V <sub>OUT</sub> Rise Time            |                                                                          | 240 |         |
| $t_{dOFF}$            | Turn-Off Delay                        | R <sub>L</sub> =150 Ω, C <sub>IN</sub> =1.0 μF, C <sub>OUT</sub> =0.1 μF | 8   | – μs    |
| t⊧                    | Vout Fall Time                        |                                                                          | 18  |         |
| V <sub>IN</sub> = 2.5 | V, T <sub>A</sub> =25 °C              |                                                                          |     |         |
| $t_{dON}$             | Turn-On Delay                         |                                                                          | 90  |         |
| t <sub>R</sub>        | V <sub>OUT</sub> Rise Time            |                                                                          | 310 |         |
| $t_{dOFF}$            | Turn-Off Delay                        | R <sub>L</sub> =150 Ω, C <sub>IN</sub> =1.0 μF, C <sub>OUT</sub> =0.1 μF | 2   | - µs    |
| t⊧                    | V <sub>OUT</sub> Fall Time            |                                                                          | 18  |         |
| V <sub>IN</sub> = 3.3 | V, T <sub>A</sub> =25 °C              |                                                                          |     |         |
| $t_{dON}$             | Turn-On Delay                         |                                                                          | 80  |         |
| t <sub>R</sub>        | V <sub>OUT</sub> Rise Time            |                                                                          | 360 | ]       |
| $t_{dOFF}$            | Turn-Off Delay                        | R <sub>L</sub> =150 Ω, C <sub>IN</sub> =1.0 μF, C <sub>OUT</sub> =0.1 μF | 1.5 | - µs    |
| t⊧                    | V <sub>OUT</sub> Fall Time            |                                                                          | 18  |         |
| V <sub>IN</sub> = 5.0 | V, T <sub>A</sub> =25 °C              |                                                                          |     | >       |
| $t_{dON}$             | Turn-On Delay                         |                                                                          | 70  | · · · · |
| t <sub>R</sub>        | V <sub>OUT</sub> Rise Time            |                                                                          | 360 |         |
| $t_{dOFF}$            | Turn-Off Delay                        | R <sub>L</sub> =150 Ω, C <sub>IN</sub> =1.0 μF, C <sub>OUT</sub> =0.1 μF | 1.5 | - µs    |
| t⊧                    | Vout Fall Time                        |                                                                          | 18  |         |

Notes: 1. By design; characterized, not production tested.

2.  $t_{ON} = t_{dON} + t_{R}$ ,  $t_{OFF} = t_{dOFF} + t_{F}$ 

## TIMING DIAGRAM

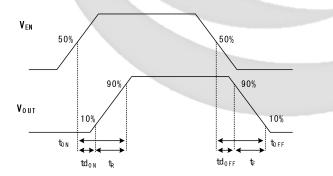
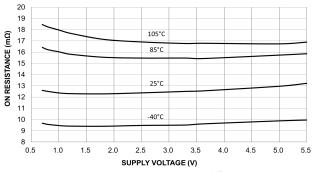




Figure 3. Timing Diagram

**GLF1511** 4 A, Ultra Low Ron N-channel Load Switch with wide input voltage Range and Reverse Current Blocking

**TYPICAL PERFORMANCE CHARACTERISTICS** 





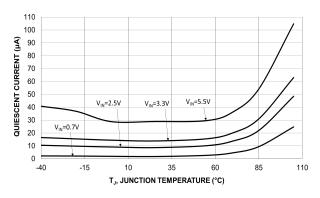



Figure 5. Quiescent Current vs. Temperature

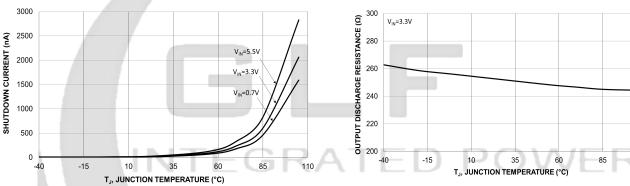



Figure 6. Shutdown Current vs. Temperature

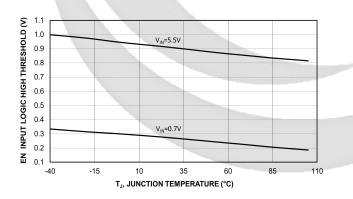



Figure 8. EN Input Logic High Threshold vs. Temperature



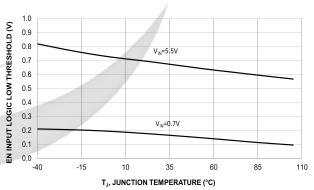
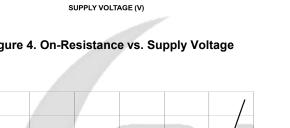




Figure 9. EN Input Logic Low Threshold vs. Temperature



110

## **GLF1511** 4 A, Ultra Low Ron N-channel Load Switch with wide input voltage Range and Reverse Current Blocking

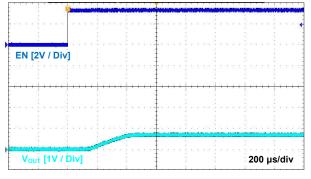
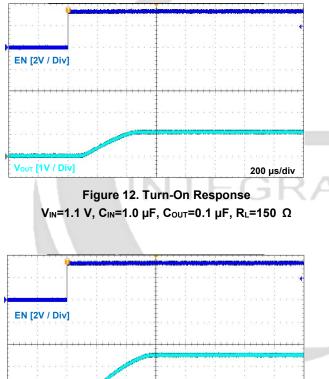
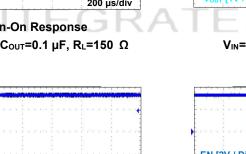
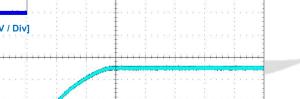







Figure 10. Turn-On Response  $V_{\text{IN}}\text{=}0.7 \text{ V}, \text{ } \text{C}_{\text{IN}}\text{=}1.0 \text{ } \mu\text{F}, \text{ } \text{C}_{\text{OUT}}\text{=}0.1 \text{ } \mu\text{F}, \text{ } \text{R}_{\text{L}}\text{=}150 \text{ } \Omega$ 









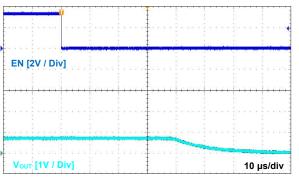



Figure 11. Turn-Off Response  $V_{IN}$ =0.7 V, C<sub>IN</sub>=1.0 µF, C<sub>OUT</sub>=0.1 µF, R<sub>L</sub>=150 Ω

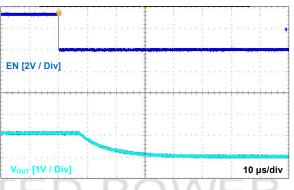



Figure 13. Turn-Off Response VIN=1.1 V, CIN=1.0 μF, COUT=0.1 μF, RL=150 Ω

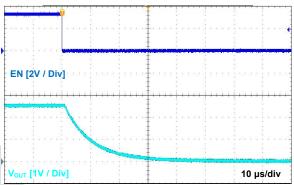
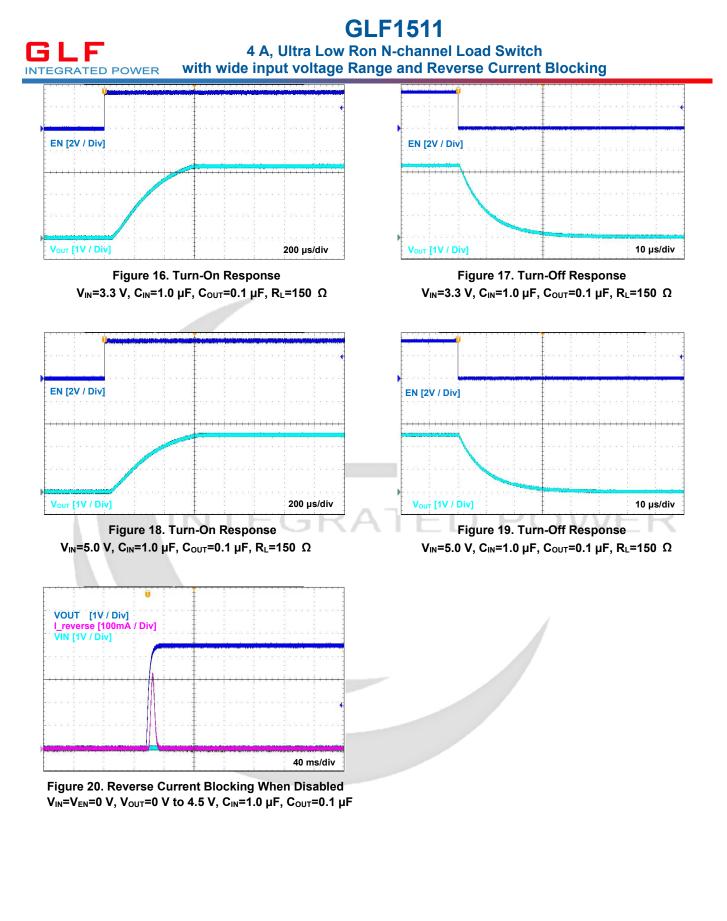




Figure 15. Turn-Off Response VIN=2.5 V, CIN=1.0 μF, COUT=0.1 μF, RL=150 Ω





4 A, Ultra Low Ron N-channel Load Switch

**OWER** with wide input voltage Range and Reverse Current Blocking

#### APPLICATION INFORMATION

The GLF1511 is a fully integrated 4 A NMOS load switch with fixed slew rate control to limit the inrush current during turn on. Each device is capable of operating over a wide input range from 0.7 V to 5.5 V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current, avoiding unwanted standby current from the input power supply. The GLF1511 is available in the 0.97 mm x 1.47 mm wafer level chip scale package with 6 bumps at 0.5 mm pitch to save space in compact applications.

#### **Input Capacitor**

A capacitor is recommended to be placed close to the  $V_{IN}$  pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

#### **Output Capacitor**

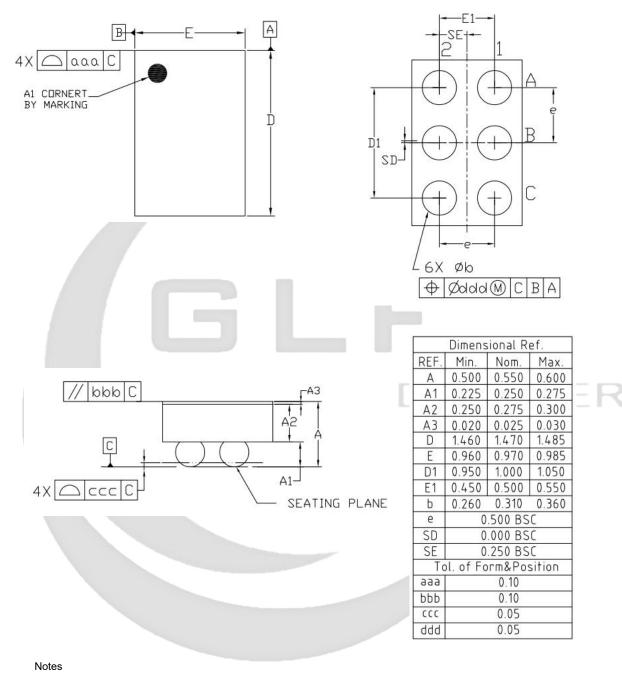
An output capacitor is recommended to minimize voltage undershoot on the output pin during the transition when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The  $C_{OUT}$  capacitor should be placed close to the VOUT and GND pins.

#### **Reverse Current Blocking**

The GLF1511 has a built-in reverse current blocking protection. When the device is disabled, the reverse current blocking protection is activated to prevent the reverse current from the Vout to the Vin source.

#### EN pin

The GLF1511 can be activated by EN pin high. Note that the EN pin has an internal pull-down resistor to maintain a reliable status without EN signal applied from an external controller.

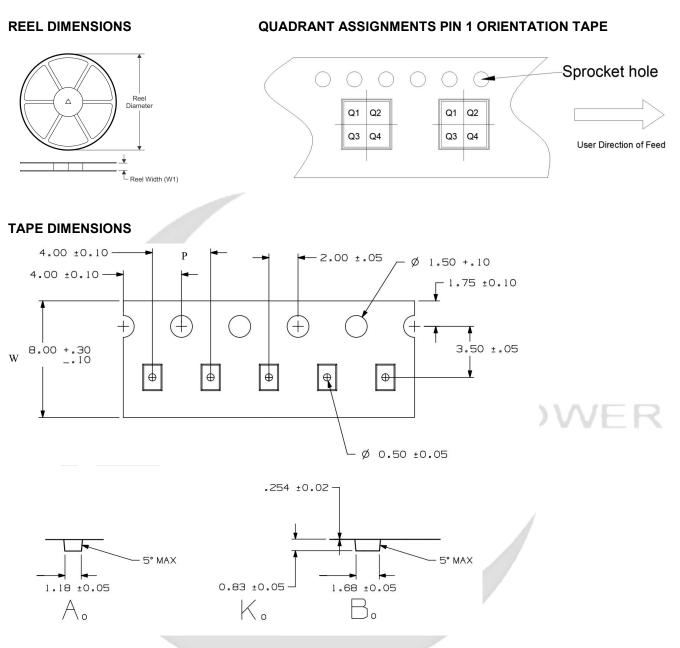

#### Board Layout

All traces should be as short as possible to minimize parasitic inductance effect. Wide traces for VIN, VOUT, and GND will help reduce signal degradation and parasitic effects during dynamic operations as well as improve the thermal performance at high load current.



**GLF1511** 4 A, Ultra Low Ron N-channel Load Switch with wide input voltage Range and Reverse Current Blocking

#### PACKAGE OUTLINE




- 1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGRESS)
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 3. A3: BACKSIDE LAMINATION

4 A, Ultra Low Ron N-channel Load Switch

**WER** with wide input voltage Range and Reverse Current Blocking

## TAPE AND REEL INFORMATION



| Device  | Package | Pins | SPQ  | Reel Diameter<br>(mm) | Reel<br>Width W1 | A0   | В0   | K0   | Р | w | Pin1 |
|---------|---------|------|------|-----------------------|------------------|------|------|------|---|---|------|
| GLF1511 | WLCSP   | 6    | 3000 | 180                   | 9                | 1.18 | 1.68 | 0.83 | 4 | 8 | Q1   |

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers



4 A, Ultra Low Ron N-channel Load Switch

**R** with wide input voltage Range and Reverse Current Blocking

#### SPECIFICATION DEFINITIONS

| Document<br>Type             | Meaning                                                                                                                                                                                                                                                                                                                                                                                                   | Product Status          |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Target<br>Specification      | This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question. | Design /<br>Development |
| Preliminary<br>Specification | This is a draft version of a product specification. The specification is still<br>under internal review and subject to change. GLF reserves the right to<br>change the specification at any time without warning or notification. A<br>preliminary specification in no way guarantees future production of the<br>device in question.                                                                     | Qualification           |
| Product<br>Specification     | This document represents the anticipated production performance characteristics of the device.                                                                                                                                                                                                                                                                                                            | Production              |

## DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.