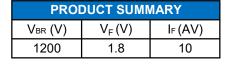
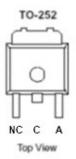
# 1200-V Direct WGB Diode


### **Key Features:**

- SiC performance
- Easy paralleling
- High current carrying capability
- Very low junction capacitance
- Highly stable VF and QRR at elevated temperatures

### **Typical Applications:**


- Soft switching topologies
- Secondary side rectification









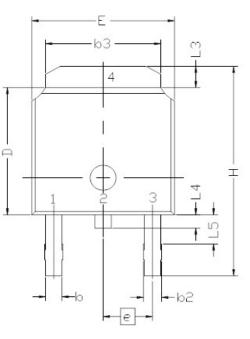


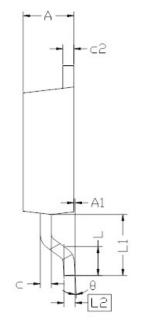
| ABSOLUTE MAXIMUM RATINGS ( $T_A = 25^{\circ}C$ UNLESS OTHERWISE NOTED) |                      |                    |            |       |
|------------------------------------------------------------------------|----------------------|--------------------|------------|-------|
| Parameter                                                              |                      | Symbol             | Limit      | Units |
| Cathode-Anode Voltage                                                  |                      | $V_{BR}$           | 1200       | V     |
| Diode Forward Current <sup>a</sup>                                     | T <sub>C</sub> =25°C | I <sub>F(AV)</sub> | 10         | А     |
| Single Pulse Forward Current <sup>b</sup>                              | T <sub>C</sub> =25°C | I <sub>FSM</sub>   | 50         | А     |
| Joule Integral                                                         |                      | i <sup>2</sup> t   | 12         | A²⋅s  |
| Storage Temperature Range                                              |                      | T <sub>stg</sub>   | -55 to 150 | °C    |
| Operating Junction Temperature                                         |                      | Τ <sub>J</sub>     | -40 to 120 | °C    |

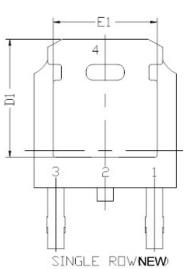
| THERMAL RESISTANCE RATINGS               |                  |         |       |  |
|------------------------------------------|------------------|---------|-------|--|
| Parameter                                | Symbol           | Maximum | Units |  |
| Maximum Junction-to-Ambient <sup>a</sup> | R <sub>θJA</sub> | 40      | °C/W  |  |
| Maximum Junction-to-Case                 | R <sub>eJC</sub> | 3       | C/W   |  |

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- Pulse width limited by maximum junction temperature b.


## **Electrical Characteristics**


| Parameter                       | Symbol                  | Test Conditions                                                                  | Min          | Тур  | Max | Unit |
|---------------------------------|-------------------------|----------------------------------------------------------------------------------|--------------|------|-----|------|
|                                 |                         | Static                                                                           | -            |      |     |      |
| Forward Voltage <sup>a</sup>    | V <sub>F</sub>          | I <sub>F</sub> = 10 A                                                            |              | 1.8  |     | v    |
|                                 | VF                      | I <sub>F</sub> = 10 A, T <sub>J</sub> = 120°C                                    | = 120°C 1.84 |      |     | 7    |
| Repetitive Peak Reverse Voltage | V <sub>RRM</sub>        | $T_{\rm J}$ = -40°C to 120°C                                                     | 1200         |      |     | V    |
| Junction Capacitance            | CJ                      | $V_R$ = 200 V, $V_{sine}$ = 0.6 $V_{eff}$ ,<br>f = 100 kHz                       |              | 6.3  |     | pF   |
|                                 | V <sub>R</sub> = 1200 V | V <sub>R</sub> = 1200 V                                                          |              |      | 2   | uA   |
| Reverse Leakage Current         | I <sub>R</sub>          | V <sub>R</sub> = 1200 V, T <sub>J</sub> = 120°C                                  | -60          |      | 10  | uA   |
|                                 |                         | Dynamic <sup>b</sup>                                                             |              |      |     | •    |
| Reverse Recovery Time           | T <sub>rr</sub>         |                                                                                  |              | 80   |     | ns   |
| Reverse Recovery Charge         | Q <sub>rr</sub>         | I <sub>F</sub> = 10 A, dl/dt = 100 A/us,<br>T <sub>J</sub> = 25°C                |              | 157  |     | nC   |
| Peak Recovery Current           | I <sub>RRM</sub>        | 1j - 20 0                                                                        |              | 3.3  |     | А    |
| Reverse Recovery Time           | T <sub>rr</sub>         | I <sub>F</sub> = 10 A, dI/dt = 100 A/us,                                         |              | 75   |     | ns   |
| Reverse Recovery Charge         | Q <sub>rr</sub>         | $T_{\rm F} = 10$ A, di/dt = 100 A/ds,<br>T_{\rm J} = 120°C                       |              | 127  |     | nC   |
| Peak Recovery Current           | I <sub>RRM</sub>        | 1, 120 0                                                                         |              | 2.8  |     | A    |
| Reverse Recovery Time           | T <sub>rr</sub>         | I <sub>F</sub> = 10 A, dI/dt = 500 A/us,                                         |              | 32   |     | ns   |
| Reverse Recovery Charge         | Q <sub>rr</sub>         | $T_F = 10 \text{ A}, \text{ di/dt} = 500 \text{ A/ds}, T_J = 25^{\circ}\text{C}$ |              | 215  |     | nC   |
| Peak Recovery Current           | I <sub>RRM</sub>        | 1, 200                                                                           |              | 11.2 |     | A    |
| Reverse Recovery Time           | T <sub>rr</sub>         | I = 10 A d / dt = 500 A / uc                                                     |              | 32   |     | ns   |
| Reverse Recovery Charge         | Q <sub>rr</sub>         | I <sub>F</sub> = 10 A, dl/dt = 500 A/us,<br>T <sub>.I</sub> = 120°C              |              | 193  |     | nC   |
| Peak Recovery Current           | I <sub>RRM</sub>        | 1, 120 0                                                                         |              | 9.9  |     | А    |


#### Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.

Analog Power (APL) reserves the right to make changes without further notice to any products herein. APL makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APL assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in APL data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. APL does not convey any license under its patent rights nor the rights of others. APL products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the APL product could create a situation where personal injury or death may occur. Should Buyer purchase or use APL products for any such unintended or unauthorized application, Buyer shall indemnify and hold APL and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that APL was negligent regarding the design or manufacture of the part. APL is an Equal Opportunity/Affirmative Action Employer.







| OVADDI | DIMENS:   | IONAL F | REQMIS |  |  |
|--------|-----------|---------|--------|--|--|
| SYMBOL | MIN       | NDM     | MAX    |  |  |
| E      | 6.40      | 6.60    | 6.731  |  |  |
| L      | 1.40      | 1.52    | 1.77   |  |  |
| L1     | 2         | .743 R  | ĒF     |  |  |
| L2     | 0.        | 508 BS  | C      |  |  |
| L3     | 0.89      |         | 1.27   |  |  |
| L4     | 0.64      |         | 1.01   |  |  |
| L5     |           |         |        |  |  |
| D      | 6.00      | 6.10    | 6.223  |  |  |
| Н      | 9.40      | 10.00   | 10.40  |  |  |
| b      | 0.64      | 0.76    | 0.88   |  |  |
| b2     | 0.77      | 0.84    | 1.14   |  |  |
| b3     | 5.21      | 5.34    | 5.46   |  |  |
| е      | 2.286 BSC |         |        |  |  |
| A      | 2.20      | 2.30    | 2.38   |  |  |
| A1     | 0         |         | 0.127  |  |  |
| C      | 0.45      | 0.50    | 0,60   |  |  |
| c2     | 0.45      | 0,50    | 0,58   |  |  |
| D1     | 5.30      |         |        |  |  |
| E1     | 4.40      |         |        |  |  |
| θ      | 0°        |         | 10°    |  |  |

#### Note:

- 1. All Dimension Are In mm.
- 2. Package Body Sizes Exclude Mold Flash, Protrusion Or Gate Burrs. Mold Flash, Protrusion Or Gate Burrs Shall Not Exceed 0.10 mm Per Side.

**Package Information** 

3. Package Body Sizes Determined At The Outermost Extremes Of The Plastic Body Exclusive Of Mold Flash, Gate Burrs And Interlead Flash, But Including Any Mismatch Between The Top And Bottom Of The Plastic Body.