

Product Group: SIL/Mon Oct 2, 2023/PIN-SIL-043-2023-REV-0

PIN

The DNA of tech."

Revision in SQJ402EP Datasheet from Rev. C to Rev. D

For further information, please contact your regional Vishay office.

CONTACT INFORMATION

Americas	Europe	Asia
Vishay Siliconix	Vishay Electronic GmbH	Vishay Intertechnology Asia Pte. Ltd
2565 Junction Ave	DrFelix-Zandman-Platz 1	37A Tampines Street 92 #07-01
-	-	-
San Jose CA United States 95134	Selb Germany 95100	Singapore Singapore 528886
Phone: 4089705799	Phone: 49-9287-71 0	Phone: 65 6788 6668
Fax: 4089705799	Fax: 49-9287-70435	Fax: 65 6788 0988
husiness-americas@vishav.com	husiness-europe@vishav.com	husiness-asia@vishav.com

Description of Change: As part of Vishay Siliconix commitment to Quality, we would like to extend to you a courtesy advisory notification of a datasheet revision for SQJ402EP (Doc #67997 Rev D attached). There is no change to the materials or processes used in the manufacture of this part.

The changes per this Advisory reflect updates as follows:

Typo correction on pages 1, 2, and 4 of datasheet.

Page1: Removed superscript "d" from Feature "AEC-Q101 Qualified"; superscript "b" from "Maximum Power Dissipation"; and note "d. Parametric verification ongoing". Page2: Renamed superscript "e, f" to "d, e"; notes "e, f" to "d, e"; and notes "g, h, i" to a, b, c". Page4: Corrected Tj labels of On Resistance vs Gate-to-Source Voltage chart that got swapped.

This advisory is for information only and there is no need for a response.

Reason for Change: Datasheet Revision

Expected Influence on Quality/Reliability/Performance: None

Part Numbers/Series/Families Affected: SQJ402EP-T1_BE3, SQJ402EP-T1_GE3, SQJ402EP-T2_BE3, SQJ402EP-T2_GE3,

Vishay Brand(S): Vishay Siliconix

Time Schedule:

Start Shipment Date: Mon Oct 2, 2023

Sample Availability: This is a datasheet revision only. There is no change to the materials or processes used in the manufacture of this part.

Product Identification: SQJ402EP-T1_BE3, SQJ402EP-T1_GE3, SQJ402EP-T2_BE3, SQJ402EP-T2_GE3

Qualification Data: N/A

Issued By: Vishay Siliconix, business-americas@vishay.com © 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

SQJ402EP

Vishay Siliconix

Automotive N-Channel 100 V (D-S) 175 °C MOSFET

PRODUCT SUMMARY			
V _{DS} (V)	100		
$R_{DS(on)}(\Omega)$ at $V_{GS} = 10 V$	0.0110		
$R_{DS(on)}\left(\Omega\right)$ at V_{GS} = 4.5 V	0.0140		
I _D (A)	32		
Configuration	Single		

FEATURES

- TrenchFET® power MOSFET
- AEC-Q101 qualified
- 100 % R_g and UIS tested
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

HALOGEN

ORDERING INFORMATION	
Package	PowerPAK SO-8L
Lead (Pb)-free and halogen-free	SQJ402EP (for detailed order number please see <u>www.vishay.com/doc?79771</u>)

ABSOLUTE MAXIMUM RATINGS ($T_c = 25 \text{ °C}$, unless otherwise noted)						
PARAMETER		SYMBOL	LIMIT	UNIT		
Drain-source voltage		V _{DS}	100	V		
Gate-source voltage		V _{GS}	± 20			
Continuous drain surrant à	T _C = 25 °C	1	32			
Continuous drain current ~	T _C = 125 °C	۱D	32			
Continuous source current (diode conduction) a		۱ _S	32	А		
Pulsed drain current ^b		I _{DM}	75			
Single pulse avalanche current	L = 0.1 mH	I _{AS}	31			
Single pulse avalanche energy		E _{AS}	48	mJ		
Maximum newar dissinction	T _C = 25 °C	D	83	W		
Maximum power dissipation	T _C = 125 °C	FD	27			
Operating junction and storage temperature range		T _J , T _{stg}	-55 to +175	°C		
Soldering recommendations (peak temperature) d, e			260			

THERMAL RESISTANCE RATINGS						
PARAMETER		SYMBOL	LIMIT	UNIT		
Junction-to-ambient	PCB mount ^c	R _{thJA}	65	°C ///		
Junction-to-case (drain)		R _{thJC}	1.8	C/W		

Notes

a. Package limited

b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %

c. When mounted on 1" square PCB (FR-4 material)

d. See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAK SO-8L is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection

1

e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components

SPending-Rev. D, 11-Sep-2023

www.vishay.com

SQJ402EP

Vishay Siliconix

SPECIFICATIONS ($T_C = 25 \text{ °C}$, unless otherwise noted)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Static	•	•					
Drain-source breakdown voltage	V _{DS}	$V_{GS} = 0 V, I_D = 250 \mu A$		100	-	-	V
Gate-source threshold voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μΑ	1.5	2.0	2.5	v
Gate-source leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$		-	-	± 100	nA
		$V_{GS} = 0 V$	V _{DS} = 100 V	-	-	1	μA
Zero gate voltage drain current	I _{DSS}	$V_{GS} = 0 V$	V_{DS} = 100 V, T_J = 125 °C	-	-	50	
		$V_{GS} = 0 V$	V_{DS} = 100 V, T_{J} = 175 °C	-	-	150	
On-state drain current ^a	I _{D(on)}	$V_{GS} = 10 V$	$V_{DS} \ge 5 V$	30	-	-	А
		$V_{GS} = 10 \text{ V}$	I _D = 10.7 A	-	0.0090	0.0110	
Drain aquiras en stata registança à	Б	$V_{GS} = 10 V$	$I_D = 10.7 \text{ A}, T_J = 125 ^\circ\text{C}$	-	-	0.0170	0
Drain-source on-state resistance ~	nDS(on)	$V_{GS} = 10 V$	I _D = 10.7 A, T _J = 175 °C	-	-	0.0210	52
		$V_{GS} = 4.5 V$	I _D = 9.5 A	-	0.0115	0.0140	
Forward transconductance ^b	9 _{fs}	V _{DS} = 15 V, I _D = 10.7 A		-	54	-	S
Dynamic ^b							
Input capacitance	C _{iss}		V _{DS} = 25 V, f = 1 MHz	-	1829	2286	pF
Output capacitance	C _{oss}	$V_{GS} = 0 V$		-	722	903	
Reverse transfer capacitance	C _{rss}			-	62	78	
Total gate charge ^c	Qg		$V_{DS} = 50 \text{ V}, \text{ I}_{D} = 10 \text{ A}$	-	34	51	nC
Gate-source charge ^c	Q _{gs}	$V_{GS} = 10 V$		-	6	-	
Gate-drain charge ^c	Q _{gd}			-	13	-	
Gate resistance	Rg	f = 1 MHz		0.65	1.39	2	Ω
Turn-on delay time ^c	t _{d(on)}	$V_{DD} = 50 \text{ V}, \text{ R}_{\text{L}} = 5 \Omega$ $\text{I}_{\text{D}} \cong 10 \text{ A}, \text{ V}_{\text{GEN}} = 10 \text{ V}, \text{ R}_{\text{g}} = 1 \Omega$		-	10	15	ns
Rise time ^c	t _r			-	10	15	
Turn-off delay time ^c	t _{d(off)}			-	27	40	
Fall time ^c	t _f			-	7	11	
Source-Drain Diode Ratings and Characteristics ^b							
Pulsed current ^a	I _{SM}			-	-	75	А
Forward voltage	V _{SD}	$I_{F} = 7 \text{ A}, V_{GS} = 0 \text{ V}$		-	0.77	1.2	V

Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %

b. Guaranteed by design, not subject to production testing

c. Independent of operating temperature

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2

SQJ402EP

www.vishay.com

Vishay Siliconix

SPending-Rev. D, 11-Sep-2023

Document Number: 67997

For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

SQJ402EP Vishay Siliconix

TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

SPending-Rev. D, 11-Sep-2023

.

For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

4

100

SQJ402EP

Vishay Siliconix

Normalized Thermal Transient Impedance, Junction-to-Ambient

www.vishay.com

SQJ402EP

Vishay Siliconix

Normalized Thermal Transient Impedance, Junction-to-Case

Note

The characteristics shown in the two graphs

- Normalized transient thermal impedance junction-to-ambient (25 °C)

- Normalized transient thermal impedance junction-to-case (25 °C)

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67997.