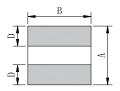
SMD Power Inductor

TMIM-S-Series(G)-D

1. Features

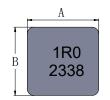
- 1. Low loss realized with low DCR.
- 2. High performance realized by metal dust core.
- 3. Ultra low buzz noise, due to composite construction.
- 4. 100% Lead(Pb)-Free and RoHS compliant.

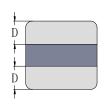
Halogen-free


2. Applications

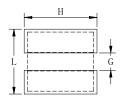
Commercial applications

3. Dimensions




Note: 1.PCB layout is referred to standard IPC-7351B 2. The above PCB layout reference only. 3. Recommend solder paste thickness at

- 0.12mm and above.


Series	A(mm)	B(mm)	C(mm)	D(mm)	L(mm)	G(mm)	H(mm)
TMIM0402S	4.1±0.2	4.1±0.2	1.8±0.2	1.3±0.3	4.5	1.2	4.5
TMIM0403S	4.2±0.2	4.2±0.2	2.8±0.2	1.3±0.3	4.5	1.2	4.5

Series	Α	В	С	D
TMIM0503S	5.5±0.2	5.3±0.2	2.8±0.2	1.8±0.3

	5.6	1.3	6.0
	Note: 1.PCB layοι	it is referred to sta	ndard IPC-7351B

L(mm)

G(mm)

H(mm)

- 2. The above PCB layout reference only.
- Recommend solder paste thickness at 0.10mm and above.

Unit:mm

P3 TAI-TECH

4. Part Numbering

A: Series

B: Dimension

C: Material

D: Inductance E: Inductance Tolerance

F: Code

 AxBxC

R47=0.47uH M=±20% G=Coating

MG D02 S **TMIM** 0503 В Α

A: Series

B: Dimension

C: Material

D: Inductance

E: Inductance Tolerance

F:Code

AxBxC

1R0=1.0uH M=±20% G=Coating

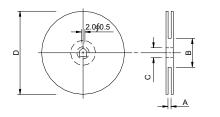
Marking: Black.1R0 and 2338(23YY,38WW,follow production date).

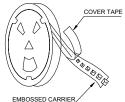
5. Specification

Part Number	Inductance L0 A(uH)	I rms	s (A)	I sat	(A)	DCR(mΩ)		
	±20%	Тур	Max	Тур	Max	Тур	Max	
TMIM0402S-R10MG-D	0.10	34.0	30.5	37.0	32.0	1.3	1.6	
TMIM0402S-R12MG-D	0.12	31.0	28.0	33.0	28.0	1.3	1.6	
TMIM0402S-R15MG-D	0.15	28.5	25.5	30.0	26.0	1.7	2.05	
TMIM0402S-R20MG-D	0.20	27.0	24.3	28.0	25.0	1.9	2.2	
TMIM0402S-R22MG-D	0.22	26.0	23.5	26.0	24.0	1.9	2.2	
TMIM0402S-R33MG-D	0.33	17.0	15.0	18.0	16.0	3.3	4.0	
TMIM0402S-R47MG-D	0.47	16.0	14.0	16.0	14.0	4.5	5.4	
TMIM0402S-R56MG-D	0.56	15.0	13.0	15.0	13.0	4.8	5.6	
TMIM0402S-R68MG-D	0.68	13.0	11.0	13.0	11.0	5.5	6.6	
TMIM0402S-1R0MG-D	1.0	12.0	10.0	11.0	9.5	8.2	9.0	
TMIM0402S-1R2MG-D	1.2	11.0	9.5	10.5	9.0	9.6	11.5	
TMIM0402S-1R5MG-D	1.5	10.0	9.0	8.5	7.6	12.5	15	
TMIM0402S-2R2MG-D	2.2	9.0	8.0	7.2	6.5	17.5	21	

5 (1)	Inductance	l rm:	I rms (A)		(A)	DCR(mΩ)		
Part Number	L0 A(uH) ±20%	Тур	Max	Тур	Max	Тур	Max	
TMIM0403S-R22MG-D	0.22	27.2	24.7	30.0	26.0	2.0	2.4	
TMIM0403S-R47MG-D	0.47	21.0	19.0	21.0	18.0	3.5	4.1	
TMIM0403S-R68MG-D	0.68	18.0	16.0	19.0	16.0	4.4	5.2	
TMIM0403S-1R0MG-D	1.0	12.5	10.0	12.5	11.0	6.5	7.8	
TMIM0403S-1R5MG-D	1.5	11.0	10.0	10.5	9.5	9.5	11.4	
TMIM0403S-2R2MG-D	2.2	10.5	9.5	8.5	7.5	14.5	17.4	
TMIM0403S-3R3MG-D	3.3	10.0	9.0	7.5	6.5	17.2	20.7	
TMIM0403S-4R7MG-D	4.7	6.6	5.9	5.8	5.1	27	32.4	

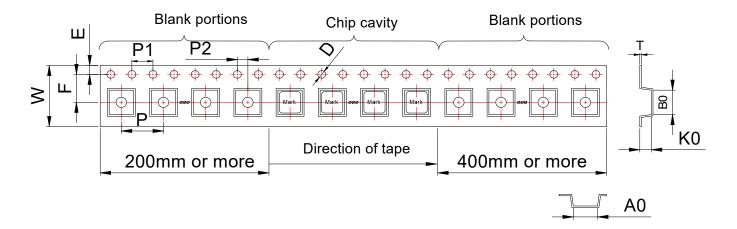
Part Number	Inductance L0 A(uH)	I rms	I rms (A)		(A)	DCR (mΩ)		
	±20%	Тур	Max	Тур	Max	Тур	Max	
TMIM0503S-R15MG-D02	0.15	42.0	38.0	48.0	44.0	0.85	0.96	
TMIM0503S-R18MG-D02	0.18	35.0	32.0	40.0	35.0	1.1	1.32	
TMIM0503S-R20MG-D02	0.20	33.0	30.0	38.0	33.0	1.3	1.6	
TMIM0503S-R33MG-D02	0.33	29.0	26.0	32.0	28.0	1.8	2.2	
TMIM0503S-R36MG-D02	0.36	27.0	24.5	30.0	26.0	1.9	2.3	
TMIM0503S-R47MG-D02	0.47	24.0	22.0	28.0	24.0	2.4	2.9	
TMIM0503S-R56MG-D02	0.56	22.0	20.0	25.0	22.0	2.7	3.3	
TMIM0503S-R68MG-D02	0.68	20.0	18.0	24.0	21.0	3.3	4.0	
TMIM0503S-R82MG-D02	0.82	18.0	16.5	22.0	19.0	4.1	4.9	
TMIM0503S-1R0MG-D02	1.0	17.0	15.5	19.5	17.0	5.0	6.0	
TMIM0503S-1R5MG-D02	1.5	14.5	13.0	17.0	15.0	7.1	8.6	
TMIM0503S-1R8MG-D02	1.8	13.0	11.5	15.0	13.0	8.6	10.3	
TMIM0503S-2R2MG-D02	2.2	12.0	10.5	12.0	10.5	9.8	11.8	
TMIM0503S-3R3MG-D02	3.3	10.0	9.0	10.0	9.0	14.0	17.0	
TMIM0503S-4R7MG-D02	4.7	9.0	8.0	9.0	8.0	22.0	26.4	

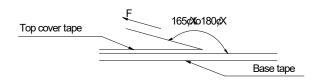

Note:


- 1. Test frequency: Ls: 100KHz /1.0V.
- 2. All test data referenced to 25℃ ambient.
- $3. \ \ \text{Testing Instrument} (\text{or equ}): \\ \text{Agilent 4284A,E4991A,4339B,KEYSIGHT E4980A/AL,chroma3302,3250,16502}.$
- 4. Heat Rated Current (Irms) will cause the coil temperature rise approximately $\,\Delta\,T$ of 40
- 5. Saturation Current (Isat) will cause L0 to drop approximately 30%.
- 6. The part temperature (ambient + temp rise) should not exceed 125°Cunder worst case operating conditions. Circuit design, component, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.
- 7. Irms Testing: Temperature rise is highly dependent on many factors including pcb land pattern, trace size, and proximity to other components.

 Therefore temperature rise should be verified in application conditions.
- 8. Rated DC current: The lower value of Irms and Isat.
- Rated voltage 25V DC, The application of voltage depends on many factors. Over voltage may cause components failure.
 high temperature. and burn-out, User needs to verify for appropriate usage.

6. Packaging Information


6-1. Reel Dimension


Туре	A(mm)	B(mm)	C(mm)	D(mm)
13"x12mm	12.4+2/-0	100±2	13+0.5/-0.2	330

6-2. Tape Dimension

Series	B0(mm)	A0(mm)	K0(mm)	W(mm)	P(mm)	P1(mm)	P2(mm)	E(mm)	F(mm)	T(mm)	D(mm)	Chip/Reel
TMIM0402	4.5±0.1	4.5±0.1	2.2±0.1	12.0±0.3	8.0±0.1	4.0±0.1	2.0±0.1	1.75±0.1	5.5±0.1	0.35±0.05	1.5+0.1/-0.0	3000
TMIM0403	4.5±0.1	4.5±0.1	3.2±0.1	12.0±0.3	8.0±0.1	4.0±0.1	2.0±0.1	1.75±0.1	5.5±0.1	0.35±0.05	1.5+0.1/-0.0	2000
TMIM0503	5.8±0.1	6.0±0.1	3.3±0.1	12.0±0.3	8.0±0.1	4.0±0.1	2.0±0.1	1.75±0.1	5.5±0.1	0.35±0.05	1.5+0.1/-0.0	2000

6-3. Tearing Off Force

The force for tearing off cover tape is 10 to 100 grams in the arrow direction under the following conditions(referenced ANSI/EIA-481-D-2008 of 4.11 stadnard).

Tearing Speed	Room Temp.	Room Humidity	Room atm
mm	(℃)	(%)	(hPa)
300±10	5~35	45~85	860~1060

7. Reliability and Test Condition

Item	Performance	Test Condition
Operating temperature	-40~+125℃ (Including self - temperature rise)	
Storage temperature	110~+40°C,50~60%RH (Product with taping) 240~+125°C(on board)	
Electrical Performance T		1
Inductance		HP4284A,CH11025,CH3302,CH1320,CH1320S LCR Meter.
DCR	Refer to standard electrical characteristics list.	CH16502,Agilent33420A Micro-Ohm Meter.
Saturation Current (Isat)	Approximately △L30%.	Saturation DC Current (Isat) will cause L0 to drop $\triangle L(\%)$
Heat Rated Current (Irms)	Approximately △T40℃	Heat Rated Current (Irms) will cause the coil temperature rise △T(℃). 1.Applied the allowed DC current 2.Temperature measured by digital surface thermometer
Reliability Test		
Life Test		Preconditioning: Run through IR reflow for 3times. (IPC/JEDECJ-STD-020E Classification Reflow Profiles) Temperature: 125±2°C (Inductor, ambient + temp rise) Applied current: rated current Duration: 1000±12hrs Measured at room temperature after placing for 24±2 hrs.
Load Humidity		Preconditioning: Run through IR reflow for 3times. (IPC/JEDECJ-STD-020E Classification Reflow Profiles) Humidity: 85±2%R.H, Temperature: 85℃±2℃ Duration: 1000hrs Min. Bead:with 100% rated current, Inductance: with 100% rated current Measured at room temperature after placing for 24±2 hrs.
Moisture Resistance	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value. RDC: within ±15% of initial value and shall not exceed the specification value	Preconditioning: Run through IR reflow for 3 times. (IPC/JEDECJ-STD-020E Classification Reflow Profiles) 1. Baked at50°C for 25hrs, measured at room temperature after placing for 4 hrs. 2. Raise temperature to 65±2°C 90-100%RH in 2.5hrs, and keep 3 hours, cool down to 25°C in 2.5hrs. 3. Raise temperature to 65±2°C 90-100%RH in 2.5hrs, and keep 3 hours, cool down to 25°C in 2.5hrs,keep at 25°C for 2 hrs then keep at -10°C for 3 hrs 4. Keep at 25°C 80-100%RH for 15min and vibrate at the frequency of 10 to 55 Hz to 10 Hz, measure at room temperature after placing for 1~2 hrs.
Thermal shock		Preconditioning: Run through IR reflow for 3 times. (IPC/JEDECJ-STD-020E Classification Reflow Profiles) Condition for 1 cycle Step1: -40±2℃ 30±5min Step2: 125±2℃ ≅ 0.5min Step3: 125±2℃ 30±5minNumber of cycles: 500 Measured at room fempraturc after placing for 24±2 hrs.
Vibration		Preconditioning: Run through IR reflow for 3 times. (IPC/JEDECJ-STD-020E Classification Reflow Profiles) Oscillation Frequency: 10Hz~2KHz~10Hz for 20 minutes Equipment: Vibration checker Total Amplitude: 10g Testing Time: 12 hours(20 minutes, 12 cycles each of 3 orientations).

Item	Performance				Test	Cond	ition		
Bending	Appearance: No damage.	follo <08 Ben <08	owing on the second of the sec	h(2012mi	ns: >=08 m):40x10 0805 inch	05 inch(2 00x0.8mr h(2012mi	2012mm):40)x100x1.2mm	
	Inductance: within±10% of initial value Q: Shall not exceed the specification value.		Туре	Peak value (g's)	durat	rmal ion (D) ns)	Wave form	Velocity change (Vi)ft/sec	
Shock	RDC: within $\pm 15\%$ of initial value and shall not exceed the specification value	5	SMD	50		11	Half-sine	11.3	
		L	Lead	50		11	Half-sine erpendicula	11.3	
			icks).	ın each di	rection a	along 3 pe	erpendicula	raxes(16	
	More than 95% of the terminal electrode should			d B1, 4 h e:5 +0/-0.			heat @255	5°C±5°C	
Solderability	be covered with solder.		b. Method D category 3. (steam aging 8hours ± 15 min)@ 260°C±5°C Test time: 30 +0/-0.5 seconds.						
		Depth: completely cover the term							
Resistance to Soldering Heat		Tempera		ature(°C)	Time(s)	ramp/ir	perature mmersion ersion rate	Number of heat cycles	
			260 solder	±5 temp)	10 ±1	25mm/s	s ±6 mm/s	1	
Terminal Strength	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value. RDC: within ±15% of initial value and shall not exceed the specification value e	J-S ² With test mm be	TD-02 h the ted,app i):0.5kg applied dually	0E Classi componer olyaforce(g)to the s d for 60	fication in the mount of the mo	Reflow Pited on a ch(2012r device b nds. Also shock to t	rofiles PCB with nm):1kg,<= eing tested the force	the device to be 0805inch(2012 This force shall shall be applied ent being tested.	

Note: When there are questions concerning measurement result: measurement shall be made after 48 ± 2 hours of recovery under the standard condition.

8. Soldering Specifications

(1) Soldering

Mildly activated rosin fluxes are preferred. TAI-TECH terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

(2) Soldering Reflow:

Recommended temperature profiles for lead free re-flow soldering in Figure 1. Table 1.1&1.2 (J-STD-020E)

· 1.0mm tip diameter (max)

(3) Iron Reflow:

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended. (Fig. 2)

- · Use a 20 watt soldering iron with tip diameter of 1.0mm
- · Limit soldering time to 3sec.

Fig.1 Soldering Reflow

· 280°C tip temperature (max)

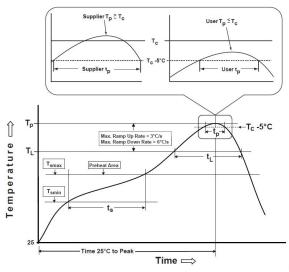
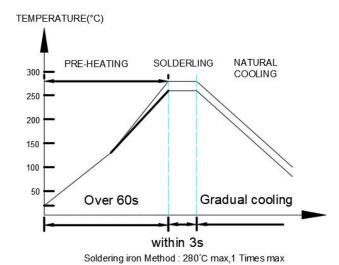



Fig.2 Iron soldering temperature profiles

Reflow times: 3 times max

Table (1.1): Reflow Profiles

Profile Type:	Pb-Free Assembly				
Preheat					
-Temperature Min(T _{smin})	150℃				
-Temperature Max(T _{smax})	200℃				
-Time(t _s)from(T _{smin} to T _{smax})	60-120seconds				
Ramp-up rate(T₋to Tp)	3℃/second max.				
Liquidus temperature(T _L)	217 ℃				
Time(t∟)maintained above T∟	60-150 seconds				
Classification temperature(T _c)	See Table (1.2)				
Time(t_p) at Tc- 5° C (Tp should be equal to or less than Tc.)	*< 30 seconds				
Ramp-down rate(Tp to TL)	6℃ /second max.				
Time 25℃ to peak temperature	8 minutes max.				

Tp: maximum peak package body temperature, Tc: the classification temperature.

For user (customer) \boldsymbol{Tp} should be equal to or less than $\boldsymbol{Tc}\boldsymbol{.}$

Table (1.2) Package Thickness/Volume and Classification Temperature (Tc)

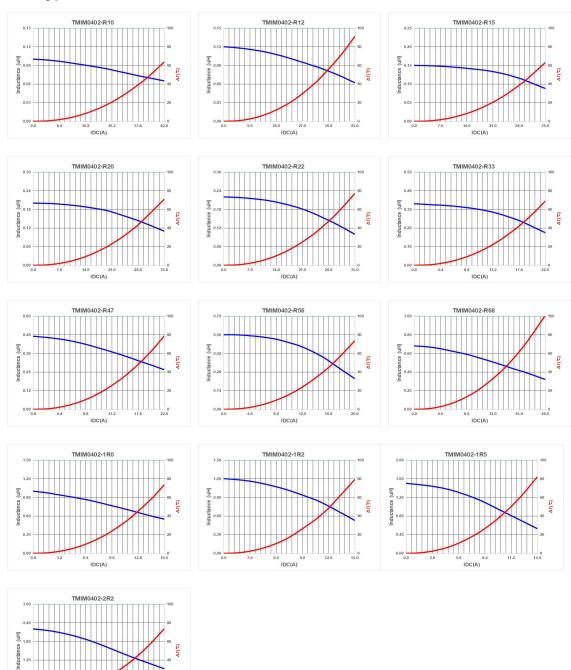
	Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
PB-Free Assembly	<1.6mm	260℃	260℃	260°C
	1.6-2.5mm	260℃	250℃	245℃
	≥2.5mm	250℃	245℃	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E $_{\circ}$

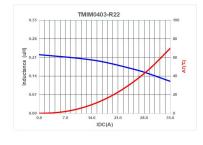
^{*} Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

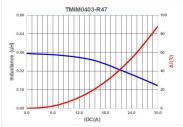
9. Notes

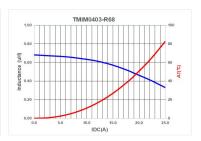
(1) When there are questions concerning measurement result : measurement shall be made after 48 \pm 2 hours of recovery under the standard condition

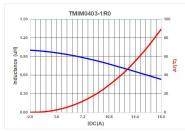

- (2) This power choke coil itself does not have any protective function in abnormal condition such as overload, short-circuit and open-circuit conditions, etc. Therefore, it shall be confirmed as the end product that there is no risk of smoking, fire, dielectric withstand voltage, insulation resistance, etc. in abnormal conditions to provide protective devices and/or protection circuit in the end product.
- (3) When this power choke coil was used in a similar or new product to the original one, sometimes it might not be able to satisfy the specifications due to different condition of use.
- (4) Dielectric withstanding test with higher voltage than specific value will damage insulating material and shorten its life.
- (5) This power choke coil must not be used in wet condition by water, coffee or any liquid because insulation strength becomes very low in this condition.
- (6) Please consult our company to confirm the reliability of the process required to wash or use or exposure to a chemical solvent used in this product. PCB washing tested to MIL-STD-202 Method, and dry it off immediately.
- (7) The rated current as listed is either the saturation current or the heating current depending on which value is lower.
- (8) If this power choke is dipped in the cleaning agent, such as toluene, xylene, ketone, and ether system, there is a possibility that the performance decreases greatly, and marking disappearnc.
- (9) The high power ultrasonic washing may damage the choke body.
- (10) Before use, the user should determine whether this product is suitable for their own design, Our company only guarantees that the product meets the requirements of this specification.

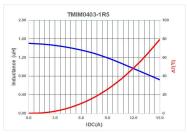
Application Notice

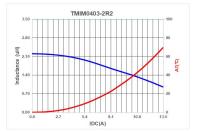

- · Storage Conditions
 - To maintain the solderability of terminal electrodes:
 - 1. TAI-TECH products meet IPC/JEDEC J-STD-020E standard-MSL, level 1.
 - 2. Temperature and humidity conditions: Less than 40°C and 60% RH.
 - 3. Recommended products should be used within 12 months form the time of delivery.
 - 4. The packaging material should be kept where no chlorine or sulfur exists in the air.
- Transportation
- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.

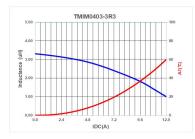

TAI-TECH

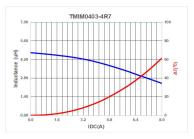

11. Typical Performance Curves

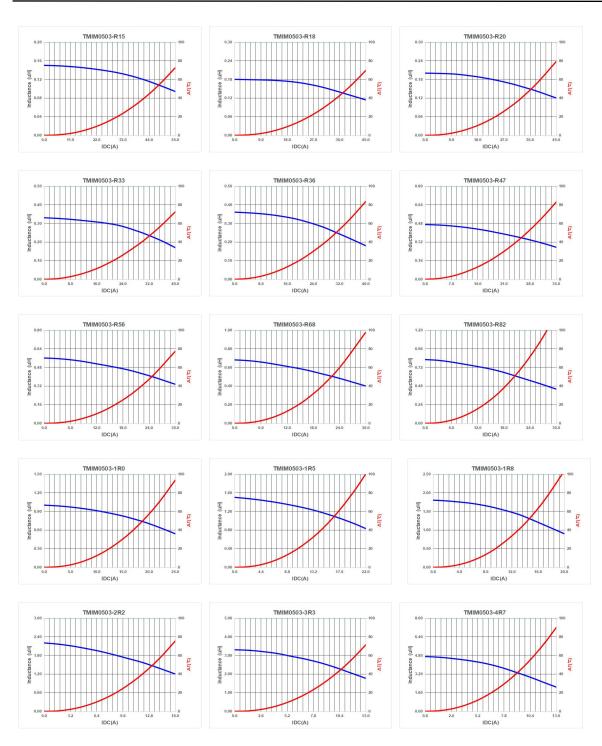



TAI-TECH









TAI-TECH

