

AirPrime WP76xx

Product Technical Specification

4119652 Rev 12

Important Notice

Due to the nature of wireless communications, transmission and reception of data can never be guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used in situations where failure to transmit or receive data could result in damage of any kind to the user or any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or receive such data.

Safety and Hazards

Do not operate the Sierra Wireless modem in areas where blasting is in progress, where explosive atmospheres may be present, near medical equipment, near life support equipment, or any equipment which may be susceptible to any form of radio interference. In such areas, the Sierra Wireless modem MUST BE IN AIRPLANE MODE OR POWERED OFF. The Sierra Wireless modem can transmit signals that could interfere with this equipment.

Do not operate the Sierra Wireless modem in any aircraft, whether the aircraft is on the ground or in flight. In aircraft, the Sierra Wireless modem **MUST BE IN AIRPLANE MODE OR POWERED OFF**. When operating, the Sierra Wireless modem can transmit signals that could interfere with various onboard systems.

Note: Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is open. Sierra Wireless modems may be used at this time.

The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of a vehicle. Doing so will detract from the driver or operator's control and operation of that vehicle. In some states and provinces, operating such communications devices while in control of a vehicle is an offence.

Limitation of Liability

The information in this manual is subject to change without notice and does not represent a commitment on the part of Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL DIRECT, INDIRECT, SPECIAL, GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS OR REVENUE OR ANTICIPATED PROFITS OR REVENUE ARISING OUT OF THE USE OR INABILITY TO USE ANY SIERRA WIRELESS PRODUCT, EVEN IF SIERRA WIRELESS AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra Wireless and/or its affiliates aggregate liability arising under or in connection with the Sierra Wireless product, regardless of the number of events, occurrences, or claims giving rise to liability, be in excess of the price paid by the purchaser for the Sierra Wireless product.

Patents -

This product may contain technology developed by or for Sierra Wireless Inc. This product includes technology licensed from QUALCOMM[®]. This product is manufactured or sold by Sierra Wireless Inc. or its affiliates under one or more patents licensed from MMP Portfolio Licensing.

Copyright

©2021 Sierra Wireless. All rights reserved.

Trademarks

Sierra Wireless[®], AirPrime[®], AirLink[®], AirVantage[®] and the Sierra Wireless logo are registered trademarks of Sierra Wireless, Inc.

Windows[®] and Windows Vista[®] are registered trademarks of Microsoft Corporation. QUALCOMM[®] is a registered trademark of QUALCOMM Incorporated. Used under license.

Other trademarks are the property of their respective owners.

Contact Information

Sales information and technical support, including warranty and returns	Web: sierrawireless.com/company/contact-us/ Global toll-free number: 1-877-687-7795 6:00 am to 5:00 pm PST
Corporate and product information	Web: sierrawireless.com

Revision History

Revision number	Release date	Changes
1	October 2016	Creation (limited release)
2	February 2017	Updated module numbering Full release
3	March 2017	General update, added current consumption and Rx sensitivity values

Revision number	Release date	Changes
4	October 2017	Updated Label image. Removed statements indicating firmware upgrades supported on UART interface. Noted B4 LTE-certified/3G-capable. Updated current consumption values. Updated Power State Transitions figure. Updated Digital I/O Characteristics 1.80V table. Added Digital I/O Characteristics table for GPIO8. Updated Embedded Memory Details table. Removed BAT_RTC content. Updated SDIO voltage level. Updated SPI internal device frequency. Updated ADC Interface details. Updated ADC Interface Characteristics table (ADC3 values). Added warning not to install external pull-ups on UART_RI, UART1_DCD, UART1_DSR. Added Power Supply capacitor requirement (2 x 47 uF). Changed GPIO pull entries to No Pull. Updated UMTS and LTE RF Tx Path Test instructions. Updated Channel numbers in UMTS and LTE RF Tx/Rx test instructions. Updated ARSET_IN_N description (indicated internal resistor pull-up, no specified value). Removed USB_VBUS note indicating not connected internally. Identified UART1_DTR as wakeup interrupt. Updated POWER_ON_N assertion time. Added Power Supply Ratings note re: USB_VBUS power. Noted VGPIO power is OFF in ULPM.
5	February 2018	Clarified WP7603's UMTS network support includes DC-HSPA+, HSPA+, HSPA Updated mechanical diagrams showing LGA pad Updated Architecture section—Architecture Overview figures (updated GPIOs) Updated supply current values Updated UVLO Specifications values and removed associated notes Updated current consumption values for both modules Updated ULPM current consumption values Updated WCDMA and LTE Rx sensitivity values Updated Absolute Maximum Ratings (USB_D-/USB_D+) Updated GPIO8 Digital I/O Characteristics Min value for High-level output voltage Updated Embedded Memory description Emphasized POWER_ON_N suggestion for momentary switch to reduce ULPM leakage Updated SPI speed range Updated product marking example Added Certification Compliance section
6.0	May 14, 2018	Updated WCDMA current consumption values Added Mechanical Specifications topic Merged content from WP7608 PTS and WP7607/WP7609 PTS

Revision number	Release date	Changes
6.1	May 30, 2018	Added: Power Saving Mode (PSM) on page 45 Extended Discontinuous Reception (eDRX) on page 48
		Updated: Figure 3-3 on page 44 RF on page 60 Power-up Sequence on page 92 General Purpose Input/Output (GPIO) on page 98 I2C Interface on page 102 Tx Activity Indicator (TX_ON) on page 117
6.2	June 07, 2018	Updated: I2C Interface on page 102 Power Saving Mode (PSM) on page 45 Table 3-52 on page 72 Table 4-7 on page 98 Table 10-1 on page 149
7.0	October 26, 2018	Added POWER_ON_N, RESET_IN_N and AT!POWERDOWN Use Cases on page 93 Updated: Table 3-10 on page 50 Table 3-11 on page 51 Table 3-52 on page 72 Table 3-53 on page 75 Table 3-56 on page 78 Table 4-1 on page 91 Emergency Power Off on page 93 UART on page 94 General Purpose Input/Output (GPIO) on page 98 GPIO6 on page 99 Figure 4-8 on page 108 Figure 4-9 on page 108 Figure 10-1 on page 149
7.1	November 07, 2018	Updated GPIO6 on page 99
7.2	December 12, 2018	Added: Secure Boot / Secure Debug on page 87 eSIM / UIM2 Interface on page 97 Updated: General Features on page 20 Power Supply Ratings on page 38 Table 3-55 on page 76 Table 4-7 on page 98 Deleted 5.2 PCB Layout Recommendations

Revision number	Release date	Changes
8.0	May 23, 2019	 Integrated WP7610 PTS (from 41112609) Updated: Functional Specifications on page 29 Application Core on page 82 Embedded Memory on page 82 Power Saving Mode (PSM) on page 45 Current Consumption on page 50 GNSS on page 75 POWER_ON_N on page 91
8.1	June 03, 2019	Updated Table 3-15 on page 57
9.0	July 03, 2019	Integrated WP7605 PTS (from 41113034) Added: OTA Considerations when Developing Products that Include an Integrated Antenna on page 122
		PCB Layout Recommendations on page 122Japan Regulatory Compliance on page 146
		Updated: Recovery Mechanism on page 87 Current Consumption on page 50
9.1	July 10, 2019	Added LTE duplex technology in Introduction on page 20
		Updated list of configurable GPIOs as ULPS wake up trigger: Table 4-7 on page 98 Table 4-8 on page 101
		Removed redundant supported bands table in Telecom Features on page 31
9.2	July 15, 2019	Updated Table 2-2 on page 29
9.3	July 23, 2019	Updated Recovery Mechanism on page 87
10.0	October 18, 2019	Integrated WP7611 PTS (from 41113043) Updated: Table 3-35 on page 66 Table 3-50 on page 71 Table 4-3 on page 93 General Purpose Input/Output (GPIO) on page 98 Important Compliance Information for North American Users on page 143
10.1	November 01, 2019	Added Figure 3-9 on page 90 Updated: • Figure 1-1 on page 28 • Table 3-53 on page 75 • WAKE_ON_WWAN on page 118

Revision number	Release date	Changes
11.0	January 13, 2020	Added QZSS support in section General Features on page 20
		Updated: Table 3-3 on page 39 Table 4-7 on page 98 Wakeup Interrupt (Sleep State) on page 100 Table 12-22 on page 171
12	May 2021	Added: HSIC Routing Recommendations Updated: Figure 2-1, Figure 2-2 (SAFE_PWR_REMOVE W_DISABLE_N directions) Terminology (droop→drop) Table 3-17 (removed WP7605) Table 3-59 (added I _{PIN}) Power On/Off Timing (Note, t_pwr_off_seq timing) UIM Interface (Usage note) VGPIO (description) Figure 4-15 (signal name—VBAT_RF) SAFE_PWR_REMOVE Ground Plane Connection UIM Interface USB Interface

1:	Introduction	. 20
	1.1 General Features	. 20
	1.2 Interfaces	. 26
	1.3 Common Flexible Form Factor (CF3)	. 27
	1.4 Physical Dimensions and Connection Interface	
2:	Functional Specifications	. 29
	2.1 Variant Grouping	. 29
	2.2 Architecture	. 30
	2.3 Telecom Features	. 31
	2.3.1 Network Technology Specifications	. 33
	2.3.2 Modem Specifications	. 37
	2.4 Multi-Core Processing Capabilities	. 37
_		
3:	Technical Specifications	
	3.1 Environmental	
	3.2 Power Supply Ratings	
	3.2.1 Under-Voltage Lockout (UVLO)	
	3.2.2 Power Consumption States	
	3.2.3 Power Saving Mode (PSM)	
	3.2.4 Active State to ULPS Transition	
	3.2.5 Extended Discontinuous Reception (eDRX)	
	3.2.6 Current Consumption	
	3.3 RF	
	3.3.1 GSM/GPRS/EDGE RF Interface	
	3.3.2 WCDMA RF Interface	
	3.3.3 LTE RF Interface	
	3.3.4 WWAN Antenna Interface	. 72
	3.4 GNSS	. 75
	3.4.1 GNSS Characteristics	. 75
	3.4.2 GNSS Antenna Interface	. 76
	3.5 Electrical Specifications	. 78
	3.5.1 Absolute Maximum Ratings	
	3.5.2 Digital I/O Characteristics	
	3.5.3 Internal Device Frequencies	

	3.6 Processing	
	3.6.1 Application Core	
	3.6.3 Recovery Mechanism	
	3.6.4 Secure Boot / Secure Debug	
	3.7 Mechanical Drawing	88
	3.8 Mechanical Specifications	90
4 :	Interfaces Specification	91
	4.1 Overview	91
	4.2 POWER_ON_N	91
	4.2.1 Power-up Sequence	92
	4.2.2 Software-Initiated Power Down	93
	4.3 Emergency Power Off	93
	4.4 POWER_ON_N, RESET_IN_N and AT!POWERDOWN Use Cases	93
	4.5 Tx Power Control	94
	4.6 USB	94
	4.7 UART	94
	4.8 UIM Interface	96
	4.8.1 External UIM1 Interface	
	4.8.2 eSIM / UIM2 Interface	
	4.8.3 External SIM Switch Configuration	
	4.9 General Purpose Input/Output (GPIO)	
	4.10 GPIO6	
	4.10.2 SIM Switching	
	4.10.3 Reset Out	
	4.11 Wakeup Interrupt (Sleep State)	100
	4.12 Wakeup Events (ULPS)	
	4.13 Secure Digital IO (SDIO) Interface	101
	4.14 I2C Interface	102
	4.14.1 Application	103
	4.15 VGPIO	103
	4.16 Reset Signal (RESET_IN_N)	104
	4.17 ADC	105

	4.18 Digital Audio 4.18.1 PCM 4.18.2 I2S	106
	4.19 SPI Bus	109
	4.19.1 SPI Configuration	110
	4.19.2 SPI Waveforms	
	4.19.3 Application	112
	4.20 HSIC Bus	
	4.20.1 HSIC Waveforms	
	4.20.2 Application	
	4.21 Clock	
	4.22 TP1 (Boot Pin)	
	4.23 Temperature Monitoring	114
	4.24 Test Pins	115
	4.25 Antenna Control	116
	4.26 Indication Interfaces	
	4.26.1 Tx Activity Indicator (TX_ON)	
	4.26.2 WWAN_LED_N	
	4.26.3 WAKE_ON_WWAN	
	4.26.5 SAFE_PWR_REMOVE	
	4.26.6 UIM1 DET	
	4.27 DR SYNC	
	4.28 W_DISABLE_N—Wireless Disable	
5:	Routing Constraints and Recommendations	121
	5.1 General Rules and Recommendations	
	5.2 Power Supply	
	5.3 Antenna	
	5.3.1 OTA Considerations when Developing Products that Include an Integrated Antenna	
	5.4 PCB Layout Recommendations	122
	5.4.1 General Design Rules	122
	5.4.2 Specific Design Rules to Support TRP Performances	
	5.4.3 Specific Design Rules to Support TIS Performance	
	5.5 PCB Specifications for the Application Board	123
	5.6 Recommended PCB Land Pattern	124

	5.7 Routing Constraints 5.7.1 Power Supply 5.7.2 UIM Interface 5.7.3 RF Circuit 5.7.4 USB Interface	124 125 125 127
	5.7.5 HSIC Routing Recommendations	127
	5.8 Thermal Considerations	127
	5.9 EMC and ESD Recommendations	127
	5.10 Mechanical Integration	128
	5.11 Signal Reference Schematics	129
6:	: Software and Tools 1	131
	6.1 Support Tools	131
	6.2 SED (Smart Error Detection)	131
	6.3 Firmware Upgrade	131
	6.4 Operating System Upgrade	131
	6.5 Product Marking	132
7.	. Dahum and Assambly Considerations	
١.	: Debug and Assembly Considerations 1	133
۲.	7.1 Testing Assistance Provided by Sierra Wireless	
1.		133
<i>,</i> .	7.1 Testing Assistance Provided by Sierra Wireless	133 133
<i>'</i> .	7.1 Testing Assistance Provided by Sierra Wireless	133 133 133
1.	7.1 Testing Assistance Provided by Sierra Wireless 7.2 Integration Requirements 7.3 IOT/Operator	133 133 133 133
<i>'</i> .	7.1 Testing Assistance Provided by Sierra Wireless 7.2 Integration Requirements 7.3 IOT/Operator 7.4 Module Testing Recommendations	133 133 133 133 134
	7.1 Testing Assistance Provided by Sierra Wireless 7.2 Integration Requirements 7.3 IOT/Operator 7.4 Module Testing Recommendations 7.5 Serial Link Access	133 133 133 133 134 134
	7.1 Testing Assistance Provided by Sierra Wireless 7.2 Integration Requirements 7.3 IOT/Operator 7.4 Module Testing Recommendations 7.5 Serial Link Access 7.6 RF Output Accessibility	133 133 133 134 134 134
	7.1 Testing Assistance Provided by Sierra Wireless 7.2 Integration Requirements 7.3 IOT/Operator 7.4 Module Testing Recommendations 7.5 Serial Link Access 7.6 RF Output Accessibility : Reliability Specification	133 133 133 134 134 136
	7.1 Testing Assistance Provided by Sierra Wireless 7.2 Integration Requirements 7.3 IOT/Operator 7.4 Module Testing Recommendations 7.5 Serial Link Access 7.6 RF Output Accessibility : Reliability Specification 8.1 Reliability Compliance	133 133 133 134 134 136 136
	7.1 Testing Assistance Provided by Sierra Wireless 7.2 Integration Requirements 7.3 IOT/Operator 7.4 Module Testing Recommendations 7.5 Serial Link Access 7.6 RF Output Accessibility : Reliability Specification 8.1 Reliability Compliance 8.2 Reliability Prediction Model 8.2.1 Life Stress Test 8.2.2 Environmental Resistance Stress Tests	133 133 133 134 134 136 136 136 137
	7.1 Testing Assistance Provided by Sierra Wireless 7.2 Integration Requirements 7.3 IOT/Operator 7.4 Module Testing Recommendations 7.5 Serial Link Access 7.6 RF Output Accessibility : Reliability Specification 8.1 Reliability Compliance 8.2 Reliability Prediction Model 8.2.1 Life Stress Test 8.2.2 Environmental Resistance Stress Tests 8.2.3 Corrosive Resistance Stress Tests	133 133 133 134 134 136 136 136 137 137
	7.1 Testing Assistance Provided by Sierra Wireless 7.2 Integration Requirements 7.3 IOT/Operator 7.4 Module Testing Recommendations 7.5 Serial Link Access 7.6 RF Output Accessibility : Reliability Specification 8.1 Reliability Compliance 8.2 Reliability Prediction Model 8.2.1 Life Stress Test 8.2.2 Environmental Resistance Stress Tests 8.2.3 Corrosive Resistance Stress Tests 8.2.4 Thermal Resistance Cycle Stress Tests	133 133 133 133 134 134 136 136 136 137 137
	7.1 Testing Assistance Provided by Sierra Wireless 7.2 Integration Requirements 7.3 IOT/Operator 7.4 Module Testing Recommendations 7.5 Serial Link Access 7.6 RF Output Accessibility : Reliability Specification 8.1 Reliability Compliance 8.2 Reliability Prediction Model 8.2.1 Life Stress Test 8.2.2 Environmental Resistance Stress Tests 8.2.3 Corrosive Resistance Stress Tests	133 133 133 134 134 136 136 136 137 137 138

9: Approval	
9.1 Disposing of the Produc	ct
9.2 Important Notice	
9.3 Safety and Hazards	
9.4 Compliance Acceptance	e and Certification
9.5 Certification Complianc	e
9.5.1 Important Complia	ance Information for North American Users
9.5.2 Japan Regulatory	Compliance
10: Pinout	
10.1 Pin Configuration	
10.2 Pin Description	
11: Customization	
12: Testing	
12.1 Certification Testing .	
12.2 Production Testing	
12.3 Functional Production	Test
	uction Tests
12.3.2 Production Test	Procedure
•	1) RF Transmission Path Test
12.5 LTE RF Transmission	Path Test
12.6 UMTS (WCDMA/GSM	I) RF Receive Path Test
12.7 LTE RF Receive Path	Test
12.8 GNSS RF Receive Pa	th Test
13: References	
13.1 Web Site Support	
13.2 Reference Documents	s 174
14: Abbreviations	

Figure 1-1: Mechanical Overview
Figure 2-1: Architecture Overview of Group A Variants
Figure 2-2: Architecture Overview of Group B Variants
Figure 3-1: Power Supply Characteristics (capture enlarged)
Figure 3-2: Under-Voltage Lockout (UVLO) Diagram
Figure 3-3: Power State Transitions
Figure 3-4: PSM Example (Simplified)
Figure 3-5: eDRX Example (Simplified)
Figure 3-6: Flash Memory Partitions
Figure 3-7: WP7601/WP7603 Mechanical Drawing
Figure 3-8: WP7605/WP7607/WP7608/WP7609/WP7610 Mechanical Drawing
Figure 3-9: WP7611 Mechanical Drawing
Figure 4-1: Signal Timing (POWER_ON_N, and USB Enumeration)
Figure 4-2: Recommended UIM Holder Implementation
Figure 4-3: Single External SIM Configuration
Figure 4-4: Dual External SIM Configuration
Figure 4-5: Example of I2C Bus Application
Figure 4-6: Illustration of Reset Timing When RESET_IN_N < Trdel
Figure 4-7: PCM_SYNC Timing Diagram (2048 kHz clock)
Figure 4-8: PCM Codec to Device Timing Diagram
Figure 4-9: Device to PCM Codec Timing Diagram
Figure 4-10: I2S Transmitter Timing
Figure 4-11: 4-Wire Configuration SPI Transfer
Figure 4-12: Example of 4-wire SPI Bus Application
Figure 4-13: Example of 2-wire HSIC Bus Application
Figure 4-14: Temperature Monitoring State Machine
Figure 4-15: TX_ON State During Transmission
Figure 4-16: LED Reference Circuit
Figure 4-17: Recommended WAKE_ON_WWAN Connection
Figure 4-18: Recommended Wireless Disable Connection
Figure 5-1: Power Supply Routing Example
Figure 5-2: Module Location on Development Board
Figure 5-3: Development Board RF Trace Design

Product Technical Specification

Figure 5-4: UIM Interface	129
Figure 5-5: USB Interface	129
Figure 5-6: USB OTG Interface	130
Figure 6-1: Unit Product Marking—Laser-etched, Typical Representation	132
Figure 7-1: Level Shifter Implementation for UART1 Serial Link Access	134
Figure 9-1: Japan Certification	146
Figure 10-1: Pin Configuration (Top View, Through Module)	148

Table 1-1: Supported Networks and Voice Capability
Table 1-2: WP7601 Supported Bands/Connectivity
Table 1-3: WP7603 Supported Bands/Connectivity
Table 1-4: WP7605 Supported Bands/Connectivity
Table 1-5: WP7607 Supported Bands/Connectivity
Table 1-6: WP7608 Supported Bands/Connectivity
Table 1-7: WP7609 Supported Bands/Connectivity
Table 1-8: WP7610 Supported Bands/Connectivity
Table 1-9: WP7611 Supported Bands/Connectivity
Table 1-10: Module Dimensions
Table 1-11: LGA Pad Types
Table 2-1: Variant Grouping
Table 2-2: Functionality Differences
Table 2-3: Module Capabilities
Table 2-4: Supported GSM Specifications
Table 2-5: Supported WCDMA Specifications
Table 2-6: Supported LTE Specifications
Table 2-7: Supported Modern Specifications
Table 3-1: Environmental Specifications
Table 3-2: Power Supply Pins
Table 3-3: Operating Conditions
Table 3-4: UVLO Specifications
Table 3-5: Supported Power States
Table 3-6: ULPS Wakeup Sources
Table 3-7: PSM Configuration Options
Table 3-8: ULPS-Related Application User Commands/Interfaces
Table 3-9: eDRX-Related Commands
Table 3-10: WP7601 Current Consumption Values
Table 3-11: WP7603 Current Consumption Values
Table 3-12: WP7605 Current Consumption Values
Table 3-13: WP7607 and WP7609 Current Consumption Values
Table 3-14: WP7608 Current Consumption Values
Table 3-15: WP7610 Current Consumption Values

Table 3-16: WP7611 Current Consumption Values	58
Table 3-17: ULPM Current Consumption	59
Table 3-18: Standards Compliance	60
Table 3-19: WP7607/WP7608/WP7609 Conducted Tx Max Output Power Tolerances—GSM/GI EDGE	
Table 3-20: WP7607/WP7609 Conducted Rx Sensitivity—GSM/GPRS/EDGE Bands	61
Table 3-21: WP7608 Conducted Rx Sensitivity—GSM/GPRS/EDGE Bands	61
Table 3-22: WP7603 Conducted Tx Max Output Power Tolerances—WCDMA	62
Table 3-23: WP7605 Conducted Tx Max Output Power Tolerances—WCDMA	62
Table 3-24: WP7607 Conducted Tx Max Output Power Tolerances—WCDMA	62
Table 3-25: WP7608 Conducted Tx Max Output Power Tolerances—WCDMA	62
Table 3-26: WP7609 Conducted Tx Max Output Power Tolerances—WCDMA	63
Table 3-27: WP7610 Conducted Tx Max Output Power Tolerances—WCDMA	63
Table 3-28: WP7611 Conducted Tx Max Output Power Tolerances—WCDMA	63
Table 3-29: WP7603 Conducted Rx Sensitivity—WCDMA Bands,	64
Table 3-30: WP7605 Conducted Rx Sensitivity—WCDMA Bands,	64
Table 3-31: WP7607 Conducted Rx Sensitivity—WCDMA Bands,	64
Table 3-32: WP7608 Conducted Rx Sensitivity—WCDMA Bands,	65
Table 3-33: WP7609 Conducted Rx Sensitivity—WCDMA Bands,	65
Table 3-34: WP7610 Conducted Rx Sensitivity—WCDMA Bands	65
Table 3-36: WP7601 Conducted Tx Max Output Power Tolerances—LTE	66
Table 3-37: WP7603 Conducted Tx Max Output Power Tolerances—LTE	66
Table 3-38: WP7605 Conducted Tx Max Output Power Tolerances—LTE	66
Table 3-35: WP7611 Conducted Rx Sensitivity—WCDMA Bands	66
Table 3-39: WP7607 Conducted Tx Max Output Power Tolerances—LTE	67
Table 3-40: WP7608 Conducted Tx Max Output Power Tolerances—LTE	67
Table 3-41: WP7609 Conducted Tx Max Output Power Tolerances—LTE	67
Table 3-42: WP7610 Conducted Tx Max Output Power Tolerances—LTE	68
Table 3-43: WP7611 Conducted Tx Max Output Power Tolerances—LTE	68
Table 3-44: WP7601 Conducted Rx Sensitivity—LTE Bands	69
Table 3-45: WP7603 Conducted Rx Sensitivity—LTE Bands	69
Table 3-46: WP7605 Conducted Rx Sensitivity—LTE Bands	69
Table 3-47: WP7607 and WP7609 Conducted Rx Sensitivity—LTE Bands	70

Table 3-48: WP7608 Conducted Rx Sensitivity—LTE Bands	1
Table 3-49: WP7610 Conducted Rx Sensitivity—LTE Bands	
Table 3-50: WP7611 Conducted Rx Sensitivity—LTE Bands	
Table 3-51: WP76XX WWAN Antenna Interface Pins	
Table 3-52: Antenna Recommendations	
Table 3-53: GNSS Characteristics	
Table 3-54: GNSS Antenna Interface Pads	
Table 3-55: GNSS Standalone Antenna Recommendations	
Table 3-56: Absolute Maximum Ratings	
Table 3-57: Digital I/O Characteristics (VDD_PX=1.20 V (nominal))	
Table 3-58: Digital I/O Characteristics (VDD_PX=1.80 V (nominal) signals)	
Table 3-59: GPIO8 and GPIO28 Digital I/O Characteristics (VDD_PX=1.80 V (nominal) signals). 80	
Table 3-60: Digital I/O Characteristics (Dual-voltage—VDD_PX=1.80 V or 2.85 V (nominal)) 80	
Table 3-61: Internal Device Frequencies	
Table 3-62: Embedded Memory Details	
Table 3-63: Mechanical Specifications	
Table 4-1: POWER_ON_N Electrical Characteristics	
Table 4-2: POWER_ON_N Timing Parameters	
Table 4-3: POWER_ON_N, RESET_IN_N and AT!POWERDOWN Use Cases	,
Table 4-4: USB Pin Descriptions	
Table 4-5: UART Pins	
Table 4-6: UIM Interface Pins 96	
Table 4-7: GPIO Pin Description	
Table 4-8: ULPS Wakeup Signals/Sources	
Table 4-9: SDIO Pin Descriptions	
Table 4-10: I2C Interface Pins	
Table 4-11: VGPIO Reference Pin 103	
Table 4-12: VGPIO Electrical Characteristics	,
Table 4-13: RESET_IN_N Pin	
Table 4-14: Reset Timing	
Table 4-15: ADC Interface Pins	
Table 4-16: ADC Interface Characteristics	
Table 4-17: PCM/I2S Interface Signals	,

Table 4-18: PCM Interface Configurations
Table 4-19: PCM Mode Timing
Table 4-20: I2S Interface Timing
Table 4-21: SPI Pin Descriptions
Table 4-22: SPI Configuration
Table 4-23: SPI Master Timing Characteristics (@38 MHz)
Table 4-24: HSIC Pin Descriptions
Table 4-25: Clock Interface Pin Descriptions
Table 4-26: TP1 Pin Description
Table 4-27: Temperature Monitoring States
Table 4-28: Test Pin Descriptions
Table 4-29: Antenna Control Signals
Table 4-30: Tx Activity Indicator States
Table 4-31: Tx Activity Indicator Characteristics
Table 4-32: LED Interface Pin
Table 4-33: UART1_RI Pin
Table 4-34: DR_SYNC Pin Details
Table 5-1: ESD Specifications
Table 8-1: Standards Conformity
Table 8-2: Life Stress Test
Table 8-3: Environmental Resistance Stress Tests
Table 8-4: Corrosive Resistance Stress Tests
Table 8-5: Thermal Resistance Cycle Stress Tests
Table 8-6: Mechanical Resistance Stress Tests
Table 8-7: Handling Resistance Stress Tests
Table 9-1: Antenna Gain Specifications
Table 9-2: Collocated Radio Transmitter Specifications
Table 10-1: Pin Definitions. 149
Table 10-2: RF Pin Information
Table 10-3: Supply Pin Information
Table 10-4: Ground & Reserved Pin Information
Table 11-1: Customizable Features
Table 12-1: Test Settings—WP7603 UMTS Transmission Path

Table 12-2: Test Settings—WP7607/WP7608 UMTS Transmission Path
Table 12-3: Test Settings—WP7609 UMTS Transmission Path
Table 12-4: Test Settings—WP7610 UMTS Transmission Path
Table 12-5: Test Settings—WP7607/WP7608 / WP7609 2G Transmission Path
Table 12-6: Test Settings—WP7601 LTE Transmission Path
Table 12-7: Test Settings—WP7603 LTE Transmission Path
Table 12-8: Test Settings—WP7607 LTE Transmission Path
Table 12-9: Test Settings—WP7608 LTE Transmission Path
Table 12-10: Test Settings—WP7609 LTE Transmission Path
Table 12-11: Test Settings—WP7610 LTE Transmission Path
Table 12-12: Test Settings—WP7603 UMTS Receive Path
Table 12-13: Test Settings—WP7607/WP7608 UMTS Receive Path
Table 12-14: Test Settings—WP7609 UMTS Receive Path
Table 12-15: Test Settings—WP7610 UMTS Receive Path
Table 12-16: Test Settings—WP7607/WP7608 / WP7609 2G Receive Path
Table 12-17: Test Settings—WP7601 LTE Receive Path
Table 12-18: Test Settings—WP7603 LTE Receive Path
Table 12-19: Test Settings—WP7607 LTE Receive Path
Table 12-20: Test Settings—WP7608 LTE Receive Path
Table 12-21: Test Settings—WP7609 LTE Receive Path
Table 12-22: Test Settings—WP7610 LTE Receive Path
Table 14-1: Acronyms and Definitions

>> 1: Introduction

This document defines the high-level product features and illustrates the interfaces for AirPrime WP76XX Smart Embedded Modules (WP7601, WP7601-1, WP7603, WP7603-1, WP7605, WP7607, WP7607-1, WP7608, WP7608-1, WP7609, WP7610, WP7611and WP7611-1). It covers the hardware aspects of the product series, including electrical and mechanical.

Note: Throughout this document, references to WP7601, WP7603, WP7607, WP7608 and WP7611 are to be read as WP7601/WP7601-1, and WP7603/WP7603-1, WP7607/WP7607-1, WP7608/WP7608-1 and WP7611/WP7611-1 unless module variants are called out separately.

1.1 General Features

The AirPrime WP76XX is an industrial-grade LGA 239-pad embedded module. Its wireless modem provides voice and data connectivity on the networks listed in Table 1-1.

Table 1-1: Supported Networks and Voice Capability

Module	Networks	Network Voice Support	LTE Category
WP7601	ITE	No	Cat4
WP7601-1		NO	Cat1
WP7603	LTE	Circuit switch voice	Cat4
WP7603-1	UMTS (DC-HSPA+, HSPA+, HSPA, WCDMA)	Circuit switch voice	Cat1
WP7605	LTE UMTS (DC-HSPA+, HSPA+, HSPA, WCDMA)	No	Cat4
WP7607	LTE	Circuit switch voice	Cat4
WP7607-1	UMTS (DC-HSPA+, HSPA+, HSPA, WCDMA) GSM/GPRS/EDGE	+ VoLTE	Cat1
WP7608	LTE	Circuit switch voice + VoLTE	Cat4
WP7608-1	UMTS (DC-HSPA+, HSPA+, HSPA, WCDMA) GSM/GPRS/EDGE		Cat1
WP7609	LTE UMTS (DC-HSPA+, HSPA+, HSPA, WCDMA) GSM/GPRS/EDGE	Circuit switch voice + VoLTE	Cat4
WP7610	LTE UMTS (DC-HSPA+, HSPA+, HSPA, WCDMA)	Circuit switch voice + VoLTE	Cat4
WP7611	LTE,	Circuit switch voice	Cat4
WP7611-1	UMTS (DC-HSPA+, HSPA+, HSPA, WCDMA)	+ VoLTE	Cat 1

To simplify cellular connectivity, the AirPrime WP76xx has been designed to support Ready-To-Connect, and an embedded SIM (eSIM) has been natively designed in the AirPrime WP76xx for this purpose. To learn more about Ready-To-Connect capabilities and to know which variant already supports this feature, please get in touch with your Sierra Wireless sales representative.

GNSS functionality is available on all module variants as a SKU-dependent feature.

In addition to modem features, the AirPrime WP76XX embeds several cores for maximum flexibility and security for embedded software execution, including:

- A Telecom Core that natively manages 2G (WP7607, WP7608, WP7609), 3G (WP7603, WP7605, WP7607, WP7608, WP7609, WP7610, WP7611) and 4G modem features
- An Application Core dedicated to customer applications, natively provided with Legato Application framework.

The following tables detail supported RF bands/connectivity.

Table 1-2: WP7601 Supported Bands/Connectivity

Technology	RF Band	Transmit Band (Tx) (MHz)	Receive Band (Rx) (MHz)	Maximum Output Power	Notes
LTE	B4 (FDD) ^a	1710–1755	2110–2155	- 23 dBm ± 1 dB; Class 3	MIMO ^b and
LIL	B13 (FDD)	777–787	746–756	23 dBm ± 1 dB; Class 3	diversity
GNSS	GPS	-	1575.42 ± 1.023	-	-
	GLONASS	-	1597.52–1605.92	-	-
	Galileo	-	1575.42 ± 2.046	-	-
	BeiDou	-	1561.098 ± 2.046	-	-
	QZSS	-	1575.42 ± 2.046	-	-

a. B4 is LTE-certified and 3G-capable, requires validation/certification for 3G use.

Table 1-3: WP7603 Supported Bands/Connectivity

Technology	RF Band	Transmit Band (Tx) (MHz)	Receive Band (Rx) (MHz)	Maximum Output Power	Notes
	B2 (FDD)	1850–1910	1930–1990		
LTE	B4 (FDD)	1710–1755	2110–2155	- 23 dBm ± 1 dB; Class 3	MIMO ^a and diversity
LIE	B5 (FDD)	824–849	869–894		
	B12 (FDD)	699–716	729–746		
UMTS	B2	1850–1910	1930–1990		
	B4	1710–1755	2110–2155	23 dBm ± 1 dB; Class 3bis	Diversity
	B5	824–849	869–894		

b. Cat4 variant supports downlink MIMO 2x2.

Table 1-3: WP7603 Supported Bands/Connectivity (Continued)

Technology	RF Band	Transmit Band (Tx) (MHz)	Receive Band (Rx) (MHz)	Maximum Output Power	Notes
	GPS	-	1575.42 ± 1.023	-	-
	GLONASS	-	1597.52–1605.92	-	-
GNSS	Galileo	-	1575.42 ± 2.046	-	-
	BeiDou	-	1561.098 ± 2.046	-	-
	QZSS	-	1575.42 ± 2.046	-	-

a. Cat4 variant supports downlink MIMO 2x2.

Table 1-4: WP7605 Supported Bands/Connectivity

Technology	RF Band	Transmit Band (Tx) (MHz)	Receive Band (Rx) (MHz)	Maximum Output Power	Notes
	B1 (FDD)	1920 – 1980	2110 – 2170		
	B3 (FDD)	1710 – 1785	1805 – 1880		
	B8 (FDD)	880 – 915	925 – 960		
LTE	B11 (FDD)	1427.9 – 1447.9	1475.9 – 1495.9	23 dBm ± 1 dB; Class 3	MIMO ^a and diversity
	B18 (FDD)	815 – 830	860 – 875		,
	B19 (FDD)	830 – 845	875 – 890		
	B21 (FDD)	1447.9 – 1462.9	1495.9 – 1510.9		
	B1	1920 – 1980	2110 – 2170		Diversity
UMTS	В6	830 – 840	875 – 885	23 dBm ± 1 dB; Class 3bis	
	B19	830 – 845	875 – 890		
	GPS	-	1575.42 ± 1.023	-	-
GNSS	GLONASS	-	1597.52–1605.92	-	-
	Galileo	-	1575.42 ± 2.046	-	-
	BeiDou	-	1561.098 ± 2.046	-	-
	QZSS	-	1575.42 ± 2.046	-	-

a. Cat4 variant supports downlink MIMO 2x2.

Table 1-5: WP7607 Supported Bands/Connectivity

Technology	RF Band	Transmit Band (Tx) (MHz)	Receive Band (Rx) (MHz)	Maximum Output Power	Notes
	B1 (FDD)	1920–1980	2110–2170		
	B3 (FDD)	1710–1785	1805–1880	-	
LTE	B7 (FDD)	2500–2570	2620–2690	22 dDm + 1 dD+ Class 2	MIMO ^a and
LIE	B8 (FDD)	880–915	925–960	- 23 dBm ± 1 dB; Class 3	diversity
	B20 (FDD)	832–862	791–821		
	B28 (FDD)	703–748	758–803		
LIMTO	B1	1920–1980	2110–2170	22 dDm + 4 dD Class 2his	Diversity
UMTS	B8	880–915	925–960	23 dBm ± 1 dB; Class 3bis	Diversity
GSM/GPRS/ EDGE	E-GSM 900	880–915	925–960	33 dBm ± 1 dB; GMSK mode Power Class 4; 27 dBm ± 1 dB; 8PSK mode Power Class E2	
	DCS 1800	1710–1785	1805–1880	30 dBm ± 1 dB; GMSK mode Power Class 1; 26 dBm ± 1 dB; 8PSK mode Power Class E2	
	GPS	-	1575.42 ± 1.023	-	-
GNSS	GLONASS	-	1597.52–1605.92	-	-
	Galileo	-	1575.42 ± 2.046	-	-
	BeiDou	-	1561.098 ± 2.046	-	-
	QZSS	-	1575.42 ± 2.046	-	-

a. Cat4 variant supports downlink MIMO 2x2.

Table 1-6: WP7608 Supported Bands/Connectivity

Technology	RF Band	Transmit Band (Tx) (MHz)	Receive Band (Rx) (MHz)	Maximum Output Power	Notes
	B1 (FDD)	1920–1980	2110–2170		
	B3 (FDD)	1710–1785	1805–1880		
LTE	B5 (FDD)	824–849	869–894	23 dBm ± 1 dB; Class 3	MIMO ^a and diversity
	B8 (FDD)	880–915	925–960		
	B40 (TDD)	2300–2400	2300–2400		
	B41 (TDD)	2535–2655	2535–2655		
LIMTS	B1	1920–1980	2110–2170	24 dBm ± 1 dB; Class 3	Diversity
UMTS -	B8	880–915	925–960	24 ubili ± 1 ub, Class 3	Diversity

Table 1-6: WP7608 Supported Bands/Connectivity (Continued)

Technology	RF Band	Transmit Band (Tx) (MHz)	Receive Band (Rx) (MHz)	Maximum Output Power	Notes
GSM/GPRS/ EDGE	E-GSM 900	880–915	925–960	33 dBm ± 1 dB; GMSK mode Power Class 4; 27 dBm ± 1 dB; 8PSK mode Power Class E2	
	DCS 1800	1710.2–1784.8	1805.2–1879.8	30 dBm ± 1 dB; GMSK mode Power Class 1; 26 dBm ± 1 dB; 8PSK mode Power Class E2	
	GPS	-	1575.42 ± 1.023	-	-
	GLONASS	-	1597.52–1605.92	-	-
GNSS	Galileo	-	1575.42 ± 2.046	-	-
	BeiDou	-	1561.098 ± 2.046	-	-
	QZSS	-	1575.42 ± 2.046	-	-

a. Cat4 variant supports downlink MIMO 2x2.

Table 1-7: WP7609 Supported Bands/Connectivity

Technology	RF Band	Transmit Band (Tx) (MHz)	Receive Band (Rx) (MHz)	Maximum Output Power	Notes
	B1 (FDD)	1920–1980	2110–2170		
	B3 (FDD)	1710–1785	1805–1880		
LTE	B5 (FDD)	824–849	869–894	22 dDm + 4 dD+ Class 2	MIMO ^a and
LTE	B7 (FDD)	2500–2570	2620–2690	23 dBm ± 1 dB; Class 3	diversity
	B8 (FDD)	880–915	925–960		
	B28 (FDD)	703–748	758–803		
	B1	1920–1980	2110–2170		
UMTS	B5	824–849	869–894	23 dBm ± 1 dB; Class 3bis	Diversity
	B8	880–915	925–960		
GSM/GPRS/	E-GSM 900	880–915	925–960	33 dBm ± 1 dB; GMSK mode Power Class 4; 27 dBm ± 1 dB; 8PSK mode Power Class E2	
EDGE	DCS 1800	1710–1785	1805–1880	30 dBm ± 1 dB; GMSK mode Power Class 1; 26 dBm ± 1 dB; 8PSK mode Power Class E2	

Table 1-7: WP7609 Supported Bands/Connectivity (Continued)

Technology	RF Band	Transmit Band (Tx) (MHz)	Receive Band (Rx) (MHz)	Maximum Output Power	Notes
	GPS	-	1575.42 ± 1.023	-	-
	GLONASS	-	1597.52–1605.92	-	-
GNSS	Galileo	-	1575.42 ± 2.046	-	-
	BeiDou	-	1561.098 ± 2.046	-	-
	QZSS	-	1575.42 ± 2.046	-	-

a. Downlink MIMO 2x2.

Table 1-8: WP7610 Supported Bands/Connectivity

Technology	RF Band	Transmit Band (Tx) (MHz)	Receive Band (Rx) (MHz)	Maximum Output Power	Notes
	B2 (FDD)	1850–1910	1930–1990		
	B4 (FDD)	1710–1755	2110–2155		
	B5 (FDD)	824–849	869–894		
LTE	B12 (FDD)	699–716	729–746	23 dBm ± 1 dB; Class 3	MIMO ^a and
LIE	B13 (FDD)	777–787	746–756	23 dbill ± 1 db, Class 3	diversity
	B14 (FDD)	788–798	758–768		
	B17 (FDD)	704–716	734-746		
	B66 (FDD)	1710–1780	2110-2200		
	B2	1850–1910	1930–1990		
UMTS	B4	1710–1755	2110–2155	23 dBm ± 2 dB; Class 3bis	Diversity
	B5	824–849	869–894		
	GPS	-	1575.42 ± 1.023	-	-
	GLONASS	-	1597.52–1605.92	-	-
GNSS	Galileo	-	1575.42 ± 2.046	-	-
	BeiDou	-	1561.098 ± 2.046	-	-
	QZSS	-	1575.42 ± 2.046	-	-

a. Downlink MIMO 2x2.

Table 1-9: WP7611 Supported Bands/Connectivity

Technology	RF Band	Transmit Band (Tx) (MHz)	Receive Band (Rx) (MHz)	Maximum Output Power	Notes
	B2 (FDD)	1850 – 1910	1930 – 1990		
	B4 (FDD)	1710 – 1755	2110 – 2155		
	B5 (FDD)	824 – 849	869 – 894		
	B12 (FDD)	699 – 716	729 – 746		
LTE	B13 (FDD)	777 – 787	746 – 756	23 dBm ± 1 dB	MIMO ^a and
LIE	B14 (FDD)	788 – 798	758 – 768	23 ubiii ± 1 ub	diversity
	B25 (FDD)	1850 – 1915	1930 – 1995		
	B26 (FDD)	814 – 849	859 – 894		
	B66 (FDD)	1710 – 1780	2110 – 2200		
B71 (B71 (FDD)	663 – 698	617 – 652		
	B2	1850 – 1910	1930 – 1990		
UMTS	B4	1710 – 1755	2110 – 2155	23 dBm ± 1 dB; Class 3bis	Diversity
	B5	824 – 849	869 – 894		
	GPS	-	1575.42 ± 1.023	-	-
GNSS	GLONASS	-	1597.52–1605.92	-	-
	Galileo	-	1575.42 ± 2.046	-	-
	BeiDou	-	1561.098 ± 2.046	-	-
	QZSS	-	1575.42 ± 2.046	-	-

a. Downlink MIMO 2x2.

1.2 Interfaces

The AirPrime WP76XX provides the following interfaces and peripheral connectivity:

- Digital section running under 1.8V
- UIM interface—See UIM Interface on page 96.
 - eSIM—See eSIM / UIM2 Interface on page 97.
- VBAT_RF/VBAT_BB power supply—See Power Supply Ratings on page 38.
- RF—See RF on page 60.
- GNSS (RF_GNSS)—See GNSS on page 75.
- ON/OFF control:
 - POWER_ON_N—See POWER_ON_N on page 91.
 - RESET_IN_N—See Reset Signal (RESET_IN_N) on page 104.
- USB 2.0—See USB on page 94.
- UART serial links—See UART on page 94.
- GPIOs—See General Purpose Input/Output (GPIO) on page 98.
- SDIO—See Secure Digital IO (SDIO) Interface on page 101.

- I²C—See I2C Interface on page 102.
- 1.8V voltage reference—See VGPIO on page 103.
- ADCs—See ADC on page 105.
- Digital audio (PCM/I²S)—See Digital Audio on page 105.
- SPI bus—See SPI Bus on page 109.
- HSIC bus—See HSIC Bus on page 112.
- Antenna control—See Antenna Control on page 116.
- System clock outputs—See Clock on page 113.
- Test pins—See Test Pins on page 115.
- Tx Activity Indicator (TX_ON)—See Tx Activity Indicator (TX_ON) on page 117.

1.3 Common Flexible Form Factor (CF3)

The AirPrime WP76XX belongs to the Common Flexible Form Factor (CF3) family of WWAN modules. These modules share the same mechanical dimensions (same width and length with varying thicknesses) and footprint. The CF3 form factor provides a unique solution to a series of problems faced commonly in the WWAN module space as it:

- Accommodates multiple radio technologies (from GSM to LTE advanced) and band groupings
- Supports bit-pipe (Essential Module Series) and value-add (Smart Module Series) solutions
- Offers electrical and functional compatibility

1.4 Physical Dimensions and Connection Interface

The AirPrime WP76XX module is a compact, robust, fully shielded and labeled (laser-etched) module with the dimensions noted in Table 1-10.

Table 1-10: Module Dimensions^a

Parameter	Nominal	Tolerance	Units
Length	23.00	±0.10	mm
Width	22.00	±0.10	mm
Thickness	2.50	±0.20	mm
Weight	2.6	±1.0	g

a. Dimensions are accurate as of the release date of this document.

The AirPrime WP76XX module is an LGA form factor device. All electrical and mechanical connections are made through the 239 Land Grid Array (LGA) pads on the bottom side of the PCB. (See Figure 10-1 on page 148 for details.)

Note: The following figure shows top/bottom views of the unlabeled module. For a product marking example, see Figure 6-1 on page 132.

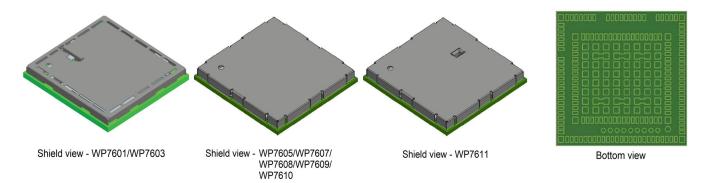


Figure 1-1: Mechanical Overview

The 239 pads have the following distribution:

Table 1-11: LGA Pad Types

Pad Type/Quantity		Dimensions	Pitch	
Signal Pads	66 inner pads	1.0x0.5 mm	0.8 mm	
olgriai i aus	91 outer pads	1.000.5 11111	0.0 111111	
Test Points	1 polarity mark (Ground)	1.0 mm (diameter)	-	
lest Follits	9 test points	0.8 mm (diameter)	1.20 mm	
	64 inner pads	1.0x1.0 mm	1.83 mm/1.48 mm	
Ground Pads	4 inner corner pads	1.0x1.0 mm	-	
	4 outer corner pads	1.0x0.9 mm	-	

>> 2: Functional Specifications

2.1 Variant Grouping

WP76xx modules can be categorized into two groups:

- Group A variants:
 - contain an on-board micro-controller (MCU)
 - support Ultra Low Power Mode (ULPM)
- Group B variants:
 - do not have an MCU
 - do not support ULPM

Table 2-1: Variant Grouping

Group	Variant
Α	WP7601, WP7603, WP7607, WP7608, WP7609
В	WP7605, WP7610, WP7611

The following table provides additional information between Group A and Group B WP76xx variants.

Table 2-2: Functionality Differences

Group ^a	Interface	Function/Description	Notes
	GPIO36, GPIO38, ADC2, ADC3	ULPM Interrupt/Trigger	See Table 3-5 on page 41 and Active State to ULPS Transition on page 48
		Wakeup Event (ULPM)	See Wakeup Events (ULPS) on page 101
		Current Consumption	See Table 3-17 on page 59
Group A only	GPIO36, GPIO37, GPIO38, GPIO40, GPIO41	Extra GPIO	See Table 4-7 on page 98
	GPIO36, GPIO38	Wakeup Interrupt (USB-SS mode)	See Wakeup Interrupt (Sleep State) on page 100
	ADC2, ADC3	Extra ADC	See ADC on page 105
Group A and Group B	POWER_ON_N, RESET_IN_N	Use case differences	See POWER_ON_N, RESET_IN_N and AT!POWERDOWN Use Cases on page 93

a. Refer to Table 2-1 on page 29 for variant grouping.

All other interfaces and functionalities are supported by both Group A and Group B variants.

2.2 Architecture

The following figures present overviews of the AirPrime WP76XX modules' internal architecture and external interfaces.

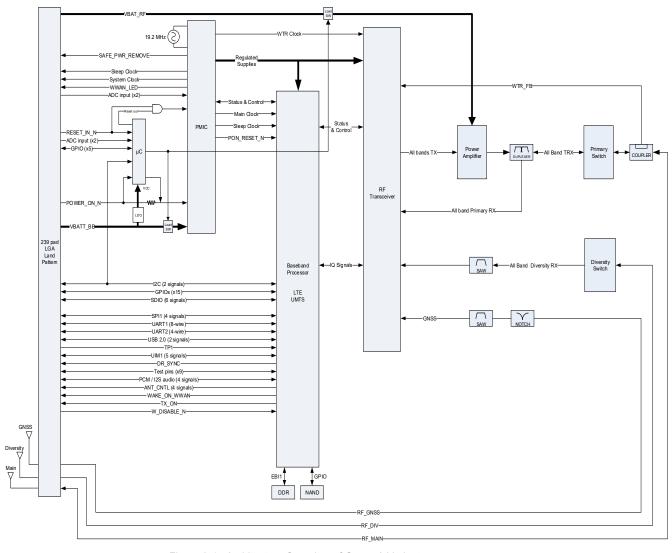


Figure 2-1: Architecture Overview of Group A Variants

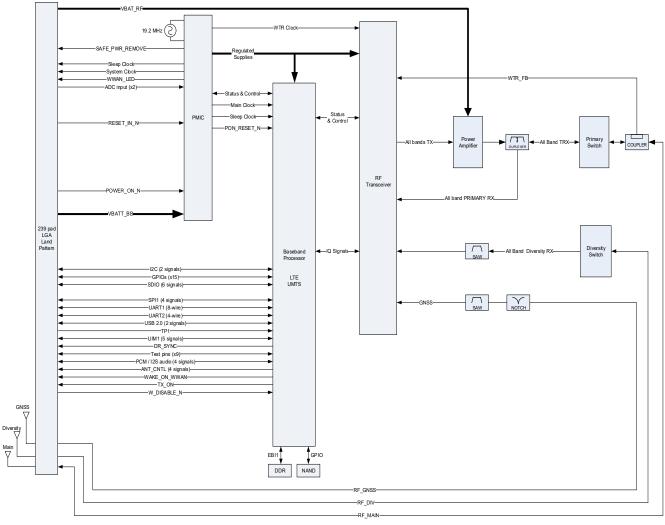


Figure 2-2: Architecture Overview of Group B Variants

2.3 Telecom Features

Table 2-3 summarizes the AirPrime WP76XX module's capabilities offered through the Telecom core.

Table 2-3: Module Capabilities

Feature	Description
Electrical	 3.4–4.3V supply voltage (VBAT_BB, VBAT_RF): Single supply (recommended), VBAT_BB tied to VBAT_RF or Dual supplies, single supply each for VBAT_BB and VBAT_RF

Table 2-3: Module Capabilities

Feature	Description
Voice (Digital Audio)	 PCM/I²S digital audio interface Supports Enhanced Full Rate (EFR), Full Rate (FR), Half Rate (HR), and both Narrow-Band and Wide-band Adaptive Multirate (AMR-NB and AMR-WB) vocoders MO and MT calling Echo cancellation and noise reduction Emergency calls (112, 110, 911, etc.) Incoming call notification DTMF generation Internal codec driver for WM8944
SMS	 SMS MO and MT CS and PS support SMS saving to UIM card or ME storage SMS reading from UIM card or ME storage SMS sorting SMS concatenation SMS Status Report SMS replacement support SMS storing rules (support of AT+CNMI, AT+CNMA)
Supplementary services	 Call Barring Call Forwarding Call Hold Caller ID Call Waiting Multi-party service USSD Automatic answer

2.3.1 Network Technology Specifications

2.3.1.1 GSM/GPRS/EDGE Specifications

The following table describes GSM/GPRS/EDGE specifications for WP7607/WP7608/WP7609 modules.

Table 2-4: Supported GSM Specifications^a

Standard	Feature Description
GPRS	Packet-switched data: DTM (simple class A) operation GPRS Multislot class 10 (with backoff ^b)—Four Rx slots (maximum), two Tx slots (maximum), five active slots total Coding schemes—CS1–CS4 GEA1, GEA2, and GEA3 ciphering WCDMA/GERAN system selection
EDGE	 E2 power class for 8 PSK DTM (simple class A), multislot class 12 EGPRS—Multislot class 12 (with backoff^b)—Four Rx slots (maximum), four Tx slots (maximum), five active slots total Coding schemes—MCS1–MCS9 BEP reporting SRB loopback and test modes A and B 8-bit and 11-bit RACH PBCCH support One-phase/two-phase access procedures Link adaptation and IR NACC, extended UL TBF PFC/PFI (Packet Flow Context/Packet Flow Identifier) support - allows identity tagging of RLC blocks to identify separate QoS streams at the radio link layer GPRS/EDGE MSC12-EDA - permits allocation of more than two uplink timeslots for GPRS/EDGE Enh DL RLC/MAC Segmentation - permits reception of MAC control messages that exceed one radio block capacity in length Enhanced Ext UL TBF - dummy block transmission is punctured for current saving purposes 2G PS handover - packet-switched equivalent of CS handover to ensure faster cell change and improved throughput WCDMA/GERAN Band Scan: Run-time Configurable RRC Band Scan Order Power and Network Optimizations: Frame Early Termination for Power Optimization Protocols: MRAB-Pack-1 Enhancements - reduces multi-RAB call drops GPRS/EDGE - Class 33 (296 kbps downlink, 236.8 kbps uplink) CSD (Circuit-switched data bearers) Release 4 GERAN Feature Package 1

Table 2-4: Supported GSM Specifications^a (Continued)

Standard	Feature Description
EDGE	 Latency reduction Repeated FACCH, Repeated SACCH A-GPS support GPRS ROHC Enhanced Operator Name String (EONS) Enhanced Network Selection (ENS)

a. WP7607/WP7608/WP7609 only

2.3.1.2 WCDMA Specifications

The following table describes WCDMA specifications for WP7603/WP7605/WP7607/WP7608/WP7609/WP7610/WP7611 modules.

Table 2-5: Supported WCDMA Specifications^a

Standard	Feature Description
R99	 All modes and data rates for WCDMA FDD, with the following restrictions: The downlink supports the following specifications: Up to four physical channels, including the broadcast channel (BCH), if present Up to three dedicated physical channels (DPCHs) Spreading factor (SF) range support from 4 to 256 The uplink supports the following specifications: One physical channel, eight TrCH, and 16 TrBks starting at any frame boundary A maximum data rate of 384 kbps Full SF range support from 4 to 256 PS data rates of 384 kbps DL and 384 kbps UL
R8 HSDPA	 PS data speeds up to 42 Mbps (UE category 24) on the downlink HS-DSCH (HS-SCCH, HS-PDSCH, and HS-DPCCH) Maximum of 15 HS-PDSCH channels, both QPSK and 16 QAM modulation Support for 3GPP-defined features: R99 transport channels Maximum of four simultaneous HS-SCCH channels CQI and ACK/NACK on HS-DPCCH channel All incremental redundancy versions for HARQ Configurable support for power classes 3 or 4, per TS 25.101 TFC selection limitation on UL factoring in transmissions on the HS-DPCCH, per TS 25.133 Switching between HS-PDSCH and DPCH channel resources, as directed by the network Network activation of compressed mode by SF/2 or HLS on the DPCH for conducting inter-frequency or inter-radio access technology (RAT) measurements when the HS-DSCH is active

Backoff is firmware dependent. 2G power backoff level is 3dB at the maximum power level as per 3GPP standards.

Table 2-5: Supported WCDMA Specifications^a (Continued)

Standard	Feature Description
R8 HSDPA	 STTD on both associated DPCH and HS-DSCH simultaneously CLTD mode 1 on the DPCH when the HS-PDSCH is active STTD on HS-SCCH when STTD or CLTD mode 1 are configured on the associated DPCH SCH-IC support HS-DSCH DRX support
R6 HSUPA	 E-DCH data rates of up to 5.76 Mbps for 2 ms TTI (UE category 6) uplink Support for 3GPP-defined features: E-AGCH, E-RGCH, and E-HICH channels for downlink; E-RGCH and E-HICH supports serving and non-serving radio links, with up to four radio links in the E-DCH active set All HARQ incremental redundancy versions and maximum number of HARQ retransmissions Uplink E-DCH channel with support for up to four E-DPDCH channels HSUPA channels run simultaneously with R99 and HSDPA channels STTD on all HSUPA downlink channels CLTD mode 1 on HS-PDSCH and DPCH along with HSUPA channels Switch between HSUPA channels and DPCH channel resources, as directed by the network Handover using compressed mode with simultaneous E-DCH and HS-DSCH interactive, background, and streaming QoS classes CSD fallback (WP7607 and WP7608) DPCCH DTX support

a. WP7603, WP7605, WP7607, WP7608, WP7609, WP7610, WP7611 only

2.3.1.3 LTE Specifications

The following table describes LTE specifications for AirPrime WP76XX modules.

Table 2-6: Supported LTE Specifications

Standard	Feature Description
R13	 eDRX (Extended Discontinuous Reception) to extend battery life in devices that do not require frequent network access PSM (Power Saving Mode) to reduce power consumption
R10	 Release 10 mandatory LTE features Data rates: WP7601-1, WP7603-1, WP7607-1, WP7608-1, WP7611-1—Cat 1 FDD (up to 10 Mbps downlink, 5 Mbps uplink) WP7601, WP7603, WP7605, WP7607, WP7608, WP7609, WP7610, WP7611—Cat 4 FDD (up to 150 Mbps downlink, 50 Mbps uplink) 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz RF bandwidth IPv6, QoS Inter-RAT capabilities with HSPA+ (WP7603, WP7605, WP7607, WP7608, WP7609, WP7610, WP7611 only) NAS & RRC standalone security

Table 2-6: Supported LTE Specifications (Continued)

Standard	Feature Description
R10	 Commercial Mobile Alert System (CMAS) ETWS (Earthquake Tsunami Warning System) notification Inter-frequency/bandwidth mobility DRX cycle while in: Connected mode Idle mode UE IRAT support for Self Organizing Networks and Automatic Neighbor Relation (SON AR) Mode reselections: LTE ↔ GERAN Idle mode mobility (cell reselection) LTE ↔ UMTS Idle mode mobility (cell reselection) Mode redirections: UMTS to LTE redirections Blind redirection Based on measurements during WCDMA compressed mode gaps GERAN to LTE redirections (blind; no measurements) LTE to UMTS redirections (with measurements on UMTS) LTE to UMTS PS Handover LTE/GW Data Silent Redial for InterRAT Attach/detach PS during Voice Call or SMS WCDMA fallback (WP7603, WP7605, WP7607, WP7608, WP7609, WP7610, WP7611 only)
System Determination	 Frequency Scan and System Selection within LTE LTE BPLMN support LTE Connected mode OOS System selection across RATs, Standalone Security, Dedicated EPS Bearer Management and Dormancy System selection across LTE, UMTS (WP7603, WP7605, WP7607, WP7608, WP7609, WP7610, WP7611 only), GERAN 256 UPLMN and 256 OPLMN entries in UIM support Carrier Specific BSR Requirements
Data	 Data call throttling Default IPv4 bearer activation at attach/IPv4 data call NW and UE initiated QoS Dual IP and IPv4/IPv6 continuity IPv4/IPv6 session continuity W/G IP session continuity Emergency services—LTE NAS Support for Control Plane LTE Positioning Protocol

2.3.2 Modem Specifications

Table 2-7: Supported Modem Specifications

Standard	Feature Description			
	 IPHC protocol as RFC 2509 Stateless DHCPv4 protocol to get P-CSCF and DNS addresses 			
Data	 IPv4/IPv6 Dual IP on single QMAP PDN Multi-QMAP PDN Data Call 			

2.4 Multi-Core Processing Capabilities

The AirPrime WP76XX is a powerful multiple-core system that includes:

- One QDSP6 core, embedding Telecom firmware with integrated cellular voice (WCDMA), VoLTE, data and wireless Internet connectivity
- One Cortex A7 core entirely dedicated to customer application and natively provided with Linux operating system

>> 3: Technical Specifications

3.1 Environmental

The environmental specifications for operation and storage of the AirPrime WP76XX are defined in Table 3-1.

Table 3-1: Environmental Specifications

Parameter	Range	Operating Class	
Ambient Operating Temperature	-30°C to +70°C	Class A	
Ambient Operating Temperature	-40°C to +85°C	Class B	
Ambient Storage Temperature	-40°C to +85°C	-	
Ambient Humidity	95% or less	-	

Class A is defined as the operating temperature range within which the device:

- Shall exhibit normal function during and after environmental exposure.
- Shall meet the minimum requirements of 3GPP or appropriate wireless standards.

Class B is defined as the operating temperature range within which the device:

- Shall remain fully functional during and after environmental exposure
- Shall exhibit the ability to establish any of the device's supported call modes (SMS, Data, and emergency calls) at all times even when one or more environmental constraint exceeds the specified tolerance.
- Unless otherwise stated, full performance should return to normal after the excessive constraint(s) have been removed.

3.2 Power Supply Ratings

The AirPrime WP76XX operates using DC power supplied via the VBAT_RF and VBAT_BB signals. Power supply options are:

- (Recommended) A single regulated DC power supply (3.7V nominal)
- Two regulated DC power supplies (3.7V nominal), one each for VBAT_BB and VBAT_RF

Note: Operation above the maximum specified operating voltage (see Table 3-3 on page 39) is not recommended, and specified typical performance or functional operation of the device is neither implied nor guaranteed.

Note: Proper operation is not guaranteed or recommended for USB_VBUS as the main power supply.

Table 3-2: Power Supply Pins

Pin	Name	Name Direction Function		Notes
63, 158	VBAT_BB	Input	Baseband power supply	63—Must be used 158—Optional
61, 62, 157	VBAT_RF	Input	RF power supply	61/62—Must be used 157—Optional

Table 3-3: Operating Conditions

Parameter		Min	Тур	Max	Units	Notes
Power supply voltage ^a , ^b		3.4	3.7	4.3	V	Must be within min/max values over all operating conditions (including voltage ripple, drop, and transient).
Power supply ripp	le	-	-	100	mV_{pp}	See Figure 3-1 on page 40.
Power supply volt	age drop	-	-	250 ^c	mV	See Figure 3-1 on page 40 and Under-Voltage Lockout (UVLO) on page 40.
Power supply volt (overshoot/unders		-	-	300 ^c	mV	See Figure 3-1 on page 40.
	LTE, UMTS	-	0.8	1.5	А	Typical value varies and depends on output power, band, and operating voltage. See Current Consumption
Supply current	GSM	-	1.0	3.0 ^d	А	 on page 50 for values measured under normal operating conditions. Max value measured over 100 μs period.

- a. Power supply voltage outside the required range may affect call quality (dropped calls, data transfer errors, etc.)
- b. For Absolute Maximum Ratings, see Table 3-56 on page 78.
- c. Values to be confirmed for WP7607/WP7609
- d. Recommended rated current of the power supply.

Customer should characterize the ripple, drop, and transient response (overshoot/undershoot) of the power supply delivery system at the module input under full transmit power in GSM mode if supported, or LTE mode if not. To minimize voltage variation, add suitable capacitors to the supply line as close as possible to the module—depending on the power supply design, these capacitors may range from tens to several thousand $\mu F.$



Figure 3-1: Power Supply Characteristics (capture enlarged)

3.2.1 Under-Voltage Lockout (UVLO)

The power management section of the AirPrime WP76XX includes an under-voltage lockout circuit that monitors supply and shuts down when VBAT_BB falls below the threshold.

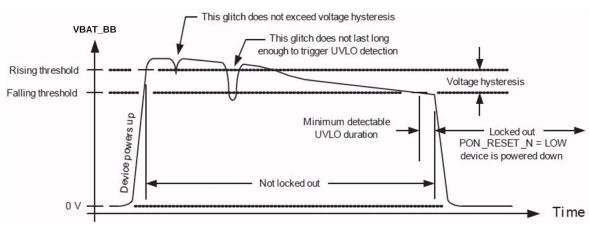


Figure 3-2: Under-Voltage Lockout (UVLO) Diagram

The AirPrime WP76XX will power down and remain off until VBAT_BB returns to the valid range and the ON/OFF signal is active.

Note: If the device experiences six consecutive UVLO events less than 45 seconds apart (approximately) and a host-initiated power down or reset has not occurred, the device enters a mode in which only the DM port enumerates on the USB.

Table 3-4: UVLO Specifications

Parameter	Min	Тур	Max	Units
Threshold voltage, falling	2.225	2.4	2.80	V
Threshold voltage, accuracy	-5	-	+5	%

Table 3-4: UVLO Specifications (Continued)

Parameter	Min	Тур	Max	Units
Hysteresis	-	425	-	mV
UVLO detection interval	-	1.0	-	μs

3.2.2 Power Consumption States

The AirPrime WP76XX has four basic power states (Active, Sleep, Ultra Low Power State (ULPS), and Off). As the module transitions between power states, the range of available device functionality adjusts appropriately, as described in Table 3-5 on page 41 and Figure 3-3 on page 44.

In the Active state, the module is ON with the application processor running. In Sleep state, the processor suspends its activity, reducing power consumption. The Active and ULPS states have more than one power mode each, to reduce power consumption. ULPS supports both Power Saving Mode (PSM, network-dependent) and Ultra Low Power Mode (ULPM), which may be enabled to achieve the lowest possible average power consumption.

Table 3-5: Supported Power States

State	Description
	Module is fully powered (Linux can be run in the Application Core; modem is on) and operating in one of the following modes:
	• Full function (WWAN radio active; GNSS radio can be turned on/off)—Highest power consumption.
Active	 Idle mode (WWAN radio on; Module registered on network, but no active connection; GNSS radio can be turned on/off)
	Airplane mode (WWAN radio off; GNSS radio can be active if allowed by PRI)
	 eDRX (Extended Discontinuous Reception)—eDRX mode provides a 'flexible sleep' for the modem, which significantly reduces energy consumption. For eDRX details, see Extended Discontinuous Reception (eDRX) on page 48.
	Lower power consumption than Active state, but higher than ULPS.
	• Application Core is sleeping; modem is in DRX/eDRX. The processor monitors signals (triggers) that can 'wake' the module—see Wakeup Interrupt (Sleep State) on page 100 for details.
Sleep	Sleep state can be entered based on USB-SS (if USB is connected to the module), UART_DTR, wake_lock(), configured GPIOs, and QMI exchanges from the modem.
	To further minimize sleep mode current consumption, it is recommended to disable HSIC using AT!CUSTOM="HSICENABLE",00 if the HSIC bus is not used.
	Note: On Windows systems, due to limitations of the Windows ECM driver, Sleep state is only supported if ECM is disabled or USB is disconnected.

Table 3-5: Supported Power States (Continued)

State	Description
	ULPS is entered through either ULPM or PSM, and enables the module to attain its lowest power consumption by turning off the Application Core processor (no applications will run) while waiting for wakeup sources ('boot sources'). When the module wakes from ULPS, the module reboots into the Active state.
	AUIs (Legato, Linux sysfs, and AT interface) are available to:
	 Configure wakeup sources (also known as boot sources) Select ULPM, PSM, or PSM with ULPM fallback (when PSM is not supported by the network)
	Note: Some configuration options are not available in different AUIs (e.g. AT/sysfs allow selection of PSM, ULPM, and PSM with ULPM fallback, while Legato supports only PSM with ULPM fallback).
	Once a module is in ULPS, it remains in this state until woken by a wakeup source (see Table 3-6 on page 43).
	ULPS current consumption varies depending on configured triggers. For example, the lowest consumption occurs when the processor is waiting only for a timer (approximately 6 μ A), and the highest consumption occurs when all supported triggers are configured.
	Note: Current consumption in both ULPM and PSM modes will be similar.
	For details on configuring ULPM, and how the module transitions between Active and ULPM states, see Current Consumption on page 50.
	Ultra Low Power Mode (ULPM)
	Note: ULPM is only available for Group A variants.
Ultra Low Power State	ULPM is an operational mode that allows the module to enter ULPS without any dependency on network support. This is when the module is operating at its lowest power state. All subcomponents of the module are powered off except the on-board MCU for user-configurable wake-up triggers (timer, GPIO or ADC). At this mode, all other communication interfaces are disabled.
(ULPS)	AUIs (Legato, Linux sysfs, and AT interface) are first used to configure wakeup sources. Then, when the application uses an AUI to enable ULPM, the module detaches from the network (if currently attached) and enters ULPS.
	When a wakeup source triggers exit from ULPS, the modem and application processors boot up and the module reattaches to the network to resume operation in Active state until ULPM is again enabled by the application.
	Note: All interfaces connected to the module's GPIOs (see Table 4-7 on page 98) must be tri-stated or off to prevent additional leakage current during ULPM and potentially damaging the unit by applying a voltage when the GPIOs are off.
	LTE Power Saving Mode (PSM)
	3GPP Release 12 introduced network support of PSM. PSM allows the module to negotiate, with the network, an extended period during which registration context with the network is retained while the module is unreachable. During the negotiated period, the module enters ULPS.
	When a wakeup source triggers exit from ULPS, the modem and application processors boot up and the module sends a TAU (Tracking Area Update) to the network.
	After sending the TAU, the module remains active to allow any pending data to be exchanged with the network. Then, after a negotiated period of inactivity, the module automatically returns to ULPS to repeat the PSM cycle.
	Note: Wakeup sources are retained across PSM cycles, but may be changed by the application during the active period, if desired.
	For PSM details, see Power Saving Mode (PSM) on page 45.

Table 3-5: Supported Power States (Continued)

State	Description	
	Comparison — PSM vs. ULPM	
	 PSM differs from ULPM in the following ways: PSM is network-dependent (network must support 3GPP PSM), with a repeating cycle of an Active period and an inactive period, managed by the telecom stack. ULPM is network-independent, and each entry to ULPS is controlled by the application. PSM is subject to timer values negotiated with the network, including a 'TAU' wakeup timer (initially set by the module, then negotiated with and agreed to be the network) that is automatically managed by the telecom stack. ULPM may remain in ULPS indefinitely, waiting for non-time-based wakeup sources. In PSM, networking layer signaling overhead is reduced and context (such as IP address) is retained. Application data coming (downlink) from the network is queued for the next active period. Note that the processor can be woken by a wakeup source during the inactive period to send data without needing to reattach to the network. In PSM, radio resource signaling is reduced—TAU requires much less radio signaling than ULPM detach/reattach. 	
OFF	Module is OFF (no power to the system). Apply power for system to go to: Active state (POWER_ON_N is asserted) or ULPS (POWER_ON_N is de-asserted)	

Table 3-6: ULPS Wakeup Sources

Туре	Description
PSM TAU timer	Periodic TAU—PSM Cycle Timer (T3412) Configurable timer specifying PSM sleep duration. See Table 3-8 on page 46 for configuration methods. Applies to PSM only.
ULPS wakeup timer	Timer that triggers after a specified period. • ULPM—Optional • PSM—Derived from TAU timer (value is automatically set slightly shorter than TAU timer to ensure module boot completes before TAU timer expires)
ADC interrupt	ADCs (ADC2, ADC3) configured for asynchronous wakeup of module. ADCs may be configured to trigger on threshold (above/below; e.g. wake on ADC2 above 1.2V) or range (inside/outside; e.g. wake when value is inside a specified range, or outside a specified range). Applies to both ULPM and PSM.
GPIO interrupt	Interrupt-capable GPIOs (GPIO36, GPIO38) configured for asynchronous wakeup of module. GPIOs may be configured to trigger on level transition (high/low) or edge transition (rising/falling/both). Applies to both ULPM and PSM.
RESET_IN_N	Resets the module with POWER_ON_N ON. Applies to both ULPM and PSM. Note: If RESET_IN_N is used when POWER_ON_N is OFF, an emergency power off occurs—see Emergency Power Off on page 93.
POWER_ON_N	Wakes the module when asserted (transitions from OFF to ON). Applies to both ULPM and PSM.

Figure 3-3 on page 44 illustrates the current consumption requirements of the different power states and the possible transitions between power states. For specific values, see module-specific current consumption tables in Current Consumption on page 50.

* Refer to Table 3-5 on page 41 for Power State definitions.

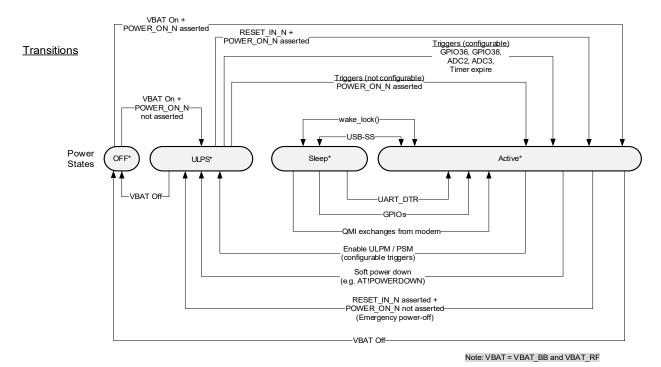


Figure 3-3: Power State Transitions

3.2.3 Power Saving Mode (PSM)

Power Saving Mode (PSM) is a 3GPP feature that allows the WP76xx to minimize power consumption by registering on a PSM-supporting LTE network, entering ULPS (a very low power 'dormant' state) for a pre-configured duration (via a periodic TAU (Tracking Area Update) timer), and then booting up for a short period to transmit/ receive data, before re-entering ULPS. During the dormant period, the module remains unreachable by the network until woken by a configured wakeup source (timer, ADC, GPIO, POWER_ON_N, RESET_IN_N) or the expiry of the periodic TAU timer.

Note: When using PSM, the POWER_ON_N signal must be floating. If this signal is grounded, it will automatically trigger a wake.

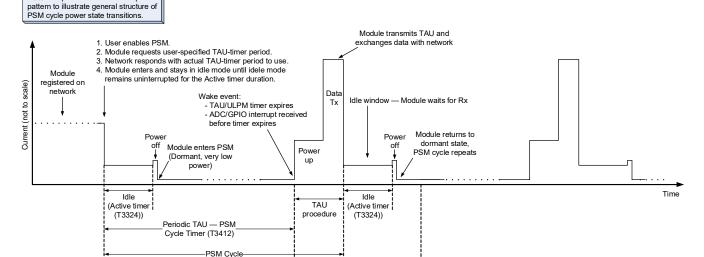


Figure 3-4: PSM Example (Simplified)

Note: Simplified current consumption

The following table describes different PSM configuration options available. By default, WP76xx modules are configured to option B, with options A and C reserved for debug purposes.

Table 3-7: PSM Configuration Options

Option	Description
А	 MCU I2C is always on during PSM, waiting for MDM message MDM RTC alarm is used as the timer wakeup source
В	 MCU I2C is only on near the end of PSM, waiting for MDM message MDM RTC alarm is used as the timer wakeup source
С	 MCU I2C is on at the end of PSM MCU RTC alarm is used as the timer wakeup source MDM is completely powered off Note: PSM does not work with option C in the latest Firmware release.

Typical candidates for PSM are systems (such as monitors and sensors) that:

- Require long battery life (low power consumption)
- Tolerate very long latency for mobile-terminated SMS/data
- Do not use mobile-terminated voice
- Send and/or receive data infrequently and periodically (e.g. on a given schedule of once every few hours, days, weeks, etc.)

For example, a module connected to a sensor can be configured to:

- Wake periodically to transmit collected data to a server or network entity (e.g. once per week schedule, or when a sensor activates an ADC interrupt due to an out-of-range reading), then
- Wait a short (configured) period of time to receive transmissions (e.g 60 seconds) and then return to its dormant state.

Table 3-6 describes the available triggers for waking a WP76xx from ULPS. These triggers are configured using the methods described in Table 3-8.

Table 3-8: ULPS-Related Application User Commands/Interfaces

Type	Command ^a /Interface	Description
		3GPP-defined command (3GPP TS27.007 Release 12) that allows direct control of all LTE PSM parameters, and is useful for advanced users wanting to test/ experiment with different options. This command is limited to networks that support PSM. It is not expected that every user must be fully versed in the details of PSM to take
		advantage of its capabilities.
		Use this command to:
		Enable/disable LTE PSM.
	+CPSMS	 Configure Period TAU timer (T3412) with a requested maximum duration of the dormant period.
		Configure Active timer (T3324) with a requested 'idle mode time' (the duration the module remains idle before going dormant)
АТ		For usage details, refer to [1] AirPrime WP8548/WP75xx/WP76xx/WP77xx AT Command Reference. (This command follows the 3GPP TS 27.007, Release 12 specification, with exceptions noted for certain parameters.)
		Note: The requested timer values are negotiated with the network and the final negotiated values take effect immediately, then persist across power cycles (e.g. after a power cycle, the settings will be used during network attach).
	!POWERMODE	Custom Sierra Wireless command that allows application developers to simplify the harmonization of PSM and ULPM without needing to consider whether PSM is supported on the network to which the WP module is currently attached. The command can be used to select the power mode (ULPM, PSM, PSM with ULPM fallback).
		Note: The Legato ULPM API provides equivalent functionality.
	!POWERWAKE	Custom Sierra Wireless command used to configure the wakeup sources for both PSM and ULPM, such as GPIOs, ADCs, and ULPS timer.
		Note: The Legato ULPLM API provides equivalent functionality.
	Important: Sierra Wireles	s recommends not combining use of +CPSMS and !POWERWAKE. These
	-	tional overlap, which may result in unexpected effects.

Table 3-8: ULPS-Related Application User Commands/Interfaces (Continued)

Type	Command ^a /Interface	Description
API	Legato Power Services: Power Manager Ultra Low Power Mode Boot Reason Query	Legato APIs and Linux sysfs nodes are available to configure and enable the feature.

a. For AT command details, refer to [1] AirPrime WP8548/WP75xx/WP76xx/WP77xx AT Command Reference, available from the device's page on source.sierrawireless.com.

For API library function details, refer to docs.legato.io/latest/legatoServicesPowerMain.html.

Example: PSM Process

The following example describes how the module uses PSM (as shown in Figure 3-4 on page 45):

- **1.** Module registers on an LTE network.
- 2. User enables PSM via AT command or API library function, specifying the desired TAU timer and Active timer periods, and optional wakeup sources.
- **3.** Module submits the PSM request (including desired TAU timer) to the network.
- **4.** Network responds and indicates whether PSM is supported and (if it is) indicates the actual TAU timer to use.
- **5.** If the network supports PSM:
 - **a.** Module enters idle mode (waiting for Rx from network).
 - **b.** When module has remained idle for the Active timer period, module powers off (except for maintaining timer and interrupts) and enters ULPS.
 - **c.** Module remains in ULPS for the specified period or until a configured trigger (ADC or GPIO interrupt, POWER_ON_N, RESET_IN_N) wakes it.

Note: If traffic must be transmitted when the module is in the sleep portion of the cycle, the module can initiate data/SMS/voice session immediately.

- **d.** Module powers up before TAU timer expires, then transmits TAU and/or exchanges data with network.
- e. Module enters idle mode and cycle repeats.

Note: When the module is powered up, the PSM request can be re-issued with different timers and triggers to adjust the PSM behavior. These new settings take effect immediately.

Important Notes

- Carefully select the PSM Periodic-TAU timer and Active Time values to match the intended use case(s) for the module:
 - Periodic TAU PSM Cycle timer (T3412)—Note that while the module is dormant (for the duration of this timer, unless woken by a user-configured ADC or GPIO interrupt, or POWER_ON_N or RESET_IN_N), it will be completely unreachable by the network.
 - Active Time (Idle mode time after transmission (T3324))—Make sure to set the Active timer high enough to provide appropriate delay-tolerance for mobile-terminated/network-originated transmissions to be received.

 When using multiple devices, consider scheduling the modules to wake at different times so that the network does not get flooded by all modules waking and transmitting simultaneously.

3.2.4 Active State to ULPS Transition

If the module will be used in situations where it needs to be active very infrequently (for example, in a remote monitoring station that must transmit data periodically—e.g. on a regular schedule ranging from days to weeks or more), Ultra Low Power Mode (ULPM) or PSM (Power Saving Mode) may be used to reduce power consumption much more than is possible in Sleep state (low power active state):

1. Configure one or more supported wakeup sources that the processor will monitor while the module is in ULPS. See Table 3-6 on page 43.

Note: Wakeup source configurations are persistent — if the module enters ULPS and then returns to Active power state, the configured triggers remain in effect.

 Initiate ULPM or PSM. The module will enter ULPS unless one or more of the configured wakeup sources is currently triggered. If the module does not enter ULPS, the request must be explicitly repeated—the module will not attempt to enter ULPS automatically.

3.2.5 Extended Discontinuous Reception (eDRX)

The WP76xx supports eDRX, which is a 'flexible sleep' active mode that allows for longer sleep duration (T_{C-eDRX} , T_{I-eDRX}) and a significant decrease in power consumption compared to regular DRX (T_{C-DRX} , T_{I-DRX}).

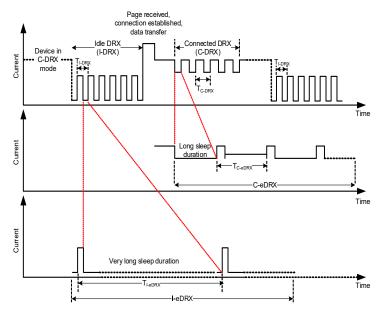


Figure 3-5: eDRX Example (Simplified)

Specifically, the WP76xx supports two forms of eDRX, both of which extend the DRX cycle (the paging cycle comprised of a paging window during which the module is awake and able to receive or transmit on the network, and a sleep period during which the network cannot wake the module) by increasing the sleep duration beyond the DRX maximum of 2.56 seconds:

- I-eDRX (Idle mode eDRX)—The sleep duration of the DRX cycle can be set up to 44 minutes for LTE-M.
 - Note that I-eDRX has wider network support than C-eDRX.
- C-eDRX (Connected mode eDRX)—The sleep duration of the DRX cycle can be set up to 10 seconds.

Note: If traffic must be transmitted when the module is in the sleep portion of the cycle, the module can initiate data/SMS/voice session immediately.

Table 3-9 describes the available methods for configuring eDRX.

Table 3-9: eDRX-Related Commands^a

Type	Command	Description
AT	+CEDRXS	Enable/disable eDRX, and configure related settings
AT	+CEDRXRDP	Display current eDRX settings
API	le_lpt_SetEDrxState()	Enable/disable eDRX
API	le_lpt_SetRequestedEDrxValue()	Set eDRX cycle length for a specified RAT
API	le_lpt_GetRequestedEDrxValue()	Get eDRX cycle length for a specified RAT
API	le_lpt_GetNetworkProvidedEDrxValue()	Get eDRX cycle length provided by the networki.
API	le_lpt_GetNetworkProvidedPagingTimeWindow()	Get the paging window provided by the network (Note: the paging window cannot be set by the module.)
API	le_lpt_AddEDrxParamsChangeHandler()	Set notifications for changes in network-provided eDRX parameters
API	le_lpt_RemoveEDrxParamsChangeHandler()	Remove the handler.

a. For AT command details, refer to [1] AirPrime WP8548/WP75xx/WP76xx/WP77xx AT Command Reference from the device's page on source.sierrawireless.com. For API command details, refer to the latest Legato Release Notes at legato.io/legato-docs/latest/ c_mrc.html.

Example: eDRX Process

- Use the AT+CEDRXS command to configure the desired eDRX behavior.
- During the network attachment process:
 - eDRX request and settings are sent to the network
 - Network responds and indicates whether eDRX is supported for the connection and may adjust the eDRX parameters.
- If eDRX is supported by the network:
 - While in active mode (connected), the C-eDRX sleep duration is used if supported, otherwise the regular DRX sleep duration is used.
 - While in idle mode, the I-eDRX sleep duration is used if supported, otherwise the network uses the standard LTE I-DRX value.

Important Notes

- The sleep duration must be carefully selected to match the intended use case(s) for the module. While the module is asleep, it will be unreachable by the network. The duration should provide appropriate delay-tolerance for mobile-terminated/network-originated transmissions to be received.
- Due to the extended sleep time compared to regular DRX, eDRX is not suitable for most mobile-terminated voice connections.
- Network-side store and forward is supported—Packets will be stored until the module is reachable.

3.2.6 Current Consumption

The following tables describe the AirPrime WP76XX modules' current consumption under various power states. Typical values are measured at nominal supply voltage, nominal ambient temperature, and with a conducted 50Ω load on the antenna port.

Table 3-10: WP7601 Current Consumption Values

Mode	Parameter	Min	Typ ^a	Max ^b	Units
Power state—Active					
LTE Data transfer ^c	B4	175	655	860	mA
LIE Data transier	B13	140	500	725	mA
Idle—LTE	RegisteredPaging cycle=256USB active	23	23.5	25	mA
Airplane mode	Radio offUSB active	21	22	24	mA
Power state—Sleep					
Idle—LTE	RegisteredPaging cycle=256USB-SS	1.6	1.7	1.8	mA
Idle—LTE eDRX	Period = 40 sec	0.9	1	1.2	mA
Airplane mode	Radio offUSB-SS	0.8	0.85	0.9	mA
Power state—ULPS					
Ultra Low Power Mode (ULPM)	See Table 3-17 on page 59 for details.				
Power Saving Mode (PSM)	Non-active	21	21.5	22	μА

Table 3-10: WP7601 Current Consumption Values (Continued)

Mode	Parameter	Min	Typ ^a	Max ^b	Units
GNSS ^d					
GNSS	Acquisition (Airplane mode, cold start)	23	25	35	mA
	Tracking (Registered)	23	25	35	mA

- a. Typical, measured at nominal temperature, nominal voltage.
 b. Worst case transmit values measured at 70°C, 3.4V. Worst case idle mode values measured at room temperature, 3.7V.
- c. Min value at LTE conducted min Tx output power; Typ/Max values at LTE conducted max Tx output power (see Table 3-36 on page 66)
- d. GNSS current consumption values are for the GNSS radio only. For total consumption, add the GNSS value to the consumption for the mode being used.

Table 3-11: WP7603 Current Consumption Values

Mode	Parameter	Min	Typ ^a	Max ^b	Units
Power state—Active					
	B2	130	585	750	mA
HSDPA data transfer ^c	B4	130	560	700	mA
	B5	115	440	585	mA
	B2	175	730	930	mA
LTE Data transfer ^d	B4	175	700	870	mA
LIL Data transici	B5	140	480	695	mA
	B12	140	555	820	mA
Idle—WCDMA	RegisteredDRX=8USB active	20	24	27	mA
Idle—LTE	RegisteredPaging cycle=256USB active	23	23.5	25	mA
Airplane mode	Radio offUSB active	21	22	24	mA
Power state—Sleep					
Idle—WCDMA	RegisteredDRX=8USB-SS	1.2	1.3	1.4	mA
Idle—LTE	RegisteredPaging cycle=256USB-SS	1.6	1.7	1.8	mA
Idle—LTE eDRX	Period = 40 sec	0.9	1	1.2	mA

Table 3-11: WP7603 Current Consumption Values (Continued)

Mode	Parameter	Min	Typ ^a	Max ^b	Units
Airplane mode	Radio offUSB-SS	0.8	0.85	0.9	mA
Power state—ULPS					
Ultra Low Power Mode (ULPM)	See Table 3-17 on page 59 for details.				
Power Saving Mode (PSM)	Non-active	21	21.5	22	μΑ
GNSS ^e					
GNSS	Acquisition (Airplane mode, cold start)	23	25	35	mA
	Tracking (Registered)	23	25	35	mA

- Typical, measured at nominal temperature, nominal voltage.
- b. Worst case transmit values measured at 70°C, 3.4V. Worst case idle mode values measured at room temperature, 3.7V.
- c. At WCDMA conducted max Tx output power (see Table 3-22 on page 62)
 d. Min value at LTE conducted min Tx output power; Typ/Max values at LTE conducted max Tx output power (see Table 3-37 on page 66)
- e. GNSS current consumption values are for the GNSS radio only. For total consumption, add the GNSS value to the consumption for the mode being used.

Table 3-12: WP7605 Current Consumption Values

Mode	Parameter	Min	Typ ^a	Max ^b	Units
Power state—Active					
	B1	140	610	880	mA
HSDPA Data transfer ^c	В6	140	560	770	mA
	B19	130	580	820	mA
	B1	220	620	800	mA
	В3	220	650	830	mA
	B8	200	700	930	mA
LTE Data transfer ^d	B11	200	560	820	mA
	B18	210	590	760	mA
	B19	210	590	730	mA
	B21	200	560	730	mA
Idle—WCDMA	RegisteredDRX=8USB active	25	26	39	mA

Table 3-12: WP7605 Current Consumption Values (Continued)

Mode	Parameter	Min	Typ ^a	Max ^b	Units	
Idle—LTE	RegisteredPaging cycle=256USB active	25	26	39	mA	
Airplane mode	Radio offUSB active	23	25	36	mA	
Power state—Sleep	,		l	1		
Idle—WCDMA	RegisteredDRX=8USB-SS	1.1	1.2	6.0	mA	
Idle—LTE	RegisteredPaging cycle=256USB-SS	1.3	1.5	6.0	mA	
Idle—LTE eDRX	Period = 40 sec	1.1	1.2	3.8	mA	
Airplane mode	Radio offUSB-SS	0.9	1.0	4.0	mA	
Power state—ULPS						
Ultra Low Power Mode (ULPM)	Not supported					
Power Saving Mode (PSM)	Non-active	14.3	14.5	27.5	μΑ	
GNSS ^e						
GNSS ^f	Acquisition (Airplane mode, cold start)	23	25	35	mA	
	Tracking (Registered)	23	25	35	mA	

- a. Typical, measured at nominal temperature, nominal voltage. b. Worst case, measured at 70°C , 3.4V.
- c. At WCDMA conducted max Tx output power (see Table 3-23 on page 62)
 d. At LTE conducted max Tx output power (see Table 3-38 on page 66)
- e. GNSS support is SKU-dependent.
- f. GNSS current consumption values are for the GNSS radio only. For total consumption, add the GNSS value to the consumption for the mode being used.

Table 3-13: WP7607 and WP7609 Current Consumption Values

Mode	Parameter	Min	Typ ^a	Max ^b	Units	
Power state—Active						
GSM/GPRS/EDGE data transfer	E-GSM 900	160	600	2160 ^c 1020 ^d	mA	
	DCS 1800	150	560	1278 ^c 665 ^d	mA	

Table 3-13: WP7607 and WP7609 Current Consumption Values

Mode	Parameter	Min	Typ ^a	Max ^b	Units
	B1	180	803	1140	mA
HSDPA data transfer ^e	B5 ^f	170	590	860	mA
	B8	150	550	840	mA
	B1	240	790	850	mA
LTE Data transfer ^g	В3	240	740	900	mA
	B5 ^f	210	750	850	mA
	B7	300	770	980	mA
	B8	210	620	700	mA
	B20 ^h	210	750	850	mA
	B28	210	670	710	mA
Idle—GSM/GPRS/EDGE	RegisteredMFRM=9USB active	25	25	36	mA
Idle—WCDMA	RegisteredDRX=8USB active	25	25	36	mA
Idle—LTE	RegisteredPaging cycle=256USB active	25	26	39	mA
Airplane mode	Radio offUSB active	25	25	36	mA
Power state—Sleep					
Idle—GSM/GPRS/EDGE	RegisteredMFRM=9USB-SS	1.7	1.8	4	mA
Idle—WCDMA	RegisteredDRX=8USB-SS	1.6	1.8	4	mA
Idle—LTE	RegisteredPaging cycle=256USB-SS	1.7	1.8	6	mA
Idle—LTE eDRX	Period = 40 sec	1.3	1.8	4	mA
Airplane mode	Radio offUSB-SS	1.3	1.3	4	mA

Table 3-13: WP7607 and WP7609 Current Consumption Values

Mode	Parameter	Min	Typ ^a	Max ^b	Units
Power state—ULPS					
Ultra Low Power Mode (ULPM)	See Table 3-17 on page 59 for details.				
Power Saving Mode (PSM)	Non-active	6	8	32	μА
GNSS ^j					
GNSS	Acquisition (Airplane mode, cold start)	23	25	35	mA
	Tracking (Registered)	23	25	35	mA

- a. Typical, measured at nominal temperature, nominal voltage.
- b. Worst case, measured at 85°C, on supported DC range.
- c. At GSM conducted 4 slot max Tx output power, measured at peak current on supported DC
- d. At GSM conducted 4 slot max TX output power, measured at average current on supported DC
- e. At WCDMA conducted max Tx output power (see Table 3-24 on page 62) f. Only applicable to the WP7609.
- g. At LTE conducted max Tx output power (see Table 3-39 on page 67)
- h. Only applicable to the WP7607.
- GNSS current consumption values are for the GNSS radio only. For total consumption, add the GNSS value to the consumption for the mode being used.

Table 3-14: WP7608 Current Consumption Values

Mode	Parameter	Min	Typ ^a	Max ^b	Units
Power state—Active					
GSM/GPRS/EDGE data transfer	E-GSM 900	160	650	2291 ^c 826 ^d	mA
	DCS 1800	590	590	970 ^c 512 ^d	mA
HSDPA data transfer ^e	B1	160	710	980	mA
HSDFA data transier	B8	140	650	880	mA
	B1	230	750	950	mA
	В3	220	780	880	mA
LTE Data transfer ^f	B5	200	650	770	mA
LIE Data transier	B8	200	680	850	mA
	B40	140	440	590	mA
	B41	140	430	620	mA
Idle—GSM/GPRS/ EDGE	RegisteredMFRM=9USB active	25	25	36	mA

Table 3-14: WP7608 Current Consumption Values (Continued)

Mode	Parameter	Min	Typ ^a	Max ^b	Units	
Idle—WCDMA	RegisteredDRX=8USB active	25	25	36	mA	
Idle—LTE	RegisteredPaging cycle=256USB active	25	26	39	mA	
Airplane mode	Radio offUSB active	25	25	36	mA	
Power state—Sleep	,					
Idle—GSM/GPRS/ EDGE	RegisteredMFRM=9USB-SS	1.8	2.0	3.6	mA	
Idle—WCDMA	RegisteredDRX=8USB-SS	1.6	1.7	3.2	mA	
Idle—LTE	RegisteredPaging cycle=256USB-SS	1.7	1.9	6	mA	
Idle—LTE eDRX	Period = 40 sec	1.5	1.7	4	mA	
Airplane mode	Radio offUSB-SS	1.3	1.3	4	mA	
Power state—Ultra Low	Power Mode (ULPM)				1	
Ultra Low Power Mode (ULPM)	ower Mode See Table 3-17 on page 59 for details.					
Power Saving Mode (PSM)	Non-active	11	15	32	μА	
GNSS ^g	GNSS ^g					
GNSS	Acquisition (Airplane mode, cold start)	23	25	35	mA	
	Tracking (Registered)	23	25	35	mA	

- a. Typical, measured at nominal temperature, nominal voltage. b. Worst case, measured at 70°C , 3.4V.

- c. Measured at peak current on supported DC range.
 d. At GSM conducted 4 slot max TX output power, measured at average current on supported DC range.
 e. At WCDMA conducted max Tx output power (see Table 3-25 on page 62)

- f. At LTE conducted max Tx output power (see Table 3-40 on page 67)
 g. GNSS current consumption values are for the GNSS radio only. For total consumption, add the GNSS value to the consumption for the mode being used.

Table 3-15: WP7610 Current Consumption Values

Mode	Parameter	Min	Typ ^a	Max ^b	Units
Power state—Active					
	B2	120	790	800	mA
HSDPA data transfer ^c	B4	130	670	950	mA
	B5	120	480	730	mA
	B2	210	770	980	mA
	B4	210	710	1000	mA
	B5	190	530	700	mA
LTE Data transfer ^d	B12	190	570	700	mA
LIE Data transier	B13	190	620	800	mA
	B14	190	640	700	mA
	B17	190	580	700	mA
	B66	210	720	1000	mA
Idle—WCDMA	RegisteredDRX=8USB active	25	25	36	mA
Idle—LTE	RegisteredPaging cycle=256USB active	25	26	39	mA
Airplane mode	Radio offUSB active	25	25	36	mA
Power state—Sleep					
Idle—WCDMA	RegisteredDRX=8USB-SS	1.2	1.6	4	mA
Idle—LTE	RegisteredPaging cycle=256USB-SS	1.7	1.8	6	mA
Idle—LTE eDRX Period = 40 sec		1	1.3	3.7	mA
Airplane mode	1	1.3	4	mA	
Power state—ULPS					
Ultra Low Power Mode (ULPM)	Not supported				
Power Saving Mode (PSM)	Non-active	7	8	21	μA

Table 3-15: WP7610 Current Consumption Values (Continued)

Mode	Parameter	Min	Typ ^a	Max ^b	Units
GNSS ^e					
GNSS	Acquisition (Airplane mode, cold start)	23	25	35	mA
	Tracking (Registered)	23	25	35	mA

- a. Typical, measured at nominal temperature, nominal voltage.
 b. Worst case, measured at 70°C, 3.4V.
 c. At WCDMA conducted max Tx output power (see Table 3-28 on page 63)
 d. At LTE conducted max Tx output power (see Table 3-43 on page 68)
 e. GNSS current consumption values are for the GNSS radio only. For total consumption, add the GNSS value to the consumption for the mode being used.

Table 3-16: WP7611 Current Consumption Values

Mode	Parameter	Min	Typ ^a	Max ^b	Units
Power state—Active					
	B2	120	790	800	mA
HSDPA data transfer ^c	B4	120	600	950	mA
	B5	120	480	730	mA
	B2	210	770	980	mA
	B4	210	710	1000	mA
	B5	190	530	700	mA
	B12	190	570	700	mA
LTE Data transfer ^d	B13	190	570	800	mA
LI L Data transier	B14	190	580	700	mA
	B25	210	770	980	mA
	B26	190	530	700	mA
	B66	220	640	1000	mA
	B71	190	570	700	mA
Idle—WCDMA	RegisteredDRX=8USB active	25	25	36	mA
Idle—LTE	RegisteredPaging cycle=256USB active	25	26	39	mA
Airplane mode	Radio off USB active	25	25	36	mA

Table 3-16: WP7611 Current Consumption Values (Continued)

Mode	Parameter	Min	Typ ^a	Max ^b	Units
Power state—Sleep					
Idle—WCDMA	RegisteredDRX=8USB-SS	1.2	1.6	4	mA
Idle—LTE	RegisteredPaging cycle=256USB-SS	1.7	1.8	6	mA
Idle—LTE eDRX	Period = 40 sec	1	1.3	3.7	mA
Airplane mode	Radio offUSB-SS	1	1.3	4	mA
Power state—ULPS					
Ultra Low Power Mode (ULPM)	Not supported				
Power Saving Mode (PSM)	Non-active	7	8	21	μΑ
GNSS ^e					
GNSS	Acquisition (Airplane mode, cold start)	15	25	35	mA
	Tracking (Registered)	15	25	35	mA

- a. Typical, measured at nominal temperature, nominal voltage.
 b. Worst case, measured at 70°C, 3.4V.
- c. At WCDMA conducted max Tx output power (see Table 3-22 on page 62)
- d. At LTE conducted max Tx output power (see Table 3-37 on page 66)
 e. GNSS current consumption values are for the GNSS radio only. For total consumption, add the GNSS value to the consumption for the mode being used.

Table 3-17 describes parameters that contribute to total current consumption while the module is in ULPM.

Table 3-17: ULPM Current Consumption^a

POWER_ON_N State	ULPM Wake Up Source	Hardware Pin State	Value for WP7601, WP7603, WP7607 and WP7609 ^b	Value for WP7608 ^b
	Wakeup timer	-	8 μΑ	158 µA
Off	GPIO36	Configured as open (default)	8 μΑ	15 μΑ
Oll	Off GPI038 ADC2° ADC3°	Other (Configured as closed and/or dependent on external circuitry design.)	≤ 58 µA	≤ 65 µA

Table 3-17: ULPM Current Consumption^a (Continued)

POWER_ON_N State	ULPM Wake Up Source	Hardware Pin State	Value for WP7601, WP7603, WP7607 and WP7609 ^b	Value for WP7608 ^b
	Wakeup timer	-	908 µA	915 µA
0.5	GPIO36	Configured as open (default)	908 μΑ	915 µA
On	GPIO38 ADC2 ^c ADC3 ^c	Other (Configured as closed and/or dependent on external circuitry design.)	≤ 958 µA	≤ 965 µA

a. Available for Group A variants only.

3.3 RF

This section presents the module's WWAN RF interface, and defines the specifications for the LTE, HSPA, WCDMA, and GSM interfaces for supporting modules.

Note: RF sensitivity values presented in this section are for soldered-down modules. Sensitivity values decrease for modules installed in snap-in sockets, which might prevent the module from meeting 3GPP minimum specifications.

AirPrime WP76XX embedded modules are designed to be compliant with the standards in Table 3-18.

Table 3-18: Standards Compliance

Technology/Standards	Modules		
LTE: 3GPP Release 10	WP7601, WP7603, WP7605, WP7607, WP7608, WP7609, WP7610, WP7611		
UMTS (WCDMA): 3GPP Release 8	WP7603, WP7605, WP7607, WP7608, WP7609, WP7610, WP7611		
GSM: ETSI GSM 05.05 3GPP TS 45.005/Antecedent TS 05.05	WP7607, WP7608, WP7609		

b. Typical values.

c. Current consumption is affected by the interval between successive ADC measurements—longer intervals result in significantly lower current consumption.

3.3.1 GSM/GPRS/EDGE RF Interface

This section presents the GSM/GPRS/EDGE RF specification for AirPrime WP7607, WP7608, and WP7609 modules.

3.3.1.1 GSM/GPRS/EDGE Tx Output Power

The module's GSM/GPRS/EDGE maximum transmitter output power is specified in Table 3-22.

Table 3-19: WP7607/WP7608/WP7609 Conducted Tx Max Output Power Tolerances — GSM/GPRS/EDGE^a

RF band	Min	Тур	Max	Units	Notes
E-GSM 900	31	33	34	dBm	GMSK mode (Class 4; 2 W, 33 dBm)
E-G3W 900	24.5	27	29.5	dBm	8PSK mode (Class E2; 0.5 W, 27 dBm)
DCS 1800	28	30	31	dBm	GMSK mode (Class 1; 1 W, 30 dBm)
DC3 1600	23.5	26	28.5	dBm	8PSK mode (Class E2; 0.4 W, 26 dBm)

a. Stated power tolerances satisfy 3GPP TS 51.010-1 requirements for normal (25°C) conditions.

3.3.1.2 GSM/GPRS/EDGE Rx Sensitivity

The module's GSM/GPRS/EDGE receiver sensitivity is specified in Table 3-29.

Table 3-20: WP7607/WP7609 Conducted Rx Sensitivity — GSM/GPRS/ **EDGE Bands**^a

	@ +25°C (dBm) ^b	@ Class A (dBm) ^c
E-GSM 900	-109	-108
DCS 1800	-109	-108

a. Stated sensitivity values satisfy 3GPP TS 51.010-1 requirements for normal (25°C) and Class A (extreme) conditions.

Table 3-21: WP7608 Conducted Rx Sensitivity — GSM/GPRS/EDGE Bands^a

	@ +25°C (dBm) ^b	@ Class A (dBm) ^c
E-GSM 900	-110	-109
DCS 1800	-109	-108

a. Stated sensitivity values satisfy 3GPP TS 51.010-1 requirements for normal (25°C) and Class A (extreme) conditions.

b. Typical value

c. Typical value, tested at Class A extreme condition

<sup>b. Typical value
c. Typical value, tested at Class A extreme condition</sup>

3.3.2 WCDMA RF Interface

This section presents the WCDMA RF specification for AirPrime WP7603, WP7605, WP7607, WP7608, WP7609, WP7610 and WP7611 modules.

3.3.2.1 WCDMA Tx Output Power

The module's WCDMA maximum transmitter output power is specified in the following tables.

Table 3-22: WP7603 Conducted Tx Max Output Power Tolerances — WCDMA^a

RF Band	Min	Тур	Max	Units	Notes
B2	22	23	24	dBm	Power class 3
B4	22	23	24	dBm	Power class 3
B5	22	23	24	dBm	Power class 3

a. Stated power tolerances satisfy 3GPP TS 34.121-1 requirements for normal (25°C) conditions.

Table 3-23: WP7605 Conducted Tx Max Output Power Tolerances — WCDMA^a

RF Band	Min	Тур	Max	Units	Notes
B1	22	23	24	dBm	Power class 3 bis
В6	22	23	24	dBm Power class 3 bis	
B19	22	23	24	dBm	Power class 3 bis

a. Stated power tolerances satisfy 3GPP TS 34.121-1 requirements for normal (25°C) conditions.

Table 3-24: WP7607 Conducted Tx Max Output Power Tolerances—WCDMA

RF Band	Min	Typ ^a	Max	Units	Notes
B1	21.5	23	24	dBm	Power class 3 bis
B8	21.5	23	24	dBm	Power class 3 bis

a. Stated typical power tolerance satisfies 3GPP TS 34.121-1 requirements for normal (25°C) conditions

Table 3-25: WP7608 Conducted Tx Max Output Power Tolerances — WCDMA

RF band	Min	Typ ^a	Max	Units	Notes
B1	23	24	25	dBm	Power class 3
В8	23	24	25	dBm	Power class 3

Stated typical power tolerance satisfies 3GPP TS 34.121-1 requirements for normal (25°C) conditions.

Table 3-26: WP7609 Conducted Tx Max Output Power Tolerances—WCDMA

RF band	Min	Typ ^a	Max	Units	Notes
B1	21.5	23	24	dBm	Power class 3 bis
B5	21.5	23	24	dBm Power class 3 bis	
B8	21.5	23	24	dBm	Power class 3 bis

a. Stated typical power tolerance satisfies 3GPP TS 34.121-1 requirements for normal (25°C) conditions

Table 3-27: WP7610 Conducted Tx Max Output Power Tolerances — WCDMA

RF band	Min	Typ ^a	Max	Units	Notes
B2	21.5	23	24	dBm	Power class 3
B4	21.5	23	24	dBm	Power class 3
B5	21.5	23	24	dBm	Power class 3

a. Stated typical power tolerance satisfies 3GPP TS 34.121-1 requirements for normal (25°C) conditions.

Table 3-28: WP7611 Conducted Tx Max Output Power Tolerances — WCDMA

RF band	Min	Typ ^a	Max	Units	Notes
B2	21.5	23	24	dBm	Power class 3 bis
B4	21.5	23	24	dBm	Power class 3 bis
B5	21.5	23	24	dBm	Power class 3 bis

a. Stated typical power tolerance satisfies 3GPP TS 34.121-1 requirements for normal (25°C) conditions.

3.3.2.2 WCDMA Rx Sensitivity

The module's WCDMA receiver sensitivity is specified in the following tables.

Table 3-29: WP7603 Conducted Rx Sensitivity — WCDMA Bands^{a,b}

	+25°C		Cla	ass A		
Band	Primary (dBm) ^c	Secondary (dBm) ^c	Primary (dBm) ^d	Secondary (dBm) ^d	Standard Limit (dBm)	Notes
B2	-112	-113	-111	-112	-104	CS 0.1% BER 12.2 kbps
B4	-111	-112	-109	-111	-106	Reference
B5	-113	-113	-111	-108	-104	Measurement Channel

a. Stated sensitivity values satisfy 3GPP TS 34.121-1 V8.10.0 requirements for normal (25°C) and Class A (extreme) conditions.

Table 3-30: WP7605 Conducted Rx Sensitivity — WCDMA Bands^{a,b}

	+25°C		CI	ass A		
Band	Primary (dBm) ^c	Secondary (dBm) ^c	Primary (dBm) ^d	Secondary (dBm) ^d	Standard Limit (dBm)	Notes
B1	-112	-112	-110	-111	-106.7	CS 0.1% BER
В6	-112	-111	-110	-111	-106.7	12.1 kbps Reference
B19	-112	-111	-111	-111	-106.7	Measurement Channel

a. Stated sensitivity values satisfy 3GPP TS 34.121-1 V8.10.0 requirements for normal (25°C) and Class A (extreme) conditions.

Table 3-31: WP7607 Conducted Rx Sensitivity — WCDMA Bands a,b

	+25°C		Cla	ass A		
Band	Primary (dBm) ^c	Secondary (dBm) ^c	Primary (dBm) ^d	Secondary (dBm) ^d	Standard Limit (dBm)	Notes
B1	-108	-108	-107	-107	-106	CS 0.1% BER
В8	-109	-109	-109	-109	-103	12.2 kbps Reference Measurement Channel

a. Stated sensitivity values satisfy 3GPP TS 34.121-1 V8.10.0 requirements for normal (25°C) and Class A (extreme) conditions.

b. RF sensitivity values are for soldered-down modules.

c. Typical value.d. Typical value, tested at Class A extreme condition.

b. RF sensitivity values are for soldered-down modules.

Typical value.

d. Typical value, tested at Class A extreme temperature.

b. RF sensitivity values are for soldered-down modules.

c. Typical value.d. Typical value, tested at Class A extreme temperature.

Table 3-32: WP7608 Conducted Rx Sensitivity — WCDMA Bands a,b

	+25°C		CI	ass A		
Band	Primary (dBm) ^c	Secondary (dBm) ^c	Primary (dBm) ^d	Secondary (dBm) ^d	Standard Limit (dBm)	Notes
B1	-109	-109	-107	-109	-106	CS 0.1% BER
B8	-110	-110	-108	-109	-103	12.2 kbps Reference Measurement Channel

- Stated sensitivity values satisfy 3GPP TS 34.121-1 V8.10.0 requirements for normal (25°C) and Class A (extreme) conditions.
- b. RF sensitivity values are for soldered-down modules.
- c. Typical value.
- d. Typical value, tested at Class A extreme temperature.

Table 3-33: WP7609 Conducted Rx Sensitivity — WCDMA Bands^{a,b}

	+25°C		CI	ass A		
Band	Primary (dBm) ^c	Secondary (dBm) ^c	Primary (dBm) ^d	Secondary (dBm) ^d	Standard Limit (dBm)	Notes
B1	-108	-108	-107	-107	-106	CS 0.1% BER
B5	-109	-108	-108	-106	-104	12.2 kbps Reference
B8	-109	-109	-109	-109	-103	Measurement Channel

- Stated sensitivity values satisfy 3GPP TS 34.121-1 V8.10.0 requirements for normal (25°C) and Class A (extreme) conditions.
- b. RF sensitivity values are for soldered-down modules.
- c. Typical value.
- d. Typical value, tested at Class A extreme temperature.

Table 3-34: WP7610 Conducted Rx Sensitivity — WCDMA Bands^a

	+25°C		CI	ass A		
Band	Primary (dBm) ^b	Secondary (dBm) ^c	Primary (dBm) ^c	Secondary (dBm) ^d	Standard Limit (dBm)	Notes
B2	-109	-110.5	-107.5	-109.5	-104	CS 0.1% BER 12.2 kbps
B4	-110	-110.5	-109	-109.5	-106	Reference
B5	-111	-111	-109.5	-110	-104	Measurement Channel

- Stated sensitivity values satisfy 3GPP TS 34.121-1 V8.10.0 requirements for normal (25°C) and Class A (extreme) conditions.
- b. Typical value.
- c. Typical value, tested at Class A extreme condition.

Table 3-35: WP7611 Conducted Rx Sensitivity — WCDMA Bands^a

	+:	25°C	CI	ass A			
Band	Primary (dBm) ^b	Secondary (dBm) ^c	Primary (dBm) ^c	Secondary (dBm) ^d	Standard Limit (dBm)	Notes	
B2	-110.5	-110.5	-109.5	-109.5	-104	CS 0.1% BER	
B4	-110	-110	-109	-109	-106	12.2 kbps Reference	
B5	-111.5	-110	-110.5	-109	-104	Measurement Channel	

a. Stated sensitivity values satisfy 3GPP TS 34.121-1 V8.10.0 requirements for normal (25°C) and Class A (extreme) conditions.

3.3.3 LTE RF Interface

This section presents the LTE RF specification for AirPrime WP76XX modules.

3.3.3.1 LTE Tx Output Power

The module's LTE maximum transmitter output power is specified in the following tables.

Table 3-36: WP7601 Conducted Tx Max Output Power Tolerances—LTE^a

RF Band	Operating Condition	Min	Тур	Max	Units	Notes
B4	Normal (25°C)	22	23	24	dBm	Power class 3
B13	Normal (25°C)	22	23	24	dBm	Power class 3

Stated power tolerances satisfy 3GPP TS 36.521-1 requirements for normal (25°C) and Class A (extreme) conditions.

Table 3-37: WP7603 Conducted Tx Max Output Power Tolerances—LTE^a

RF Band	and Operating Condition		Тур	Max	Units	Notes
B2	Normal (25°C)		23	24	dBm	Power class 3
B4	B4 Normal (25°C)		23	24	dBm	Power class 3
B5	Normal (25°C)	22	23	24	dBm	Power class 3
B12	Normal (25°C)	22	23	24	dBm	Power class 3

a. Stated power tolerances satisfy 3GPP TS 36.521-1 requirements for normal (25°C) and Class A (extreme) conditions.

Table 3-38: WP7605 Conducted Tx Max Output Power Tolerances — LTE^a

RF Band	Band Operating Condition		Тур	Max	Units	Notes
B1	Normal (25°C)	22	23	24	dBm	Power class 3
В3	Normal (25°C)	22	23	24	dBm	Power class 3

b. Typical value.

c. Typical value, tested at Class A extreme condition.

Table 3-38: WP7605 Conducted Tx Max Output Power Tolerances—LTE^a

RF Band	and Operating Condition		Тур	Max	Units	Notes	
В8	Normal (25°C)	22	23	24	dBm	Power class 3	
B11	Normal (25°C)	22	23	24	dBm	Power class 3	
B18	Normal (25°C)	22	23	24	dBm	Power class 3	
B19	B19 Normal (25°C)		23	24	dBm	Power class 3	
B21	Normal (25°C)	22	23	24	dBm	Power class 3	

Stated power tolerances satisfy 3GPP TS 36.521-1 requirements for normal (25°C) and Class A (extreme) conditions.

Table 3-39: WP7607 Conducted Tx Max Output Power Tolerances—LTE^a

RF Band	Operating Condition	Min	Тур	Max	Units	Notes
B1	Normal (25°C)	21	23	24	dBm	Power class 3
В3	Normal (25°C)		23	24	dBm	Power class 3
В7	Normal (25°C)	21	23	24	dBm	Power class 3
В8	Normal (25°C)		23	24	dBm	Power class 3
B20	B20 Normal (25°C)		23	24	dBm	Power class 3
B28	Normal (25°C)	21	23	24	dBm	Power class 3

Stated typical power tolerance satisfies 3GPP TS 36.521-1 requirements for normal (25°C) and Class A (extreme) conditions.

Table 3-40: WP7608 Conducted Tx Max Output Power Tolerances—LTE^a

RF Band	Operating Condition	Min	Тур	Max	Units	Notes
B1	Normal (25°C)	21	23	24	dBm	Power class 3
В3	Normal (25°C)	21	23	24	dBm	Power class 3
B5	Normal (25°C)	21	23	24	dBm	Power class 3
В8	Normal (25°C)	21	23	24	dBm	Power class 3
B40	B40 Normal (25°C)		23	24	dBm	Power class 3
B41	Normal (25°C)	21	23	24	dBm	Power class 3

a. Stated typical power tolerance satisfies 3GPP TS 36.521-1 requirements for normal (25°C) and Class A (extreme) conditions.

Table 3-41: WP7609 Conducted Tx Max Output Power Tolerances—LTE^a

RF Band	nd Operating Condition		Тур	Max	Units	Notes
B1	Normal (25°C)	21	23	24	dBm	Power class 3
В3	Normal (25°C)	21	23	24	dBm	Power class 3
B5	Normal (25°C)	21	23	24	dBm	Power class 3

Table 3-41: WP7609 Conducted Tx Max Output Power Tolerances—LTE^a

RF Band	Band Operating Condition		Тур	Max	Units	Notes
В7	Normal (25°C)	21	23	24	dBm	Power class 3
В8	Normal (25°C)	21	23	24	dBm	Power class 3
B28	Normal (25°C)	21	23	24	dBm	Power class 3

a. Stated typical power tolerance satisfies 3GPP TS 36.521-1 requirements for normal (25°C) and Class A (extreme) conditions.

Table 3-42: WP7610 Conducted Tx Max Output Power Tolerances — LTE^a

RF Band	Operating Condition	Min	Тур	Max	Units	Notes
B2	Normal (25°C)	21	23	24	dBm	Power class 3
B4	Normal (25°C)	21	23	24	dBm	Power class 3
B5	Normal (25°C)		23	24	dBm	Power class 3
B12	Normal (25°C)	21	23	24	dBm	Power class 3
B13	Normal (25°C)	21	23	24	dBm	Power class 3
B14	Normal (25°C)	21	23	24	dBm	Power class 3
B17	B17 Normal (25°C)		23	24	dBm	Power class 3
B66	Normal (25°C)	21	23	24	dBm	Power class 3

a. Stated typical power tolerance satisfies 3GPP TS 36.521-1 requirements for normal (25°C) and Class A (extreme) conditions.

Table 3-43: WP7611 Conducted Tx Max Output Power Tolerances—LTE^a

RF Band	Operating Condition	Min	Тур	Max	Units	Notes		
B2	Normal (25°C)	21	23	24	dBm	Power class 3		
B4	Normal (25°C)	21	23	24	dBm	Power class 3		
B5	Normal (25°C)	21	23	24	dBm	Power class 3		
B12	Normal (25°C)	21	23	24	dBm	Power class 3		
B13	Normal (25°C)	21	23	24	dBm	Power class 3		
B14	Normal (25°C)	21	23	24	dBm	Power class 3		
B25	Normal (25°C)	21	23	24	dBm	Power class 3		
B26	Normal (25°C)	21	23	24	dBm	Power class 3		
B66	Normal (25°C)	21	23	24	dBm	Power class 3		
B71	Normal (25°C)	21	23	24	dBm	Power class 3		

Stated typical power tolerance satisfies 3GPP TS 36.521-1 requirements for normal (25°C) and Class A (extreme) conditions.

3.3.3.2 LTE Rx Sensitivity

The module's LTE receiver sensitivity is specified in the following tables.

Table 3-44: WP7601 Conducted Rx Sensitivity - LTE Bands^a

			+25°C (dBm)		()	SIMO	
Lī	ΓE Bands	Primary (Typical)	Secondary (Typical)	SIMO (Typical)	Primary Secondary (Typical)		SIMO (Typical)	(Worst case) ^b
B4	Full RB	-98	-100	-102	-97	-99	-100	-96.3
B13	BW: 10 MHz ^c	-99	-98	-101	-98	-98	-99	-93.3

a. RF sensitivity values are for soldered-down modules.

Table 3-45: WP7603 Conducted Rx Sensitivity — LTE Bands^a

	+25°C (dBm)			(SIMO			
LT	E Bands	Primary (Typical)	Secondary (Typical)	SIMO (Typical)	Primary (Typical)	Secondary (Typical)	SIMO (Typical)	(Worst case) ^b
B2		-99	-99	-102	-98	-99	-101	-94.3
B4	Full RB	-98	-100	-102	-97	-99	-100	-96.3
B5	BW: 10 MHz ^c	-100	-100	-103	-99	-99	-100	-94.3
B12		-99	-99	-101	-98	-98	-100	-93.3

a. RF sensitivity values are for soldered-down modules.

Table 3-46: WP7605 Conducted Rx Sensitivity - LTE Bands

	+25°C (dBm)			Class A (dBm)			SIMO	
LTE Bands		Primary (Typical)	Secondary (Typical)	SIMO (Typical)	Primary (Typical)	Secondary (Typical)	SIMO (Typical)	(Worst case) ^a
B1		-98	-100	-101	-97	-99	-101	-96.3
В3		-98	-100	-101	-97	-99	-100	-93.3
В8		-100	-100	-102	-99	-99	-101	-93.3
B11	Full RB BW: 10 MHz	-97	-100	-100	-97	-99	-100	-96.3
B18		-100	-99	-102	-99	-98	-101	-96.3
B19		-100	-99	-102	-99	-98	-101	-96.3
B21		-99	-100	-102	-98	-99	-101	-96.3

a. Per 3GPP specification.

b. Per 3GPP specification.

c. Sensitivity values scale with bandwidth: x_MHz_Sensitivity = 10_MHz_Sensitivity - 10×log(10 MHz/x_MHz) Note: Bandwidth support is dependent on firmware version.

b. Per 3GPP specification.

c. Sensitivity values scale with bandwidth: x_MHz_Sensitivity = 10_MHz_Sensitivity - 10×log(10 MHz/x_MHz) Note: Bandwidth support is dependent on firmware version.

Table 3-47: WP7607 and WP7609 Conducted Rx Sensitivity — LTE Bands^a

	+25°C (dBm)			Class A (dBm)			SIMO	
LTE Bands		Primary (Typical)	Secondary (Typical)	SIMO (Typical)	Primary (Typical)	Secondary (Typical)	SIMO (Typical)	(Worst case) ^b
B1		-97.5	-96.5	-100	-96.5	-96	-99	-96.3
В3		-97	-97	-100	-96.5	-97	-99	-93.3
B5 ^d		-97.5	-96.5	-99.5	-96	-95	-98	-94.3
В7	Full RB BW: 10 MHz ^c	-95	-96.5	-99	-94.5	-96	-98	-94.3
В8		-98	-97	-100	-97.5	-96	-99	-93.3
B20 ^e		-97	-96	-99	-97	-95	-99	-93.3
B28		-96	-93	-98.5	-95.5	-92	-98	-94.8

- a. RF sensitivity values are for soldered-down modules.
- b. Per 3GPP specification.
- c. Sensitivity values scale with bandwidth: x_MHz_Sensitivity = 10_MHz_Sensitivyt 10×log(10 MHz/x_MHz) Note: Bandwidth support is dependent on firmware version.
- d. Only applicable to the WP7609.
- e. Only applicable to the WP7607.

Table 3-48: WP7608 Conducted Rx Sensitivity - LTE Bands^a

	+25°C (dBm)			(SIMO			
LTE Bands		Primary (Typical)	Secondary (Typical)	SIMO (Typical)	Primary (Typical)	Secondary (Typical)	SIMO (Typical)	(Worst case) ^b
B1		-97.5	-98.5	-101	-96	-97	-99	-96.3
В3		-98	-98	-101	-97	-96.5	-99	-93.3
B5	Full RB	-98.5	-96	-100.5	-97.5	-93	-98	-94.3
В8	BW: 10 MHz ^c	-98.5	-99	-102	-98	-97.5	-100	-93.3
B40		-98	-98	-101	-97	-96.5	-99	-93.3
B41		-97.5	-97.5	-100.5	-96	-95.5	-98	-94.8

a. RF sensitivity values are for soldered-down modules.

Table 3-49: WP7610 Conducted Rx Sensitivity—LTE Bands

		+25°C (dBm)			Class A (dBm)			SIMO
LTE bands		Primary (Typical)	Secondary (Typical)	SIMO (Typical)	Primary (Typical)	Secondary (Typical)	SIMO (Typical)	(Worst case) ^a
B2	Full RB BW: 10 MHz	-96.5	-97	-100	-95.5	-96	-99	-94.3
B4	Full RB BW: 10 MHz	-97.5	-97.5	-100	-96.5	-96.5	-99	-96.3

b. Per 3GPP specification.

c. Sensitivity values scale with bandwidth: x_MHz_Sensitivity = 10_MHz_Sensitivyt - 10×log(10 MHz/x_MHz)
Note: Bandwidth support is dependent on firmware version.

Table 3-49: WP7610 Conducted Rx Sensitivity—LTE Bands (Continued)

		+25°C (dBm)			Class A (dBm)			SIMO
LTE bands		Primary (Typical)	Secondary (Typical)	SIMO (Typical)	Primary (Typical)	Secondary (Typical)	SIMO (Typical)	(Worst case) ^a
B5	25 RB BW: 10 MHz	-98.5	-98	-101.5	-97	-97	-100.5	-94.3
B12	20 RB BW: 10 MHz	-96.5	-93.5	-98.5	-94.5	-93	-97	-93.3
B13	20 RB BW: 10 MHz	-99	-94	-100	-98	-92	-99	-93.3
B14	15 RB BW: 10 MHz	-96.5	-95	-99	-95	-94	-97.5	-93.3
B17	20 RB BW: 10 MHz	-96	-93.5	-98	-94.5	-93	-96.5	-93.3
B66	Full RB BW: 10 MHz	-97.5	-97.5	-100	-96.5	-96.5	-99	-95.8

a. Per 3GPP specification.

Table 3-50: WP7611 Conducted Rx Sensitivity—LTE Bands

		+25°C (dBm)		Class A (dBm)			SIMO	
Lī	ΓE bands	Primary (Typical)	Secondary (Typical)	SIMO (Typical)	Primary (Typical)	Secondary (Typical)	SIMO (Typical)	(Worst case) ^a
B2	Full RB BW: 10 MHz	-98	-98	-100	-97	-97.5	-99.5	-94.3
B4	Full RB BW: 10 MHz	-98	-97.5	-99.5	-97	-96.5	-98.5	-96.3
B5	25 RB BW: 10 MHz	-99	-98	-100.5	-98	-97	-99.5	-94.3
B12	20 RB BW: 10 MHz	-97.5	-96	-99	-96	-95.5	-98	-93.3
B13	20 RB BW: 10 MHz	-97.5	-95	-99	-96.5	-94	-98	-93.3
B14	15 RB BW: 10 MHz	-97.5	-97	-99.5	-96.5	-96	-98.5	-93.3
B25	Full RB BW: 10 MHz	-98	-98	-100	-97	-97.5	-99.5	-92.8
B26	25 RB BW: 10 MHz	-99	-98	-100.5	-98	-97	-99.5	-93.8
B66	Full RB BW: 10 MHz	-98	-98	-100	-97	-97	-99	-95.8
B71	25 RB BW: 10 MHz	-98	-98	-100	-96.5	-97	-99	-93.5

a. Per 3GPP specification.

3.3.4 WWAN Antenna Interface

The following table defines the WWAN antenna interfaces of the AirPrime WP76XX modules.

Table 3-51: WP76XX WWAN Antenna Interface Pins

Pin #	Signal name	Direction	Function
30	GND		Diversity Antenna Ground
31	RF_DIV	Input	Diversity Antenna Interface
32	GND		Diversity Antenna Ground
48	GND		Primary Antenna Ground
49	RF_MAIN	Input/Output	Primary Antenna Interface
50	GND		Primary Antenna Ground
111	GND		Diversity Antenna Ground
113	GND		Diversity Antenna Ground
136	GND		Primary Antenna Ground
139	GND		Primary Antenna Ground

3.3.4.1 WWAN Antenna Recommendations

Table 3-52 defines the key characteristics to consider for antenna selection.

Table 3-52: Antenna Recommendations^a

Parameter		Recommendations	Comments	
Antenna system		External multi-band antenna system	Dual WWAN antennas for diversity (Antenna Antenna 2) ^b	
		746–787 MHz		
	WP7601	1710–1755 MHz		
Operating		2110–2155 MHz	Operating bands depend on the module's	
bands		699-894 MHz	supported bands/modes.	
	WP7610	1710–2200 MHz		
	WP7611	2110–2155 MHz		

Table 3-52: Antenna Recommendations^a (Continued)

Para	ameter	Recommendations	Comments
		824–894 MHz	
		880–960 MHz	
	WP7608	1710–1880 MHz	
Operating bands	WP7611	1920–2170 MHz	
		2300–2400 MHz	
		2535–2655 MHz	Operating bands depend on the module's supported bands/modes.
		703–960 MHz	Supported Burids/Modes.
	WP7605	1427.9–1510.9 MHz	
	WP7607 WP7609	1710–1980 MHz	
	WP7611	2110–2170 MHz	
		2500–2690 MHz	
VSWR		< 2.5:1 (worst case)	On all bands including band edgesApplies to both antennas
Total radiated	efficiency	> 50% on all bands	 Measured at the RF connector. Applies to both antennas. Includes mismatch losses, losses in the matching circuit, and antenna losses, excluding cable loss. Sierra Wireless recommends using antenna efficiency as the primary parameter for evaluating the antenna system. Peak gain is not a good indication of antenna performance when integrated with a host device (the antenna does not provide omnidirectional gain patterns). Peak gain can be affected by antenna size, location, design type, etc.—the antenna gain pattern remains fixed unless one or more of these parameters change.
Radiation patte	erns	Nominally omnidirectional radiation pattern in azimuth plane.	
Envelope correlation coefficient between Antenna 1 and Antenna 2		< 0.5 on Rx bands below 960 MHz< 0.2 on Rx bands above 1.4 GHz	
Mean Effective Gain (MEG)		≥ -3 dBi	
Mean Effective Gain Imbalance—Antenna 1 and Antenna 2 (MEG1 / MEG2)		< 6 dB for diversity operation	

Table 3-52: Antenna Recommendations^a (Continued)

Parameter	Recommendations	Comments
Maximum antenna gain	Must not exceed antenna gains due to RF exposure and ERP/EIRP limits, as listed in the module's FCC grant.	
Isolation between Antenna 1 and Antenna 2 (S21)	> 10 dB	 If antennas can be moved, test all positions for both antennas. Unless otherwise specified, this isolation requirement must be maintained for optimum operation. Make sure all other wireless devices (Bluetooth or WLAN antennas, etc.) are turned OFF to avoid interference.
Maximum voltage applied to antenna	6.3 VDC	
Power handling	> 1 W on all bands	 Measure power endurance over 4 hours (estimated talk time) using a 2 W CW signal—set the CW test signal frequency to the middle of the PCS Tx band (1880 MHz for PCS). Visually inspect device to ensure there is no damage to the antenna structure and matching components.
		VSWR/TIS/TRP measurements taken before and after this test must show similar results.

a. These worst-case VSWR figures for the transmitter bands may not guarantee RSE levels to be within regulatory limits. The device alone meets all regulatory emissions limits when tested into a cabled (conducted) 50Ω system. With antenna designs with up to 2.5:1 VSWR or worse, the radiated emissions could exceed limits. The antenna system may need to be tuned in order to meet the RSE limits as the complex match between the module and antenna can cause unwanted levels of emissions. Tuning may include antenna pattern changes, phase/delay adjustment, passive component matching. Examples of the application test limits would be included in FCC Part 22, Part 24 and Part 27, test case 4.2.16 for GSM (ETSI EN 301 511), and test case 4.2.2 for WCDMA (ETSI EN 301 908-1), where applicable.

b. Antenna 1—Primary (RF_MAIN), Antenna 2—Secondary (RF_DIV) (Diversity)

3.4 GNSS

The AirPrime WP76XX includes Global Navigation Satellite System (GNSS) capabilities via the QUALCOMM IZat™ Gen8C Engine (formerly gpsOne), capable of operation in assisted and standalone GNSS modes (GPS/Galileo/GLONASS/BeiDou/QZSS).

Note: AirPrime WP76xx modules are not affected by the 2019 GPS week rollover. Software modifications extend the GPS rollover date to 12 December 2032.

3.4.1 GNSS Characteristics

The GNSS implementation supports GPS L1, Galileo E1, BeiDou-B1, QZSS and GLONASS L1 FDMA operation.

Table 3-53: GNSS Characteristics^a

	Parameter	Value
	Standalone or MS-based tracking sensitivity	-160 dBm
Sensitivity ^b	Cold start acquisition sensitivity	-145 dBm
	MS-assisted acquisition sensitivity	-158 dBm
Accuracy in open sky (1 Hz tracking)		< 2 m CEP-50
Satellite channels	Acquisition	118
available ^c	Simultaneous tracking	40
Support for predicted orbits		Yes
Predicted orbit CEP-50 accuracy		5 m
	Hot	1 s
Standalone Time To First Fix (TTFF)	Warm	29 s
, ,	Cold	32 s
Altitude (max)		18,2888 m (60,000 ft)
Velocity (max)		1,852 km/h (1150.8 mph)
Acceleration (max)		20 m/s ²
GNSS message proto	cols	NMEA
Recommended signal	power for GPS input	Below -120 dBm
Maximum allowed GP	S input	-116 dBm (if noise figure ≤ 3 is achieved)

a. Acquisition / tracking sensitivity performance figures in conducted mode assume a 2.5 dB noise figure.

b. GNSS sensitivity may degrade for modules installed in snap-in sockets.

c. Resources are dynamically assigned and not constellation-specific.

3.4.2 GNSS Antenna Interface

The GNSS antenna interface is defined in Table 3-54.

Table 3-54: GNSS Antenna Interface Pads

Pad	Name	Direction ^a	Function	
37	GND		GNSS Antenna Ground	
38	RF_GNSS	Input	GNSS Antenna Interface	
39	GND		GNSS Antenna Ground	
125	GND		GNSS Antenna Ground	
128	GND		GNSS Antenna Ground	

a. Signal direction with respect to the module.

3.4.2.1 GNSS Antenna Recommendations

Table 3-55 defines the key characteristics to consider for antenna selection.

Table 3-55: GNSS Standalone Antenna Recommendations

Parameter	Recommendations	Notes
Frequency range	 Wide-band GPS, Galileo, GLONASS, and BeiDou: 1559–1606 MHz recommended Narrow-band GPS and QZSS: 1575.42 MHz ± 2.046 MHz minimum 	
Field of view (FOV)	 Omni-directional in azimuth -45° to +90° in elevation 	
Polarization (average Gv/Gh)	> 0 dB	Vertical linear polarization is sufficient.
Free space average gain (Gv+Gh) over FOV	> -6 dBi (preferably > -3 dBi)	Gv and Gh are measured and averaged over -45° to +90° in elevation, and ±180° in azimuth.
Gain	 Maximum gain and uniform coverage in the high elevation angle and zenith. Gain in azimuth plane is not desired. 	
Average 3D gain	> -5 dBi	
Isolation between GNSS and RF Antenna	> 20 dB in all uplink bands	
Typical VSWR	< 2.5:1	
Polarization	Any other than LHCP (left-hand circular polarized) is acceptable.	Type of antenna and polarization (RHCP/linear) to be implemented is a matter of consideration based on specific end application.
Maximum voltage applied to antenna	6.3 VDC	

Table 3-55: GNSS Standalone Antenna Recommendations (Continued)

Parameter	Recommendations	Notes
700 MHz harmonic ^a	< -56 dBm (input jammer 787.76 MHz at -25 dBm and measure the harmonic tone at 1575.42 MHz)	This specification is for B13 and B14 coexistence.
IIP2 ^a	> 45 dBm (Input jammers at 824.6 MHz with level -25 dBm and 2400 MHz with level -32 dBm and measure output IM2 at 1575.4 MHz)	Out of band
IIP3 ^a	> 2 dBm (Input jammers at 1712.7 MHz with level -20 dBm and 1850 MHz with level -65 dBm and measure output IM3 at 1575.4 MHz)	Out of band
Input 1 dB power compression point ^a	> -10 dBm	
Out of band rejection for an active a	antenna	
777–798 MHz	> 50 dB	
814–915 MHz	> 40 dB	50 dB is preferred
925–960 MHz	> 30 dB	50 dB is preferred
1427–1463 MHz	> 35 dB	
1710–1785 MHz	> 35 dB	
1850–1980 MHz	> 40 dB	
2010–2025 MHz	> 40 dB	
2305–2315 MHz	> 40 dB	
2401–2483 MHz	> 40 dB	
2500–2570 MHz	> 35 dB	

a. For the LNA used by an active antenna

3.5 Electrical Specifications

This section provides details of the key electrical specifications of the AirPrime WP76XX embedded module.

3.5.1 Absolute Maximum Ratings

This section defines the absolute maximum ratings of the AirPrime WP76XX.

Warning: If these parameters are exceeded, even momentarily, damage may occur to the device. In addition, extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Note: Operation above the maximum specified operating voltage (see Table 3-3 on page 39) is not recommended, and specified typical performance or functional operation of the device is neither implied nor guaranteed.

Table 3-56: Absolute Maximum Ratings

Paramete	Parameter		Тур	Max	Units
Power supply voltages					
VBAT_BB	Power Supply Input	0	-	6.0	V
VBAT_RF	Power Supply Input	0	-	5.5	V
VDD_Px (low-voltage (1.2V) operation)	Digital pad circuits	-0.5	-	1.44	V
VDD_Px (low-voltage (1.8V) operation)	Digital pad circuits	-0.5	-	2.3	V
VDD_Px (high-voltage (2.85V) operation)	Digital pad circuits	-0.5	-	3.35	V
USB signal pins					
USB_D+	High-speed USB data plus	-	-	3.6	V
USB_D-	High-speed USB data minus	-	-	3.6	V
USB_VBUS	High-speed USB bus voltage	-	-	5.25	V
Thermal conditions					
TS	Storage temperature	-40		85	°C
TJ	Junction temperature	-	-	130	°C
Maximum voltage applied to antenna inte	rface pins				
	RF_MAIN	-		6.3	Vdc
VANT	RF_DIV	-		6.3	Vdc
	RF_GNSS	-		6.3	Vdc

Table 3-56: Absolute Maximum Ratings (Continued)

Parameter	Min	Тур	Max	Units
ESD ratings				
See EMC and ESD Recommendations on page 127.				

3.5.2 Digital I/O Characteristics

The I/O characteristics for supported digital interfaces are described in:

- Table 3-57—HSIC signals
- Table 3-58—GPIOs (except GPIO8 and GPIO28), UART, ANT_CNTL, TX_ON, and PCM/I²S signals
- Table 3-59—GPIO8 and GPIO28
- Table 3-60—SDIO and UIM signals

Table 3-57: Digital I/O Characteristics ($V_{DD_PX} = 1.20 \text{ V (nominal)}$)

	Parameter	Comments	Min	Max	Units
V_{IH}	High level input voltage	CMOS/Schmitt	0.65 × V _{DD_PX}	-	V
V _{IL}	Low level input voltage	CMOS/Schmitt	-	0.35 × V _{DD_PX}	V
I _{IH}	Input high leakage current ^a	No pull-down	-	2	μΑ
I _{IL}	Input low leakage current ^b	No pull-up	-2	-	μΑ
V _{OH}	High level output voltage	CMOS, at pin-rated drive strength	0.75 × V _{DD_PX}	-	V
V _{OL}	Low level output voltage	CMOS, at pin-rated drive strength	-	0.25 × V _{DD_PX}	V
IZ	Tri-state leakage current ^a	No pull, no keeper	-2	2	μΑ
R _P	Pull resistance	Pull-up and pull-down	17	60	kΩ
R _K	Keeper resistance		17	60	kΩ
C _{IN}	Input capacitance ^c		-	5	pF

a. Pin voltage = V_{DD_PX} max.

Table 3-58: Digital I/O Characteristics ($V_{DD\ PX}$ =1.80 V (nominal) signals)

	Parameter	Comments	Min	Max	Units
V_{IH}	High level input voltage	CMOS/Schmitt	0.65 × V _{DD_PX}		V
V _{IL}	Low level input voltage	CMOS/Schmitt		0.35 × V _{DD_PX}	V
V _{SHYS}	Schmitt hysteresis voltage		100	-	mV
I _{IH}	Input high leakage current ^a	No pull-down	-	1	μΑ
I _{IL}	Input low leakage current ^b	No pull-up	-1	-	μА

b. Pin voltage = GND and supply = V_{DD_PX} max.

c. Input capacitance and I/O capacitance values are guaranteed by design, but is not 100% tested.

Table 3-58: Digital I/O Characteristics (V_{DD_PX} =1.80 V (nominal) signals) (Continued)

	Parameter	Comments	Min	Max	Units
R_P	Pull up/down resistance		55	390	kΩ
V _{OH}	High level output voltage	CMOS, at pin-rated drive strength	V _{DD_PX} - 0.45		V
V _{OL}	Low level output voltage	CMOS, at pin-rated drive strength		0.45	V
R _K	Keeper resistance		30	150	kΩ
C _{IN}	Input capacitance ^c		-	5	pF
I _{PIN}	Current per pin		-	16	mA

- a. Pin voltage = V_{DD_PX} max. For keeper pins, pin voltage = V_{DD_PX} max 0.45 V.
- b. Pin voltage = GND and supply = $V_{DD\ PX}$ max. For keeper pins, pin voltage = 0.45 V and supply = $V_{DD\ PX}$ max.
- c. Input capacitance is guaranteed by design, but is not 100% tested.

Table 3-59: GPIO8 and GPIO28 Digital I/O Characteristics (V_{DD_PX} =1.80 V (nominal) signals)

	Parameter	Comments	Min	Max	Units
V_{IH}	High level input voltage	CMOS/Schmitt	0.65 × V _{DD_PX}		V
V _{IL}	Low level input voltage	CMOS/Schmitt		0.35 × V _{DD_PX}	V
V _{OH}	High level output voltage	CMOS, at pin-rated drive strength	0.8 × V _{DD_PX}		V
V _{OL}	Low level output voltage	CMOS, at pin-rated drive strength		0.2 × V _{DD_PX}	V
R _P	Pull up/down resistance		10	50	kΩ
R _K	Keeper resistance		10	50	kΩ
I _{IH}	Input high leakage current ^a	No pull-down	-	1	μΑ
I _{IL}	Input low leakage current ^b	No pull-up	-1	-	μΑ
I _{PIN}	Current per pin		-	16	mA
V _{SHYS}	Schmitt hysteresis voltage		165	-	mV

a. Pin voltage = V_{DD_PX} max.

Table 3-60: Digital I/O Characteristics (Dual-voltage — V_{DD_PX} = 1.80 V or 2.85 V (nominal))

	Parameter	Comments	Min	Max	Units		
Commo	Common to dual-voltage pads (1.8 V / 2.85 V)						
R _P	Pull resistance	Pull-up and pull-down	10	100	kΩ		
R _K	Keeper resistance		10	100	kΩ		
V _{SHYS}	Schmitt hysteresis voltage		100	-	mV		
C _{I/O}	I/O capacitance		-	5	pF		
Commo	Common to SDC pad and UIM pad at 2.85 V only						

b. Pin voltage = \overline{GND} and supply = $V_{DD\ PX}$ max.

Table 3-60: Digital I/O Characteristics (Dual-voltage — V_{DD_PX} = 1.80 V or 2.85 V (nominal))

Parameter		Comments	Min	Max	Units	
I _{IH}	Input high leakage current	No pull-down	-	10	μΑ	
I _{IL}	Input low leakage current	No pull-up	-10	-	μА	
Commo	on to UIM pads, 1.8V/2.85 V			1		
V _{IH}	High level input voltage	CMOS/Schmitt	0.7 × V _{DD_PX}	V _{DD_PX} + 0.3	V	
V _{IL}	Low level input voltage	CMOS/Schmitt	-0.3	0.2 × V _{DD_PX}	V	
V _{OH}	High level output voltage	CMOS, at pin-rated drive strength	0.8 × V _{DD_PX}	V _{DD_PX}	V	
V _{OL}	Low level output voltage	CMOS, at pin-rated drive strength	0	0.4	V	
SDC pa	ads at 2.85 V only		,		1	
V _{IH}	High level input voltage	CMOS/Schmitt	0.625 × V _{DD_PX}	V _{DD_PX} + 0.3	V	
V _{IL}	Low level input voltage	CMOS/Schmitt	-0.3	0.25 × V _{DD_PX}	V	
V _{OH}	High level output voltage	CMOS, at pin-rated drive strength	0.75 × V _{DD_PX}	V _{DD_PX}	V	
V _{OL}	Low level output voltage	CMOS, at pin-rated drive strength	0	0.125 × V _{DD_PX}	V	
Commo	on to SDC pad and UIM pad at	1.8 V only				
I _{IH}	Input high leakage current ^a	No pull-down	-	2	μΑ	
I _{IL}	Input low leakage current ^b	No pull-up	-2	-	μΑ	
SDC pa	SDC pads at 1.8 V only					
V _{IH}	High level input voltage	CMOS/Schmitt	1.27	2	V	
V _{IL}	Low level input voltage	CMOS/Schmitt	-0.3	0.58	V	
V _{OH}	High level output voltage	CMOS, at pin-rated drive strength	1.4	-	V	
V _{OL}	Low level output voltage	CMOS, at pin-rated drive strength	0	0.45	V	

a. Pin voltage = V_{DD} Px max

3.5.3 Internal Device Frequencies

Table 3-61 summarizes the frequencies generated within the AirPrime WP76XX. This table is provided for reference only to the device integrator.

Table 3-61: Internal Device Frequencies

Subsystem/Feature	Frequency	Units
Real Time Clock	32.768	kHz
PCM Audio Interface (PCM Master Mode)	1282048	kHz
I ² C Interface	100	kHz

b. Pin voltage = GND and supply = V_{DD} Px max

Table 3-61: Internal Device Frequencies (Continued)

Subsystem/Feature	Frequency	Units
PMIC switching power supplies	1.6	MHz
Fundamental clock	19.2	MHz
PLL	 PLL0: 800.0000 PLL1: 614.4000 PLL2: 480.0000 PLL3: 600.6000 PLL4: 576.0000 PLL5: 691.2000 PLL6: Varies (1.2 GHz max) 	MHz
SPI	38	MHz
USB	480	Mb/s

3.6 Processing

3.6.1 Application Core

The Application Core is based on a Cortex A7 32-bit RISC architecture core. It has the following main characteristics:

- Up to 1.3 GHz operation
- Cache:
 - L1: Instruction (32 kB) and Data (32 kB)
 - L2: 256 kB

The Application Core supports Legato[™], an open source embedded platform built on Linux, which allows the simultaneous safe running of multiple applications.

Refer to Interfaces Specification on page 91 for the list of interfaces supported by this core.

3.6.2 Embedded Memory

The AirPrime WP76XX module includes Flash and RAM embedded memory as detailed in Table 3-62.

Refer to the latest customer release note for any changes regarding embedded memory.

Table 3-62: Embedded Memory Details

Туре	Details	Size
	Total	512 MB
Flash	Reserved for Application processor	210 MB
	Minimum number of write cycles	100, 000

Table 3-62: Embedded Memory Details (Continued)

Type	Details	Size
RAM	Total	256 MB
IVAIVI	Reserved for Application processor	128 MB

The application processor memory is dedicated to the Legato platform, including:

- Linux kernel
- Root file system
- Application framework
- Customer applications

3.6.2.1 Flash Memory

Flash memory is partitioned for use by various elements. Partitions mtd11–mtd13 can be used by the customer to install their custom Linux firmware, and mtd14 and mtd16 can be used to install custom Legato framework and custom Legato applications. The remaining partitions are reserved for internal use.

Partition: mtd0 ("sbl") Usage: System bootloader (Internal use)
Partition: mtd1 ("mibib") Usage: Internal use
Partition: mtd2 ("backup") Usage: Internal use
Partition: mtd3 ("security") Usage: Internal use
Partition: mtd4 ("persist") Usage: Internal use
Partition: mtd5 ("efs2") Usage: Internal use
Partition: mtd6 ("swifota") Usage: Internal use
Partition: mtd7 ("tz") Usage: Internal use
Partition: mtd8 ("devcfg") Usage: Internal use
Partition: mtd9 ("rpm") Usage: Internal use
Partition: mtd10 ("modem") Usage: Internal use

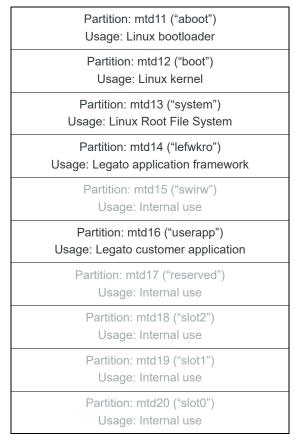


Figure 3-6: Flash Memory Partitions

Follow these instructions to display partition sizes and to determine whether a customer firmware will fit:

- 1. Connect to the WP module.
- Use Linux command 'cat /proc/mtd'. Partition sizes are listed in the 'size' column.

```
root@swi-mdm9x28-wp:~# cat /proc/mtd
dev: size erasesize name
mtd0: 00280000 00040000 "sb1"
mtd1: 00280000 00040000 "mibib"
mtd2: 00680000 00040000 "backup"
mtd3: 00100000 00040000 "security"
mtd4: 00200000 00040000 "persist"
mtd5: 01180000 00040000 "efs2"
mtd6: 04f40000 00040000 "swifota"
mtd7: 00180000 00040000 "tz"
mtd8: 000c0000 00040000 "devcfg"
mtd9: 000c0000 00040000 "rpm"
mtd10: 02000000 00040000 "modem"
mtd11: 00100000 00040000 "aboot"
mtd12: 00f00000 00040000 "boot"
mtd13: 01e00000 00040000 "system"
mtd14: 008c0000 00040000 "lefwkro"
mtd15: 01900000 00040000 "swirw"
mtd16: 08300000 00040000 "userapp"
mtd17: 03680000 00040000 "reserved"
mtd18: 02180000 00040000 "slot_2"
mtd19: 02180000 00040000 "slot 1"
mtd20: 02180000 00040000 "slot_0"
```

3. When building an image, use the swicwe command to display the sizes of the image components to ensure that they can fit in the associated partitions. For example, using WP76xx Release 12 Linux/Yocto (linux-SWI9X07Y_02.25.02.01.cwe) and Legato (legato-18.10.3.cwe) image components:

```
myname@mysystem$swicwe -P linux-SWI9X07Y 02.25.02.01.cwe
 Type
          Size(Exclude Header) Product Compress Version
*APPL
          32075352
                                     Y921 0
9X28 0
                                                         SWI9X07Y_02.25.02.01 000000 CARMD-EV-SIGN01 2019/01/30 17:38:52
                                                         SWI9X07Y_02.25.02.01 000000 CARMD-EV-SIGNO1 2019/01/30 17:38:52 SWI9X07Y_02.25.02.01 000000 CARMD-EV-SIGNO1 2019/01/30 17:38:52 SWI9X07Y_02.25.02.01 000000 CARMD-EV-SIGNO1 2019/01/30 17:38:52
HASH
          6560
                                             0
          528188
 APBL
                                     9X28
 SYST
          22282240
                                     Y921
                                                         SWI9X07Y_02.25.02.01 000000 CARMD-EV-SIGN01 2019/01/30 17:38:52
myname@mysystem$swicwe -P legato-18.10.3.cwe
Type
*APPL
          Size(Exclude Header) Product
                                                        Compress
                                                                           Version
                                                                           18.10.3 5926bf8 jenkins 2019/02/08 19:10:30
         4981136
                                     Y921
                                                                           18.10.3 5926bf8 jenkins 2019/02/08 19:10:30
USER
         4980736
                                                        0
```

Refer to the following table for component details.

Component	Description	Partition Storage Location
APBL	Yocto Ik bootloader	mtd11 ("aboot")
APPS	Yocto kernel	mtd12 ("boot")
SYST	Yocto RootFS	mtd13 ("system")
USER	Legato framework	mtd14 ("lefwkro")

3.6.2.2 RAM

To display the amount of RAM currently available for use by customer applications, connect to the WP module and use Linux command 'cat /proc/meminfo'.

The total available RAM for application usage is given after the **MemAvailable** label.

root@swi-mdm9x28-wp:~# cat /proc/meminfo MemTotal: 158652 kB MemFree: 3408 kB MemAvailable: 80756 kB Buffers: 38896 kB
Cached: 37964 kB
SwapCached: 0 kB
Active: 66272 kB
Inactive: 39936 kB
Active(anon): 29384 kB Inactive(anon): 2044 kB Active(file): 36888 kB Inactive(file): 37892 kB Unevictable: 0 kB Mlocked: 0 kB SwapTotal:
SwapFree:
Dirty: 0 kB 0 kB Dirty:
Writeback: 0 AL
AnonPages: 29360 kB
12072 kB
2080 kB Shmem: Slab: 26236 kB SReclaimable: 8412 kB
SUnreclaim: 17824 kB
KernelStack: 2696 kB
PageTables: 1704 kB
NFS_Unstable: 0 kB
Rounce: 0 kB 0 kB Bounce: WritebackTmp: 0 kB CommitLimit: 79324 kB Committed_AS: 1259228 kB VmallocTotal: 761856 kB VmallocUsed: 35996 kB VmallocChunk: 724724 kB

Sierra Wireless recommends that customer applications do not consume more than 55MB of RAM to provision for future expansion of the modem software, protocol stack and Legato framework in the next two years.

3.6.3 Recovery Mechanism

The AirPrime WP76xx has the capability to automatically detect and recover from various corruption scenarios (for example, corruption may occur when power is abruptly removed from the module).

A backup of the configuration stored in the file system is created before WP76xx modules leave the Sierra Wireless factory. The file system backup can be updated at customer factories using **AT!NVBACKUP**. If a file system corruption is detected, the stored backups are checked and the most recent backup is automatically restored.

To avoid the potential for memory corruption, make sure to always follow the proper power off procedure before removing power from the module. (Figure 4-1 on page 92 illustrates the signal timing details for powering off the module.)

3.6.4 Secure Boot / Secure Debug

AirPrime WP76xx modules incorporate the following permanently enabled features to enhance device security:

- Secure Boot—Ensures only firmware images signed by Sierra Wireless can be loaded and run on WP76xx modules. Specifically, Secure Boot applies to the following firmware components: system boot loader, carrier configuration, and telecom FW.
- Secure Debug—Disables debug features such as RAM dump collection and JTAG access to the module.

For additional details, refer to the WP Series Secure Boot and Secure Debug application notes available on http://source.sierrawireless.com.

3.7 Mechanical Drawing

The AirPrime WP76XX module's LGA footprint is a 239-pad array of copper pads (see Physical Dimensions and Connection Interface on page 27). The following drawing illustrates the device footprint and dimensions.

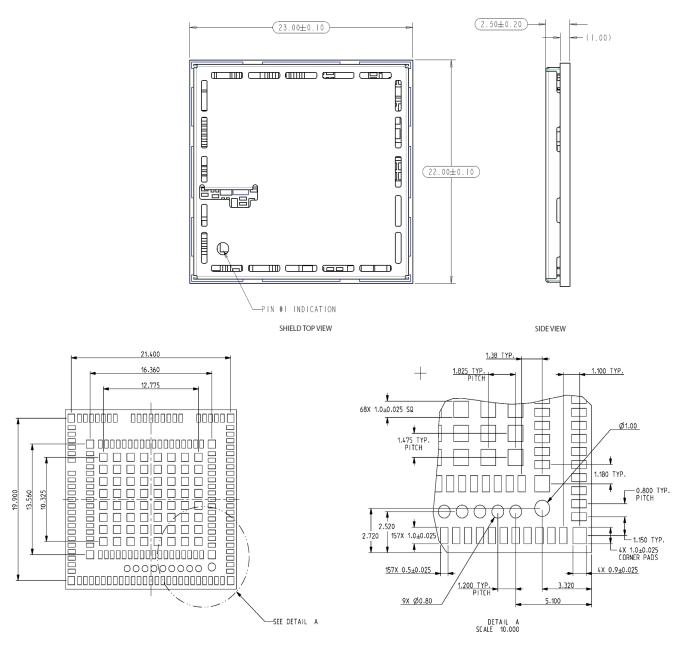


Figure 3-7: WP7601/WP7603 Mechanical Drawing

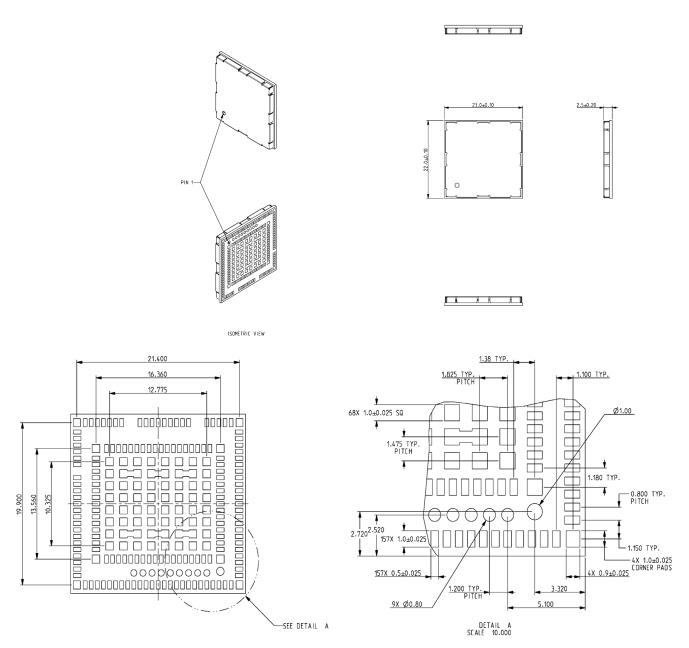


Figure 3-8: WP7605/WP7607/WP7608/WP7609/WP7610 Mechanical Drawing

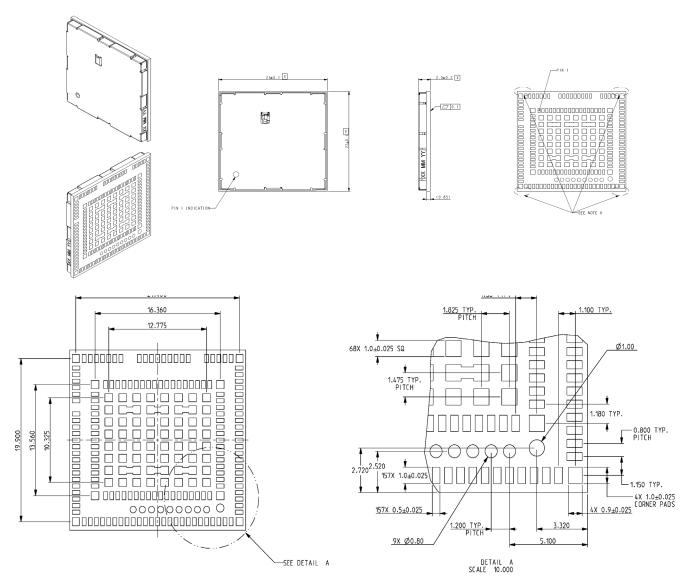


Figure 3-9: WP7611 Mechanical Drawing

3.8 Mechanical Specifications

The following table describes additional mechanical specifications for the AirPrime WP76XX module.

Table 3-63: Mechanical Specifications

Specification	Value	Notes
Clamping force	20 psi	Maximum clamping force on module over entire shield surface.

>> 4: Interfaces Specification

4.1 Overview

This section describes the interfaces supported by the AirPrime WP76XX embedded module and provides specific voltage, timing, and circuit recommendations for each interface.

4.2 POWER_ON_N

The AirPrime WP76XX module requires a low level signal (POWER_ON_N) that is used to switch the module ON.

The signal is connected internally to the permanent 1.8V supply regulator inside the module via a pull-up resistor. Once VBAT_BB is supplied to the module, this 1.8V supply regulator will be enabled and so the POWER_ON_N signal is by default at high level.

Important: Use a momentary switch to control this line to reduce leakage current in ULPM mode. Holding POWER_ON_N low in ULPM mode incurs a significant current draw—see Table 3-17 on page 59 for details.

Table 4-1 describes the POWER_ON_N signal's characteristics.

Table 4-1: POWER_ON_N Electrical Characteristics^a

Parameter	Min	Тур	Max	Units
Input Voltage—Low	-	-	0.67	V
Internal pull-up resistor	150	200	250	kΩ
POWER_ON_N assertion time ^b	200			ms

- a. When floating, voltage will be approximately 800 mV.
- Assertion time is the time required to keep POWER_ON_N at LOW level to ensure the module can be powered ON successfully.

4.2.1 Power-up Sequence

4.2.1.1 Power On/Off Timing

Note: The host should not drive any signals to the module until the VGPIO rises (approximately 100 ms after power up). Before reaching the Active state, host signals must be set to floating, high impedance, or input pull-down; this also applies when the module is in reset mode, during a firmware update, or during a power-off sequence. The host must consider these signal settings when designing the module interface.

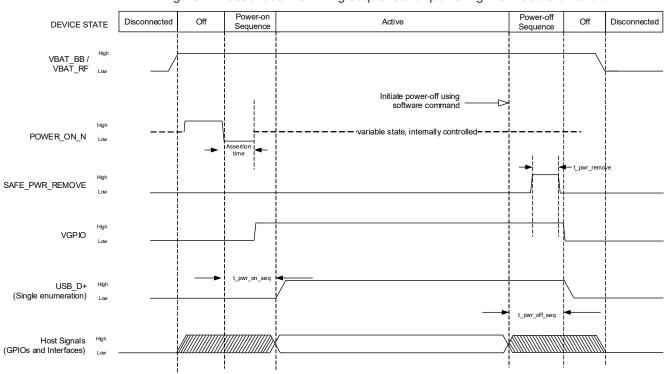


Figure 4-1 describes the timing sequence for powering the module on and off.

Figure 4-1: Signal Timing (POWER_ON_N, and USB Enumeration)

Parameter	Typical	Maximum	Units
t_pwr_on_seq	15	24 ^a	s
t_pwr_off_seq	0.4–5.5	8	s
t_pwr_remove	13	-	ms

Table 4-2: POWER_ON_N Timing Parameters

a. Value is based on disabled custom parameters "HSICENABLE" and "BOOTQUIETDISABLE".
 Note that there will be an increase in value if either of these custom parameters are enabled.

4.2.1.2 USB Enumeration

The unit supports single USB enumeration with the host. Enumeration starts within (maximum) t_pwr_on_seq seconds of power-on.

4.2.2 Software-Initiated Power Down

To power down the module via software:

- 1. Initiate the power down process: AT!POWERDOWN
- 2. Monitor VGPIO.
- 3. When VGPIO is low, remove power.

4.3 Emergency Power Off

The module can be switched off by controlling the RESET_IN_N pin. This must only be used in emergency situations if the system freezes (not responding to commands).

To perform an emergency power off:

- 1. De-assert POWER ON N.
- 2. While POWER_ON_N is de-asserted, assert RESET_IN_N (logic low) for at least 8 s. This immediately powers down the module.

4.4 POWER_ON_N, RESET_IN_N and AT!POWERDOWN Use Cases

Table 4-3 lists the behavior of the WP76xx depending on POWER_ON_N, RESET_IN_N and AT!POWERDOWN use cases.

Table 4-3: POWER_ON_N, RESET_IN_N and AT!POWERDOWN Use Cases

Use Case		Group A Variants	Group B Variants
POWER ON Na	VBATT is applied then POWER_ON_N is asserted	Turns ON	Turns ON
FOWER_ON_N	POWER_ON_N is asserted then VBATT is applied	Turns ON	Turns ON
	POWER_ON_N is left asserted then RESET_IN_N is asserted	Resets	Resets
RESET IN N ^b	POWER_ON_N is de-asserted then RESET_IN_N is asserted	Emergency OFF	Resets
	POWER_ON_N is de-asserted then RESET_IN_N is asserted with a long pulse (>8 sec)	Emergency OFF	Emergency OFF
AT!POWERDOW	POWER_ON_N is asserted then the power OFF command is sent	Turns OFF	Restarts
N AT Command	POWER_ON_N is de-asserted then the power OFF command is sent	Turns OFF	Turns OFF

a. When using Group A variants, this pin must not be toggled or pulsed when the module is already booted and operational. Doing so will lead to the module resetting or turning OFF.

b. This pin should only be used for emergencies such as when the module stops responding to AT commands.

4.5 Tx Power Control

The module's Tx power limit may be controlled using the following methods:

- SAR backoff AT commands (see document [1] AirPrime WP8548/WP75xx/ WP76xx/WP77xx AT Command Reference):
 - !SARSTATEDFLT Set (or report) the default SAR backoff state that the
 device uses when it powers up. This setting is persistent across power cycles
 and overrides any PRI setting.
 - !SARSTATE Set (or report) the current SAR backoff state (override the default state). This change in state is non-persistent across power cycles.
 - !SARBACKOFF Set (or report) the maximum Tx power limit for a specific band / technology / state combination.
- Legato commands:
 - · le_mrc_GetSarBackoffState() Get the current SAR Backoff state.
 - le_mrc_SetSarBackoffState() Set the current SAR Backoff state (override the default state). This change is non-persistent across power cycles.
- GPIO control via !SARGPIO command (see [1] AirPrime WP8548/WP75xx/ WP76xx/WP77xx AT Command Reference)—Set an unallocated external GPIO to control SAR.

4.6 USB

The AirPrime WP76XX implements a high-speed USB 2.0 Interface, which conforms to the *Universal Serial Bus Specification, Revision 2.0*.

Table 4-4: USB Pin Descriptions

Pin	Signal name	Direction ^a	Function
12	USB_D-	Input/Output	Differential data interface negative
13	USB_D+	Input/Output	Differential data interface positive
16	USB_VBUS	Input	USB supply voltage
91	USB_ID	Input	Used for USB_OTG

Signal direction with respect to the module. Example: USB_ID is an input to the module from the host.

4.7 UART

The AirPrime WP76XX provides two UART interfaces:

- UART1 (primary UART)—8-wire interface
- UART2 (secondary UART)—4-wire interface

The UART interfaces are used for data communication between the AirPrime WP76XX module and a PC or host processor. These interfaces comply with the RS-232 interface.

Flow control is managed using the UART2_RTS and UART2_CTS signals.

Table 4-5 on page 95 describes the signals used for UART1 and UART2.

Note: UART signals are named with respect to the host device, and directions are listed with respect to the module. For example, UART1_RX is an output from the module to the host. WIFI coex and 8-wire UART concurrency is not supported.

Table 4-5: UART Pins

Pin	Interface	Name ^a	Directionb	Function	If unused	Notes
2		UART1_RI	Output	Ring Indicator Signal incoming calls (voice and data), SMS, etc.	Leave open	Note: Do not install external pull-up on this pin, otherwise the module will not boot.
3		UART1_RTS	Input	Ready To Send	Leave open	
4		UART1_CTS	Output	Clear To Send	Leave open	
5		UART1_TX	Input	Transmit Data	Leave open	
6		UART1_RX	Output	Receive Data	Leave open	
7	UART1	UART1_DTR ^c Input (active low) UART1_DCD Output		Data terminal ready Prevents the WP76XX from entering USB-SS mode, switches between data mode and command mode, and wakes the module.	Leave open	
8				Data Carrier Detect Signal data connection in progress	Leave open	Note: Do not install external pull-up on this pin, otherwise the module will not boot.
9		UART1_DSR	Output	Data Set Ready Signal UART interface is ON	Leave open	Note: Do not install external pull-up on this pin, otherwise the module will not boot.
96		UART2_TX	Input	Transmit data	Leave open	
97	IIAPT2	UART2_RX	Output	Receive data	Leave open	
98	UART2_RX UART2_RTS		Input	Ready To Send, flow control	Leave open	
99		UART2_CTS	Output	Clear To Send, flow control	Leave open	

a. Signals are named with respect to the host device. For example, UART1_RX is the signal used by the host to receive data from the module.

b. Signal direction with respect to the module. For example, UART1_RX is an output from the module to the host.

c. Pin is 'wakeable'. Can be used to trigger the module to wake up from USB-SS mode (low power active state). See Wakeup Interrupt (Sleep State) on page 100 for details.

4.8 UIM Interface

The AirPrime WP76XX has two physical UIM interfaces:

- UIM1— this interface allows control of external 1.8V/3V UIMs.
- UIM2—this interface is used to control an eSIM on selected variants.

Note: UIM1 and UIM2 cannot be activated simultaneously (DSSS—dual SIM single standby).

4.8.1 External UIM1 Interface

Table 4-6 describes the signals used for UIM1.

Table 4-6: UIM Interface Pi	'ins
-----------------------------	------

Pin	Interface	Name	Direction ^a	Function	If Unused
26		UIM1_VCC	Output	Supply output	Leave open
27		UIM1_CLK	Output	Clock	Leave open
28	UIM1	UIM1_DATA	Input/Output	Data connection	Leave open
29		UIM1_RESET_N	Output	Reset	Leave open
64		UIM1_DET ^b	Input	Detect UIM	Leave open

- a. Signal direction with respect to the module. Examples: UIM1_DET (pin 64) is an input to the module from the host; UIM1_RESET_N (pin 29) is an output from the module to the host.
- Pin is 'wakeable'. Can be used to trigger the module to wake up from USB-SS mode (low power active state). See Wakeup Interrupt (Sleep State) on page 100 for details.

Figure 4-2 illustrates the recommended implementation of a UIM holder. (For a more detailed UIM schematic, see Figure 5-4 on page 129.)

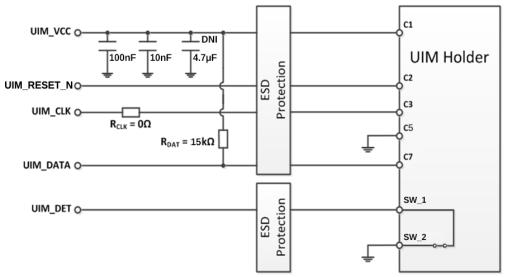


Figure 4-2: Recommended UIM Holder Implementation

The UIM Detect signal (UIM1_DET) is used to detect the physical presence of a UIM card in the UIM holder. The signal has a pull-up internal to the AirPrime WP76XX. It should be set to GND when a UIM is not present. All signals near the UIM holder must be ESD-protected.

The UIM Detect signal transitions:

- When a UIM is inserted—high (logic 0 to logic 1)
- When a UIM is removed—low (logic 1 to logic 0)

The capacitor and the two resistors, RCLK and RDAT, should be added as placeholders to compensate for potential layout issues. UIM_DATA trace should be routed away from the UIM_CLK trace. Keep the distance between the module and the UIM holder as short as possible.

An ESD device specifically designed for UIM cards is recommended for the UIM1 VCC, RESET_N, CLK, and DATA signals (for example, STMicroelectronics DALC208SC6). For UIM1_DET a low leakage ESD suppressor should be selected.

4.8.2 eSIM / UIM2 Interface

When an eSIM is mounted on an AirPrime WP76XX, UIM2 signals are directly connected to the eSIM and are not available externally.

Selection of active SIM between UIM1 (external SIM) and UIM2 (eSIM) is possible using AT commands **AT!UIMS** and **AT!CUSTOM="UIMAUTOSWITCH"**. Refer to document [1] AirPrime WP8548/WP75xx/WP76xx/WP77xx AT Command Reference for more details regarding these commands.

When UIM2 is deselected, the eSIM component is unpowered.

4.8.3 External SIM Switch Configuration

The UIM1 interface can be used with either a single external SIM, or with two external SIMs, using an external switch. The external switch is controlled by GPIO6 (pin 46), and GPIO4 is used to detect the second external SIM.

1 external SIM card

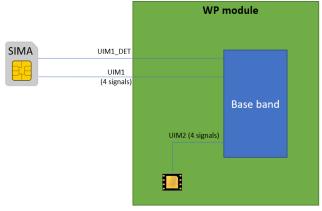


Figure 4-3: Single External SIM Configuration

2 external SIM cards (with 2 dedicated SIM detects)

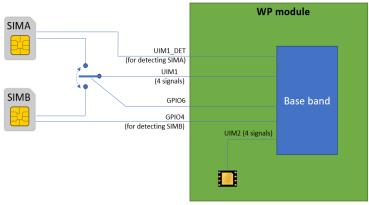


Figure 4-4: Dual External SIM Configuration

4.9 General Purpose Input/Output (GPIO)

The AirPrime WP76XX defines several GPIOs for customer use, as described in Table 4-7. For electrical specifications, see Table 3-58 on page 79 and Table 3-59 on page 80.

Note: In ULPM, all interfaces connected to GPIOs (see Table 4-7 on page 98) must be tri-stated or off to prevent additional leakage current during ULPM and potentially damaging the unit by applying a voltage when the GPIOs are off.

Similarly, there should not be any voltage applied to the GPIOs when the module is off to prevent damaging the module.

All GPIOs are in undefined state during reset.

Table 4-7: GPIO Pin Description

Pin	Signal Name	Configurable as Wakeup Trigger for ULPS ^a	Default State	Function	If Unused
10	GPIO2				
40	GPIO7				
41	GPIO8				
44	GPIO13				
46	GPIO6 ^c		No pull ^b	General purpose I/O	Leave open
65	GPIO4				
92	GPIO38 ^{d,e}	Yes			
94	GPIO40 ^{d,e}				
95	GPIO41 ^{d,e}				

Table 4-7: GPIO Pin Description (Continued)

Pin	Signal Name	Configurable as Wakeup Trigger for ULPS ^a	Default State	Function	If Unused
101	GPIO35				
102	GPIO36 ^{d,e}	Yes			
103	GPIO37 ^{d,e}				
104	GPIO32				
105	GPIO33				
109	GPIO42				
147	GPIO21				
148	GPIO22		No pull ^b	General purpose I/O	Leave open
149	GPIO23				
150	GPIO24				
153	GPIO28 ^f				
154	GPIO29 ^f				
155	GPIO30 ^f				
156	GPIO31 ^f				
159	GPIO25				

- a. See Power Consumption States on page 41 and Wakeup Events (ULPS) on page 101 for details.
- b. Internal configuration of all GPIOs—no internal pull-ups.
- c. See GPIO6 on page 99
- d. Accessible via sysfs/Legato only.
- e. Only available in Group A variants; this pin is Reserved in Group B variants.
- f. This pin is available for use when configured using AT+WIOCFG.

See Wakeup Interrupt (Sleep State) on page 100 to see which GPIOs can be used to trigger the module to wake up from USB-SS mode (low power active state).

4.10 GPIO6

GPIO6 can be used for three different functions as described below. Refer to [1] AirPrime WP8548/WP75xx/WP76xx/WP77xx AT Command Reference for AT command details to configure GPIO6.

4.10.1 General Purpose Input / Output

To configure this pin as a GPIO:

- Disable external SIM switch feature using AT!CUSTOM="EXTUIMSWITCHEN",0.
- 2. Configure GPIO6 using AT+WIOCFG=6,4.
- 3. Reboot the module.

4.10.2 SIM Switching

To use this pin for fast SIM switching, enable the feature using **AT!CUSTOM="EXTUIMSWITCHEN",1**.

4.10.3 Reset Out

This pin can be used to provide a signal that will hold peripheral devices (such as a USB hub, I²C device, etc.) in reset until the power-up sequence is complete.

To configure this pin as Reset:

- Disable external SIM switch feature using AT!CUSTOM="EXTUIMSWITCHEN",0.
- 2. Configure GPIO6 using AT+WIOCFG=6,0.
- 3. Reboot the module.

When the module is:

- In reset or powering up—this pin is held low to put peripheral devices in reset.
 Once the power-on sequence is complete, this pin will be turned high to take the peripherals out of reset.
- In ULPM—this pin will be floating. A default pull-up or pull-down may be necessary depending on the application.

4.11 Wakeup Interrupt (Sleep State)

The following pins can be used to wake the device when it is in Sleep state (low-power state):

- GPIO2
- GPIO4
- GPIO7
- GPIO13
- GPIO21
- GPIO22
- GPIO24
- GPIO35
- GPIO36 (only available in Group A variants)
- GPIO37 (only available in Group A variants)
- GPIO38 (only available in Group A variants)
- GPIO42
- UART1 DTR
- UIM1 DET

The GPIO pins can be configured as a wakeup source by using the AT+WIOCFG command (see [1] AirPrime WP8548/WP75xx/WP76xx/WP77xx AT Command Reference).

If the device firmware is monitoring these pins while the device is in USB-SS mode, any transition on these pins will wake the device. (Note: The UIM1_DET pin transitions high when a UIM is installed, and low when a UIM is removed.)

Note: These signals wake the device when it is in Sleep state (a low-power ACTIVE state where the module is fully powered). If the device is in ULPS, it is woken by configured wakeup triggers—see Table 4.12, Wakeup Events (ULPS), on page 101 for details.

4.12 Wakeup Events (ULPS)

The following signals/sources can be used to wake the device from ULPS:

Table 4-8: ULPS Wakeup Signals/Sources

Signal Configuration	Signal
	Timer
Configurable	GPIO36 ^a , GPIO38 ^a
Configurable	ADC2 ^a
	ADC3 ^a
Always enabled	POWER_ON_N

a. Only available in Group A variants.

Note: These signals wake the device only when it is in ULPS. If the device is in Sleep state (a low-power ACTIVE state where the module is fully powered), it can be woken using the signals described in Wakeup Interrupt (Sleep State) on page 100.

For ULPS details, see Table 3-5, Supported Power States, on page 41.

4.13 Secure Digital IO (SDIO) Interface

The AirPrime WP76XX module defines a 1.8 V/2.85 V SDIO interface (SD 2.0-compliant) for customer-defined use with SD cards, connection to a Wi-Fi module, etc.

Note: An external 1.8 V/2.85 V supply is required to supply power to the SD card.

Table 4-9 describes the signals used for SDIO.

Table 4-9: SDIO Pin Descriptions

Pin	Signal Name	Direction ^a	Description	If unused	Voltage level
161	SDIO_CMD	Output	SDIO command	Leave Open	
162	SDIO_CLK	Output	SDIO clock	Leave Open	1.8 V/2.85 V
163	SDIO_DATA_3	Input/Output	SDIO data bit 3	Leave Open	1.0 V/2.00 V
164	SDIO_DATA_2	Input/Output	SDIO data bit 2	Leave Open	

Table 4-9: SDIO Pin Descriptions (Continued)

Pin	Signal Name	Direction ^a	Description	If unused	Voltage level
165	SDIO_DATA_1	Input/Output	SDIO data bit 1	Leave Open	1.8 V/2.85 V
166	SDIO_DATA_0	Input/Output	SDIO data bit 0	Leave Open	1.0 V/2.03 V

Signal direction with respect to the module. Example: SDIO_CMD (pin 161) is an output from the module to the host.

4.14 I²C Interface

The AirPrime WP76XX module provides one I²C (Inter-Integrated Circuit) dedicated serial port (bus interface) based on [6] I2C Bus Specification, Version 2.1, January 2000.

The interface uses the pins indicated in Table 4-10.

Table 4-10: I²C Interface Pins

Pin	Signal name	Direction	Function	If Unused
1	I2C1_CLK	Input/Output	I ² C Clock	Leave open
66	I2C1_DATA	Input/Output	I ² C Data	Leave open

This implementation of the I²C interface includes the following characteristics:

- Supported voltage—1.8 V
- Standard-mode interface—Data transfer rates up to 100 kbit/s
- Master mode operation only—WP76XX module always operates as the master
- I²C signals are implemented internally as open drain outputs (per the I²C specification) with 2.2 kΩ pull-up resistors to VGPIO (see Figure 4-5 on page 103).

Note: I²C slave addresses 0x10 and 0x3a are reserved for internal use.

For I²C bus details, including I2C bus waveform and timing details, refer to the I2C Bus Specification.

4.14.1 Application

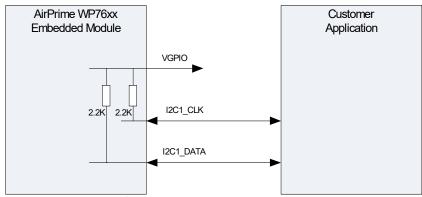


Figure 4-5: Example of I²C Bus Application

4.15 VGPIO

The AirPrime WP76XX utilizes 1.8V logic, provided via the VGPIO (GPIO voltage output) pin.

Table 4-11: VGPIO Reference Pin

Pin	Signal Name	Direction ^a	Function	If Unused	
45	VGPIO	Output	GPIO voltage output	Leave open	

Signal direction with respect to the module—VGPIO (pin 45) is an output from the module to the host.

Table 4-12: VGPIO Electrical Characteristics

Parameter	Min	Тур	Max	Unit	Remarks
Voltage level	1.7	1.8	1.9	V	Applies to active mode and USB-SS mode
voltage level	1	-	-	V	Off in ULPM
Current capability	-	-	50	mA	Power Management support up to 50 mA output

The VGPIO pin is available when the module is in Active power state, and can be used to:

- Pull up GPIOs
- Supply external digital transistors driving LEDs
- Act as a voltage reference for the ADC interfaces—ADC0–ADC3

Note: VGPIO is floating (not available) when the module is OFF or in ULPS.

4.16 Reset Signal (RESET_IN_N)

The AirPrime WP76XX provides an interface to allow an external application to reset the module.

Table 4-13: RESET_IN_N Pin

	Pin	Signal Name	Direction ^a	Function	If Unused
Ī	11	RESET_IN_N	Input	External Reset Input	Leave open

Signal direction with respect to the module—RESET_IN_N (pin 11) is an input to the module from the host.

The RESET_IN_N signal is internally pulled-up with an internal resistor. An open collector transistor or equivalent should be used to ground the signal when necessary to reset the module.

To reset the module, a low level pulse must be sent on the RESET_IN_N pin for 32 ms. This will immediately restart the module with the POWER_ON_N signal at low level. (If the POWER_ON_N signal is at high level, the module will be powered off.)

The RESET_IN_N signal will reset the registers of the CPU and reset the RAM memory as well, for the next power on.

Note: Using RESET_IN_N to reset the module could result in memory corruption if used inappropriately. This signal should only be used if the module has become unresponsive and it is not possible to perform a power cycle.

Table 4-14: Reset Timing

Symbol	Parameter	Min	Тур	Max
Trdet	Duration of RESET_IN_N signal before firmware detects it (debounce timer)	-	32 ms	-
Trlen	Duration reset asserted		-	8
Trdel	Delay between minimum Reset duration and internal reset generated		500 ms	-

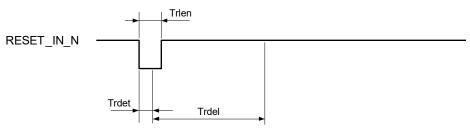


Figure 4-6: Illustration of Reset Timing When RESET_IN_N < Trdel

4.17 ADC

The AirPrime WP76XX provides four general purpose ADC (Analog to Digital Converter) inputs, as described Table 4-15 and Table 4-16.

Table 4-15: ADC Interface Pins

Pin	Signal Name	Direction ^a	Function	If Unused
24	ADC1	Input	Analog to Digital Converter	Leave open or Ground
25	ADC0	Input	Analog to Digital Converter	Leave open or Ground
107	ADC2 ^{b,c}	Input	Analog to Digital Converter	Leave open or Ground
108	ADC3 ^{b,c}	Input	Analog to Digital Converter	Leave open or Ground

Signal direction with respect to the module. Example: ADC1 (pin 24) is an input to the module from the host.

Table 4-16: ADC Interface Characteristics

	ADC0/ADC1 Value	ADC2/ADC3 Value ^a	Units
Full-scale voltage level	0.1–1.7	0–1.8	V
Resolution	15	12	bit
Sample rate	1.15	20.000-818.330	ksps
Voltage error	8 (Typ) 16 (Max)	2 (Typ)	mV

a. ADC2 and ADC3 are only available in Group A variants.

4.18 Digital Audio

The AirPrime WP76XX provides a 4-wire digital audio interface that can be configured as either PCM (Pulse Code Modulation) or I²S (Inter-IC Sound).

Also, when the interface is configured as PCM, the audio output (PCM_OUT) can be redirected to the USB interface using the standard Legato USB Audio Class—for details, refer to http://legato.io/legato-docs/latest/c_audio.html.

Table 4-17 on page 106 describes the audio interface signals.

Note: Audio availability is firmware-dependent.

b. Pin is 'wakeable'. Can be used to trigger the module to wake up from ULPM mode. See Wakeup Events (ULPS) on page 101 for details.

c. Only available in Group A variants; this pin is Reserved in Group B variants.

Table 4-17: PCM/I²S Interface Signals

Pin	Signal name	Direction ^a	on ^a Function		
33	PCM_OUT	Output	PCM Data Out The frame "data out" relies on the selected configuration mode.	Leave open	
33	I2S_OUT	Output	I2S Data Out The frame "data out" relies on the selected configuration mode.	Leave open	
34	PCM_IN	Input	PCM Data In The frame "data in" relies on the selected configuration mode.	Leave open	
34	12S_IN	Input	I2S Data In		
35	PCM_SYNC	PCM_SYNC Input/Output PCM Sync The frame synchronization signal delivers an 8 kHz frequency pulse that synchronizes the frame data in and the frame data out.		Leave open	
33	I2S_WS	Output	I2S Word Select The word select clock indicates which channel is currently being transmitted (low cycle indicates left audio channel, high cycle indicates right audio channel).	Leave open	
36	PCM_CLK	Input/Output	PCM Clock The frame bit clock signal controls data transfer with the audio peripheral.	Leave open	
30	I2S_CLK	Output	I2S Clock The frame bit clock signal controls data transfer with the audio peripheral.	Leave open	

a. Signal direction with respect to the module. Examples: PCM_IN (pin 34) is an input to the module from the host; PCM_OUT (pin 33) is an output from the module to the host.

4.18.1 PCM

Table 4-18 defines the PCM interface configuration.

Table 4-18: PCM Interface Configurations

Element	PCM
Slot configuration	Slot-based
Sync type	Short
Clock (in Master mode)	2.048 MHz
Data formats	16-bit linear, 8-bit A-law, 8-bit mu-law
Mode	Master or Slave

4.18.1.1 PCM Data Format

The PCM data is 8 kHz and 16 bits with the following PDM (Pulse-density modulation) bit format:

- PCM_DIN—SDDD DDDD DDDD DDVV
- PCM_DOUT—SDDD DDDD DDDD DDVV

Where:

- S—Signed bit
- D—Data
- V—Volume padding

4.18.1.2 PCM Timing

The following table and drawings illustrate PCM signals timing when operating in PCM mode.

Table 4-19: PCM Mode Timing^a

Parameter	Description	Min	Тур	Max	Units
t(sync)	PCM_SYNC cycle time	-	125	-	μS
t(synch)	PCM_SYNC high time	-	488	-	ns
t(syncl)	PCM_SYNC low time	-	124.5	-	μS
t(clk)	PCM_CLK cycle time	-	488	-	ns
t(clkh)	PCM_CLK high time	-	244	-	ns
t(clkl)	PCM_CLK low time	-	244	-	ns
t(susync)	PCM_SYNC setup time high before falling edge of PCM_CLK	-	122	-	ns
t(sudin)	PCM_IN setup time before falling edge of PCM_CLK	60	-	-	ns
t(hdin)	PCM_IN hold time after falling edge of PCM_CLK	10	-	-	ns
t(pdout)	Delay from PCM_CLK rising to PCM_OUT valid	-	-	60	ns
t(zdout)	Delay from PCM_CLK falling to PCM_OUT HIGH-Z	-	160	-	ns

a. Maximum PCM clock rate is 2.048 MHz.

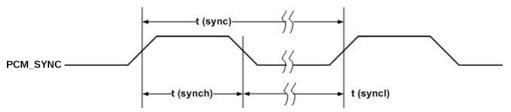


Figure 4-7: PCM_SYNC Timing Diagram (2048 kHz clock)

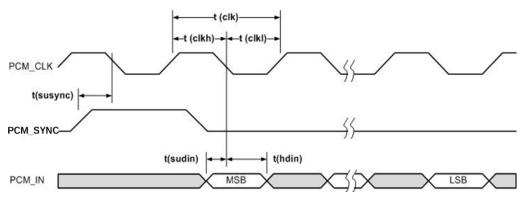


Figure 4-8: PCM Codec to Device Timing Diagram

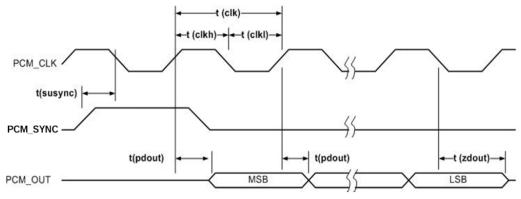


Figure 4-9: Device to PCM Codec Timing Diagram

4.18.2 I²S

The I²S interface can be used to transfer serial digital audio to or from an external stereo DAC/ADC and supports the following features:

Mode: Master (Slave mode is not supported)

Sampling rate: 48 kHzBits per frame: 16Bit clock: 1536 kHz

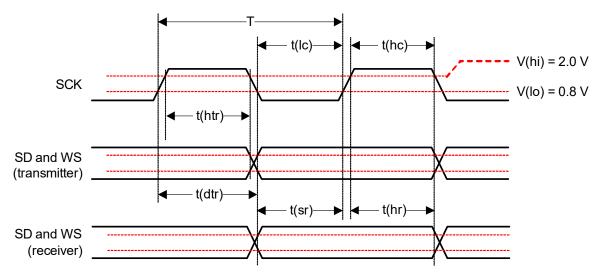


Figure 4-10: I²S Transmitter Timing

Table 4-20: I²S Interface Timing^a

Parameter	Description	Min	Тур	Max	Units
	Frequency	-	-	12.288	MHz
Т	Clock period	81.380	-	-	ns
t(hc)	Clock high	0.45×T	-	0.55×T	ns
t(lc)	Clock low	0.45×T	-	0.55×T	ns
t(sr)	SD and WS input setup time	16.276	-	-	ns
t(hr)	SD and WS input hold time	0	-	-	ns
t(dtr)	SD and WS output delay	-	-	65.100	ns
t(htr)	SD and WS output hold time	0	-	-	ns

a. Load capacitance is 10-40 pF

4.19 SPI Bus

The AirPrime WP76XX module provides one 4-wire serial peripheral interfaces (SPI1).

The following features are available on the SPI bus:

- Mode: Master (Slave mode is not supported)
- SPI speed from 960 kbps to 25 Mbps in master mode operation
- 4-wire interface
- 4 to 32 bits data length

Table 4-21 on page 110 describes the SPI interface pins.

Table 4-21: SPI Pin Descriptions

Pin	Signal Name	Direction ^a	Description	Reset State	I/O Type
51	SPI1_MRDY	Output	SPI Master Ready	Z	
52	SPI1_MISO	Input	SPI Master Input/Slave Output (output from slave)	Z	
53	SPI1_CLK	Output	SPI serial clock (output from Master)	Z	1V8
54	SPI1_MOSI	Output	SPI Master Output/Slave Input (output from master)	Z	

a. Signal direction with respect to module. Examples: SPI1_MISO (pin 52) is an input too the module from the host; SPI1_CLK (pin 53) is an output from the module to the host.

4.19.1 SPI Configuration

Table 4-22: SPI Configuration

Operation	Max Speed	SPI-Mode	Duplex	4-wire Type
Master	25 Mb/s	0,1,2,3	Full	 SCLK (SPI1_CLK) MOSI (SPI1_MOSI) MISO (SPI1_MISO) SS (SPI1_MRDY)

4.19.2 SPI Waveforms

The following figure shows waveforms for SPI transfer using a 4-wire configuration.

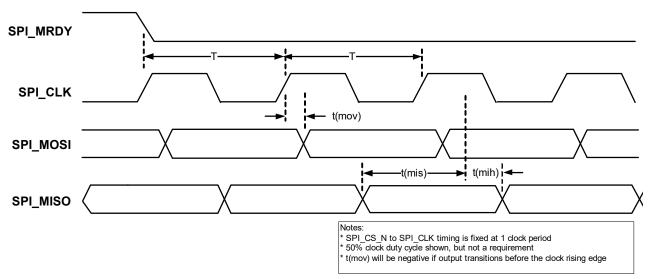


Figure 4-11: 4-Wire Configuration SPI Transfer

Table 4-23: SPI Master Timing Characteristics (@38 MHz)

Parameter		Min	Тур	Max	Unit
	SPI clock frequency	-	-	38	MHz
T ^a	SPI clock period	20.0	-	-	ns
t(ch)	Clock high	9.0	-	-	ns
t(cl)	Clock low	9.0	-	-	ns
t(mov)	Master output valid	-5.0	-	-5.0	ns
t(mis)	Master input setup	5.0	-	-	ns
t(mih)	Master input hold	1.0	-	-	ns

a. Minimum clock period includes 1% jitter of the maximum frequency

4.19.3 Application

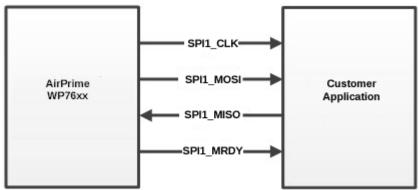


Figure 4-12: Example of 4-wire SPI Bus Application

4.20 HSIC Bus

The AirPrime WP76XX module provides a 2-wire HSIC (High-Speed Inter-Chip) bus.

Important: If the HSIC bus is not used on the host application, a pull-down resistor (20k–50k) should be added to each HSIC line to disable the interface. (Alternatively, the interface can be disabled using the !CUSTOM AT command with the "HSICENABLE" customization. See [1] AirPrime WP8548/WP75xx/WP76xx/WP77xx AT Command Reference for details.)

Table 4-24: HSIC Pin Descriptions

Pin	Signal Name ^a	Direction ^a	Description	Reset State	I/O Voltage
14	HSIC_DATA	I/O	HSIC data	Z	1.2V
15	HSIC_STRB	I/O	HSIC strobe signal	Z	1.20

a. From host view

4.20.1 HSIC Waveforms

Refer to [2] Inter-Chip USB Supplement to the USB 2.0 Specification Revision 1.0.

4.20.2 Application

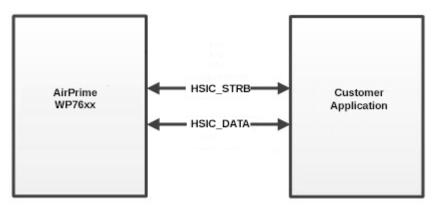


Figure 4-13: Example of 2-wire HSIC Bus Application

Application notes:

- Trace length < 10 cm
- Skew between data and strobe signals < 15 ps
- HSIC_DATA and HSIC_STRB should maintain a 50Ω impedance routing, and isolation between the lines should be maintained

4.21 Clock

The AirPrime WP76XX module supports two digital clock interfaces that are connected directly from the PMIC.

Table 4-25 describes the clock interface pins.

Table 4-25: Clock Interface Pin Descriptions

Pin	Signal name	I/O	I/O type	Description	If Unused
22	SYS_CLK	Output	1.8V	19.2 MHz digital clock output	Leave open
23	SLEEP_CLK	Output	1.8V	32.768 kHz digital clock output	Leave open

4.22 TP1 (Boot Pin)

The TP1 pin (boot pin) can be used for two primary purposes:

- The pin can be used to force the module to enter boot-loader mode on power-up—Connect the pin to a control mechanism (for example, a button, switch, or jumper) on the host platform, and use this mechanism to assert (drive low) the TP1 pin on power-up. The boot loader monitors the TP1 pin and when it detects a low signal, prevents normal power-up and prepares to download firmware via the DM port.
 - When the module has restarted and entered boot-loader mode, make sure to deassert the TP1 pin. When the firmware download finishes, the module reboots automatically and the de-asserted pin allows the module to boot normally.
- If not connected to a control mechanism, at minimum the pin should be connected to a test point on the host platform, for use by Sierra Wireless in RMA debugging.

Note: Firmware downloads also occur using software tools available on source.sierrawireless.com or over the air using an AirVantage server.

Table 4-26: TP1 Pin Description

Pin	Name	Direction	Function	If Unused
47	TP1	Input	Device recovery (boot load)	Mandatory test point

4.23 Temperature Monitoring

The AirPrime WP76XX provides internal temperature monitoring of the module's baseband thermistor, as detailed below in Figure 4-14 and Table 4-27.

The temperature state can be queried directly, and unsolicited notifications of temperature state transitions can be received by using:

- AT!PATEMP—Display the current temperature state (normal, hi or low warning, hi or low critical).
- AT+WUSLMSK—Enable unsolicited notifications for !PATEMP, to be received over the AT port whenever the state changes.

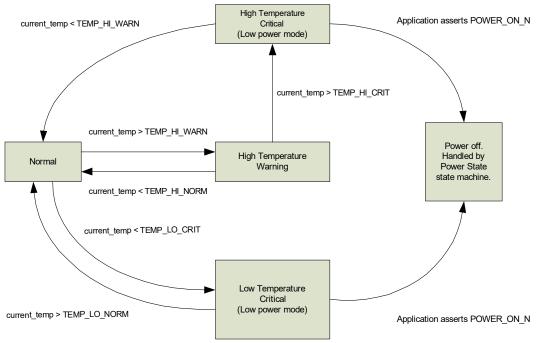


Figure 4-14: Temperature Monitoring State Machine

Table 4-27: Temperature Monitoring States

State	Description	Threshold	Default Temp Value (C) ^a	Functionality
Normal Baseband thermistor is between		TEMP_HI_NORM	+100	Class A
Normal	al Baseband thermistor is between		-40	Class B
High Temperature Warning	Baseband thermistor has exceeded	TEMP_HI_WARN	+110	Class B
High Temperature Critical	Baseband thermistor has exceeded	TEMP_HI_CRIT	+115	Low Power Mode
Low Temperature Critical	Baseband thermistor has descended past	TEMP_LO_CRIT	-45	Low Power Mode

a. Junction (PA thermistor) temperature

To restore full operation, the baseband thermistor's temperature reading must be within the normal or high temperature warning state thresholds.

4.24 Test Pins

Sierra Wireless requires test points on the customer application for Sierra Wireless RMA and debug service.

Table 4-28: Test Pin Descriptions

Pin	Name	Function	If Unused
236	J1	Test point	Mandatory test point
237	J2	Test point	Mandatory test point
238	J3	Test point	Mandatory test point
239	J4	Test point	Mandatory test point
240	J5	Test point	Mandatory test point
241	J6	Test point	Mandatory test point
242	J7	Test point	Mandatory test point
243	J8	Test point	Mandatory test point
244	J9	Test point	Mandatory test point

4.25 Antenna Control

Note: Antenna control signals support is optional.

The AirPrime WP76XX provides four output signals that can be used for host designs that incorporate tunable antennas.

Note: It is the responsibility of developers of host designs to evaluate the performance of tunable antennas that use these signals for neighbor cell measurements, Inter-RAT handovers, etc. Sierra Wireless does not guarantee ANT_CNTLx signal timing.

Note: These pins can be configured for use as GPIOs using +WIOCFG.

Table 4-29: Antenna Control Signals

Pin	Name	Direction ^a	Function	If Unused
153	ANT_CNTL0	Output		Leave open
154	ANT_CNTL1	Output	Customer-defined external switch control for	Leave open
155	ANT_CNTL2	Output	tunable antennas	Leave open
156	ANT_CNTL3	Output		Leave open

Signal direction with respect to module. Examples: ANT_CNTL0 (pin 153) is an output from the module to the host.

To tune the antenna:

- 1. Enable band selection, which is required to tune the antennas for specific bands:
 - AT!CUSTOM="BANDSELEN",1

(Note: This setting is persistent unless disabled by issuing AT!CUSTOM="BANDSELEN",0.)

- 2. Drive the antenna control signals high or low, as required, for a specific band:
 - AT!ANTSEL=<band>, <gpio1>, <gpio2>, <gpio3>[, <gpio4>]

See [1] AirPrime WP8548/WP75xx/WP76xx/WP77xx AT Command Reference for details.

(Note: <gpio1>-<gpio4> correspond to ANT_CTRL0-ANTCTRL3.)

4.26 Indication Interfaces

The AirPrime WP76XX module provides several indication interfaces that deliver notifications when specific events occur. These interfaces include:

- Tx Activity Indicator (TX_ON) on page 117
- WWAN_LED_N on page 117
- WAKE_ON_WWAN on page 118
- Ring Indicator on page 119
- SAFE_PWR_REMOVE on page 119
- UIM1_DET on page 119

4.26.1 Tx Activity Indicator (TX_ON)

The AirPrime WP76XX module provides a digital output signal to indicate the occurrence of Tx activity.

Table 4-30: Tx Activity Indicator States

Pin	Signal name	Direction ^a	I/O type	Module state	Signal State
60	TX ON	_ON Output 1.8V	1.9\/	During Tx activity	High
00	TX_ON		1.00	No Tx	Low

Signal direction with respect to module—TX_ON (pin 60) is an output from the module to the host.

Table 4-31: Tx Activity Indicator Characteristics

Parameter	2G	3G	LTE
T _{advance}	50 μs	22 ms	10.5 ms
T _{delay}	60 µs	90 µs	4 ms

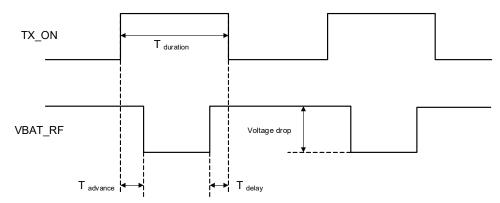


Figure 4-15: TX_ON State During Transmission

4.26.2 WWAN_LED_N

The AirPrime WP76XX provides an LED control output signal pad. This signal is an open drain output.

Table 4-32: LED Interface Pin

Pin	Signal name	Direction ^a	Voltage / Current	Function	If Unused
106	WWAN_LED_N	Output	Voltage (max)=VBAT_BB + 0.5 VMaximum current sink capability=40 mA	LED driver control	Leave open

a. Signal direction with respect to module—WWAN_LED_N (pin 106) is an output from the module to the host.

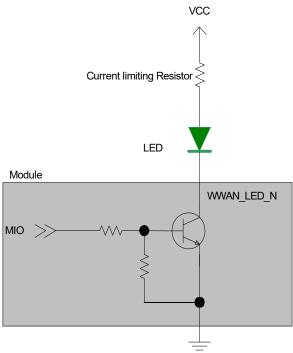


Figure 4-16: LED Reference Circuit

4.26.3 WAKE_ON_WWAN

Note: Host support for WAKE_ON_WWAN signal is optional.

The AirPrime WP76XX drives WAKE_ON_WWAN high to wake the host when specific events which are controlled by the customization setting "WAKEHOSTEN" occur. Refer to document [1] AirPrime WP8548/WP75xx/WP76xx/WP77xx AT Command Reference for details.

See Figure 4-17 on page 118 for a recommended implementation.

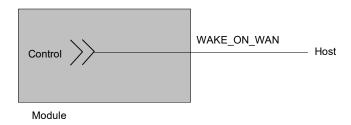


Figure 4-17: Recommended WAKE_ON_WWAN Connection

4.26.4 Ring Indicator

The ring indicator (UART1_RI) may be used to notify an external application of several events such as an incoming call, timer expiration, or incoming SMS. The AirPrime WP76XX pulses the signal high when an event occurs.

Table 4-33: UART1 RI Pin

Pin	Name	Direction ^a	Function	If unused
2	UART1_RI ^b	Output	Ring IndicatorSignal incoming calls (voice and data), SMS, etc.	Leave open

Signal direction with respect to the module—UART1_RI (pin 2) is an output from the module to the host.

For additional details, refer to the Legato API documentation at http://legato.io.

4.26.5 SAFE_PWR_REMOVE

The SAFE_PWR_REMOVE signal is used by the AirPrime WP76XX to indicate to the host device that VBAT_BB/VBAT_RF can be removed. When the high pulse signal is triggered to low level, it is safe to remove the power supply (after VGPIO goes low)—see Figure 4-1 on page 92.

4.26.6 UIM1 DET

The UIM Detect signal (UIM1_DET) is used to detect the physical presence of a UIM card in the UIM holder. For details, refer to UIM Interface on page 96.

4.27 DR_SYNC

The AirPrime WP76XX provides DR_SYNC, an output used for GPS dead reckoning synchronization.

The module pulses the DR_SYNC signal once every integer GPS second. While position fixes are occurring, the DR_SYNC pulse is aligned precisely with the GPS time. When a position fix cannot be made (for example, when a vehicle has entered a tunnel), the module continues to pulse the DR_SYNC signal every second while the level of uncertainty of the GPS time is low. When the uncertainty level is high, the module stops pulsing the signal.

Table 4-34: DR SYNC Pin Details

Pin	Signal name	Direction ^a	Function	If Unused
42	DR_SYNC	Output	GPS dead reckoning sync signal	Leave open

Signal direction with respect to the module—DR_SYNC (pin 42) is an output from the module to the host.

b. Do not install an external pull-up on this pin, otherwise the module will not boot.

4.28 W_DISABLE_N—Wireless Disable

Note: Host support for wireless disable signals is optional.

The host device uses W_DISABLE_N (pin 151) to enable / disable the WWAN or radio modem. When disabled, the modem cannot transmit or receive information.

Letting this signal float high allows the module to operate normally. The pin has an internal pull-up resistor. See Figure 4-18 for a recommended implementation.

When integrating with your host device, keep the following in mind:

- The signal is an input to the module and should be driven LOW only for its active state (controlling the power state); otherwise it should be floating or (High impedance). It should never be driven to a logic high level. The module has an internal pull-up resistor to an internal 1.8V rail, so if the signal is floating or (high impedance), then the radio is on.
- If the host never needs to assert this power state control to the module, leave this signal unconnected from the host interface.

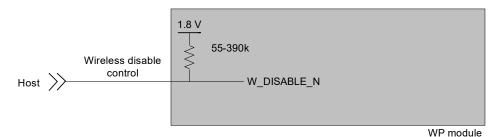


Figure 4-18: Recommended Wireless Disable Connection

>> 5: Routing Constraints and Recommendations

This section describes general routing constraints and recommendations for the AirPrime WP76XX module.

Note: This is a non-exhaustive list of suggested design guidelines. The developer is responsible for deciding whether to implement these guidelines.

5.1 General Rules and Recommendations

Clock and other high-frequency digital signals (e.g. serial buses) should be routed as far as possible from the module's analog signals.

If the application design makes it possible, all analog signals should be separated from digital signals by a ground trace on the PCB.

Tip: Avoid routing any signals under the module on the application board.

5.2 Power Supply

When designing the power supply, make sure that VBAT_BB/VBAT_RF meet the requirements listed in Power Supply Ratings on page 38.

Careful attention should be paid to the following:

- Power supply quality—PFM, or PSM systems should be avoided; Low ripple, linear regulation or PWM converters are preferred for low noise.
- Capacity to deliver high current peaks in a short time (for pulsed radio emission)
- VBAT_BB/VBAT_RF must support peak currents with an acceptable voltage drop that guarantees the minimum required VBAT_BB/VBAT_RF value.
- VBAT_BB/VBAT_RF signal pads must never exceed the maximum required VBAT_BB/VBAT_RF value, otherwise the module's power amplifier and GPS chipset may be severely damaged.
- A weakly-designed (not robust) power supply could affect EMC performance, the emission spectrum, and the phase error and frequency error.

5.3 Antenna

Sierra Wireless strongly recommends working with an antenna manufacturer either to develop an antenna adapted to the application, or to adapt an existing solution to the application.

For information on routing constraints for the RF circuit, see RF Circuit on page 125.

5.3.1 OTA Considerations when Developing Products that Include an Integrated Antenna

Developing a product with an integrated antenna is challenging considering RF design and performances; difficulty increases with the level of integration. Smaller product size implies:

- The smaller the antenna, the more challenging to reach the expected antenna efficiency.
- Large RF TX signal level radiated by the antenna can be captured by nonlinear devices and create, by rectification, a high level of unwanted harmonics.
- As much as the distance between the antenna and electronic devices (including
 the module and other application related hardware) decreases, coupling to clocks
 and DC/DC switchers harmonics and wide band noise sources generated by high
 speed digital signals increases. Such a coupling may create receiver desensitization from the resulting noise generated at the receiver frequency bands.

It is essential to take into account appropriate design rules when developing new products and to evaluate OTA performances at an early stage of product integration:

- TRP (Total Radiated Power): To verify the antenna efficiency at TX frequency bands and compliance to spurious emission requirements.
- TIS (Total Isotropic Sensitivity): To verify the antenna efficiency at RX frequency bands and evaluate the presence of noise generated into supported frequency bands subject to cause receiver desensitization.

5.4 PCB Layout Recommendations

5.4.1 General Design Rules

- Application board should be designed in such a way that provides a plain GND connection on the whole surface located under the module area. A matrix of high density vias should be implemented to connect the top layer (in contact to the module LGA ground pads) to other GND layers. Such implementation aims to reduce noise interference, spurious radiation and improve heat dissipation spreading heat through the PCB surface and layers.
- To reduce coupling between antenna and other signals and improve EMC, the top and bottom layers of the PCB should be covered by solid GND plan as much as possible.
- Good PCB grounding is essential; use ground planes that are as wide as possible
 and link the different planes from each layers using regularly spaced via holes.
 Particularly, via should be present all around the PCB edge to block any
 unwanted EMI emitted from the power tracks.
- Sensitive signals should be shielded by routing them into inner layers (to prevent them from radiating) and sensitive components can be shielded. The top and bottom ground plans connected together with vias ensures all sensitive traces are shielded well. This significantly reduces coupling between antenna and other signals and improves EMI and EMC performances.
- When it is not possible to route a signal trace into inner layers, top and bottom layers can be used for short distance connections (i.e. connections between adjacent pads).

- It is good practice during the design phase to anticipate and reserve area for shield cans.
- The module's power supply needs decoupling capacitors to filter out noise to prevent it from reaching the module. It could cause instabilities in the RF output in the transmitter, resulting in undesired interference and spurious radiations. In the receiver, it increases packet error and reduces sensitivity.
- Place a decoupling capacitor (10–33pF is recommended) as close to the power supply pin of the module as possible.
- Use as many vias as possible to build a ground fence around the RF stripline and microstrip line to isolate it from other signals.
- In some specific cases, like impedance controlled lines and RF connection pads and antenna pads, sufficient keep out distance between RF signals and GND should be implemented to prevent impedance mismatch from parasitic capacitance load.

5.4.2 Specific Design Rules to Support TRP Performances

- Prevent neighboring components from being interfered by TX radiated RF energy especially at GSM transmit frequencies to prevent them from generating harmonics through non-linear behavior such as saturation or rectification. The mandatory maximum radiated harmonics level for R&TTE/PTCRB certification is below -30dBm and can be very easily failed with inappropriate design.
- When possible, add 10–33pF in parallel of each fast rectifier diode to prevent generating harmonics (due to the TX signal detection and especially when GSM bands are supported).
- With an antenna located close to circuitry using active devices, shielding may be needed to reach enough isolation.

5.4.3 Specific Design Rules to Support TIS Performance

- High speed digital signal (such as DC/DC converters, system clock, CPU and Memory bus, USB and other high speed interfaces) should be isolated and located as far as possible from RF signals and antenna.
- Good practice for interferences prevention is to add decoupling capacitors (10–33pF recommended) every 10mm on all top and bottom power lines longer than 10mm.
- With an antenna located close to circuitry using active devices or noisy signals, shielding may be needed to reach enough isolation.

5.5 PCB Specifications for the Application Board

Sensitive signals (such as audio, UIM, and clocks) should be protected by ground planes/fills. Routing sensitive signals close to noisy signals could result in noise being coupled.

5.6 Recommended PCB Land Pattern

Refer to the AirPrime WP76XX Customer Process Guidelines document, available at http://source.sierrawireless.com.

5.7 Routing Constraints

5.7.1 Power Supply

If the following design recommendations are not followed, phase error (peak) and power loss could occur.

Note: The recommended power supply capacity (Table 3-3 on page 39) is greater than the maximum peak current to provide an operating margin. Since the maximum peak current can reach 2.5 A, Sierra Wireless strongly recommends having a large width for the layout of the power supply signal (to avoid voltage loss between the external power supply and VBAT_BB/VBAT_RF.

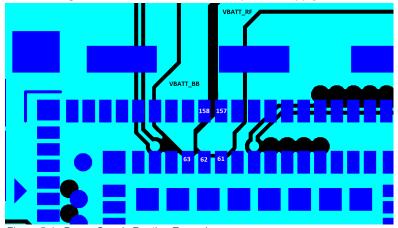


Figure 5-1: Power Supply Routing Example

Note: Figure 5-1 shows separate traces for VBAT_BB and VBAT_RF. If VBAT_BB and VBAT_RF share a single power supply, these traces should be connected.

Note: For optimal decoupling, place the capacitors on the underside of the board, directly under the pins.

- Input capacitors (2×47 µF) are required close to the module.
- Attention should be paid to the ground trace or the ground plane on the application board for the power supply that supplies the module. The ground trace or ground plane, as well as the VBAT trace, must be able to support current peaks.
- If the ground trace between the module and the power supply is a copper plane, make sure it is a solid plane.
- Design routing to make sure total line impedance does not exceed 10 m Ω @ 217 Hz.

5.7.1.1 Ground Plane Connection

The AirPrime WP76XX module requires a solid, central ground plane (with solder mask defined pads) located directly under the module. This will:

- Ensure high current signal returns
- Provide heat dissipation under higher operating temperatures

The ground plane should be connected (with vias) to the reference ground layer of the application board.

Do not use a separate GND for the antennas. Connections to GND from the module should be flooded plane using thermal reliefs to ensure reliable solder joints.

5.7.2 UIM Interface

- Tracks between the AirPrime WP76XX and the UIM socket should be as short as possible. Maximum recommended length is 10 cm.
- ESD protection is mandatory on the UIM lines and must be placed near the UIM holder, unless:
 - · An eSIM is being used, or
 - · There is no physical access to the UIM.
- The decoupling capacitor(s) should be placed as close as possible to the UIM card connector for the UIM1 VCC signal.

5.7.3 RF Circuit

The RF signal must be routed on the application board using tracks with a 50 Ω characteristic impedance.

The characteristic impedance depends on the dielectric, the track width and the ground plane spacing.

It is recommended to use stripline design if the RF path is fairly long (more than 3 cm), since microstrip design is not shielded. Consequently, the RF (transmit) signal may interfere with neighboring electronic circuits. In the same way, the neighboring electronics (micro-controllers, etc.) may interfere with the RF (receive) signal and degrade the reception performance.

The RF trace on the development board is routed from the AirPrime WP76XX antenna port to the RF connector (IPEX MHF-4). The RF trace is designed as a 50Ω coplanar stripline and its length is 20.7 mm.

The following drawings show the location of the AirPrime WP76XX on the development board, the routing cross-section, and the top view of the RF trace on the development board.

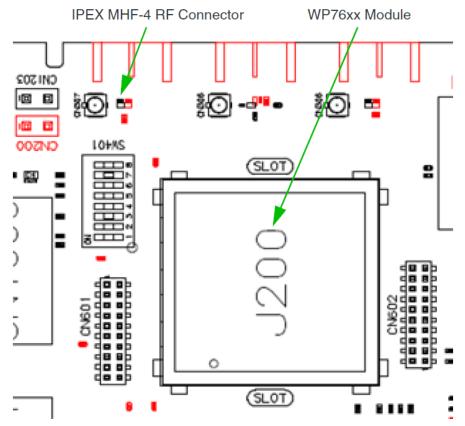


Figure 5-2: Module Location on Development Board

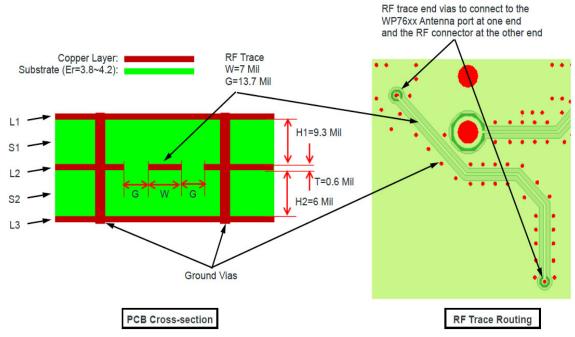


Figure 5-3: Development Board RF Trace Design

5.7.4 USB Interface

When the USB interface is externally accessible, ESD protection is required on the USB_VBUS, USB_D+, and USB_D- signals.

High-speed USB signals (USB_D+/USB_D-) are a differential pair and must be routed with 90Ω differential impedance.

5.7.5 HSIC Routing Recommendations

HSIC signals (HSIC_STRB/HSIC_DATA) are single-ended and must be routed with the following considerations/constraints:

- 50Ω single-ended ±10% trace impedance
- Isolation between the lines should be maintained
- Trace lengths < 10 cm

5.8 Thermal Considerations

When transmitting, the AirPrime WP76XX can generate significant amounts of heat (due to the internal Power Amplifier) that must be dissipated in the host device for safety and performance reasons.

The amount of thermal dissipation required depends on the following factors:

- Supply voltage—Maximum power dissipation for these modules can be up to 3 W at voltage supply limits.
- Usage—Typical power dissipation values depend on the location within the host, amount of data transferred, etc.

To enhance heat dissipation:

- Maximize airflow over / around the module
- Locate the module away from other components that generate heat
- Ensure the module is connected to a solid ground plane

5.9 EMC and ESD Recommendations

EMC tests must be performed on the application as soon as possible to detect any potential problems.

When designing, special attention should be paid to:

- Possible spurious emissions radiated by the application to the RF receiver in the receiver band
- ESD protection—Typically, ESD protection is mandatory for externally accessible signals, including:
 - VBAT_RF/VBAT_BB
 - UIM (if accessible from outside)
 - Serial link
 - USB
 - Antennas
- Length of the UIM interface lines (preferably <10 cm)
- Length of the HSIC interface lines (<10 cm, as required by the HSIC specification)
- EMC protection on audio input/output (filters against 900 MHz emissions)

Ground plane: Sierra Wireless recommends a common ground plane for analog/digital/RF grounds

Note: The AirPrime WP76XX does not include any protection against over-voltage.

The host device must provide adequate ESD protection on digital circuits and antenna ports as detailed in the following table.

Note: The level of protection required depends on your application.

Table 5-1: ESD Specifications^a

Category	Connection	Specification
Operational	RF portsUIM connectorUSB connectorUART connector	IEC-61000-4-2 - Level (Electrostatic Discharge Immunity Test) ± 6kV Contact ± 8kV Air
Non-operational	Host connector interface	Unless otherwise specified: • JESD22-A114 ± 1kV Human Body Model • JESD22-A115 ± 100V Machine Model • JESD22-C101C ± 500V Charged Device Model

a. ESD protection is highly recommended at the point where the UIM contacts are exposed, and for any other signals that would be subjected to ESD by the user.

5.10 Mechanical Integration

Attention should be paid to:

- Antenna cable integration (bending, length, position, etc)
- Pads of the AirPrime WP76XX to be soldered to the ground plane
- Ensuring proper board layout
- Providing sufficient space around the module for heat dissipation

5.11 Signal Reference Schematics

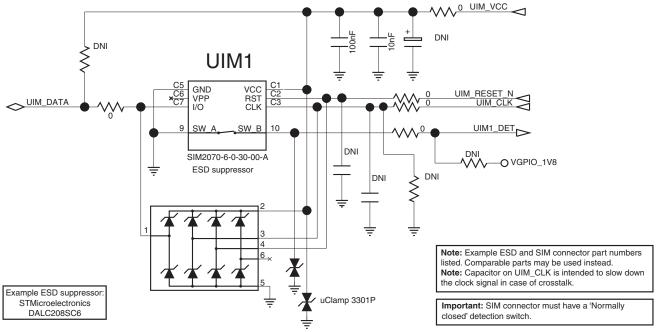


Figure 5-4: UIM Interface

USB Interface

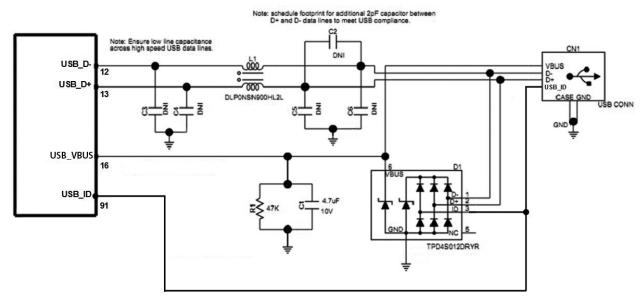


Figure 5-5: USB Interface

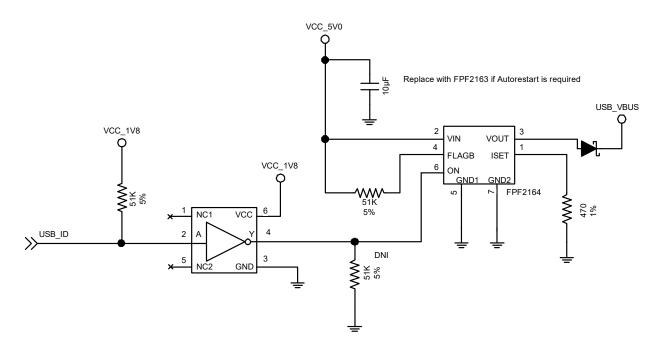


Figure 5-6: USB OTG Interface

>> 6: Software and Tools

6.1 Support Tools

The AirPrime WP76XX is compatible with Sierra Wireless' SwiLogPlus trace tool that allows users to send error logs to Sierra Wireless.

6.2 SED (Smart Error Detection)

The AirPrime WP76XX uses a form of SED to track premature module resets. In such cases, the module automatically forces a pause in boot-and-hold mode at power-on to accept an expected firmware download to resolve the problem.

- 1. Module tracks consecutive resets within 30 seconds of power-on.
- 2. After a sixth consecutive reset, the module waits in boot-and-hold mode (up to 30 seconds) for a firmware download to resolve the power-cycle problem.

A RAM dump tool that can be used to help isolate the cause of premature resets is available from Sierra Wireless. Contact your Sierra Wireless account representative for assistance.

6.3 Firmware Upgrade

Firmware upgrades are downloaded to the embedded module over the USB interface or over the air via Sierra Wireless' AVMS (AirVantage Management System). Contact your Sierra Wireless account representative for assistance.

6.4 Operating System Upgrade

The AirPrime WP76XX module's operating system is stored in flash memory and can be easily upgraded.

Tip: To follow regular changes in the 3GPP standard and to offer a state-of-the-art operating system, Sierra Wireless recommends that the application designed around an embedded module (or embedded module based product) should allow easy operating system upgrades on the embedded module via the recommended firmware download protocol. Therefore, the application shall either allow a direct access to the embedded module USB interface through an external connector or implement any mechanism allowing the embedded module operating system to be downloaded.

6.5 Product Marking

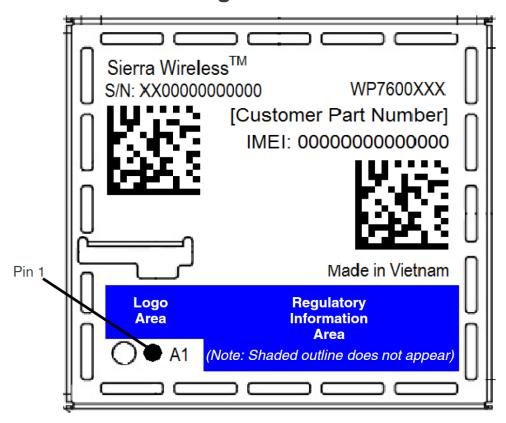


Figure 6-1: Unit Product Marking—Laser-etched, Typical Representation

Note: The figure above is not to scale. Contents will vary by SKU.

The AirPrime WP76XX product marking is laser-etched and may contain:

- Product identification (Model name, serial number)
- IMEI or MEID number and barcode
- Fabrication country
- Required regulatory markings (CE logo, Japan approval mark, FCC ID, IC certification number, etc., as appropriate)
- Pin 1 indicator

Note: The AirPrime WP76XX supports OEM partner specific product marking requirements.

>> 7: Debug and Assembly Considerations

7.1 Testing Assistance Provided by Sierra Wireless

Sierra Wireless offers optional professional services based assistance to OEMs with regulatory approvals.

7.2 Integration Requirements

When integrating the AirPrime WP76XX module, the following items must be addressed:

- Mounting—Effect on temperature, shock, and vibration performance
- Power supply—Impact on battery drain and possible RF interference
- Antenna location and type—Impact on RF performance
- Regulatory approvals—As described in Approval on page 142
- Service provisioning—Manufacturing process

Sierra Wireless provides guidelines for successful AirPrime WP76XX module integration with the document suite and offers integration support services as necessary.

7.3 IOT/Operator

Interoperability and Operator/Carrier testing of the finished system is the responsibility of the OEM. The test process will be determined with the chosen network operator(s) and will be dependent upon your business relationship with them, as well as the product's application and sales channel strategy.

Sierra Wireless offers assistance to OEMs with the testing process, if required.

7.4 Module Testing Recommendations

When testing your integration design:

- Test to your worst case operating environment conditions (temperature and voltage)
- Test using worst case operation (transmitter on 100% duty cycle, maximum power)
- Monitor the module's junction temperature using AT!PATEMP. This command
 polls a thermistor located near the module's power amplifier (typically the hottest
 spot on the module).

Note: Make sure that your system design provides sufficient cooling for the integrated module. The RF shield temperature should not be exposed to an ambient temperature greater than 85 °C to prevent damage to the module's components.

7.5 Serial Link Access

Direct access to the UART1/UART2 serial link is very useful for:

- Testability operations
- Accessing the module's Linux console for debugging

Refer to the following figure for a level shifter implementation that allows UART1 serial link access. (A UART2 level shifter would use the corresponding UART2 pins—UART2_TX (pin 96), UART2_RX (pin 97), UART2_RTS (pin 98), UART2_CTS (pin 99).)

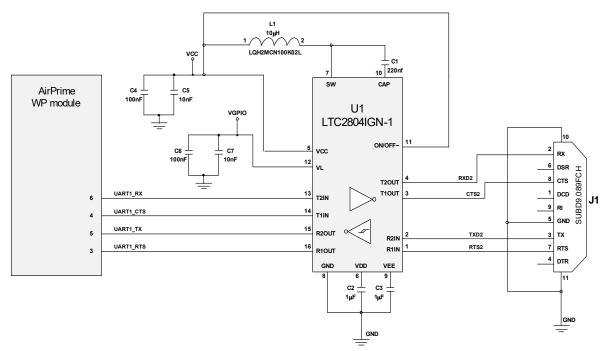


Figure 7-1: Level Shifter Implementation for UART1 Serial Link Access

7.6 RF Output Accessibility

During the integration phase of the AirPrime WP76XX, it can be helpful to connect the module to a simulator to check critical RF TX parameters and power behavior for supported RATs.

Although the AirPrime WP76XX module has been certified, some parameters may have degraded if some basic precautions have not been followed (poor power supply, for example). This may not affect the functionality of the product, but the product may not comply with 3GPP specifications.

The following TX parameters can be checked using a Radio Communication tester:

- Phase & Frequency Error
- Output Power and Burst Time
- Output Spectrum (Modulation and Switching)

The following are available typical Radio Communication testers:

Rohde & Schwarz: CMU200, CMW500

• Keysight (formerly Agilent): 8960

• Anritsu: MD8475

Because of the high prices associated with Radio Communication testers and the necessary RF know-how to perform simulations, customers can check their applications in the Sierra Wireless laboratories. Contact the Sierra Wireless support team for more information.

>> 8: Reliability Specification

AirPrime WP76XX modules are tested against the Sierra Wireless Industrial Reliability Specification defined below.

8.1 Reliability Compliance

AirPrime WP76XX modules connected on a reliability test board are compliant with the requirements in Table 8-1.

Table 8-1: Standards Conformity

Abbreviation	Definition
IEC	International Electrotechnical Commission
ISO	International Organization for Standardization

8.2 Reliability Prediction Model

8.2.1 Life Stress Test

The following tests the AirPrime WP76XX module's product performance.

Table 8-2: Life Stress Test

Designation	Condition
Performance Test PT3T & PTRT	Standard: N/A
FISIAFIKI	Special conditions:
	Temperature:
	 Class A: -30°C to +70°C
	 Class B: -40°C to +85°C
	 Rate of temperature change: 3 ± 0.6°C/min
	Recovery time: 3 hours
	Operating conditions: Powered
	Duration: 14 days

8.2.2 Environmental Resistance Stress Tests

The following tests the AirPrime WP76XX module's resistance to extreme temperature.

Table 8-3: Environmental Resistance Stress Tests

Designation	Condition
Cold Test Active COTA	Standard: IEC 680068-2-1, Test ad
COTA	 Special conditions: Temperature: -40°C Temperature variation: 1°C/min
	Operating conditions: Powered ON with a power cycle of 1 minute ON and 2 minutes OFF
	Duration: 3 days
Resistance to Heat Test	Standard: IEC 680068-2-2, Test Bb
KII	Special conditions:
	Temperature: +85°CTemperature variation: 1°C/min
	Operating conditions: Powered ON with a power cycle of 15 minutes ON and 15 minutes OFF
	Duration: 50 days

8.2.3 Corrosive Resistance Stress Tests

The following tests the AirPrime WP76XX module's resistance to corrosive atmosphere.

Table 8-4: Corrosive Resistance Stress Tests

Designation	Condition
Humidity Test HUT	Standard: IEC 60068-2-3, Test Ca
	Special conditions: Temperature: +65°C RH: 95% Temperature variation: 3 ± 0.6°C/min Operating conditions: Powered ON with a power cycle of 15 minutes ON and 15 minutes OFF Duration: 10 days

Table 8-4: Corrosive Resistance Stress Tests (Continued)

Designation	Condition
Component Solder Wettability CSW	Standard: JESD22-B102, Method 1/Condition C, Solderability Test Method
Airarine Ser	Special conditions: • Test method: Dip and Look Test with Steam preconditioning 8 h ± 15 min. Dip for 5 +0/-0.5 seconds
185	Operating conditions: Unpowered
	Duration: 1 day
Moist Heat Cyclic Test	Standard: IEC 60068-2-30, Test Db
MHCT	Special conditions: Upper temperature: +40 ± 2°C Lower temperature: +23 ± 5°C RH: At upper temperature: 93% At lower temperature: 95% Number of cycles: 21 (1 cycle/24 hours) Temperature variation: 3 ± 0.6°C/min
	Operating conditions: Powered ON for 15 minutes during each 3 hours ramp up and 3 hours ramp down (in middle) for every cycle
	Duration: 21 days

8.2.4 Thermal Resistance Cycle Stress Tests

The following tests the AirPrime WP76XX module's resistance to extreme temperature cycling.

Table 8-5: Thermal Resistance Cycle Stress Tests

Designation	Condition
Thermal Shock Test	Standard: IEC 60068-2-14, Test Na
· ett	Special conditions:
	Temperature: -30°C to +80°C
	Temperature variation: 6–30 s
	Number of cycles: 600
	Dwell time: 10 minutes
	Operating conditions: Unpowered
	Duration: 9 days

Table 8-5: Thermal Resistance Cycle Stress Tests (Continued)

Designation	Condition
Temperature Change	Standard: IEC 60068-2-14, Test Nb
	Special conditions: Temperature: -40°C to +90°C Temperature variation: 3 ± 0.6°C/min Number of cycles: 400 Dwell time: 10 minutes
	Operating conditions: Unpowered
	Duration: 29 days

8.2.5 Mechanical Resistance Stress Tests

The following tests the AirPrime WP76XX module's resistance to vibrations and mechanical shocks.

Table 8-6: Mechanical Resistance Stress Tests

Designation	Condition
Sinusoidal Vibration Test SVT	Standard: IEC 60068-2-6, Test Fc
	 Special conditions: Frequency range: 16 Hz to 1000 Hz Displacement: 0.35 mm (peak–peak) Acceleration: 5 g from 16 to 62 Hz 3 g from 62 to 200 Hz 1 g from 200 to 1000 Hz Sweep rate: 1 octave/minute Number of sweeps: 20 sweeps/axis Sweep direction: ± X, ± Y, ± Z Operating conditions: Unpowered Duration: 2 days

Table 8-6: Mechanical Resistance Stress Tests (Continued)

Designation	Condition			
Random Vibration Test RVT	Standard: IEC 60068-2-64, Test Fh			
RVI	 Special conditions: Frequency range: 10 Hz to 2000 Hz Power Spectral Density in [(m/s²)²/Hz] 0.1 g²/Hz at 10 Hz 0.01 g²/Hz at 250 Hz 0.005 g²/Hz at 1000 Hz 0.005 g²/Hz at 2000 Hz Peak factor: 3 Duration per axis: 1 hr/axis 			
	Operating conditions: Unpowered			
Mechanical Shock Test	Duration: 1 day Standard: IEC 60068-2-27, Test Ea			
MST TO THE REPORT OF THE REPOR	Special conditions: • Shock Test 1: • Wave form: Half sine • Peak acceleration: 30 g • Duration: 11 ms • Number of shocks: 8 • Direction: ± X, ± Y, ± Z • Shock Test 2: • Wave form: Half sine • Peak acceleration: 100 g • Duration: 6 ms • Number of shocks: 3 • Direction: ± X, ± Y, ± Z			
	Operating conditions: Unpowered			
	Duration: 72 hours			

8.2.6 Handling Resistance Stress Tests

The following tests the AirPrime WP76XX module's resistance to handling malfunctions and damage.

Table 8-7: Handling Resistance Stress Tests

Designation	Condition			
ESDC Test	Standard: JESD22-A114, JESD22-A115, JESD22-C101			
	Special conditions: HBM (Human Body Model): 1 KV (Class 1C) MM (Machine Model): 100 V CDM (Charged Device Model): 500 V (Class IV)			
	Operating conditions: Powered			
	Duration: 3 days			
Free Fall Test FFT 1	Standard: IEC 60068-2-32, Test Ed			
	Special conditions: Number of drops: 2 drops per unit Height: 1 m			
	Operating conditions: Unpowered			
	Duration: 6 hours			

>> 9: Approval

9.1 Disposing of the Product

This electronic product is subject to the EU Directive 2012/19/EU for Waste Electrical and Electronic Equipment (WEEE). As such, this product must not be disposed of at a municipal waste collection point. Please refer to local regulations for directions on how to dispose of this product in an environmental friendly manner.

9.2 Important Notice

Due to the nature of wireless communications, transmission and reception of data can never be guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used in situations where failure to transmit or receive data could result in damage of any kind to the user or any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or receive such data.

9.3 Safety and Hazards

Do not operate your AirPrime WP76XX embedded module:

- In areas where blasting is in progress
- Where explosive atmospheres may be present including refueling points, fuel depots, and chemical plants
- Near medical equipment, life support equipment, or any equipment which may be susceptible to any form of radio interference.

In such areas, the AirPrime WP76XX modem **MUST BE IN AIRPLANE MODE OR POWERED OFF**. Otherwise, the AirPrime WP76XX modem can transmit signals that could interfere with this equipment.

In an aircraft, the AirPrime WP76XX modem **MUST BE IN AIRPLANE MODE OR POWERED OFF**. Otherwise, the AirPrime WP76XX modem can transmit signals that could interfere with various onboard systems and may be dangerous to the operation of the aircraft or disrupt the cellular network. Use of a cellular phone in an aircraft is illegal in some jurisdictions. Failure to observe this instruction may lead to suspension or denial of cellular telephone services to the offender, or legal action or both.

Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is open. The AirPrime WP76XX modem may be used normally at this time.

9.4 Compliance Acceptance and Certification

The AirPrime WP7603, WP7610 and WP7611 are designed to be compliant with the 3GPP Release 8 UTRA and Release 10 E-UTRA Specifications for Mobile Terminated Equipment. The WP7601 is designed to be compliant with the 3GPP Release 10 E-UTRA Specification for Mobile Terminated Equipment.

Final regulatory and operator certification requires regulatory agency testing and approval with the fully integrated UE host device incorporating the AirPrime WP76XX module.

The OEM host device and, in particular, the OEM antenna design and implementation will affect the final product functionality, RF performance, and certification test results.

Note: Tests that require features not supported by the AirPrime WP76XX (as defined by this document) are not supported.

9.5 Certification Compliance

9.5.1 Important Compliance Information for North American Users

The WP7601, WP7603, WP7610 and WP7611 modules, upon commercial release, will have been granted modular approval for mobile applications. Integrators may use these modules in their final products without additional FCC/IC (Industry Canada) certification if they meet the following conditions. Otherwise, additional FCC/IC approvals must be obtained.

- The end product must use the RF trace design approved with the WP7601, WP7603, WP7610 or WP7611. The Gerber file of the trace design can be obtained from Sierra Wireless upon request.
- 2. At least 20 cm separation distance between the antenna and the user's body must be maintained at all times.
- 3. To comply with FCC/IC regulations limiting both maximum RF output power and human exposure to RF radiation, the maximum antenna gain including cable loss in a mobile-only exposure condition must not exceed the limits stipulated in Table 9-1 on page 143.

Table 9-1: Antenna Gain Specifications

Device	Technology	Band	Frequency (MHz)	Maximum Antenna Gain (dBi)
WP7601	LTE	4	1710–1755	6
		13	777–787	6

Table 9-1: Antenna Gain Specifications (Continued)

Device	Technology	Band	Frequency (MHz)	Maximum Antenna Gain (dBi)
WP7603	LTE	2	1850–1910	6
		4	1710–1755	6
		5	824–849	6
		12	699–716	6
	UMTS	2	1850–1910	6
		4	1710–1755	6
		5	824–849	6
	LTE	2	1850–1910	6
		4	1710–1755	6
		5	824–849	6
		12	699–716	6
		13	777–787	6
WP7610		14	788–798	6
		17	704–716	6
		66	1710–1780	6
	UMTS	2	1850–1910	6
		4	1710–1755	6
		5	824–849	6
	LTE	2	1850–1910	6
		4	1710–1755	6
		5	824–849	6
		12	699–716	6
WP7611		13	777–787	6
VVP/611		14	788–798	6
		25	1850–1915	6
		26	814–849	6
		66	1710–1780	6
		71	663–698	6

Table 9-1: Antenna Gain Specifications (Continued)

Device	Technology	Band	Frequency (MHz)	Maximum Antenna Gain (dBi)
	UMTS	2	1850–1910	6
WP7611		4	1710–1755	6
		5	824–849	6

- **4.** The WP7601, WP7603, WP7610 and WP7611 may transmit simultaneously with other collocated radio transmitters within a host device, provided the following conditions are met:
 - Each collocated radio transmitter has been certified by FCC/IC for mobile application.
 - At least 20 cm separation distance between the antennas of the collocated transmitters and the user's body must be maintained at all times.
 - The radiated power of a collocated transmitter must not exceed the EIRP limit stipulated in Table 9-2 on page 145.

Table 9-2: Collocated Radio Transmitter Specifications

Device	Technology	Frequency (MHz)	EIRP Limit (dBm)
	WI AN	2400–2500	25
	WiMAX	5150–5850	27
Collocated		2300–2400	25
transmitters ^a		2500–2700	25
		3300–3800	25
	ВТ	2400–2500	15

- a. Valid collocated transmitter combinations: WLAN+BT; WiMAX+BT. (WLAN+WiMAX+BT is not permitted.)
- **5.** A label must be affixed to the outside of the end product into which the WP7601, WP7603, WP7610 or WP7611 is incorporated, with a statement similar to the following:
 - · (WP7601)— This device contains FCC ID: N7NWP76A/IC:2417C-WP76A.
 - (WP7603)— This device contains FCC ID: N7NWP76C/IC:2417C-WP76C.
 - (WP7610)— This device contains FCC ID: N7NWP7610/IC:2417C-WP7610.
 - (WP7611)— This device contains FCC ID: N7NWP76B/IC:2417C-WP76B.
- **6.** A user manual with the end product must clearly indicate the operating requirements and conditions that must be observed to ensure compliance with current FCC/IC RF exposure guidelines.

The end product with an embedded WP7601, WP7603, WP7610 or WP7611 may also need to pass the FCC Part 15 unintentional emission testing requirements and be properly authorized per FCC Part 15.

Note: If this module is intended for use in a portable device, you are responsible for separate approval to satisfy the SAR requirements of FCC Part 2.1093 and IC RSS-102.

9.5.2 Japan Regulatory Compliance

The AirPrime WP7605 has been granted regulatory approval in Japan with the following certification numbers:

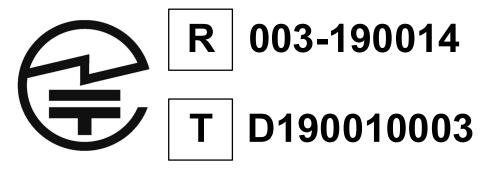


Figure 9-1: Japan Certification

>> 10: Pinout

The system interface of the AirPrime WP76XX is through the LGA pattern on the bottom of the PCB.

AirPrime WP76XX pins are divided into three functional categories:

- Core functions and associated pins—Cover all the mandatory features for M2M connectivity and will be available by default across all CF3 family of modules.
 These Core functions are always available and always at the same physical pin locations. A customer platform using only these functions and associated pins is guaranteed to be forward and/or backward compatible with the next generation of CF3 modules.
- Extension functions and associated pins—Bring additional capabilities to the customer. Whenever an Extension function is available on a module, it is always at the same pin location.
- Custom functions and associated pins—These are module-specific and make use of specific chipset functions and I/Os.

Warning: Custom features should be used with caution as there is no guarantee that the custom functions available on a given module will be available on other CF3 modules.

Pins marked as "Leave open" or "Reserved" should not be used or connected.

10.1 Pin Configuration

Figure 10-1 illustrates the pin configuration of the AirPrime WP76XX module.

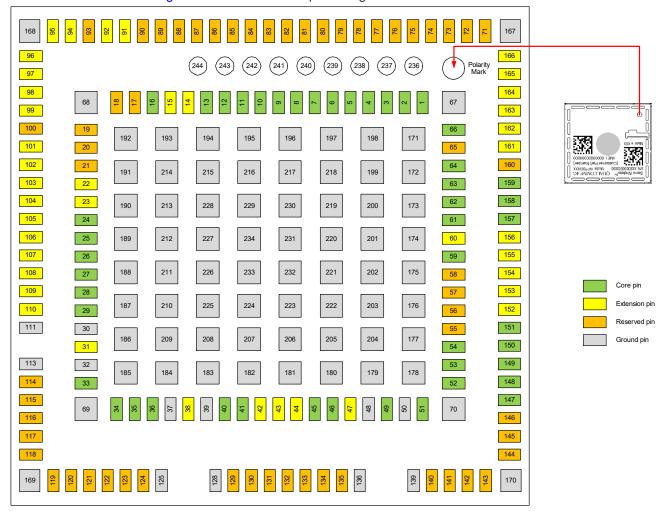


Figure 10-1: Pin Configuration (Top View, Through Module)

10.2 Pin Description

Table 10-1 on page 149 lists detailed information for the LGA pins.

Note: Some pin numbers (112, 126, 127, 137, 138, 235) do not appear in this table because there are no corresponding pads on the module's PCB.

Table 10-1: Pin Definitions

Pin	Signal name	Group	I/O ^a	Voltage	PU/ PD ^b	Active	If unused	Function	Туре
1	I2C1_CLK	I2C	I/O	1.8V	PU		Leave open	I ² C clock	Core
2	UART1_RI ^{c,d}	UART1	0	1.8V		L	Leave open	UART1 Ring indicator	Core
		Note: Do r	ot install	external pul	l-up or	this pin,	otherwise the mo	odule will not boot.	-
3	UART1_RTS ^c	UART1	I	1.8V		L	Leave open	UART1 Request to send	Core
4	UART1_CTS ^c	UART1	0	1.8V		L	Leave open	UART1 Clear to send	Core
5	UART1_TX ^c	UART1	1	1.8V			Leave open	UART1 Transmit data	Core
6	UART1_RX ^c	UART1	0	1.8V			Leave open	UART1 Receive data	Core
7	UART1_DTR ^{c,e}	UART1	I	1.8V		L,	Leave open	UART1 Data terminal ready	Core
8	UART1_DCD ^{c,d}	UART1	0	1.8V		L	Leave open	UART1 Data carrier detect	Core
		Note: Do r	ot install	external pul	l-up or	this pin,	otherwise the mo	odule will not boot.	
9	UART1_DSR ^{c,d}	UART1	0	1.8V		L	Leave open	UART1 Data set ready	Core
		Note: Do r	ot install	external pul	l-up or	this pin,	otherwise the mo	dule will not boot.	-
10	GPIO2 ^e	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Core
11	RESET_IN_N	Control signal	I	1.8V	PU	L	Leave open	Input reset signal	Core
12	USB_D-	USB	I/O				Leave open	USB Data negative	Core
13	USB_D+	USB	I/O				Leave open	USB Data positive	Core
14	HSIC_DATA	HSIC	I/O	1.2V			See footnote ^f	High Speed Inter-Chip Data	Extension
15	HSIC_STRB	HSIC	I/O	1.2V			See footnote ^f	High Speed Inter-Chip Strobe	Extension
16	USB_VBUS	USB	I	5V or VBAT_BB			Optional connection (If USB interface is required then connect to USB_VBUS or (if unavailable) VBAT_BB, otherwise leave open.)	USB power supply	Core

Table 10-1: Pin Definitions (Continued)

Pin	Signal name	Group	I/O ^a	Voltage	PU/ PD ^b	Active	If unused	Function	Туре
17– 20	Reserved	No Connection					See footnote ^g .		Extension
21	Reserved	No Connection					Leave open		Extension
22	SYS_CLK	Clock	0				Leave open	19 MHz digital clock output	Extension
23	SLEEP_CLK	Clock	0				Leave open	32.768 kHz digital clock output	Extension
24	ADC1	ADC	I				Leave open	Analog to digital conversion	Core
25	ADC0	ADC	1				Leave open	Analog to digital conversion	Core
26	UIM1_VCC	UIM1	0	1.8V/3V			Mandatory connection	1.8V/3V UIM1 Power supply	Core
27	UIM1_CLK	UIM1	0	1.8V/3V			Mandatory connection	UIM1 Clock	Core
28	UIM1_DATA	UIM1	I/O	1.8V/3V			Mandatory connection	UIM1 Data	Core
29	UIM1_RESET_N	UIM1	0	1.8V/3V		L	Mandatory connection	UIM1 Reset	Core
30	GND	Ground	0V	0V			Mandatory connection	Diversity antenna ground	Extension
31	RF_DIV	RF					Mandatory connection	Diversity antenna	Extension
32	GND	Ground	0V	0V			Mandatory connection	Diversity antenna ground	Extension
33	PCM_OUT	PCM	0	1.8V			Leave open	PCM data out	0
33	I2S_OUT	128	0	1.8V			Leave open	I2S data out	Core
34	PCM_IN	PCM	1	1.8V			Leave open	PCM data in	0
34	I2S_IN	128	1	1.8V			Leave open	I2S data in	Core
35	PCM_SYNC	PCM	Pri: I/O Aux: O	1.8V			Leave open	PCM sync	Core
	I2S_WS	128	0	1.8V			Leave open	I2S word select	
36	PCM_CLK	PCM	Pri: I/O Aux: O	1.8V			Leave open	PCM clock	Core
	I2S_CLK	I2S	0	1.8V			Leave open	I2S clock	=
37	GND	RF	0V	0V			Mandatory connection	GNSS antenna ground	Core
38	RF_GNSS ^h	RF					Leave open	RF GNSS input	Extension
39	GND	RF	0V	0V			Mandatory connection	GNSS antenna ground	Core

Table 10-1: Pin Definitions (Continued)

Pin	Signal name	Group	I/O ^a	Voltage	PU/ PD ^b	Active	If unused	Function	Туре
40	GPIO7	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Core
41	GPIO8	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Core
42	DR_SYNC ^h	GPS	0	1.8V			Leave open	GPS dead reckoning sync	Extension
43	EXT_GPS_LNA_EN	Control signal	0	1.8V		Н	Leave open	External GNSS LNA enable	Extension
44	GPIO13	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Extension
45	VGPIO	Voltage reference	0	1.8V			Leave open	GPIO voltage output	Core
46	GPIO6 ^j	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Core
47	TP1 (Boot pin)	Boot	1	1.8V		L	Mandatory test point	Test point 1 O—Download mode Open—Normal mode	Extension
48	GND	RF	0V	0V			Mandatory connection	Main antenna ground	Core
49	RF_MAIN	RF					Mandatory connection	Main RF antenna	Core
50	GND	RF	0V	0V			Mandatory connection	Main antenna ground	Core
51	SPI1_MRDY	SPI1	0	1.8V			Leave open	SPI Master Ready	Core
52	SPI1_MISO	SPI1	1	1.8V			Leave open	SPI Master Input/Slave Output (output from slave)	Core
53	SPI1_CLK	SPI1	0	1.8V			Leave open	SPI serial clock (output from Master)	Core
54	SPI1_MOSI	SPI1	0	1.8V			Leave open	SPI Master Output/ Slave Input (output from master)	Core
55	Reserved	No Connection					See footnote ^k .		Core
56	Reserved	No Connection					See footnote ^k .		Core
57	Reserved	No Connection					See footnote ^k .		Core
58	Reserved	No Connection					See footnote ^k .		Core
59	POWER_ON_N	Control	I	1.8V	PU	L	Mandatory connection	Power On control signal	Core
60	TX_ON	Indication	0	1.8V		Н	Leave open	Tx activity indicator	Extension

Table 10-1: Pin Definitions (Continued)

Pin	Signal name	Group	I/O ^a	Voltage	PU/ PD ^b	Active	If unused	Function	Type
61	VBAT_RF	Power	I	3.4V (min) 3.7V (typ) 4.3V (max)			Mandatory connection	RF power supply (see Power Supply Ratings on page 38)	Core
62	VBAT_RF	Power	I	3.4V (min) 3.7V (typ) 4.3V (max)			Mandatory connection	RF power supply (see Power Supply Ratings on page 38)	Core
63	VBAT_BB	Power	I	3.4V (min) 3.7V (typ) 4.3V (max)			Mandatory connection	Baseband power supply (see Power Supply Ratings on page 38)	Core
64	UIM1_DET ^e	UIM1		1.8V			Mandatory connection	Detect UIM1 insertion/ removal. (Pin must be open to detect the UIM, or grounded if no UIM is present.)	Core
65	GPIO4 ^I	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Extension
66	I2C1_Data	I2C	I/O	1.8V	PU		Leave open	I ² C data	Core
67– 70	GND	Ground	0V	0V			Mandatory connection	Ground	Core
71– 90	Reserved	No Connection					See footnote ^g .		
91	USB_ID	USB	I				Leave open	Reserved for use with USB OTG	Extension
92	GPIO38 ^{e,m,n,o}	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Extension
93	Reserved	No Connection					See footnote ^g .		
94	GPIO40 ^{n,o,p}	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Extension
95	GPIO41 ^{n,o,p}	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Extension
96	UART2_TX ^c	UART2	1	1.8V			Leave open	UART2 Transmit data	Extension
97	UART2_RX ^c	UART2	0	1.8V			Leave open	UART2 Receive data	Extension
98	UART2_RTS ^c	UART2	1	1.8V			Leave open	UART2 Request To Send	Extension
99	UART2_CTS ^c	UART2	0	1.8V			Leave open	UART2 Clear To Send	Extension
100	Reserved	No Connection					See footnote ^g .		
101	GPIO35	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Extension
102	GPIO36 ^{e,m,n,o}	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Extension
103	GPIO37 ^{n,o}	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Extension
104	GPIO32	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Extension
105	GPIO33	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Extension
106	WWAN_LED_N	Indication	0	VBAT_BB ^q		L	Leave open		Extension

Table 10-1: Pin Definitions (Continued)

Pin	Signal name	Group	I/O ^a	Voltage	PU/ PD ^b	Active	If unused	Function	Type
107	ADC2 ^{m,o}	ADC	I				Leave open		Extension
108	ADC3 ^{m,o}	ADC	I				Leave open		Extension
109	GPIO42 ^e	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Extension
110	WAKE_ON_WWAN	Indication	0	1.8V		Н	Leave open	Driven high to wake the host when specific events occur.	Extension
111	GND	Ground	0V	0V			Mandatory connection	Diversity antenna ground	Core
113	GND	Ground	0V	0V			Mandatory connection	Diversity antenna ground	Core
114– 124	Reserved	No Connection					See footnote ^g .		
125	GND	RF	0V	0V			Mandatory connection	GNSS antenna ground	Core
128	GND	RF	0V	0V			Mandatory connection	GNSS antenna ground	Core
129– 135	Reserved	No Connection					See footnote ^g .		
136	GND	RF	0V	0V			Mandatory connection	Main antenna ground	Core
139	GND	RF	0V	0V			Mandatory connection	Main antenna ground	Core
140– 146	Reserved	No Connection					See footnote ^g .		
147	GPIO21 ^e	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Core
148	GPIO22	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Core
149	GPIO23	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Core
150	GPIO24	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Core
151	W_DISABLE_N	Control	I	1.8V		L	Leave open	Wireless disable (main RF radio)	Core
152	SAFE_PWR_REMOVE	Indication	0	1.8V		Н	Leave open	Indicate to host that Main DC power can be removed	Extension
153	ANT_CNTL0	Antenna control	0	1.8V			Leave open		Extension
	GPIO28 ^r	GPIO	I/O	1.8V			Leave open	General purpose I/O	Extension
154	ANT_CNTL1	Antenna control	0	1.8V			Leave open		Extension
	GPIO29 ^r	GPIO	I/O	1.8V			Leave open	General purpose I/O	Extension

Table 10-1: Pin Definitions (Continued)

Pin	Signal name	Group	I/O ^a	Voltage	PU/ PD ^b	Active	If unused	Function	Туре
155	ANT_CNTL2	Antenna control	0	1.8V			Leave open		Extension
	GPIO30 ^r	GPIO	I/O	1.8V			Leave open	General purpose I/O	Extension
156	ANT_CNTL3	Antenna control	0	1.8V			Leave open		Extension
	GPIO31 ^r	GPIO	I/O	1.8V			Leave open	General purpose I/O	Extension
157	VBAT_RF	Power	1	3.4V (min) 3.7V (typ) 4.3V (max)			Optional connection	RF power supply (see Power Supply Ratings on page 38)	Core
158	VBAT_BB	Power	I	3.4V (min) 3.7V (typ) 4.3V (max)			Optional connection	Baseband power supply (see Power Supply Ratings on page 38)	Core
159	GPIO25	GPIO	I/O	1.8V	NP		Leave open	General purpose I/O	Core
160	Reserved	No Connection					See footnote ^g .		
161	SDIO_CMD	SDIO	0	1.8V/2.85V			Leave open	SDIO command	Extension
162	SDIO_CLK	SDIO	0	1.8V/2.85V			Leave open	SDIO clock	Extension
163	SDIO_DATA_3	SDIO	I/O	1.8V/2.85V			Leave open	SDIO data bit 3	Extension
164	SDIO_DATA_2	SDIO	I/O	1.8V/2.85V			Leave open	SDIO data bit 2	Extension
165	SDIO_DATA_1	SDIO	I/O	1.8V/2.85V			Leave open	SDIO data bit 1	Extension
166	SDIO_DATA_0	SDIO	I/O	1.8V/2.85V			Leave open	SDIO data bit 0	Extension
167– 234	GND	Ground	0V	0V			Mandatory connection	Ground	Core
236	J1 ^s			1.8V		L	Mandatory test point	Test point	Extension
237	J2 ^s			1.8V			Mandatory test point	Test point	Extension
238	J3 ^s			1.8V			Mandatory test point	Test point	Extension
239	J4 ^s			1.8V			Mandatory test point	Test point	Extension
240	J5 ^s			1.8V		L	Mandatory test point	Test point	Extension
241	J6 ^s			1.8V			Mandatory test point	Test point	Extension
242	J7 ^s			1.8V			Mandatory test point	Test point	Extension
243	J8 ^s			1.8V			Mandatory test point	Test point	Extension
244	J9 ^s			1.8V			Mandatory test point	Test point	Extension

- a. Signal direction with respect to the module. Examples: PCM_OUT (pin 33) is an output from the module to the host; PCM_IN (pin 34) is an input to the module from the host.
- b. NP—No Pull; PD—Pull Down; PU—Pull Up
- c. (UART signals only) Signals are named with respect to the host device. For example, UART1_RX is the signal used by the host to receive data from the module.
- d. Do not install external pull-up on this pin, otherwise the module will not boot.
- e. Pin is 'wakeable'. Can be used to trigger the module to wake up from USB-SS mode (low power active state). See Wakeup Interrupt (Sleep State) on page 100 for details.
- f. If HSIC bus is not used on the host application, refer to HSIC Bus on page 112 for recommended methods for disabling the interface.
- g. Pins are not connected internally, but are reserved for future use. Leave them unconnected to ensure compatibility with other Sierra Wireless CF3 modules.
- h. Support is SKU-dependent.
- . Refer to GPIO6 on page 99 for functional details.
- k. Pins are reserved for future use. Leave them unconnected to ensure compatibility with other Sierra Wireless CF3 modules.
- I. GPIO4 can be used for external UIM2 detect.
- m. Can be configured as a wakeup trigger for ULPS. See Power Consumption States on page 41 and Wakeup Events (ULPS) on page 101 for details.
- n. Accessible via sysfs/Legato only.
- o. Only available in Group A variants; this pin is Reserved in Group B variants.
- p. GPIO40 and GPIO41 may be unavailable in future WP products.
- q. Maximum rating is VBAT BB + 0.5V, with maximum current sink capability of 40 mA.
- r. This pin is available for use when configured using AT+WIOCFG.
- s. Accessibility restricted to soldered-down modules. Not available for socket-mounted modules.

Table 10-2: RF Pin Information

Signal name	Pin #	Description
RF_DIV	31	Diversity input
RF_GNSS ^a	38	RF GNSS input
RF_MAIN	49	Main RF port (input/output)

a. Support is SKU-dependent

Table 10-3: Supply Pin Information

Signal name	Pin #	Description			
VBAT_RF	61, 62, 157	RF power supply			
VBAT_BB	63, 158	Baseband power supply			
USB_VBUS	16	Connected to USB_VBUS (5V) or (if unavailable) VBAT_BB			

Table 10-4: Ground & Reserved Pin Information

Signal name	Pin #	Description			
Ground	30, 32, 37, 39, 48, 50, 67–70, 111, 113, 125, 128, 136, 139, 167–234	Ground connection			
	17–21, 55–58, 65, 71–90,	Pins are not connected internally, but are reserved for future use.			
Reserved 93, 100, 114–124, 129–135, 140–146, 160		Leave them unconnected to ensure compatibility with other Sierra Wireless CF3 modules.			

>> 11: Customization

Subject to commercial terms, Sierra Wireless can supply custom-configured modems to facilitate a carrier's network and performance requirements. Sierra Wireless also offers a standard configuration for each country.

Custom configurations are entered into a selector spreadsheet that Sierra supplies. A unique part number is assigned to each custom configuration to facilitate customer ordering.

Table 11-1: Customizable Features

Name	Description	Default
Display of IMSI	Display of International Mobile Subscriber Identity via AT+CIMI command	Display enabled
UART baud rate	Default UART speed	115200 bps
UART enabled	Defines whether UART port is enabled by default or not	UART disabled

>> 12: Testing

12.1 Certification Testing

Note: Typically, certification testing of your device with the integrated module is required one time only.

The AirPrime WP76XX module has been certified as described in Compliance Acceptance and Certification on page 143.

When you produce a host device with a Sierra Wireless AirPrime embedded module, you must obtain certifications for the final product from appropriate regulatory bodies in the jurisdictions where it will be distributed.

The following are *some* of the regulatory bodies from which you may require certification—it is your responsibility to make sure that you obtain all necessary certifications for your product from these or other groups:

- FCC (Federal Communications Commission—www.fcc.gov)
- Industry Canada (www.ic.gc.ca)
- GCF (Global Certification Forum—www.globalcertificationforum.org) outside of North America
- PTCRB (PCS Type Certification Review Board—www.ptcrb.com) in North America

12.2 Production Testing

Note: Production testing typically continues for the life of the product.

Production testing ensures that, for each assembled device, the module is installed correctly (I/O signals are passed between the host and module), and the antenna is connected and performing to specifications (RF tests).

Typical items to test include:

- Host connectivity
- Baseband (host/module connectors)
- RF assembly (Tx and/or Rx, as appropriate)
- Network availability
- Host/device configuration issues

Note: The number and types of tests to perform are **your** decision—the tests listed in this section are guidelines only. Make sure that the tests you perform exercise functionality to the degree that **your** situation requires.

Use an appropriate test station and use AT commands to control the integrated module.

Note: Your test location must be protected from ESD to avoid interference with the module and antenna(s), assuming that your test computer is in a disassembled state.

Also, consider using an RF shielding box—local government regulations may prohibit unauthorized transmissions.

Note: The tests described in this chapter are done using a Linux O/S (e.g. Ubuntu 12.04).

12.3 Functional Production Test

This section presents a suggested procedure for performing a basic manual functional test on a laboratory bench using an AirPrime WP76XX module and a hardware development kit. When you have become familiar with the testing method, use it to develop your own automated production testing procedures.

12.3.1 Suggested Production Tests

Consider the following tests when you design your production test procedures for devices with the AirPrime module installed.

- Visual check of the module's connectors and RF assemblies
- Module is operational
- USB connection is functional
- LED is functional
- Power on/off
- Firmware revision check
- Rx tests on main and auxiliary paths
- Tx test

12.3.2 Production Test Procedure

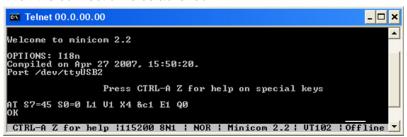
The following is a suggested test plan—you must decide which tests are appropriate for your product. You may wish to add additional tests that more fully exercise the capabilities of your product.

Using an appropriate test station, and referring to the appropriate AT command references:

- 1. Visually inspect the module for obvious defects (such as tainted or damaged shields) before installing it in the test station.
- **2.** Ensure that the module is powered off (no voltage on VBAT_BB/VBAT_RF) before beginning your tests.
- 3. Determine whether any USB devices are currently connected to the computer:
 - a. Open a shell window and enter the command is /dev/tty/USB*.
 - **b.** Record the ttyUSB*n* values that are returned; these are the currently connected USB devices. If the command returns "no such file or directory", there are no devices currently connected.
- **4.** Provide power to the module (voltage on VBAT_BB/VBAT_RF).

- **5.** Test POWER_ON_N—Turn on the module by driving POWER_ON_N low, as shown in Figure 4-1 on page 92.
- **6.** Test USB functionality—Check for USB enumeration.

Enter the command **Is /dev/tty/USB*** and then record and compare the results with those from **Step 3**. If there are any new ttyUSB*n* devices, then the modem has enumerated successfully. (The AT port is usually the *last* new device.)


7. Make sure your modem is connected and running, and then establish contact with the module:

Use a terminal emulation/communications program such as minicom to connect over the device handle for AT commands (see listings in Step 6):

a. Start minicom:

- First use of the modem: From the command line, type minicom -s. (The '-s' switch shows the configuration menu.)
- Subsequent uses: From the command line, type minicom. (The '-s' switch is assumed.)

The minicom configuration details appear and the message OK appears when the connection is established.

- **8.** Display the firmware version:
 - AT
- **9.** Unlock the extended AT command set. (Note: Use AT!ENTERCND? to check command syntax, which is SKU-dependent.):
 - AT!ENTERCND="<password>"
- 10. Test the LED—Visually confirm that the LED turns on and off using:
 - AT!LDTEST=0,1 (LED on)
 - AT!LDTEST=0,0 (LED off)
- **11.** Put the module in diagnostic/factory test mode:
 - AT!DAFTMACT
- **12.** Communicate with the SIM using AT+CPIN or AT+CIMI.
- 13. Test RF transmission, if desired:
 - (UMTS) See UMTS (WCDMA/GSM) RF Transmission Path Test on page 160.
 - (LTE) See LTE RF Transmission Path Test on page 163.
- **14.** Test RF reception, if desired:
 - (UMTS) See UMTS (WCDMA/GSM) RF Receive Path Test on page 166.
 - · (LTE) See LTE RF Receive Path Test on page 169.
- **15.** Test standalone GNSS functionality—See GNSS RF Receive Path Test on page 172.
- **16.** Remove power from the module.

Note: If the command "minicom" is not found, then use a different program, or download minicom and repeat this step. See Downloading and Configuring minicom for Linux Systems on page 160 for details.

12.3.2.1 Downloading and Configuring minicom for Linux Systems

Note: This procedure is for Ubuntu systems. If you are using a different Linux distribution, use the appropriate commands for your system to download minicom.

To download and configure minicom in a Ubuntu system:

 Download and install minicom—enter the following command: sudo apt-get install minicom

- **2.** When prompted, enter your user password to begin the download and installation. When minicom is installed, the shell prompt appears.
- 3. Configure minicom to communicate with your modem:
 - a. Start minicom with the following command: minicom -s
- 4. Use the down-arrow key to select the Serial port setup option.
- 5. Refer to Step 6 on page 159 to identify the device file handle (/dev/ttyUSBn) used for AT commands.
- **6.** Indicate the file handle to use for AT commands—Enter A and then replace the serial device string with the AT file handle.
- 7. Press Enter twice.
- 8. Use the down-arrow key to select Save setup as dfl.
- 9. Select Exit.

12.4 UMTS (WCDMA/GSM) RF Transmission Path Test

Important: As of the publication date of this document, the test procedure described is to be considered preliminary, pending implementation of some commands in a future firmware upgrade.

Note: This procedure segment is performed in Step 13 of the Production Test Procedure on page 158.

The suggested test procedure that follows uses the parameters in the following tables.

Table 12-1: Test Settings — WP7603 UMTS Transmission Path

	Band	Frequency (MHz)	Band ID	Channel ^a
1900 MHz	B2	1880.0	15 ^b	9400

Note: To install minicom, you must have root access, or be included in the sudoers list.

Table 12-1: Test Settings — WP7603 UMTS Transmission Path

	Band	Frequency (MHz)	Band ID	Channel ^a
1700 MHz	B4	1732.4	28	1412
850 MHz	B5	836.4	22	4182

a. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

Table 12-2: Test Settings — WP7607/WP7608 UMTS Transmission Path

	Band	Frequency (MHz)	Band ID	Tx Channel ^a
2100 MHz	B1	1950.0	9	9750
900 MHz	B8	897.6	29	2788

a. Channel values shown are at the center of the corresponding bands.

Table 12-3: Test Settings — WP7609 UMTS Transmission Path

	Band	Frequency (MHz)	Band ID	Tx Channel ^a
2100 MHz	B1	1950.0	9	9750
850 MHz	B5	836.4	22	4182
900 MHz	B8	897.6	29	2788

a. Channel values shown are at the center of the corresponding bands.

Table 12-4: Test Settings — WP7610 UMTS Transmission Path

	Band	Frequency (MHz)	Band ID	Channel ^a
1900 MHz	B2	1880.0	15 ^b	9400
1700 MHz	B4	1732.4	28	1412
850 MHz	B5	836.4	22	4182

a. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

Table 12-5: Test Settings—WP7607/WP7608 / WP7609 2G Transmission Path

Band		Frequency (MHz)	Band ID	Tx Channel ^a
900 MHz	E-GSM 900	897.4	10	37
1800 MHz	DCS 1800	1747.8	11	700

a. Channel values shown are at the center of the corresponding bands.

b. Either 15 (WCDMA1900A) or 16 (WCDMA1900B) may be used for testing.

b. Either 15 (WCDMA1900A) or 16 (WCDMA1900B) may be used for testing.

Note: This procedure describes steps using the "Power Meter: Gigatronics 8651A" (with Option 12 and Power Sensor 80701A). To test the DUT's transmitter path:

1. Set up the power meter:

- a. Make sure the meter has been given sufficient time to warm up, if necessary, to enable it to take accurate measurements.
- **b.** Zero-calibrate the meter.
- c. Enable MAP mode.
- 2. Prepare the DUT using the following AT commands:
 - **a.** AT!ENTERCND="<password>"(Unlock extended AT command set.)
 - **b.** AT!DAFTMACT (Enter test mode.)
 - c. AT!DASBAND=<bandValue> (Set frequency band.)
 - See tables 12-1–12-6 for appropriate <bandValue> values
 - **d.** AT!DASCHAN=<channel> (Set modem channel)
 - See tables 12-1–12-6 for appropriate <channel> values
 - e. AT!DASTXON (Turns on the transmit path.)
 - f. AT!DAWSTXPWR=1,15 (Begin transmitting at requested power level.
 - g. Take the measurement.
 - **h.** Repeat Step f with different power levels if desired.
 - i. AT!DAWSTXPWR=0,0 (Reduce Tx power to 0, so next time transmitter is turned on, it will come on with 0 dBm power.)
 - j. AT!DASTXOFF (Turn off the transmitter.)
- **3.** Test limits—Run ten or more good DUTs through this test procedure to obtain a nominal output power value.
 - Apply a tolerance of ± 5 to 6 dB to each measurement (assuming a good setup design).
 - Monitor these limits during mass-production ramp-up to determine if further adjustments are needed.
 - For GSM mode, the transmit signal is bursted, so the transmit power will appear averaged on the power meter reading.

Note: The module has a nominal output power of ± 23 dBm ± 1 dB in WCDMA mode. However, the value measured by the power meter is significantly influenced (beyond the stated ± 1 dB output power tolerance) by the test setup (host RF cabling loss, antenna efficiency and pattern, test antenna efficiency and pattern, and choice of shield box).

Note: When doing the same test over the air in an RF chamber, values are likely to be significantly lower.

12.5 LTE RF Transmission Path Test

Important: As of the publication date of this document, the test procedure described is to be considered preliminary, pending implementation of some commands in a future firmware upgrade.

Note: This procedure segment is performed in Step 13 of the Production Test Procedure on page 158.

The suggested test procedure that follows uses the parameters in the following tables.

Table 12-6: Test Settings — WP7601 LTE Transmission Path

Ban	d	Frequency (MHz)	Band ID	Channel ^a
1700 MHz	B4	1732.4	42	20175
700 MHz	B13	782.0	36	23230

a. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

Table 12-7: Test Settings — WP7603 LTE Transmission Path

Band	d	Frequency (MHz)	Band ID	Channel ^a
1900 MHz	B2	1880.0	43	18900
1700 MHz	B4	1732.4	42	20175
850 MHz	B5	836.5	45	20525
700 MHz	B12	707.5	50	23095

a. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

Table 12-8: Test Settings — WP7607 LTE Transmission Path

Band	d	Frequency (MHz)	Band ID	Channel ^a
2100 MHz	B1	1950.0	34	18300
1800 MHz	В3	1747.5	44	19575
2600 MHz	B7	2535.0	35	21100
900 MHz	B8	897.5	47	21625

Table 12-8: Test Settings — WP7607 LTE Transmission Path (Continued)

Band	d	Frequency (MHz)	Band ID	Channel ^a
800 MHz	B20	847.0	56	24300
700 MHz	B28	725.5	64	27435

a. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

Table 12-9: Test Settings — WP7608 LTE Transmission Path

Ban	d	Frequency (MHz)	Band ID	Channel ^a
2100 MHz	B1	1950.0	34	18300
1800 MHz	В3	1747.5	44	19575
850 MHz	B5	836.5	45	20525
900 MHz	В8	897.5	47	21625
2300 MHz	B40	2350.0	92	39150
2500 MHz	B41	2593.0	76	40620

a. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

Table 12-10: Test Settings — WP7609 LTE Transmission Path

Band	d	Frequency (MHz)	Band ID	Channel ^a
2100 MHz	B1	1950.0	34	18300
1800 MHz	В3	1747.5	44	19575
850 MHz	B5	836.5	45	20525
2600 MHz	B7	2535.0	35	21100
900 MHz	B8	897.5	47	21625
700 MHz	B28	725.5	64	27435

a. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

Table 12-11: Test Settings — WP7610 LTE Transmission Path

Ва	ınd	Frequency (MHz)	Band ID	Channel ^a
1900 MHz	B2	1880.0	43	18900
1700 MHz	B4	1732.4	42	20175
850 MHz	B5	836.5	45	20525
700 MHz	B12	707.5	50	23095

Table 12-11: Test Settings — WP7610 LTE Transmission Path (Continued)

Ва	ınd	Frequency (MHz)	Band ID	Channel ^a
700 MHz	B13	782.0	36	23230
700 MHz	B14	793.0	51	23330
700 MHz	B17	710.0	37	24290
1700 MHz	B66	1745.0	83	132322

a. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

To test the DUT's transmitter path:

1. Set up the power meter:

- a. Make sure the meter has been given sufficient time to warm up, if necessary, to enable it to take accurate measurements.
- **b.** Zero-calibrate the meter.
- c. Enable MAP mode.
- **2.** Prepare the DUT using the following AT commands (adjusting the band, channel, bandwidth, modulation, RB allocation, NS, and power level as necessary):
 - a. AT!ENTERCND="<password>" (Unlock extended AT command set.)
 - **b.** AT!DAFTMACT (Enter test mode.)
 - **c.** AT!DASBAND=<bar>bandValue> (Set frequency band (e.g. 34 for LTE B1.)
 - See tables 12-6–12-10 for appropriate <bandValue> values.
 - d. AT!DALSTXBW=3 (Set Tx bandwidth to 10 MHz.)e. AT!DALSRXBW=3 (Set Rx bandwidth to 10 MHz.)
 - f. AT!DASCHAN=<channel> (Set modem channel (e.g. 18300 for LTE B1).)
 - See tables 12-6–12-10 for appropriate <channel> values.
 - g. AT!DALSTXMOD=0 (Set Tx modulation type to QPSK.)
 - h. AT!DALSWAVEFORM=1,12,0,19 (Set the Tx waveform characteristics. Make sure to set the correct resource block allocation (2nd parameter) appropriately. For example, 12 is used to produce max power—refer to 3GPP 36.521 table for Maximum Power Reduction (MPR) for Power Class 3 for more information.)
 - i. AT!DALSNSVAL=1 (Set the LTE NS (Net Sig) value.)

Note: This procedure describes steps using the "Power Meter: Gigatronics 8651A" (with Option 12 and Power Sensor 80701A).

- j. AT!DASTXON (Turn on the transmitter. Note that the transmitter will put out the last power level that was programmed.)
- **k.** AT!DALSTXPWR=1,10 (Begin transmitting at requested power level.)
- I. Take the measurement.
- m. Repeat Step k with different power levels if desired.
- n. AT!DALSTXPWR=0,0 (Reduce Tx power to 0, so next time transmitter is turned on, it will come on with 0 dBm power.)
- **o.** AT!DASTXOFF (Turn off the transmitter.)
- **3.** Test limits—Run ten or more good DUTs through this test procedure to obtain a nominal output power value.
 - Apply a tolerance of ± 5 to 6 dB to each measurement (assuming a good setup design).
 - Monitor these limits during mass-production ramp-up to determine if further adjustments are needed.

Note: The module has a nominal output power of +23 dBm ± 1 dB in LTE mode. However, the value measured by the power meter is significantly influenced (beyond the stated ± 1 dB output power tolerance) by the test setup (host RF cabling loss, antenna efficiency and pattern, test antenna efficiency and pattern, and choice of shield box).

Note: When doing the same test over the air in an RF chamber, values are likely to be significantly lower.

12.6 UMTS (WCDMA/GSM) RF Receive Path Test

Note: This procedure segment is performed in Step 14 of the Production Test Procedure on page 158.

The suggested test procedure that follows uses the parameters in the following tables.

Table 12-12: Test Settings — WP7603 UMTS Receive Path

Ва	and	Frequency ^a (MHz)	Band ID	Channel ^b
1900 MHz	B2	1961.20	15 ^c	9400
1700 MHz	B4	2133.20	28	1412
850 MHz	B5	882.60	22	4182

- a. Receive frequencies shown are 1.2 MHz offset from center
- b. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)
- c. Either 15 (WCDMA1900A) or 16 (WCDMA1900B) may be used for testing.

Table 12-13: Test Settings — WP7607/WP7608 UMTS Receive Path

Band		Frequency ^a (MHz)	Band ID	Rx Channel ^b
2100 MHz	B1	2141.2	9	9750
900 MHz	B8	943.8	29	2788

a. Receive frequencies shown are 1.2 MHz offset from center

Table 12-14: Test Settings - WP7609 UMTS Receive Path

Ban	d	Frequency ^a (MHz)	Band ID	Rx Channel ^b
2100 MHz	B1	2141.2	9	9750
850 MHz	B5	882.6	22	4182
900 MHz	B8	943.8	29	2788

a. Receive frequencies shown are 1.2 MHz offset from center

Table 12-15: Test Settings — WP7610 UMTS Receive Path

Ban	d	Frequency ^a (MHz)	Band ID	Channel ^b
1900 MHz	B2	1961.20	15 ^c	9400
1700 MHz	B4	2133.20	28	1412
850 MHz	B5	882.60	22	4182

a. Receive frequencies shown are 1.2 MHz offset from center

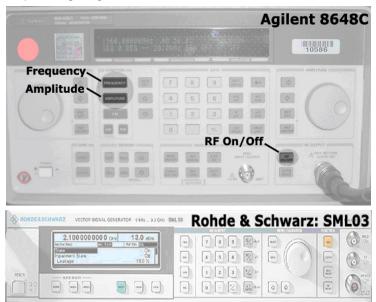
Table 12-16: Test Settings—WP7607/WP7608 / WP7609 2G Receive Path

Ваг	nd	Frequency ^a (MHz)	Band ID	Rx Channel ^b
900 MHz	E-GSM 900	942.467	10	37
1800 MHz	DCS 1800	1842.867	11	700

a. Receive frequencies shown are 67 KHz offset from center

b. Channel values shown are at the center of the corresponding bands.

b. Channel values shown are at the center of the corresponding bands.


b. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

c. Either 15 (WCDMA1900A) or 16 (WCDMA1900B) may be used for testing.

b. Channel values shown are at the center of the corresponding bands.

Note: This procedure describes steps using the Agilent 8648C signal generator—the Rohde & Schwarz SML03 is shown for reference only. To test the DUT's receive path:

1. Set up the signal generator:

- a. Set the amplitude to:
 - -80 dBm (WCDMA mode)
 -60 dBm (GSM mode)
- **b.** Set the frequency for the band being tested. See tables 12-12–12-18 for frequency values.
- 2. Set up the DUT:
 - a. AT!ENTERCND="<password>" (Unlock extended AT command set.)
 - **b.** AT!DAFTMACT (Put modem into factory test mode.)
 - **c.** AT!DASBAND=<bar>band> (Set frequency band.)
 - · See tables 12-12-18 for <band> values
 - **d.** AT!DASCHAN=<channel> (Set modem channel)
 - · See tables 12-12-18 for <channel> values
 - e. AT!DASLNAGAIN=0 (Set the LNA to maximum gain.)
 - f. (WCDMA mode)

AT!DAWGAVGAGC=9400,0 (For PCS1900, channel 9400 as an example.) (GSM mode)

- i. AT!DAGSRXBURST=0 (Set to receive bursted mode.)
- ii. AT!DAGGAVGRSSI=190,0 (For channel 190, for example)

The returned value is the RSSI in dBm.

- **3.** Test limits—Run ten or more good DUTs through this test procedure to obtain a nominal received power value.
 - Apply a tolerance of ± 5 to 6 dB to each measurement (assuming a good setup design).
 - Make sure the measurement is made at a high enough level that it is not influenced by DUT-generated and ambient noise.

- The Signal Generator power level can be adjusted and new limits found if the radiated test needs greater signal strength.
- Monitor these limits during mass-production ramp-up to determine if further adjustments are needed.

Note: The value measured from the DUT is significantly influenced by the test setup and DUT design (host RF cabling loss, antenna efficiency and pattern, test antenna efficiency and pattern, and choice of shield box).

4. Test diversity paths:

Note: Setup of the DUT is

the same as in Step 2,

except for a change to

the addition of

AT!DAWSSCHAIN.

AT!DAWGAVGAGC and

- Set up the signal generator as in Step 1.
- b. Set up the DUT:
 - i. AT!ENTERCND="<password>" (Unlock extended AT command set.)
 - ii. AT!DAFTMACT (Put modem into factory test mode.)
 - iii. AT!DASBAND=<band> (Set frequency band.)
 - · See tables 12-12-18 for <band> values
 - iv. AT!DAWSSCHAIN=1 (Enable the secondary chain.)
 - v. AT!DASCHAN=<channel> (Set modem channel)
 - · See tables 12-12-18 for <channel> values
 - vi. AT!DASLNAGAIN=0 (Set the LNA to maximum gain.)
 - vii. AT!DAWGAVGAGC=9400,0,1 (The '1' indicates the diversity path is used.)
- c. Test the limits as in Step 3.

12.7 LTE RF Receive Path Test

Note: This procedure segment is performed in Step 14 of the Production Test Procedure on page 158.

The suggested test procedure that follows uses the parameters in the following tables.

Table 12-17: Test Settings — WP7601 LTE Receive Path

Band		Frequency ^a (MHz)	Band ID	Channel ^b
1700 MHz	B4	2134.50	42	20175
780 MHz	B13	753.00	36	23230

- a. Receive frequencies shown are 2 MHz offset from center
- b. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

Table 12-18: Test Settings — WP7603 LTE Receive Path

Band		Frequency ^a (MHz)	Band ID	Channel ^b
1900 MHz	B2	1962.00	43	18900
1700 MHz	B4	2134.50	42	20175

Table 12-18: Test Settings — WP7603 LTE Receive Path (Continued)

Band		Frequency ^a (MHz)	Band ID	Channel ^b
850 MHz	B5	883.50	45	20525
700 MHz	B12	739.50	50	23095

a. Receive frequencies shown are 2 MHz offset from center

Table 12-19: Test Settings — WP7607 LTE Receive Path

Band		Frequency ^a (MHz)	Band ID	Rx Channel ^b
2100 MHz	B1	2142.00	34	18300
1800 MHz	В3	1844.5	44	19575
2600 MHz	B7	2657.00	35	21100
900 MHz	В8	944.5	47	21625
800 MHz	B20	808.00	56	24300
700 MHz	B28	782.5	64	27435

a. Receive frequencies shown are 2 MHz offset from center

Table 12-20: Test Settings — WP7608 LTE Receive Path

Band		Frequency ^a (MHz)	Band ID	Rx Channel ^b
2100 MHz	B1	2142.00	34	18300
1800 MHz	В3	1844.5	44	19575
850 MHz	B5	883.50	45	20525
900 MHz	B8	944.5	47	21625
2300 MHz	B40	2352.0	92	39150
2500 MHz	B41	2595.0	76	40620

a. Receive frequencies shown are 2 MHz offset from center

Table 12-21: Test Settings — WP7609 LTE Receive Path

Band		Frequency ^a (MHz)	Band ID	Rx Channel ^b
2100 MHz	B1	2142.00	34	18300
1800 MHz	В3	1844.5	44	19575
850 MHz	B5	883.50	45	20525
2600 MHz	B7	2657.00	35	21100

b. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

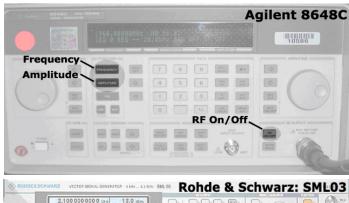
b. Channel values shown are at the center of the corresponding bands.

b. Channel values shown are at the center of the corresponding bands.

Table 12-21: Test Settings — WP7609 LTE Receive Path (Continued)

Band		Frequency ^a (MHz)	Band ID	Rx Channel ^b
900 MHz	В8	944.5	47	21625
700 MHz	B28	782.5	64	27435

- a. Receive frequencies shown are 2 MHz offset from center
- b. Channel values shown are at the center of the corresponding bands.


Table 12-22: Test Settings — WP7610 LTE Receive Path

Band		Frequency ^a (MHz)	Band ID	Channel ^b
1900 MHz	B2	1962.00	43	18900
1700 MHz	B4	2134.50	42	20175
850 MHz	B5	883.50	45	20525
700 MHz	B12	739.50	50	23095
780 MHz	B13	753.00	36	23230
700 MHz	B14	765.0	51	23330
700 MHz	B17	742.0	37	23790
1700 MHz	B66	2147.0	83	132322

- a. Receive frequencies shown are 2 MHz offset from center
- b. Channel value used by the !DASCHAN command (!DASCHAN uses uplink (Tx) channel at the center of the corresponding band, for both Tx and Rx testing)

To test the DUT's receive path (or diversity path, while connected to the diversity antenna):

1. Set up the signal generator:

- RONGERSCHWARZ VECTOR SIGNAL GENERATOR 9 No. 21 CAZ SML CS Rohde & Schwarz: SML03
- a. Set the amplitude to -70 dBm
- **b.** Set the frequency for the band being tested. See tables 12-17–12-21 for frequency values.

Note: This procedure describes steps using the Agilent 8648C signal generator—the Rohde & Schwarz SML03 is shown for reference only.

- **2.** Set up the DUT:
 - a. AT!ENTERCND="<password>" (Unlock extended AT command set.)
 - **b.** AT!DAFTMACT (Put modem into factory test mode.)
 - c. AT!DASBAND=<band> (Set frequency band.)
 - See tables 12-17-12-21 for <band> values
 - d. AT!DALSRXBW=2 (Set Rx LTE bandwidth to 5MHz.)
 - e. AT!DALSTXBW=2 (Set Tx LTE bandwidth to 5MHz.)
 - f. AT!DASCHAN=<channel> (Set modem channel)
 - See tables 12-17-12-21 for <channel> values
 - g. AT!DALGAVGAGC=<channel>,0 (Get averaged Rx AGC)
 - See tables 12-17-12-21 for <channel> values
- **3.** Test limits—Run ten or more good DUTs through this test procedure to obtain a nominal received power value.
 - Apply a tolerance of ± 5 to 6 dB to each measurement (assuming a good setup design).
 - Make sure the measurement is made at a high enough level that it is not influenced by DUT-generated and ambient noise.
 - The Signal Generator power level can be adjusted and new limits found if the radiated test needs greater signal strength.
 - Monitor these limits during mass-production ramp-up to determine if further adjustments are needed.

Note: The value measured from the DUT is significantly influenced by the test setup and DUT design (host RF cabling loss, antenna efficiency and pattern, test antenna efficiency and pattern, and choice of shield box).

12.8 GNSS RF Receive Path Test

The GNSS receive path uses the dedicated GNSS connector.

To test the GNSS receive path:

- 1. Inject a carrier signal at -110dBm, frequency 1575.52 MHz into the GNSS Rx path at the connector. (Note that this frequency is 100 kHz higher than the actual GPS L1 center frequency.)
- 2. Test the signal carrier-to-noise level at the GNSS receiver:
 - a. AT!ENTERCND="<password>" (Unlock extended AT command set.)
 - **b.** AT!DAFTMACT (Put modem into factory test mode.)
 - c. AT!DACGPSTESTMODE=1 (Start CGPS diagnostic task.)
 - **d.** AT!DACGPSSTANDALONE=1 (Enter standalone RF mode.)
 - e. AT!DACGPSMASKON (Enable log mask.)
 - f. AT!DACGPSCTON (Return signal-to-noise and frequency measurements.)
 - **g.** Repeat **AT!DACGPSCTON** five to ten times to ensure the measurements are repeatable and stable.

- **3.** Leave the RF connection to the embedded module intact, and turn off the signal generator.
- **4.** Take several more **!DACGPSCTON** readings. This will demonstrate a 'bad' signal in order to set limits for testing, if needed. This frequency offset should fall outside of the guidelines in the note below, which indicates that the CtoN result is invalid.
- **5.** (Optional) Turn the signal generator on again, and reduce the level to -120dBm. Take more **!DACGPSCTON** readings and use these as a reference for what a marginal/poor signal would be.

Note: The response to AT!DACGPSCTON for a good connection should show CtoN within 58 +/- 5dB and Freq (frequency offset) within 100000 Hz +/- 5000 Hz.

>> 13: References

For more details, several references can be consulted, as detailed below.

13.1 Web Site Support

Check http://source.sierrawireless.com for the latest documentation available for the AirPrime WP76XX.

13.2 Reference Documents

- [1] AirPrime WP8548/WP75xx/WP76xx/WP77xx AT Command Reference Reference number: 4118047
- [2] Inter-Chip USB Supplement to the USB 2.0 Specification Revision 1.0
- [3] Legato.io for Legato API details
- [4] AirPrime WPx5/WP76 Series Customer Process Guidelines Reference number: 4116612
- [5] AirPrime WPx5xx/WP76xx Scalability Guide Reference number: 41110866
- [6] I²C Bus Specification, Version 2.1, January 2000 Reference: Phillips Semiconductor document number 9398 393 40011

>> 14: Abbreviations

Table 14-1: Acronyms and Definitions

Acronym or Term	Definition		
3GPP	3rd Generation Partnership Project		
8PSK	Octagonal Phase Shift Keying		
ADC	Analog to Digital Converter		
AF	Audio-Frequency		
API	Application Programming Interface		
AT	Attention (prefix for modem commands)		
BeiDou	BeiDou Navigation Satellite System A Chinese system that uses a series of satellites in geostationary and middle earth orbits to provide navigational data.		
BER	Bit Error Rate—A measure of receive sensitivity		
BLER	Block Error Rate		
Bluetooth	Wireless protocol for data exchange over short distances		
CEP CEP-##	Circular Error Probability—Measure of GPS horizontal accuracy indicating the radius of a circle around the actual position that contains 50% of GPS measurements. CEP-##—Radius of circle containing ##% of GPS measurements (e.g. CEP-90 indicates 90% of measurements contained within circle)		
CF3	Common Flexible Form Factor		
CLK	Clock		
CMOS	Complementary Metal Oxide Semiconductor		
CPU	Central Processing Unit		
CQI	Channel Quality Indication		
CS	Circuit-Switched		
	Coding Scheme		
CTS	Clear To Send		
CW	Continuous waveform		
DAC	Digital to Analog Converter		
dB	Decibel = 10 x log ₁₀ (P1/P2) P1 is calculated power; P2 is reference power Decibel = 20 x log ₁₀ (V1/V2) V1 is calculated voltage, V2 is reference voltage		
dBm	A logarithmic (base 10) measure of relative power (dB for decibels); relative to milliwatts (m). A dBm value will be 30 units (1000 times) larger (less negative) than a dBW value, because of the difference in scale (milliwatts vs. watts).		

Table 14-1: Acronyms and Definitions (Continued)

Acronym or Term	Definition	
DC	Direct Current	
DCD	Data Carrier Detect	
DCS	Digital Cellular System A cellular communication infrastructure that uses the 1.8 GHz radio spectrum.	
DL	Downlink (network to mobile)	
DRX	Discontinuous Reception	
DSR	Data Set Ready	
DTR	Data Terminal Ready	
E-GSM	Extended GSM	
EDGE	Enhance Data rates for GSM Evolution	
EFR	Enhanced Full Rate	
EGPRS	Enhance GPRS	
EIRP	Effective (or Equivalent) Isotropic Radiated Power	
EMC	Electromagnetic Compatibility	
EN	Enable	
ERP	Effective Radiated Power	
ESD	Electrostatic Discharges	
eSIM	Embedded SIM	
ETSI	European Telecommunications Standards Institute	
FCC	Federal Communications Commission The U.S. federal agency that is responsible for interstate and foreign communications. The FCC regulates commercial and private radio spectrum management, sets rates for communications services, determines standards for equipment, and controls broadcast licensing. Consult www.fcc.gov.	
FDD	Frequency Division Duplex	
FDMA	Frequency Division Multiple Access	
firmware	Software stored in ROM or EEPROM; essential programs that remain even when the system is turned off. Firmware is easier to change than hardware but more permanent than software stored on disk.	
FOV	Field Of View	
FR	Full Rate	
FSN	Factory Serial Number—A unique serial number assigned to the module during manufacturing.	
Galileo	A European system that uses a series of satellites in middle earth orbit to provide navigational data.	

Table 14-1: Acronyms and Definitions (Continued)

Acronym or Term	Definition
GCF	Global Certification Forum
GLONASS	Global Navigation Satellite System—A Russian system that uses a series of 24 satellites in middle circular orbit to provide navigational data.
GMSK	Gaussian Minimum Shift Keying modulation
GND	Ground
GNSS	Global Navigation Satellite Systems (GPS, GLONASS, BeiDou, and Galileo)
GPIO	General Purpose Input Output
GPRS	General Packet Radio Service
GPS	Global Positioning System An American system that uses a series of 24 satellites in middle circular orbit to provide navigational data.
GSM	Global System for Mobile communications
Hi Z	High impedance (Z)
Host	The device into which an embedded module is integrated
HR	Half Rate
HSDPA	High Speed Downlink Packet Access
HSUPA	High Speed Uplink Packet Access
Hz	Hertz = 1 cycle/second
I/O	Input/Output
IC	Industry Canada
IC	Integrated Circuit
IMEI	International Mobile Equipment Identity
IMS	IP Multimedia Subsystem—Architectural framework for delivering IP multimedia services.
inrush current	Peak current drawn when a device is connected or powered on
IOT	Interoperability Testing
IS	Interim Standard. After receiving industry consensus, the TIA forwards the standard to ANSI for approval.
ISIM	IMS Subscriber Identity Module.
LED	Light Emitting Diode. A semiconductor diode that emits visible or infrared light.
LGA	Land Grid Array
LHCP	Left-Hand Circular Polarized

Table 14-1: Acronyms and Definitions (Continued)

Acronym or Term	Definition
LNA	Low noise Amplifier
LTE	Long Term Evolution—a high-performance air interface for cellular mobile communication systems.
MAX	Maximum
MCS	Modulation and Coding Scheme
MHz	Megahertz = 10e6 Hz
MIC	Microphone
MIMO	Multiple Input Multiple Output—wireless antenna technology that uses multiple antennas at both transmitter and receiver side. This improves performance.
MIN	Minimum
МО	Mobile Originated
MT	Mobile Terminated
N/A	Not Applicable
NMEA	National Marine Electronics Association
NOM	Nominal
OEM	Original Equipment Manufacturer—a company that manufactures a product and sells it to a reseller.
PA	Power Amplifier
packet	A short, fixed-length block of data, including a header, that is transmitted as a unit in a communications network.
PBCCH	Packet Broadcast Control Channel
PC	Personal Computer
PCB	Printed Circuit Board
PCL	Power Control Level
PCS	Personal Communication System A cellular communication infrastructure that uses the 1.9 GHz radio spectrum.
PDN	Packet Data Network
PFM	Power Frequency Modulation
PLL	Phase Lock Loop
PMIC	Power Management Integrated Circuit
PSM	Power Saving Mode
PSS	Primary synchronization signal
PST	Product Support Tools

Table 14-1: Acronyms and Definitions (Continued)

Acronym or Term	Definition
PTCRB	PCS Type Certification Review Board
PWM	Pulse Width Modulation
QAM	Quadrature Amplitude Modulation. This form of modulation uses amplitude, frequency, and phase to transfer data on the carrier wave.
QPSK	Quadrature Phase-Shift Keying
QZSS	Quasi-Zenith Satellite System
R2C	Ready-To-Connect
RAM	Random Access Memory
RAT	Radio Access Technology
RF	Radio Frequency
RHCP	Right Hand Circular Polarization
RI	Ring Indicator
RSE	Radiated Spurious Emissions
RSSI	Received Signal Strength Indication
RST	Reset
RTC	Real Time Clock
RTS	Request To Send
RX	Receive
SCLK	Serial Clock
SDC	Secure digital controller
SED	Smart Error Detection
Sensitivity (Audio)	Measure of lowest power signal that the receiver can measure.
Sensitivity (RF)	Measure of lowest power signal at the receiver input that can provide a prescribed BER/BLER/SNR value at the receiver output.
SIM	Subscriber Identity Module.
SIMO	Single Input Multiple Output—Wireless antenna technology that uses multiple antennas at the receiver side and one antenna at the source (transmitter).
SKU	Stock Keeping Unit—identifies an inventory item: a unique code, consisting of numbers or letters and numbers, assigned to a product by a retailer for purposes of identification and inventory control.
SMS	Short Message Service
SNR	Signal-to-Noise Ratio
SPI	Serial Peripheral Interface

Table 14-1: Acronyms and Definitions (Continued)

Acronym or Term	Definition
SPK	Speaker
SW	Software
TBC	To Be Confirmed
TBD	To Be Determined
TDD	Time Division Duplex
TIA/EIA	Telecommunications Industry Association / Electronics Industry Association. A standards setting trade organization, whose members provide communications and information technology products, systems, distribution services and professional services in the United States and around the world. Consult www.tiaonline.org.
TIS	Total Isotropic Sensitivity
TP	Test Point
TRP	Total Radiated Power
TX	Transmit
TYP	Typical
UART	Universal Asynchronous Receiver-Transmitter
UE	User Equipment
UICC	Universal Integrated Circuit Card
UIM	User Identity Module. Generic term used in this document to refer to UICC, where the application on the UICC (USIM, ISIM, CSIM, etc.) varies depending on the provider of the card.
UL	Uplink (mobile to network)
UMTS	Universal Mobile Telecommunications System
USB	Universal Serial Bus
USB-SS	USB Selective Suspend/USB not enumerated
USIM	Universal Subscriber Identity Module (UMTS)
USSD	Unstructured Supplementary Services Data
UTRA	UMTS Terrestrial Radio Access
VBAT-BB	Baseband power supply
VBAT-RF	RF power supply
VCC	Supply voltage
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access (also referred to as UMTS)
WLAN	Wireless Local Area Network

Table 14-1: Acronyms and Definitions (Continued)

Acronym or Term	Definition	
WWAN	Wireless Wide Area Network	
ZIF	Zero Intermediate Frequency	