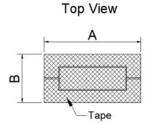
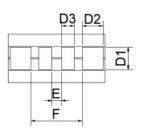
1. Part No. Expression

<u>SMF120612R10 L Z F</u>

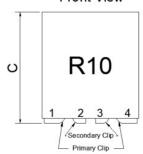
- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code

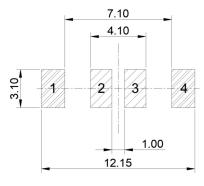

- (d) Tolerance Code
- (b) Dimension Code

e) Special Code


(c) Inductance Code

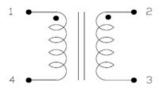
(f) Packaging Code


2. Configuration & Dimensions (Unit: mm)

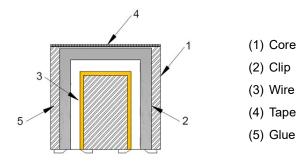


Front View

Side View



Recommended PCB Layout

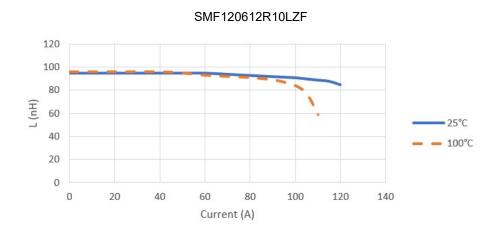

Note: 1. Marking: Inductance (Please refer to Electrical Characteristics table)

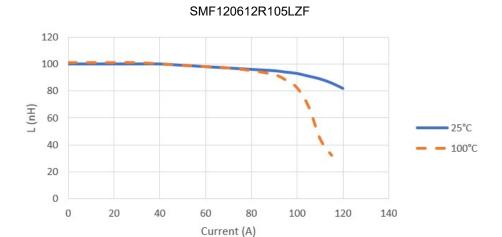
Α	В	С	D1	D2	D3	E	F
12.00 Max	6.20 Max	12.00 Max	2.40±0.20	3.10±0.20	1.05±0.20	1.40±0.20	5.30±0.20

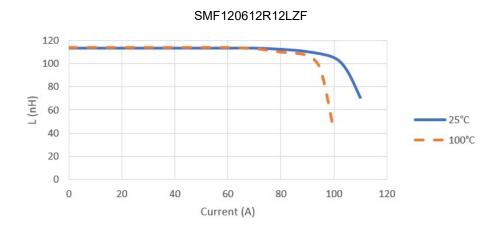
3. Schematic

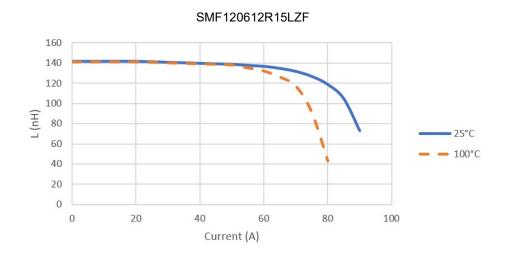
4. Material List

5. General Specifications

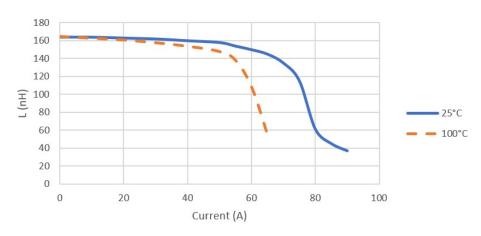

- (a) Operating Temp.: -40°C to +125°C (including self-temperature rise)
- (b) All test data referenced to 25°C ambient.
- (c) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (d) Saturation Current (Isat 1) will cause inductance L0 to drop approximately 20% at +25°C.
- (e) Saturation Current (Isat 2) will cause inductance L0 to drop approximately 20% at +100°C.
- (f) Rated Current: The lower value of Isat and Irms.
- (g) Storage Condition (Component in its packaging)
 - i) Temperature: -40°C to +40°C
 - ii) Humidity: Less than 70% RH

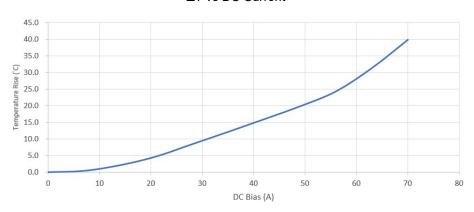

6. Electrical Characteristics


Part Number	Inductance (nH) @0A	DCR (mΩ)		Isat 1 (A)	Isat 2 (A)	Irms (A)	Marking
raitivumbei	±15%	1-4 ±10%	2-3 Max	Typ	Тур	Typ	Marking
SMF120612R10LZF	100.0	0.125	0.450	125	105	70	R10
SMF120612R105LZF	105.0	0.125	0.450	120	100	70	R105
SMF120612R12LZF	120.0	0.125	0.450	100	90	70	R12
SMF120612R15LZF	150.0	0.125	0.450	80	70	70	R15
SMF120612R17LZF	170.0	0.125	0.450	70	55	70	R17


Test Frequency: 1.0V/100kHz

7. Characteristics Curve





NOTE: Specifications subject to change without notice. Please check our website for latest information.

SMF120612R17LZF

ΔT vs DC Current

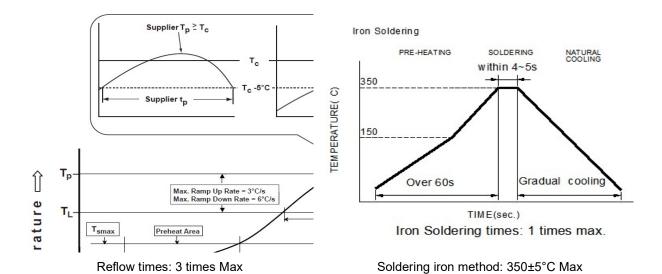
8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow


Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)

Figure 1: IR Soldering Reflow

- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

NOTE: Specifications subject to change without notice. Please check our website for latest information.

Figure 2: Iron soldering temperature profiles

Table (1.1) Reflow Profiles

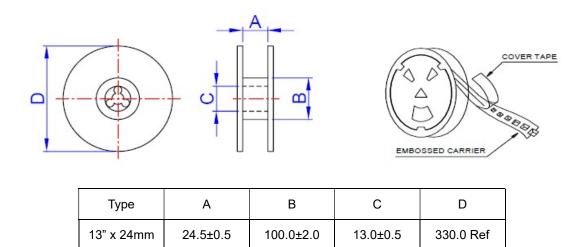
Profile Type:	Pb-Free Assembly	
Preheat		
-Temperature Min (T _{smin})	150°C	
-Temperature Max (T _{smax})	200°C	
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds	
Ramp-up rate (T _L to T _p)	3°C /second max.	
Liquids temperature (T _L)	217°C	
Time (t∟) maintained above T∟	60-150 seconds	
Classification temperature (T _c)	See Table (1.2)	
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds	
Ramp-down rate $(T_P \text{ to } T_L)$	6°C /second max.	
Time 25°C to peak temperature	8 minutes max.	

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

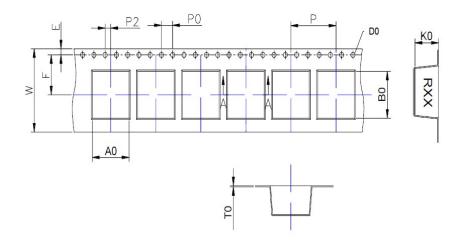
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (Tc)

	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C


Reflow is referred to standard IPC/JEDEC J-STD-020E.

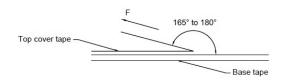
西普爾電子(新)私营有限公司


^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

9. Packaging Information

9-1. Reel Dimension (Unit: mm)

9-2. Tape Dimension (Unit: mm)


W	Р	P0	P2	E	F
24.00±0.30	16.00±0.10	4.00 Ref	2.00 Ref	1.75 Ref	11.50 Ref
D0	T0	A0	В0	K0	-
1.50 Ref	0.50±0.05	6.20±0.10	12.20±0.10	12.20±0.10	-

NOTE: Specifications subject to change without notice. Please check our website for latest information.

9-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	300	
Inner Box	600	
Outer Box	2,400	

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Room Temp. (°C) (%)		Room atm (hPa)	Tearing Speed (mm/min)	
5~35	45~85	860~1060	300±10	

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

NOTE: Specifications subject to change without notice. Please check our website for latest information.