

Running a RISC-V Processor on the Arty A7

The Arty A7-100T contains a Xilinx XC7A100T FPGA which is the largest FPGA available for the
Arty A7 and is ideal for deployment of softcore processors. These processors can be either
proprietary or open source. One of the most popular open source processors is the RISC-V. This
tutorial covers building a RISC-V processor, specifically the SiFive Freedom E310. This guide steps
through the process of loading the Freedom E310 onto an Arty A7, and programming it using the
Arduino IDE.

Inventory

• Arty A7-100T
• Olimex ARM-USB-TINY-H USB Programmer
• Vivado 2017.1 – Webpack Edition
• Arduino Development Environment
• 10 Flying leads to connect between the programmer and one of the Arty's Pmod connectors,

which is connected to the JTAG Test Access Port of the processor
• A Linux development or virtual machine is needed to compile the processor, generate the

bitstream and upload applications to the processor.

• Install the following on the Linux development machine:

https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY-H/
https://www.xilinx.com/support/download.html
https://www.arduino.cc/en/main/software
https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_1.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart

1. Git - the following command can be used:

sudo apt-get install git

2. Device Tree Compiler - the following command can be used:

sudo apt-get install device-tree-compiler

3. Java Run Time Environment - the following command can be used:

sudo apt-get install default-jre

4. JAVAC installed - the following command can be used:

sudo install openjdk-8-jdk

5. Ensure the JAVA_HOME environment variable is set

Getting Started

Download and install version 2017.1 of Vivado. Once downloaded, open a terminal window. Then for
this tutorial, change directory (cd) to the home directory. This terminal window will be used to build
the RISCV processor.

Set up Vivado by sourcing the settings script in the terminal command line, using the following
command:

source /opt/Xilinx/Vivado/2017.1/settings64.sh

Note: If using a 32-bit Linux environment, source the settings32.sh script instead.

Download and include the Digilent's board files so that Vivado can use them. Use git to download
the board definition files from the Digilent repository using the following command:

git clone https://github.com/Digilent/vivado-boards.git

Once downloaded, copy the 'new' board files into the appropriate Vivado directory. This can be
achieved with the following command:

sudo cp -r vivado-boards/new/board_files/*

/opt/Xilinx/Vivado/2017.1/data/boards/board_files/

Now it is possible to generate the processor and the FPGA implementation.

https://www.xilinx.com/support/download.html

Building the RISC-V

Generation and implementation of the processor can be done by running Makefiles.

First, download the SiFive freedom processor by using git
and cloning its repository:

git clone --recursive

https://github.com/sifive/freedom.git

Cloning will take a little while due to a large number of
files to download. Once downloaded, a new folder called
“Freedom” can be seen in the working directory.

Within this directory, there are several Makefiles. This
tutorial will be using the Makefile.e300artydevkit example.
The example script will generate the RISC-V processor for
both the Arty A7-35T and Arty A7-100T. The toolchain
must be compiled first. In the terminal window, change the
working directory to the toolchains directory within rocket-
chip/riscv-tools and run the build.sh script. This will build
the toolchain needed for generating the implementation
files. To generate the Verilog instantiation of the processor
from the Chisel HDL files, issue the following command:

make -f Makefile.e300artydevkit Verilog

Compiling the files will take a little time to complete. Generating generic Verilog files will allow either
Arty A7-35T or Arty A7-100T to be targeted.

In the terminal window, the peripherals and their locations in the memory map can be seen.

https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_4.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart
https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_2.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart
https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_3.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart

With the Verilog description of the processor available,
the next step is to decide which of the Arty boards will
be targeted. No changes need to be made if targeting
the Arty A7-35T. If targeting the Arty A7-100T, then
some minor adjustments need to be made. To make
these changes, open the makefile
Makefile.e300artydevkit using a text editor and change
board type. By default, the Makefile will generate the
FPGA implementation for the Arty A7-35T.

To generate an implementation for the Arty A7-100T,
change the board type to arty_a7_100T. Open a file
browser and navigate to the freedom/fpga-shells/Xilinx
directory. Several folders, named for each supported
development board, can be seen here. Note that the
name of the arty_a7_100 folder matches the board type
used.

Back in the text editor with the Makefile, change the
board name to the arty_a7_100.

Save and close the modified file.

https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_5.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart
https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_6.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart
https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_7.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart

With that, the FPGA implementation can now be
generated. In the terminal window issue the
following command:

make -f Makefile.e300artydevkit mcs

This will take time, as the script will use Vivado
and the RISC-V toolchain to generate both a bitstream and an MCS file. The MCS file can be
programmed into the flash memory on the Arty A7 100T and load the RISC-V processor when the
board is powered on.

The output files will be available under the directory:

<workspace>/freedom/builds/e300artydevkit/obj

The BIT files, MCS files, and Vivado implementation
reports can all be found here.

Programming the Hardware

With the programming file available, the next step is to program the flash memory using Vivado.

Open Vivado using the command: “Vivado”.

Once the GUI starts, the next step is to connect the
Arty A7-100T to the development machine via the
micro USB port (J10), and to open Vivado's Hardware
Manager. Once the board has been connected, the
hardware tab on the left of the screen will show the
FPGA device. Select the device, then right click on it
and select *Add Configuration Memory Device*. This
will open a dialog box where the memory type can be
selected. The Arty A7-100T has a Spansion
S25FL128xxxxx device fitted.

https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_8.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart
https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_9.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart
https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_10.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart

After selecting the device, a dialog prompt will ask
whether the device should be programmed now. Click
Yes and another dialog will open.

Select the generated MCS file, and the device will be programmed. Once this process is complete,
the Arty A7-100T will be running the RISC-V processor. Check that the Arty A7's jumpers are
configured so that it can be programmed from flash and press the reset button.

Confirm that the processor is running by doing the following:

1. Press button 3 and see LED 6 go out
2. Press the reset button and see LED 4 go out

https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_12.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart
https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_11.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart

However, a custom application still needs to be created and uploaded. This can be achieved by
using the Arduino development environment.

Generating Software

First though, the Olimex JTAG pod needs to be connected to the Arty A7's Pmod Port D, allowing
programs to be downloaded and debugged using the JTAG interface. The pin out between for
connecting the two can be found here.

With that, a custom application can now be developed. The best way to get started programming the
RISC-V is to use the Arduino development environment.

Installing support for the SiFive Freedom
processor is easy. Under “File →
Preferences”, point the Additional Boards
Manager URL to the following URL:

http://static.dev.sifive.com/bsp/arduino/package_sifive_index.json

The next step is to install the board using the
Board Manager found through the “Tools →
Boards” menu.

In the Board Manager dialog, select the
Contributed type to find the SiFive Freedom
Boards.

Once this is installed, applications can be developed, and examples applications loaded, just the
same as for any other board in this environment. Just remember to select the Freedom Arty Dev Kit
from the board selection list.

https://static.dev.sifive.com/SiFive-E310-arty-gettingstarted-v1.0.6.pdf
https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_13.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart
https://reference.digilentinc.com/_detail/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/risc_v_14.jpg?id=reference%3Aprogrammable-logic%3Aarty-a7%3Aarty_a7_100_risc_v%3Astart

Troubleshooting

1. Ensure that the Xilinx cable drivers are installed. This can be achieved by first changing the
directory to

<xilinx

Install>Vivado/2017.1/data/xicom/cable_drivers/lin64/install_script/install_d

rivers

Then running the command:

sudo ./install_drivers

2. Ensure that the Olimex USB has the required permissions. Edit the following file:

/etc/udev/rules.d/99-openocd.rules

By adding the following:

These are for the Olimex Debugger for use with E310 Arty Dev Kit

SUBSYSTEM=="usb", ATTR{idVendor}=="15ba", ATTR{idProduct}=="002a",

MODE="664",

GROUP="plugdev"

SUBSYSTEM=="tty", ATTRS{idVendor}=="15ba", ATTRS{idProduct}=="002a",

MODE="664",

GROUP="plugdev"

Save and enter the command sudo udevadm control –reload-rules

3. If problems occur while uploading, check the connections between the Olimex and Pmod Port D,
and ensure that the user is a member of the plugdev group.

Next Steps

For more guides on how to use the Arty A7, visit the device's Resource Center.

For more information on Vivado, visit Digilent's Vivado tutorials.

For technical support, please visit the FPGA section of the Digilent Forums.

https://reference.digilentinc.com/reference/programmable-logic/arty-a7/arty_a7_100_risc_v/start/3-9-20

https://reference.digilentinc.com/reference/programmable-logic/arty-a7/start
https://reference.digilentinc.com/reference/software/vivado/start
https://forum.digilentinc.com/forum/4-fpga/

