HI-539

FN3149
Rev 3.00
August 2003

The Intersil HI-539 is a monolithic, 4-Channel, differential multiplexer. Two digital inputs are provided for channel selection, plus an Enable input to disconnect all channels.

Performance is guaranteed for each channel over the voltage range $\pm 10 \mathrm{~V}$, but is optimized for low level differential signals. Leakage current, for example, which varies slightly with input voltage, has its distribution centered at zero input volts.

In most monolithic multiplexers, the net differential offset due to thermal effects becomes significant for low level signals. This problem is minimized in the $\mathrm{HI}-539$ by symmetrical placement of critical circuitry with respect to the few heat producing devices.

Supply voltages are $\pm 15 \mathrm{~V}$ and power consumption is only 2.5 mW .

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. DWG. \#
HI1-0539-5	0 to 75	16 Ld CERDIP	F16.3

Pinouts

Features

- Differential Performance, Typical:
- Low $\Delta \mathrm{r}_{\mathrm{ON}}, 125^{\circ} \mathrm{C}$. 5.5Ω

- Low Δ Charge Injection . 0.1 pC
- Low Crosstalk. -124 dB
- Settling Time, $\pm 0.01 \%$. 900 ns
- Wide Supply Range $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Break-Before-Make Switching
- No Latch-Up

Applications

- Low Level Data Acquisition
- Precision Instrumentation
- Test Systems

TRUTH TABLE

			ON CHANNEL TO	
			ONT A	OUT B
L	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	OUT	
H	X	X	None	None
H	L	L	1 A	1 B
H	L	H	2 A	2 B
H	H	L	3 A	3 B

Absolute Maximum Ratings

V+ to V- . 40 V
V+ or V- to GND. 20V

Digital Input Voltage ($\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\mathrm{A}}$) . V- to V+
Analog Current (IN or OUT) . 20mA

Operating Conditions

Temperature Range
HI-539-5 .
5 \qquad $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ CERDIP Package. 75 20
Maximum Junction Temperature
Ceramic Package. $175^{\circ} \mathrm{C}$
Plastic Package . $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Supplies $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}$ (Logic Level High) $=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=0.8 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS						
Access Time, t_{A}		25	-	250	750	ns
		Full	-	-	1,000	ns
Break-Before-Make Delay, topen		25	30	85	-	ns
		Full	30	-	-	ns
Enable Delay (ON), ton(EN)		25	-	250	750	ns
		Full	-	-	1,000	ns
Enable Delay (OFF), toff(EN)		25	-	160	650	ns
		Full	-	-	900	ns
Settling Time	To 0.01\%	25	-	0.9	-	$\mu \mathrm{s}$
Charge Injection (Output)		Full	-	3	-	pC
Δ Charge Injection (Output)		Full	-	0.1	-	pC
Charge Injection (Input)		Full	-	10	-	pC
Differential Crosstalk	Note 4	25	-	-124	-	dB
Single Ended Crosstalk	Note 4	25	-	-100	-	dB
Channel Input Capacitance, $\mathrm{C}_{\text {S(OFF) }}$		Full	-	5	-	pF
Channel Output Capacitance, $\mathrm{C}_{\mathrm{D}(\mathrm{OFF})}$		Full	-	7	-	pF
Channel On Output Capacitance, $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$		Full	-	17	-	pF
Input to Output Capacitance, $\mathrm{C}_{\mathrm{DS}}(\mathrm{OFF})$	Note 5	Full	-	0.08	-	pF
Digital Input Capacitance, $\mathrm{C}_{\text {A }}$		Full	-	3	-	pF
DIGITAL INPUT CHARACTERISTICS						
Input Low Threshold, $\mathrm{V}_{\text {AL }}$		Full	-	-	0.8	V
Input High Threshold, $\mathrm{V}_{\text {AH }}$		Full	4.0	-	-	V
Input Leakage Current (High), $\mathrm{I}_{\text {AH }}$		Full	-	-	1	$\mu \mathrm{A}$
Input Leakage Current (Low), ${ }_{\text {IL }}$		Full	-	-	1	$\mu \mathrm{A}$
ANALOG CHANNEL CHARACTERISTICS						
Analog Signal Range, V_{IN}		Full	-10	-	+10	V

 Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
On Resistance, ron	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	25	-	650	850	Ω
		Full	-	800	1K	Ω
	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	25	-	700	900	Ω
		Full	-	900	1.1K	Ω
$\Delta \mathrm{r}_{\mathrm{ON}}$, (Side A-Side B)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	25	-	4.0	24	Ω
		Full	-	4.0	24	Ω
	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	25	-	4.5	27	Ω
		Full	-	4.5	27	Ω
Off Input Leakage Current, IS(OFF)	Condition OV (Note 2)	25	-	30	-	pA
		Full	-	0.2	1	nA
	$\begin{aligned} & \text { Condition } \pm 10 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	25	-	100	-	pA
		Full	-	0.5	2.5	nA
$\Delta_{\text {S }}{ }_{\text {(OFF) }}$, (Side A-Side B)	Condition 0V	25	-	3	-	pA
		Full	-	0.02	0.2	nA
	Condition $\pm 10 \mathrm{~V}$	25	-	10	-	pA
		Full	-	0.05	0.5	nA
Off Output Leakage Current, ${ }^{\mathrm{D}}$ (OFF)	Condition OV (Note 2)	25	-	30	-	pA
		Full	-	0.2	1	nA
	$\begin{aligned} & \text { Condition } \pm 10 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	25	-	100	-	pA
		Full	-	0.5	2.5	nA
$\Delta_{\mathrm{D} \text { (OFF), }}$, (Side A-Side B)	Condition OV	25	-	3	-	pA
		Full	-	0.02	0.2	nA
	Condition $\pm 10 \mathrm{~V}$	25	-	10	-	pA
		Full	-	0.05	0.5	nA
On Channel Leakage Current, $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	Condition 0V (Note 2)	25	-	50	-	pA
		Full	-	0.5	2.5	nA
	$\begin{aligned} & \text { Condition } \pm 10 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	25	-	150	-	pA
		Full	-	0.8	4.0	nA
$\Delta^{\mathrm{I}_{\mathrm{D}(\mathrm{ON})} \text {, (Side A-Side B) }}$	Condition 0V	25	-	10	-	pA
		Full	-	0.05	0.5	nA
	Condition $\pm 10 \mathrm{~V}$	25	-	30	-	pA
		Full	-	0.08	0.8	nA
Differential Offset Voltage, $\Delta \mathrm{V}_{\text {OS }}$	Note 3	25	-	0.02	-	$\mu \mathrm{V}$
		Full	-	0.08	-	$\mu \mathrm{V}$
POWER SUPPLY CHARACTERISTICS						
Power Dissipation, P_{D}		25	-	2.3	-	mW
		Full	-	-	45	mW
Current, I+		25	-	0.150	-	mA
		Full	-	-	2.0	mA

Electrical Specifications Supplies $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}$ (Logic Level High) $=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=0.8 \mathrm{~V}$,

 Unless Otherwise Specified (Continued)| PARAMETER | TEST CONDITIONS | $\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$ | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current, I- | | 25 | - | 0.001 | - | mA |
| | | Full | - | - | 1.0 | mA |
| Supply Voltage Range | | Full | ± 5 | ± 15 | ± 18 | V |

NOTES:
2. See Figures $2 \mathrm{~B}, 2 \mathrm{C}, 2 \mathrm{D}$. The condition $\pm 10 \mathrm{~V}$ means:
$\mathrm{I}_{\mathrm{S}(\mathrm{OFF})}$ and $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$
$\left(V_{S}=+10 \mathrm{~V}, V_{D}=-10 \mathrm{~V}\right)$, then
$\left(\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}\right)$
$\mathrm{I}_{\mathrm{D}(\mathrm{ON}): ~(+10 \mathrm{~V} \text {, then }-10 \mathrm{~V}) ~}^{\text {) }}$
3. $\Delta \mathrm{V}_{\mathrm{OS}}$ (Exclusive of thermocouple effects) $=\mathrm{r}_{\mathrm{ON}} \Delta_{\mathrm{D}(\mathrm{ON})}+\mathrm{I}_{\mathrm{D}(\mathrm{ON})} \Delta \mathrm{r}_{\mathrm{ON}}$. See Applications section for discussion of additional V_{OS} error.
4. $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{kHz}, 15 \mathrm{~V}_{\text {P-P }}$ on all but the selected channel. See Figure 7 .
5. Calculated from typical Single-Ended Crosstalk performance.

Test Circuits and Waveforms Unless Otherwise Specified $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}$

FIGURE 1A. TEST CIRCUIT

FIGURE 1C. ON RESISTANCE vs ANALOG INPUT VOLTAGE

FIGURE 1B. ON RESISTANCE vs TEMPERATURE

FIGURE 1D. ON RESISTANCE vs SUPPLY VOLTAGE

FIGURE 1. ON RESISTANCE

Test Circuits and Waveforms Unless Otherwise Specified $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ (Continued)

FIGURE 2A. LEAKAGE CURRENT vs TEMPERATURE

FIGURE 2C. $\mathbf{I}_{\mathbf{S}(O F F)}$ TEST CIRCUIT (NOTE 6)

FIGURE 2B. $I_{D(O F F)}$ TEST CIRCUIT (NOTE 6)

\dagger Similar Connection For Side "B"

FIGURE 2D. ID(ON) TEST CIRCUIT (NOTE 6)

NOTE:
6. Three measurements $= \pm 10 \mathrm{~V}, \mp 10 \mathrm{~V}$, and 0 V .

FIGURE 2. LEAKAGE CURRENT

FIGURE 3A. SUPPLY CURRENT vs TOGGLE FREQUENCY

Test Circuits and Waveforms Unless Otherwise Specified $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ (Continued)

FIGURE 4A. ACCESS TIME vs LOGIC LEVEL (HIGH)

FIGURE 4C. MEASUREMENT POINTS

FIGURE 4B. TEST CIRCUIT

FIGURE 4D. WAVEFORMS

FIGURE 4. ACCESS TIME

FIGURE 5A. MEASUREMENT POINTS

FIGURE 5B. TEST CIRCUIT

Test Circuits and Waveforms Unless Otherwise Specified $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ (Continued)

FIGURE 5C. WAVEFORMS
FIGURE 5. BREAK-BEFORE-MAKE DELAY

FIGURE 6A. MEASUREMENT POINTS

FIGURE 6B. TEST CIRCUIT

100ns/DIV.
FIGURE 6C. WAVEFORMS
FIGURE 6. ENABLE DELAYS

Test Circuits and Waveforms Unless Otherwise Specified $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ (Continued)

FIGURE 7A. SINGLE-ENDED CROSSTALK TEST CIRCUIT

FIGURE 7B. DIFFERENTIAL CROSSTALK TEST CIRCUIT

FIGURE 7. CROSSTALK

Application Information

General

The HI-539 accepts inputs in the range -15 V to +15 V , with performance guaranteed over the $\pm 10 \mathrm{~V}$ range. At these higher levels of analog input voltage it is comparable to the $\mathrm{HI}-509$, and is plug-in compatible with that device (as well as the $\mathrm{HI}-509 \mathrm{~A}$). However, as mentioned earlier, the HI-539 was designed to introduce minimum error when switching low level inputs.

Special care is required in working with these low level signals. The main concern with signals below 100 mV is that noise, offset voltage, and other aberrations can represent a large percentage error. A shielded differential signal path is essential to maintain a noise level below $50 \mu \mathrm{~V}_{\mathrm{RMS}}$.

Low Level Signal Transmission

The transmission cable carrying the transducer signal is critical in a low level system. It should be as short as practical and rigidly supported. Signal conductors should be tightly twisted for minimum enclosed area to guard against pickup of electromagnetic interference, and the twisted pair should be shielded against capacitively coupled (electrostatic) interference. A braided wire shield may be satisfactory, but a lapped foil shield is better since it allows only $\frac{1}{10}$ as much leakage capacitance to ground per foot. A key requirement for the transmission cable is that it presents a balanced line to sources of noise interference. This means an equal series impedance in each conductor plus an equally distributed impedance from each conductor to ground. The result should be signals equal in magnitude but opposite in phase at any transverse plane. Noise will be coupled in phase to both conductors, and may be rejected as common-mode voltage by a differential amplifier connected to the multiplexer output.

Coaxial cable is not suitable for low level signals because the two conductors (center and shield) are unbalanced. Also, ground loops are produced if the shield is grounded at both ends by standard BNC connectors. If coax must be used, carry the signal on the center conductors of two equal-length cables whose shields are terminated only at the transducer end. As a general rule, terminate (ground) the shield at one end only, preferably at the end with greatest noise interference. This is usually the transducer end for both high and low level signals.

Watch Small ΔV Errors

Printed circuit traces and short lengths of wire can add substantial error to a signal even after it has traveled hundreds of feet and arrived on a circuit board. Here, the small voltage drops due to current flow through connections of a few milliohms must be considered, especially to meet an accuracy requirement of 12 bits or more.

Table 1 is a useful collection of data for calculating the effect of these short connections. (Proximity to a ground plane will lower the values of inductance.)

As an example, suppose the HI-539 is feeding a 12-bit converter system with an allowable error of $\pm 1 / 2 \mathrm{LSB}$ $(\pm 1.22 \mathrm{mV})$. If the interface logic draws 100 mA from the 5 V supply, this current will produce 1.28 mV across 6 inches of \#24 wire; more than the error budget. Obviously, this digital current must not be routed through any portion of the analog ground return network.

TABLE 1.

WIRE GAGE	EQUIVALENT WIDTH OF P.C. CONDUCTOR (2 oz. Cu)	DC RESISTANCE PER FOOT	INDUCTANCE PER FOOT	IMPEDANCE PER FOOT	
				60 Hz	10kHz
18	0.47"	0.0064Ω	$0.36 \mu \mathrm{H}$	0.0064Ω	0.0235Ω
20	0.30"	0.0102Ω	$0.37 \mu \mathrm{H}$	0.0102Ω	0.0254Ω
22	0.19 "	0.0161Ω	$0.37 \mu \mathrm{H}$	0.0161Ω	0.0288Ω
24	0.12 "	0.0257Ω	$0.40 \mu \mathrm{H}$	0.0257Ω	0.0345Ω
26	0.075 "	0.041Ω	$0.42 \mu \mathrm{H}$	0.041Ω	0.0488Ω
28	0.047 "	0.066Ω	$0.45 \mu \mathrm{H}$	0.066Ω	0.0718Ω
30	0.029"	0.105Ω	$0.49 \mu \mathrm{H}$	0.105Ω	0.110Ω
32	$0.018^{\prime \prime}$	0.168Ω	$0.53 \mu \mathrm{H}$	0.168Ω	0.171Ω

Provide Path For IBIAS

The input bias current for any DC-coupled amplifier must have an external path back to the amplifier's power supply. No such path exists in Figure 8A, and consequently the amplifier output will remain in saturation.

A single large resistor ($1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$) from either signal line to power supply common will provide the required path, but a resistor on each line is necessary to preserve accuracy. A single pair of these bias current resistors on the HI-539 output may be used if their loading effect can be tolerated (each forms a voltage divider with ron). Otherwise, a resistor pair on each input channel of the multiplexer is required.

The use of bias current resistors is acceptable only if one is confident that the sum of signal plus common-mode voltage will remain within the input range of the multiplexer/amplifier combination.
Another solution is to simply run a third wire from the low side of the signal source, as in Figure 8B. This wire assures a low common-mode voltage as well as providing the path for bias currents. Making the connection near the multiplexer will save wire, but it will also unbalance the line and reduce the amplifier's common-mode rejection.

Differential Offset, $\Delta V_{\text {OS }}$

There are two major sources of $\Delta \mathrm{V}_{\mathrm{OS}}$. That part due to the expression (ron $\Delta^{\Delta} l_{(O N)}+I_{D(O N)} \Delta r_{O N}$) becomes significant with increasing temperature, as shown in the Electrical Specifications tables. The other source of offset is the thermocouple effects due to dissimilar materials in the signal path. These include silicon, aluminum, tin, nickel-iron and (often) gold, just to exit the package.
For the thermocouple effects in the package alone, the constraint on $\Delta \mathrm{V}_{\text {OS }}$ may be stated in terms of a limit on the difference in temperature for package pins leading to any channel of the HI-539. For example, a difference of $0.13^{\circ} \mathrm{C}$ produces a $5 \mu \mathrm{~V}$ offset. Obviously, this $\Delta \mathrm{T}$ effect can dominate the $\Delta \mathrm{V}_{\text {OS }}$ parameter at any temperature unless care is taken in mounting the HI-539 package.
Temperature gradients across the HI-539 package should be held to a minimum in critical applications. Locate the HI-539 far from heat producing components, with any air currents flowing lengthwise across the package.

FIGURE 8A.

NOTE: The amplifier in Figure 8A is unusable because its bias currents cannot return to the power supply. Figure 8B shows two alternative paths for these bias currents: either a pair of resistors, or (better) a third wire from the low side of the signal source.

FIGURE 8B.

Die Characteristics

die dimensions:
92 mils $\times 100$ mils
METALLIZATION:
Type: AICu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
SUBSTRATE POTENTIAL (NOTE):
-VSUPPLY

PASSIVATION:

Type: Nitride Over Silox Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$ Silox Thickness: $12 \mathrm{k} \AA \pm 2.0 \mathrm{k} \AA$

WORST CASE CURRENT DENSITY:
$2.54 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$ at 20 mA
TRANSISTOR COUNT:
236
PROCESS:
CMOS-DI
NOTE: The substrate appears resistive to the - $V_{\text {SUPPLY }}$ terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a conductor at - $V_{\text {SUPPLY }}$ potential.

Metallization Mask Layout

HI-539

Page 11 of 12

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

© Copyright Intersil Americas LLC 1999-2003. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

