

SPECIFICATION SHEET

SPECIFICATION SHEET NO.	Q0501-CM32M00000S005
DATE	May 01, 2023
REVISION	AO
DESCRIPITION	SMD Ceramic Resonator, 3731 Type, L3.7*W3.1*H1.5mm,
	Built-in Capacitance, 3 pads, CRTV Series
	32.000MHz, Frequency Accuracy +/-0.5%,
	Operating Temp. Range -25°C ~+85°C,
	Reflow Profile Condition 260 °C Max.
	RoHS/RoHS III compliant, Tape/Reel
CUSTOMER	
CUSTOMER PART NUMBER	
CROSS REF. PART NUMBER	
ORIGINAL PART NUMBER	TGS CRTV 32.0MX-5 TLF
PART CODE	CM32M00000S005

VENDOR APPROVE			
Issued/Checked/Approved	Component Mandy Star	Compose Ruby Chang Control	Jack Town of the state of the s
DATE: May 01, 2023			
CUSTOMER APPROVE			

DATE:

5/4/2023

1

SMD CERAMIC RESONATOR CRTV SERIES

MAIN FEATURE

- SMD Ceramic Resonator, L3.7*W3.1*H1.5mm, 3 pads
- Low cost & Built-in Capacitance
- Reflow Profile Condition 260 °C Max.
- Wide Frequency Range
- Cross more competitors part
- RoHS III compliant

APPLICATION

- Bluetooth, wireless communication set
- Communication Electronics

PART CODE GUIDE

СМ	32M00000	S	005
1	2	3	4


sales@NextGenComponent.com

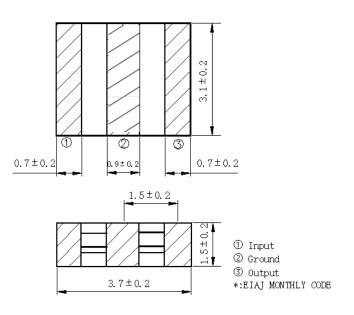
1) CM: Part Code for SMD Ceramic Resonator, Built-in Capacitance, L3.7*W3.1*H1.5mm, 3 pads, CRTV series

2) 32M00000: Frequency range code for 32.00000MHz

3) S: SMD type, Package Tape/Reel, 1000pcs/Reel

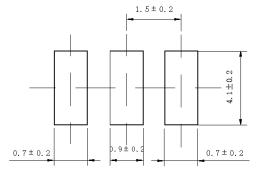
4) 005: Specification code for original part No.: TGS CRTV 32.0MX-5 TLF

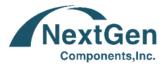




SMD CERAMIC RESONATOR CRTV SERIES

DIMENSION (Unit: mm)


Image for reference


CRTV

Recommend Pad Layout

5/4/2023

NextGen Components, Inc.

SMD CERAMIC RESONATOR CRTV SERIES

ELECTRICAL PARAMETERS

Parameter		Part No. Units Symbol		Value		Condition	
				Min.	Typical	Max.	
Original	Manufacturer	TGS	TGS Crystals				
Holder 1	Гуре	CRTV	SMD Ceram	ic Resonator,	L3.7*W3.1*H1.3m	ım, 3 pads	
Frequen	icy Range	32.0	MHz		32.000		
Withsta	nding Voltage	MX	V	50			@DC, 1 min
Insulatio	on Resistance		MΩ	500			@AV, 1 min.
Operatio	on Temperance		°C	-25		+85	
Storage	Temperance		°C	-55		+85	
Rating V	/oltage		V	6			DC
				15		р-р	
Frequen	icy Accuracy		%	0.5			
Resonar	nt Impedance		Ω	40			
Temper of Oscill Frequen			%			+/-0.3	Oscillation Frequency drift, -25°C ~ +85°C)
	on Frequency ate (10 years)		%			+/-0.3	From initial value
IC applic	cation		1/6TC74HCU04Px2				
Design I	Mode]
Built-in	Capacitance	-5	pF	pF 5pF (+/-20%)			
	Package	Т		Tape/Reel			
	RoHS Status	LF		RoHS III compliant			
Other	Add Value				N/A		
	Internal Control Code <mark>*</mark>			N/A			

Note: 1) Original Part Number: TGS CRTV 32.0MX-5 TLF

2) * Internal Control Code- 2 letter or digits; Blank: N/A

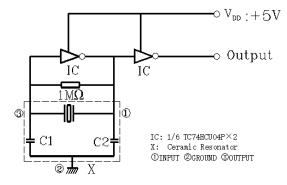
SMD CERAMIC RESONATOR CRTV SERIES

RELIABILITY

Test Items	Test Method And Conditions	Performance Requirements
Humidity	Keep the resonator at 40°C±2°C and 90%-95% RH for 96h. Then Release the resonator into the room Condition for 1h prior to the Measurement.	It shall fulfill the specifications in Table 1.
High Temperature Exposure	Subject the resonator to -85°C±2°C for 96h, then release the resonator into the room conditions for 1h prior to the measurement.	It shall fulfill the specifications in Table 1.
Low Temperature Exposure	Subject the resonator to -55°C \pm 2°C for 96h, then release the resonator into the room conditions for 1h prior to the measurement.	It shall fulfill the specifications in Table 1.
Temperature Cycling	After temperature cycling of blow table was performed 5 times, resonator shall be measured after being placed in natural conditions for 1h. Time: 30 min.@ -25 +/-3°CIt shall fulfill the specifica in Table 1.; Time: 30 min. @85 +/-3°CIt shall fulfill the specifical in Table 1.	
Vibration	Subject the resonator to vibration for 2h each in x, y and z axis With the amplitude of 1.5mm, the frequency shall be varied uniformly between the limits of 10 Hz—55Hz.	It shall fulfill the specifications in Table 1.
Mechanical Shock	Drop the resonator randomly onto a wooden floor from the height of 100cm 3 times.	It shall fulfill the specifications in Table 1.
Soldering Test	Passed through the re-flow oven under the following condition and left at room temperature for 1h before measurement	It shall fulfill the specifications in Table 1.
Solder Ability	Dipped in 245°C±5°C solder bath for 3s±0.5 s with rosin flux (25wt% ethanol solution.)	The terminals shall be at least 95% covered by solder.
Board Bending	Mount a glass-epoxy board (Width=40mm,thickness=1.6mm),then bend it to 1mm displacement and keep it for 5s. (See the following figure 1)	Mechanical damage such as breaks shall not occur.

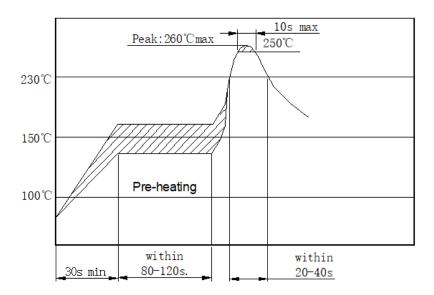
Table 1

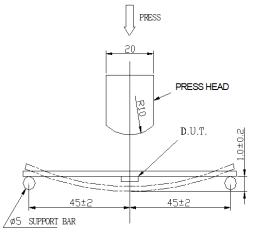
Item	Specification after test	
Oscillation Frequency Change \triangle Fosc/Fosc (%) max	±0.3	
Resonant Impedance (Ω) max	40	
The limits in the above table are referenced to the initial measurements.		


5/4/2023

NextGen Components, Inc.

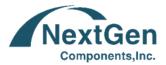
SMD CERAMIC RESONATOR CRTV SERIES


TEST CIRCUIT (For Reference Only)


Note:

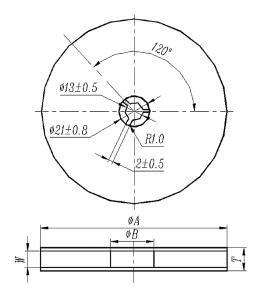
Parts shall be tested under the condition (Temp.: 20±15°C,Humidity 65±20% R.H.) unless the standard condition(Temp.: 25±3 °C, Humidity :65±10% R.H.) is regulated to measure.

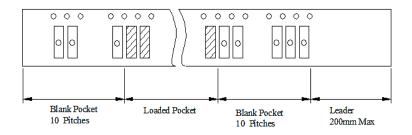
SUGGESTED REFLOW PROFILE (For Reference Only)

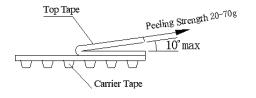


BOARD BENDING TEST- FIGURE 1

5/4/2023


NextGen Components, Inc.


SMD CERAMIC RESONATOR CRTV SERIES


TAPE/REEL (Unit: mm)

All Devices are packed in accordance with EIA standard RS-481-2 and specifications., 1000pcs/Reel

Symbol	Dimension
фА	180±3.0
фВ	60.0 Min.
W	12.4 Min.
Т	19.4 Max.

DISCLAIMER

NextGen Components, Inc. reserves the right to make changes to the product(s) and or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information

5/4/2023

7