

MAKE NO COMPROMISES

Higher

Voltage CAPABILITIES

Than 38999 Series III

The World's Most Advanced CONNECTOR

TABLE OF CONTENTS

Table of Contents

About

Evolution	3	3
-----------	---	---

Technical Data

Isolated Features	4-5
Small • Lighter • Superior	6
Contact Ratings, Contacts, Sealing Plugs, Tools.	7
Voltage Rating and Test Data	8
Insert Availability and Identification	9
Insert Arrangements	10

Series V

How to Order	11
Keyway Rotations	12
Plug with Accessory	13
Wall Mount Receptacle	14
Wall Mount Receptacle with Clinch Nuts	15
Jam Nut with Integral Banding Platform	16
S-5 Mini-Band Termination	17

PCB Contacts Information

Board Layout for PCB- Termination	18-22 n
-----------------------------------	---------

Plating

AP-93 Rating	23
--------------	----

2 ·

EVOLUTION

The MIL-DTL-38999 series of connectors was born in the 1960's to provide a ruggedized military solution featuring smaller contacts and higher density insert patterns than the already popular MIL-DTL-5015. In the decades since, D38999 connectors have increased in popularity and have become the standard in Mil-Spec connectors for military and aerospace applications.

1976

Series III

Along the way, continuous evolutions have brought about new shell styles, new coupling methods, new derivatives and new capabilities, all while remaining as popular as ever. Amphenol's new Series V connector is the next evolutionary step in that impressive lineage, combining all of the capabilities of the traditional 38999 style connector in a lighter, smaller and more compact package to support the ever changing demands of the aerospace industry.

2021 SERIES

ISOLATED FEATURES

MAKE NO

SMALLER • LIGHTER • SUPERIOR

PLUG WEIGHTS*

Plug Weights (oz.)			
Shell Size	38999 Series III Plug	Series V Plug	Weight Savings
Size 8	0.463	0.244	47%
Size 10	0.639	0.336	47%
Size 12	0.847	0.556	34%
Size 14	1.318	0.716	46%

*Corresponding 22D insert arrangement, with socket contacts included

WALL MOUNT RECEPTACLE WEIGHTS*

Receptacle Weights (oz.)			
Shell Size	38999 Series III Wall Mount	Series V Wall Mount	Weight Savings
Size 8	0.325	0.188	42%
Size 10	0.363	0.273	25%
Size 12	0.486	0.371	24%
Size 14	0.646	0.490	24%

*Corresponding 22D insert arrangement, with pin contacts included

SERIES V

Contact Ratings, Contacts, Sealing Plugs, and Crimping Tools

SERIES V CONTACT RATING

Contact Size	Test Current (Amps) Crimp	Maximum Millivolt Drop Crimp*	Current with High Current Pins (HCP)
23	5	73	7.5
22D	5	73	8
20	7.5	55	11
16	13	49	16
12	23	42	25

Contact Size	Crimp Well Data		
Contact Size	Well Diameter	Normal Well Depth	
23	.0345 ± .0010	.141	
22D	.0345 ± .0010	.141	
20	.047 ± .001	.209	
16	.067 ± .001	.209	
12	.100 ± .002	.209	

*When tested using silver plated wire.

SERIES V CRIMP CONTACTS

Contact Size	Pins Military No.	Socket Military No.
22D	M39029/58-360	M39029/57-354
20	M39029/58-363	M39029/57-357
16	M39029/58-364	M39029/57-358
12	M39029/58-365	M39029/57-359

Above part numbers include standard finish designation - gold plating over suitable underplate in accordance with MIL-DTL-39029. For other finishes, consult Amphenol Aerospace.

SERIES V CRIMP TOOLS

Contact Size	Pins Military No.	Socket Military No.
22D Socket	M22520/2-01 M22520/7-01	M22520/2-06 M22520/7-06
22D Pin	M22520/2-01 M22520/7-01	M22520/2-09 M22520/7-04
20 Pin and Socket	M22520/1-01 M22520/2-01 M22520/7-01	M22520/1-04 M22520/2-10 M22520/7-08
16 Pin and Socket	M22520/1-01 M22520/7-01	M22520/1-04 M22520/7-04
12 Pin and Socket	M22520/1-01	M22520/1-04

SERIES V SEALING PLUGS

Contact Size	Commercial No.	Military No.
22D	10-405996-222	MS27488-22-2
20	10-405996-202	MS27488-20-2
16	10-405996-162	MS27488-16-2
12	10-405996-122	MS27488-12-2

Partial Listing. If you do not see the contact for your application, consult Amphenol Aerospace.

SERIES V INSERTION TOOLS

Contact Size	Pins Military No.	Color Code
22D	M81969/14-01*	(Green) White
20	M81969/14-10*	(Red) Orange
16	M81969/14-03*	(Blue) White
12	M81969/14-04*	(Yellow) White

SERIES V REMOVAL TOOLS

Contact Size	Pins Military No.	Color Code
22D	M81969/14-01*	(Green) White
20	M81969/14-10*	(Red) Orange
16	M81969/14-03*	(Blue) White
12	M81969/14-04*	(Yellow) White

*Double ended insertion/removal tool

SERIES V Voltage Rating and Test Data

VOLTAGE COMPARISON CHART

	D3899	99 Series	III	Series 5								
Service	Suggested Oper. Voltage (D38999)- Sea Level		Test Voltage (Unmated)	Comico	Qua	Qualification Voltage (Mated)			Suggested Oper. Voltage Sea Level		Test Voltage (Unmated)	
Rating			0	Rating	Sea	50,000	75.000	100.000	(Unmated)		(VRMS)	Insulation Resistance
	AC (RMS)	DC	Sea Level		Level	I FT.	FT	FT	AC (RMS)	DC	Sea Level	
N	300	450	1000	N	1000	400	260	200	300	450	1000	5,000 MΩ
М	400	500	1300	Х	2500	1800	1200	1200	825	1000	2000	5,000 MΩ
I	600	850	1800	Y	3000	2500	2000	1800	1000	1300	2500	5,000 MΩ
II	900	1250	2300	Z	3500	2500	2000	1800	1150	1500	2500	5,000 MΩ

Please note that the establishment of electrical safety factors is left entirely in the designer's hands, since they are in the best position to know what peak voltage, switching surges, transients, etc. can be expected in particular circuit.

TYPICAL SHIELDING EFFECTIVENESS TEST DATA

EMI/EMP SHIELDING EFFECTIVENESS dB TESTING BY TRIAXIAL METHOD

TYPICAL SHIELDING EFFECTIVENESS TEST DATA

EMI/EMP SHIELDING EFFECTIVENESS dB TESTING BY MODE STIRRING METHOD

VIBRATION CRITERIA

SERIES V

Insert Availability and Identification Chart

Series V	Total Contacts	Service Rating	23	22D	20	16	12
8-35	6	Х		6			
8-98	3	Y			3		
8-9	9	Ν	9				
10-2	2	Y				2	
10-4	4	Y			4		
10-5	5	Y			5		
10-19	19	Ν	19				
10-35	13	Х		13			
10-98	6	Y			6		
10-99	7	Y			7		
12-3	3	Z				3	
12-4	4	Y				4	
12-8	8	Y			8		
12-32	32	Ν	32				
12-35	22	Х		22			
12-98	10	Y			10		
14-4	4	Y					4
14-5	5	Z				5	
14-15	15	Y			14	1	
14-18	18	Y			18		
14-19	19	Y			19		
14-35	37	Х		37			
14-55	55	N	55				
14-68	8	Y				8	
14-97	12	Y			8	4	

SERIES V Insert Arrangements

Front face of pin inserts illustrated

Shell Size & Insert Arrg. for:	(000) (000) (000)		$ \begin{pmatrix} C & A \\ \Theta & \Theta \\ \Theta B \end{pmatrix} $		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{pmatrix} E_{\Theta} & \Theta^{A} \\ D_{\Theta} & C & \Theta^{B} \\ \Theta & \Theta \end{pmatrix} $
Series V	8-9	8-35	8-98	10-2	10-4	10-5
Service Rating	х	Y	N	Y	Y	Y
Number of Contacts	9	6	3	2	4	5
Contact Size	23	22D	20	16	20	20

Shell Size & Insert Arrg. for:	$ \begin{array}{c} \begin{array}{c} 12 & 0 & 0 \\ 12 & 0 & 0 \\ 10 & 10 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 3 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{pmatrix} A_{\ominus} \\ E_{\ominus} \ominus^{F} \ominus^{B} \\ D\Theta \Theta_{C} \end{pmatrix}$	$ \begin{array}{c} \bigoplus_{G \\ G \\ \Theta \\ $	$ \begin{pmatrix} c \oplus & \oplus_{A} \\ \oplus_{B} \end{pmatrix} $	
Series V	10-19	10-35	10-98	10-99	12-3	12-4
Service Rating	N	Х	Y	Y	Z	Y
Number of Contacts	19	13	6	7	3	4
Contact Size	23	22D	20	20	16	16

Shell Size & Insert Arrg. for:	$\begin{bmatrix} G & \Theta_A & B \\ \Theta & \Theta & \Theta \\ \Theta & \Theta & \Theta \\ \Theta & \Theta & \Theta \\ \Theta & \Theta &$	9000000 90000000 900000000 9000000000 9000000		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		$ \begin{pmatrix} A \\ \oplus \\ \oplus \\ B \\ \oplus \\ \oplus \\ \oplus \\ \oplus \\ \oplus \\ \oplus \\ \oplus$	$\begin{pmatrix} A & \Theta & B \\ \Theta & A \\ \Theta & M \\ \Theta & M \\ \Theta & \Theta $
Series V	12-8	12-32	12-35	12-98	14-4	14-5	14-15
Service Rating Number of Contacts Contact Size	Y 8 20	N 32 23	X 22 22D	Y 10 20	Y 4 12	Z 5 16	Y 14 1 20 16

е

12 16 20

CONTACT LEGEND

0

22D 23

HOW TO ORDER: S506DS-14-35PN

Amphenol

Aerospace

KEY/KEYWAY POSITION

A plug with a given rotation letter will mate with a receptacle with the same rotation letter. The angles for a given connector are the same whether it contains pins or sockets. Master key stays fixed, minor keys rotate. Inserts are not rotated in conjunction with the master key/keyway.

6. ALTERNATE KEYING									
Shell Size	Key & Keyway Arrangement Identification Letter	AR° or AP° BSC	BR° or BP° BSC	CR° or CP° BSC	DR° or DP° BSC				
0	Ν	105	140	215	265				
	Α	102	132	248	320				
	В	80	118	230	312				
0	С	35	140	205	275				
	D	64	155	234	304				
	E	91	131	197	240				
	Ν	95	141	208	236				
	Α	113	156	182	292				
10	В	90	145	195	252				
14	С	53	156	220	255				
	D	119	146	176	298				
	E	51	141	184	242				

(FRONT FACE SHOWN)

CR

BSC

RECEPTACLE

DR[®] BSC

PLUG (FRONT FACE SHOWN)

Shell Size	BB Thread	V Thread*	(ØE)
8	.56001P2L - DS	.4375 - 28 - UNEF	.682
10	.68001P2L - DS	.5625 - 24 - UNEF	.803
12	.80001P2L - DS	.6875 - 24 - UNEF	.923
14	.92001P2L - DS	.8125 - 20 - UNEF	1.043

*Compatible with all D38999 Series II Accessories

SERIES V WALL MOUNTING RECEPTACLE **S500**

Shell Size	BB Thread	V Thread*	(M)	R	(S)	(ØT)	(KF)	(ZZ)
8	.56001P2L - DS	.4375 - 28 - UNEF	.5475	.594	.812	.131	.610	.250
10	.68001P2L - DS	.5625 - 24 - UNEF	.5475	.719	.938	.131	.610	.250
12	.80001P2L - DS	.6875 - 24 - UNEF	.5475	.812	1.031	.131	.610	.250
14	.92001P2L - DS	.8125 - 20 - UNEF	.5475	.906	1.125	.131	.610	.250

*Compatible with all D38999 Series II Accessories

SERIES V WALL MOUNTING RECEPTACLE WITH CLINCH NUTS S510

Shell Size	BB Thread	V Thread*	(M)	R	(S)	T Thread	(KF)	(ZZ)
8	.56001P2L - DS	.4375 - 28 - UNEF	.5475	.594	.916	.112-40UNC-3B	.610	.250
10	.68001P2L - DS	.5625 - 24 - UNEF	.5475	.719	1.041	.112-40UNC-3B	.610	.250
12	.80001P2L - DS	.6875 - 24 - UNEF	.5475	.812	1.134	.112-40UNC-3B	.610	.250
14	.92001P2L - DS	.8125 - 20 - UNEF	.5475	.906	1.228	.112-40UNC-3B	.610	.250

*Compatible with all D38999 Series II Accessories

.

SERIES V JAM NUT - INTEGRAL BANDING PLATFORM S587

Shell Size	(ØA)	(ØE)	(ØF)	(M)	BB Thread	(ØGG)	(KF)	RR Thread
8	.825	.425	.425	.605	.56001P2L - DS	.822	.675	.6250 - 24 - UNEF - 2A
10	.975	.606	.546	.605	.68001P2L - DS	.947	.675	.7500 - 20 - UNEF - 2A
12	1.096	.731	.671	.605	.80001P2L - DS	1.072	.675	.8750 - 20 - UNEF - 2A
14	1.275	.865	.805	.605	.92001P2L - DS	1.252	.675	1.000 - 20 - UNEF - 2A

S5 MINI-BAND TERMINATION

Mini-band Termination: For assembling cables to overmolded style S5 connectors or backshells, the Mini-band system offers quick termination of cable shields and flexibility to be utilized on a wide range of parts with just one band size. These rugged straps have passed numerous hazadous environmental testing. Including shock and vibration. Approved for use in military and aerospace applications.

MATERIALS:

Mini-band installation tool. Use with .120" (3.05 mm) wide bands, 6.75 inches (172 mm.) length, 1.2 pounds (0.6 Kg.)

Mini-band, .120" (3.05 mm) wide. Available in two lengths, flat or pre-coiled. Stainless steel.

Description	DMC Part Number	Military Part Number
Mini-Band Installation Tool	DBS-2200	M81306/1B

Length		Accommodates Diameter		DMC Part Number	Military Part
Inches	mm	inches	mm		Number
8.125	206.38	.88	22.35	DBS-1287	M85049/128-7

Step 1: Prepare the Connector and Cable Braid

Prepare the connector and cable braid for band termination process (see DMC Website).

Step 2: Prepare Band

Using an appropriate size band, feed the end of the band through the narrow slot on the buckle twice. This will create a double-looped band. Never use a single-looped band. To hasten the termination process on smaller adapters, pull on the end of the band to reduce the diameter of the loop.

Step 3: Insert Looped Band into Tool

Squeeze the release lever and insert the end of the band into the nose of the tool. Ensure the orientation of the band matches the graphic on the body of the tool (coil down when the tool is held upright).

Step 4: Positioning

Position the connector and the shield assembly through the band.

Step 5: Tighten Band around Braid/Connector

Repeatedly squeeze the tensioning handle until the band closes around the assembly. Once the band is closed around the assembly, use half strokes of the handle until the band is tight against the braided cable. Release the tensioning handle and allow it to open fully. With one final stroke, close the tensioning handle until it locks against the tool body. This indicates that the band has been tightened to the pre-set tension.

Step 6: Cut Off

Once the tensioning handle is locked in place, squeeze the cut-off handle to finish the termination process. Both handles will open up on their own. (If shrinkable tubing is to be applied, it is recommended that the band is wrapped in tape and the excess braid folded back over the band to prevent cutting of shrinkable tubing).

Step 7: Remove Excess Band Material

Release the tensioning handle and then squeeze the release lever. While squeezing the release lever, carefully pull on the band and slide it out of the tool and discard.

INSERT ARRANGEMENT #8-35

Connector Type:	Series V	Number of Contacts	Contact Size
Insert Designation:	8-35	6	22D

Contact Locations

Front face of pin insert shown

INSERT ARRANGEMENT #8-98

Contact Locations

Front face of pin insert shown

INSERT ARRANGEMENT #10-5

Connector Type:	Series V	Number of Contacts	Contact Size
Insert Designation:	10-5	5	20

Contact Locations

Front face of pin insert shown

INSERT ARRANGEMENT #10-35

INSERT ARRANGEMENT #12-3

Connector Type:	Series V	Number of Contacts	Contact Size
Insert Designation:	12-3	3	16

Contact Locations

Front face of pin insert shown

INSERT ARRANGEMENT #12-35

INSERT ARRANGEMENT #14-18

INSERT ARRANGEMENT #14-19

INSERT ARRANGEMENT #14-35

Connector Type:	Series V	Number of Contacts	Contact Size
Insert Designation:	14-35	37	22D

Contact Locations

Front face of pin insert shown

Contact Hole Locations		Contact Hole Locations			
	Location		Location		ation
Contact Number	X Axis	Y Axis	Contact Number	X Axis	Y Axis
1	+.045	+.262	19	+.045	+.172
2	+.123	+.217	20	+.123	+.119
3	+.211	+.160	21	+.170	+.040
4	+.254	+.080	22	+.170	050
5	+.266	010	23	+.123	127
6	+.247	098	24	+.045	172
7	+.200	175	25	045	172
8	+.130	232	26	123	127
9	+.045	262	27	170	050
10	045	262	28	170	+.040
11	130	232	29	123	+.119
12	200	175	30	045	+.172
13	247	098	31	+.045	+.074
14	266	010	32	+.090	004
15	254	+.080	33	+.045	082
16	211	+.160	34	045	082
17	123	+.217	35	090	004
18	045	+.262	36	045	+.074
			37	.000	004

AP-93 PLATING - 1000 HOURS ALTERNATIVE TO CADMIUM

RoHS Compliant Tri-Nickel Alloy, Intermateable with Cadmium

Amphenol Aerospace introduces AP-93 -- a new, durable REACH/RoHS compliant plating for aluminum connectors which outperforms Cadmium and exceeds 1000 hour salt spray requirements. AP-93 is a conductive finish that meets or exceeds D38999 Cadmium requirements (under the commercial service class designator "DS") making it an excellent choice for harsh environments.

Military, commercial, and industrial markets continue to move away from Cadmium due to known toxic carcinogens. The new AP-93 plating finish complies with all customer requirements tied to these specifications. Amphenol is also using European Union Directive 2002/95/EC RoHS as a guide to qualification for all military, commercial, and industrial specifications requiring the reduction or elimination of these restricted materials.

AP-93 is intermateable with Cadmium, making it a drop-in replacement for applications where Cadmium has been a preferred choice. Applications include numerous components of land, sea, air, and weapons systems, as well as space systems, as it provides superior barrier protection and excellent lubricity for threaded applications.

AP-93 exceeds Olive-Drab Cadmium plating (Class W) by meeting 1000 hours of dynamic salt spray, 500 mating cycles, and meets the millivolt drop shell-to-shell conductivity of nickel (Class F). AP-93 also meets a 200° C temperature rating, is compatible with other platings, and is available on all D38999-style connectors. For specific applications please contact Amphenol Aerospace.

FEATURES & BENEFITS

- Available on all Series V style connectors
- Meets 1000 hour salt spray requirement •
- **REACH/RoHS** compliant •
- Intermateable with Cadmium -- excellent • drop-in replacement for existing connectors.
- 500 mating cycles per D38999
- Meets 200° C temperature rating
- Meets D38999 shell-to-shell conductivity requirements

Requirements	Nickel	CAD	AP-93
336 Hours SO2 Exposure			*
500 Hours Salt Spray		*	*
1000 Hours Salt Spray			*
REACH/RoHS Compliant	*		*
CAD Intermateable		*	*
Non-Magnetic	*	*	*
Temperature Rating 200° C	*		*
Shell-to-Shell Conductivity < 2.5 millivolt	*	*	*

Note: Specifications are subject to change without notice.

23

ABOUT AMPHENOL AEROSPACE

Your Source for Interconnect Products

CONTACT US: Amphenol Aerospace 40-60 Delaware Avenue Sidney, NY 13838-1395

Customer Service: Mon - Fri 8AM - 5PM Phone: (800) 678-0141 Fax: (607) 563-5157 Online: www.amphenol-aerospace.com

Amphenol Aerospace, Amphenol Commercial Air, and Amphenol Industrial Operations Main Facility in Sidney, NY USA

ABOUT AMPHENOL AEROSPACE:

Amphenol Aerospace, a Division of Amphenol Corporation, is one of the largest manufacturers of interconnect products in the world for the Military, Commercial Aerospace and Industrial markets. Amphenol designs, manufactures and markets circular and rectangular, electronic, fiber optic, EMI/EMP filter, and a variety of special applications connectors and interconnect systems.

Our state-of-the-art facility is nestled at the foothills of the Catskill Mountains in Sidney, NY. The Amphenol complex houses many technologies including CNC machining, die-casting, molding, impact and extruding, plating, screw machining and process controls. Our fully equipped material evaluation lab and engineering organization utilize the latest in computer aided design software and analysis tools, allowing us to design, test, and qualify advanced interconnect systems. Amphenol's interconnect products are supplied to thousands of OEMs worldwide and are supported by our worldwide sales and engineering force, including the largest global network of electronic distributors.

Customer-Centric:

Our **#1 priority** is our customers who deserve quality product on time.

Accountable:

Clear owners, clear actions, clear results.

Reliable:

What we build matters and quality is imperative.

Enthusiastic:

Challenges create rewarding opportunities. Enthusiasm is contagious and we will spread it.

QUALITY ASSURANCE:

Amphenol Aerospace has been awarded both AS9100 - Revision C and ISO9001:2008 Quality Assurance Certifications.

Amphenol

Amphenol Aerospace Operations

40-60 Delaware Avenue Sidney, NY 13838 800-678-0141

Amphenol Commercial Air Division

40-60 Delaware Avenue Sidney, NY 13838 1-800-687-0141

Amphenol Nexus Technologies

50 Sunnyside Avenue Stamford, CT 06902 203-327-7300

Amphenol PCD

72 Cherry Hill Drive Beverly, MA 01915 978-624-3400

Amphenol SV Microwave

2400 Centrepark West Drive West Palm Beach, FL 561-840-1800

Amphenol Times Microwave, Inc. 358 Hall Avenue Wallingford, CT 06492 800-867-2629

Amphenol Fiber Systems International

1300 Central Expressway North, Suite 100 Allen, TX 75013 214-547-2400

Amphenol Borisch Technologies

4511 East Paris AVE Grand Rapids, MI 49512 616-554-9820

Amphenol Printed Circuits

91 Northeastern Boulevard Nashua, NH 03062 603-324-4500

Amphenol Canada

605 Milner Avenue Toronto, ON Canada M1B 5X6 416-291-4401

Amphenol Invotec Unit 1-3, Hedging Lane Industrial Estate Dosthill, Tamworth, B77 5HH United Kingdom +44 (0) 1827 263250

Amphenol Ionix Systems

Prospect House, Taylor Business Park Risley, Warrington, WA3 6HP United Kingdom +44 (0) 1942 685200

Amphenol Limited

Thanet Way Whitstable, Kent, CT5 3JF United Kingdom +44 (0) 1227 773200

Amphenol Socapex

948 Promenade De L'Arve – BP 29 74311 Thyez France +33 (0) 4 50 89 28 00

Amphenol Air LB SAS 2 Rue Clément Ader, Zac de Wé 08110 Carignan France +33 (0) 03 24 22 78 49

Amphenol AirLB GmbH

Am Kleinbahnhof 4 D-66740 Saarlouis Germany +49 (0) 68 31/98 10 0

Amphenol SEFEE

Z.I. des Cazes – BP243 12402 Saint-Affrique Cedex France +33 (0) 5 65 98 11 00

Amphenol Interconnect India

105, Bhosari Industrial Area Pune – 411 026 India +91 20 27120363

Amphenol Japan, Ltd.

471-1, Deba, Ritto-City Shiga, 520 3041 Japan +81 77 553 8501

Amphenol Martec Limited

St. Augustines Business Park Swalecliffe, Whitstable, Kent CT5 2QJ United Kingdom +44 (0) 1227 793 733

Amphenol Optimize

Carretera Internacional Km 6.5 Col. Parque Industrial Nogales, Sonora, México. C.P. 84094 +52 (631) 311-160

Amphenol Ionix Systems OÜ

Pikk Street 59b Kuressaare 93815 Estonia +372 4521 780

AMAO – European Sales Operations

Via Barbaiana 5 20020 Lainate Milano, Italy +39 02 932 541

Amphenol Bar-Tec Ltd.

3 Hagavish st POB 2479 Kfar-Saba 44641 Israel +972-9-7644100

Notice: Specifications are subject to change without notice. Contact your nearest Amphenol Corporation Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable but are presented without guarantee, warranty, or responsibility of any kind expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all connectors. © 2021 Amphenol Corp. Printed in U.S.A. 12-2021

AMPHENOL CORPORATION

40-60 Delaware Avenue, Sidney, NY 13838-1395 • 800-678-0141 www.amphenol-aerospace.com • www.amphenolmao.com