IS15BSBFP4RGB-BLK

Tactile Actuation - Single Pole - PC Terminals

Pixel Detail
Standoff Detail

Footprint

DISTINCTIVE CHARACTERISTICS

Compact Size

- Perfect for rack mount router and other applications with space limitations. Compact body size: 19.0 mm (.748") x 18.0mm (.709")

Actual Size

Programmable to display graphics, alphanumeric characters and animated sequences. Integrated liquid crystal display provides wide viewing angle with high contrast and clarity.
Viewing area $14.5 \mathrm{~mm} \times 11.8 \mathrm{~mm}$ (horizontal \times vertical) at 36×24 pixels.
Dome gives crisp tactile feedback to positively indicate circuit transfer.
High reliability and long life of one million actuations minimum.
Epoxy sealed terminals prevent entry of solder flux and other contaminants.
Optional accessories available to simplify production process.

PART NUMBER \& DESCRIPTION

Part Number	Switch Description	LCD Mode	LED Color
IS15BSBFP4RGB-BLK	SPST Momentary ON Gold Contacts Straight PC Terminals	Black \& White FSTN Positive	* Red/Green/Blue

[^0]
SWITCH SPECIFICATIONS

Circuit	SPST normally open
Electrical Capacity (Resistive Load)	$100 \mathrm{~mA} @ 12 \mathrm{~V} \mathrm{DC}$
Contact Resistance	200 milliohms max @ 20 mV 10 mA
Insulation Resistance	100 megohms min @ 100 V DC
Dielectric Strength	125 V AC for 1 minute minimum
Mechanical Endurance	$1,000,000$ operations minimum
Electrical Endurance	$1,000,000$ operations minimum
Operating Force	2.2 ± 0.5 Newtons
Total Travel	$1.8 \mathrm{~mm}\left(.071^{\prime \prime}\right)$
Operating Temp. Range	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \sim+140^{\circ} \mathrm{F}\right)$
Storage Temp. Range	$-30^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \sim+158^{\circ} \mathrm{F}\right)$

Optical Characteristics (Temperature at $25^{\circ} \mathrm{C}$)

Items	Symbols		Minimum	Typical	
Maximum					
Contrast Ratio	Cr	-	3.0	-	
Viewing Angle (Cr $\geq 1.1)$	Up \& Down	θ	-	90°	-
	Right \& Left	ϕ	-	90°	-

Absolute Maximum Ratings (Temperature at $25^{\circ} \mathrm{C}$)

Items	Symbols	Ratings
Supply Voltage for Logics	V_{DD}	-0.3 V to +7.0 V
Supply Voltage for LCD	V_{LC}	-0.3 V to +12.0 V
Input Voltage	V_{1}	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output Voltage	V_{O}	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

LCD SPECIFICATIONS

Characteristics of Display	
Display Operation Mode	FSTN positive
Display Condition	Transflective with built-in LED backlight
Viewing Angle	6 o'clock
Viewing Area	$14.5 \mathrm{~mm} \times 11.8 \mathrm{~mm}$ (horizontal \times vertical)
Driving Method	$1 / 24$ duty. $1 / 5$ bias (built-in driving circuit)
Pixel Format	36×24 pixels (horizontal \times vertical)
Pixel Size	$0.371 \mathrm{~mm} \times 0.445 \mathrm{~mm}$ (horizontal \times vertical)
Backlight LED	RGB: red $/$ green/blue

Recommended Operating Conditions (Temperature at $25^{\circ} \mathrm{C}$)

Items	Symbols		Minimum	Typical
Maximum				
Supply Voltage for Logics	V_{DD}	3.0 V	-	5.5 V
Supply Voltage	V_{LC}	--	$* 7.3 \mathrm{~V}$	-
Input Voltage	V_{l}	0 V	-	V_{DD}
Driving Frequency	$\mathrm{f}_{\mathrm{FLM}}$	--	150 Hz	-
Clock Operation Frequency	$\mathrm{f}_{\mathrm{SCP}}$	--	-	8.0 MHz

* LCD voltage (V_{L}) level depends on the refreshing frequency and the temperature. The optimal $V_{L C}$ can differ slightly from the stated typical value.

DC Characteristics of LCD Drive (Temperature at $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$)

Items	Symbols	Test Conditions	Minimum	Typical	Maximum	Unit
High Level Input Voltage	$\mathrm{V}_{1 \mathrm{H}}$		$0.7 \mathrm{~V}_{\text {D }}$		$V_{D D}$	V
Low Level Input Voltage	V_{IL}		0		$0.3 V_{\text {DD }}$	V
High Level Input Leakage Current	$I_{\text {LIH }}$	$V_{1}=V_{D D}$			10	$\mu \mathrm{A}$
Low Level Input Leakage Current	$\mathrm{I}_{\text {LI }}$	$V_{1}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
High Level Output Voltage	V_{OH}	$\mathrm{IOH}=-500 \mu \mathrm{~A}$	$V_{D D}-0.5$			V
Low Level Output Voltage	V_{0}	$\mathrm{I}_{\mathrm{LL}}=500 \mu \mathrm{~A}$			0.5	V
High Level Output Leakage Current	$\mathrm{I}_{\text {LOH }}$	$V_{O}=V_{D D}$			10	$\mu \mathrm{A}$
Low Level Output Leakage Current	Itot	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
Supply Current	$I_{\text {D }}$	$\mathrm{f}_{\mathrm{SCP}}=1.0 \mathrm{MHz}$			500	$\mu \mathrm{A}$
LCD Drive Current	$\mathrm{I}_{\text {LC }}$	$\mathrm{f}_{\mathrm{LP}}=2.4 \mathrm{kHz} \mathrm{V}_{\mathrm{LC}}=7.3 \mathrm{~V}$		500	2,000	$\mu \mathrm{A}$

Timing Characteristics of LCD Drive IC
(Temperature at $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$)

Items	Symbols	Minimum	Maximum
Clock Operation Frequency	$\mathrm{f}_{\text {SCP }}$		8.0 MHz
Latch Pulse Frequency	$\mathrm{f}_{\text {LP }}$		50 kHz
Clock High Level Pulse Width	$\mathrm{t}_{\mathrm{CWH}}$	50 ns	
Clock Low Level Pulse Width	$\mathrm{t}_{\mathrm{CWL}}$	50 ns	
Data Setup Time	$\mathrm{t}_{\text {DSD }}$	45 ns	
Data Hold Time	$\mathrm{t}_{\text {DHD }}$	50 ns	
Data Output Delay Time	$\mathrm{t}_{\text {PDO }}$		25 ns
Latch Setup Time	$\mathrm{t}_{\text {DSL }}$	50 ns	
Latch Hold Time	$\mathrm{t}_{\text {DHL }}$	50 ns	
Latch High Level Width	$\mathrm{t}_{\text {LWH }}$	50 ns	
FLM Setup Time	$\mathrm{t}_{\text {DSF }}$	50 ns	
FLM Hold Time	$\mathrm{t}_{\text {DHF }}$	50 ns	
SCP, LP Rise/Fall Time	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$		15 ns

LED CHARACTERISTICS

Typical Electrical Characteristics (Temperature at $25^{\circ} \mathrm{C}$)

Backlight Color	Symbols	Red	Green	Blue
Forward Current	I_{F}	10 mA	8.5 mA	8.0 mA

BLOCK DIAGRAM \& PIN CONFIGURATIONS

Timing Diagram

*1 Last data on first line
*2 Beginning data on second line
*3 Location of LP signal on first line

ABSOLUTE MAXIMUM FOR LEDS

Electrical Characteristics (Temperature at $25^{\circ} \mathrm{C}$)

Backlight Color	Symbols	Red	Green	Blue
Forward Current	I_{F}	20 mA	20 mA	20 mA
Forward Voltage	V_{F}	2.0 V $\left(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\right)$	2.8 V $\left(\mathrm{I}_{\mathrm{F}}=8.5 \mathrm{~mA}\right)$	2.8 V $\left(\mathrm{I}_{\mathrm{F}}=8.0 \mathrm{~mA}\right)$
Reverse Voltage	V_{R}	4.0 V	4.0 V	4.0 V
Current Reduction Rate Above $25^{\circ} \mathrm{C}$	$\Delta \mathrm{I}_{\mathrm{F}}(\mathrm{DC})$		$-0.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$	
*Power Dissipation (LED Overall $115 \mathrm{~mW})$	P_{D}	40 mW	60 mW	60 mW

*For uniform light emission, Power Dissipation should not exceed the Absolute Maximum Rating, and the Forward Current should not exceed the derated Absolute Forward Current.

IS15BSBFP4RGB-BLK RGB LED Backlight Black and White LCD

BLOCK DIAGRAM \& PIN CONFIGURATIONS

Pin No.
(6) FLM First Line Marker
(7) LP Latch Pulse
(8) SCP Serial Clock Puls
Din Data Input

(10)	GND	Ground
(11)	V_{DD}	Power
(12)	V_{LC}	Power
(13)	BL-LED $(+)$	Terminal of Backlight LED
(14)	BL-LED $(-)$	Terminal of Backlight LED

Function

Normally open
Normally open
Cathode for red
Cathode for blue
Display serial output. Can be used to connect to Din of the next SWITCH. As a result, many SWITCHES can be controlled with one clock and data signal.
The marking signal for the first line data of LCD display. The first line of LCD will be selected by the falling edge of LP signal during the high level (FLM).
Line data latch pulse will latch content of internal 40-bit shift register at falling edge for one line of display. LP will also increment the display line by one.
Clock used by 40-bit internal shift register of the switch, shiffing the display data bit presented at Din at falling edge.
Display serial data bit. Note: to map the display data, because of the difference between the number of internal shift register data (40) and the single line of LCD pixels (36), the first four bits of data shifted will be dummy bits.

Power source for logic circuit
Power source for LCD drive
Anode for common
Cathode for green

PRECAUTIONS FOR HANDLING \& STORAGE

Handling

1. The IS Series devices are electrostatic sensitive.
2. Limit operating force to keytop to 100.0 N maximum, as excessive pressure may damage the LCD device.
3. The IS series devices are not process sealed.
4. If the LCD is accidentally broken, avoid contact with the liquid and wash off any liquid spills to the skin or clothing.
5. Clean cap surface with dry cloth. If further cleaning is needed, wipe with dampened cloth using neutral cleanser and dry with clean cloth. Do not use organic solvent.
6. Recommended soldering time and temperature limits:

Do not exceed $70^{\circ} \mathrm{C}$ at the LCD level.
Wave soldering recommended. Preheat temperature $110^{\circ} \mathrm{C}$, preheat time 30 seconds, peak temperature $270^{\circ} \mathrm{C}$, peak time 5 seconds, 1 cycle. Manual soldering recommended. Temperature $390^{\circ} \mathrm{C}$ for 4 seconds, 2 cycles.
7. Recommendation for backlight color uniformity: use constant current driver. For current limiting resistor method, the power source should be at least twice the backlight LED forward voltage.
8. The VLC voltage should not be applied before logic voltage. If VLC voltage is present before logic voltage, it may cause the driver logic to freeze and damage the LCD, and the driver logic may become damaged.
9. Backlight Forward Current should not exceed the derated Absolute Maximum Forward Current based on the temperature.
10. Excessive images may result after the same image is emitted continuously for an extended period of time.

Storage

1. Store in original container and away from direct sunlight.
2. Keep away from static electricity.
3. Avoid extreme temperatures, high humidity, gaseous substances, and all forms of chemical contamination.

OPTIONAL ACCESSORIES

AT9704-065F Socket
 for Compact Pushbutton

Materials:

Base - Glass Fiber Reinforced PBT
Terminals - Brass/Beryllium Copper

- The socket permits the Compact SmartDisplay to be plugged in after automated processing.
- Use of the socket enables easy field replacement of the device.

Also available: LCD 36×24 Logic Boards

[^0]: * Simultaneous illumination of LEDs achieves infinite colors.

