Specification of MEMS Microphone

(RoHS Compliance & Halogen Free)

Customer Name : Customer Model : Goermicro Model: SD33OT261-003

Go	permicro	CUSTOMER APPROVAL
DESIGN	Aaron.Xie 2021.06.30	
<u>CHKD</u>	Samual.Wang 2021.06.30	
STANDARD	Angela.Kong 2021.06.30	
APVD	Roy.Wang 2021.06.30	

Tel: + 86 536 3051234 E- Mail: <u>goermicro@goermicro.com</u> Website: <u>http://www.goermicro.com</u> Address: No.268 Dongfang Road, High-Tech Industry Development District, Weifang, Shandong, P.R.C.

Restricted

1 Security Warning

The information contained in this document is the exclusive property of Goermicro Inc. and should not be disclosed to any third party without the written consent of Goermicro Inc.

2 Publication History

oved
y
у
у
-

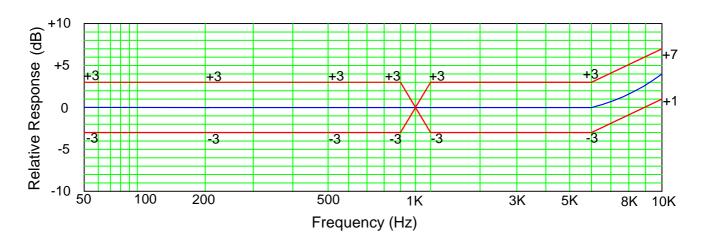
Contents

1		4
2	Test Condition	4
3	Acoustical and Electrical Characteristics – – – – – – – – – – – – – – – – – – –	4
	3.1 Standard Performance Mode — — — — — — — — — — — — — — — — — — —	4
	3.2 Frequency Response Curve and Limits — — — — — — — — — — — — — — — — — — —	4
	3.3 Low Power Mode	5
	3.4 General Microphone Specification	5
	3.5 Micronphone Interface Specifications	6
4	Measurement Circuit	7
5	Test Setup Drawing — — — — — — — — — — — — — — — — — — —	7
6	Mechanical Characteristics	8
	6.1 Appearance Drawing — — — — — — — — — — — — — — — — — — —	8
	6.2 Weight	8
7	Reliability Test	9
	7.1 Vibration Test — — — — — — — — — — — — — — — — — — —	9
	7.2 Drop Test	9
	7.3 Temperature Test	9
	7.4 Humidity Test — — — — — — — — — — — — — — — — — — —	9
	7.5 Mechanical Shock Test — — — — — — — — — — — — — — — — — — —	9
	7.6 Thermal Shock Test — — — — — — — — — — — — — — — — — — —	9
	7.7 Reflow Test	9
	7.8 ESD Shock Test	9
8	Package	10
	8.1 Tape Specification — — — — — — — — — — — — — — — — — — —	10
	8.2 Reel Dimension	11
	8.3 The Content of Box — — — — — — — — — — — — — — — — — — —	11
	8.4 Packing Explain — — — — — — — — — — — — — — — — — — —	12
9	Storage and Transportation	12
10	Land Pattern Recommendation — — — — — — — — — — — — — — — — — — —	13
	10.1 The Pattern of MIC Pad	13
	10.2 Recommended Soldering Surface Land Pattern — — — — — — — — — — — — — — — — — — —	13
11	9 111 1	14
	11.1 Soldering Machine Condition	14
	11.2 The Drawing and Dimension of Nozzle — — — — — — — — — — — — — — — — — — —	14
	11.3 Reflow Profile	15
12	Cautions When Using MEMS MIC	16
	12.1 Board Wash Restrictions	16
	12.2 Sound Hole Productions	16
	12.3 Wire Width Adaption — — — — — — — — — — — — — — — — — — —	16
4.0	12.4 Ultrasonic Restrictions — — — — — — — — — — — — — — — — — — —	16
13	Output Inspection Standard	16

1 Introduction:

MEMS MIC which is able to endure reflow temperature up to 260° C for 50 seconds can be used in SMT process. It is widely used in telecommunication and electronics device such as mobile phone, laptop computers, and other portable electronic devices etc.

2 Test Condition (L=50 cm)


StandardConditions (As IEC 60268-4)	Temperature	Humidity	Air pressure	
Environment Conditions	+15℃~+35℃	25%RH~75%RH	86kPa \sim 106kPa	
Basic Test Conditions	+20 ℃ ±2 ℃	60%RH~70%RH	86kPa \sim 106kPa	

3 Acoustical and Electrical Characteristics

3.1 Standard Performance Mode (Test Condition: V_{DD}=1.8V, f_{CLK}=2.4MHz)

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Sensitivity	S	f=1kHz, Pin=1Pa	-27	-26	-25	dBFS (Note 1)
Current Consumption (Note 2)	Ι	f _{clk} =2.4MHz	-	750	-	μA
S/N Ratio	SNR	f=1kHz, P _{in} =1Pa A-Weighted Curve	-	64	-	dB
Distortion	THD	94dB SPL@ 1kHz	-	0.2	0.5	%
Acoustic Overload Point	AOP	10% THD @1 kHz	-	118	-	dB SPL
Power Supply Rejection	PSR	100mVpp squarewave@217Hz	-	-80	-	dBFS
Power Supply Rejection Ratio	PSRR	100mVpp squarewave@217Hz	-	60	-	dBFS

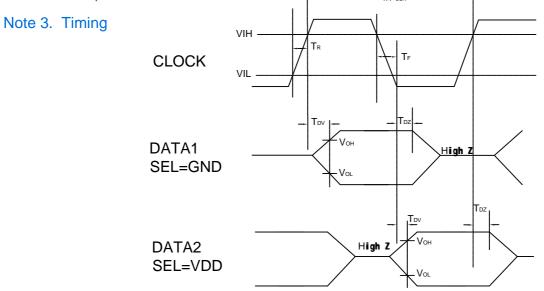
3.2 Frequency Response Curve and Limits

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Sensitivity	S	f=1kHz, Pin=1Pa	-27	-26	-25	dBFS (Note 1)
Current Consumption (Note 2)	Ι	f _{clk} =768kHz	-	300	-	μΑ
S/N Ratio	SNR	f=1kHz, Pin=1Pa A-Weighted Curve	-	64	-	dB
Distortion	THD	94dB SPL@ 1kHz	-	0.2	0.5	%
Acoustic Overload Point	AOP	10% THD @1 kHz	-	118	-	dB SPL
Power Supply Rejection	PSR	100mVpp squarewave@217Hz	-	-85	-	dBFS
Power Supply Rejection Ratio	PSRR	200mVpp sinewave@1KHz	-	60	-	dBFS
DC offset		long term percent of full scale		0		%

3.3 Low Power Mode (Test Condition: V_{DD}=1.8V, f_{CLK}=768kHz)

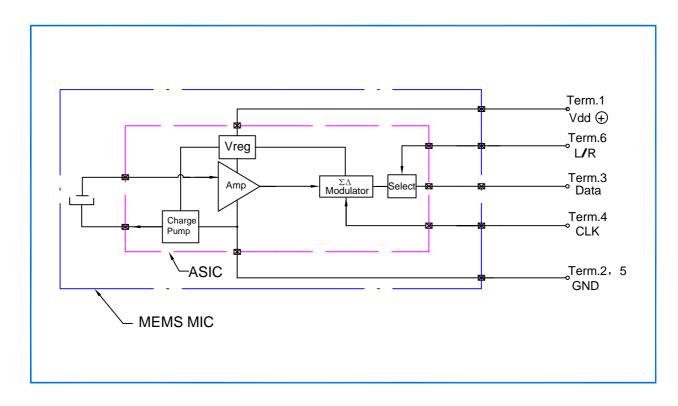
3.4 General Microphone Specifications

Test Condition: V_{DD}=1.8V,f_{CLK}=2.4MHz, select pin grounded,no load.

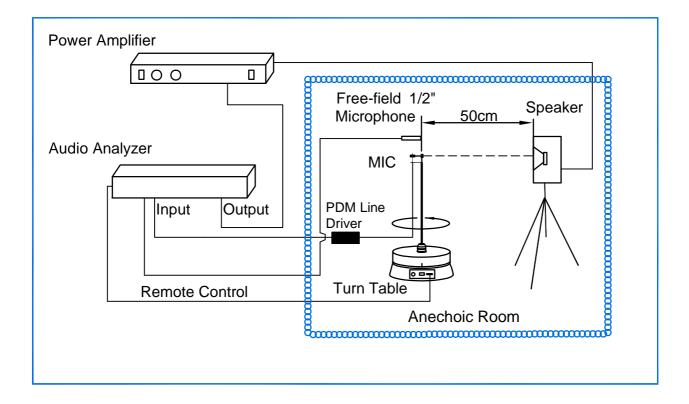

	tem	Symbol	Test Conditions	Min	Тур	Max	Unit
Sup	ply Voltage	V _{DD}		1.62	1.8	3.6	V
Clock	Standby Mode			0		250	kHz
Frequency Range	Lower Power Mode			350	-	800	kHz
- 3 -	Normal Mode			1.0	-	4.8	MHz
Slee	p Current	I _{sleep}	F _{clk} =0Hz,VDD=1.8V	-	3	-	μA
	pouncil	Sieep	$F_{clk}=0Hz$, VDD=3.6V	-	6	-	μA
Di	rectivity			Omnidirectional			
F	Polarity		Increasing sound pressure	Inc	reasing d	ensity of ?	l's
Dat	a Format				1/2 cyc	le PDM	
Short O	utput Current	I _{SC}	Data Pin short to GND	1	-	20	mA
Out	put Load	C _{load}		-	-	140	pF
Fall A	sleep Time	T _{slp}	F _{clk} <250KHz	-	5	-	us
Wake	e-up Time	T _{wk}	±0.5dB sensitivity accuracy	-	-	20	ms
Powe	r-up Time	T _{up}	±0.5dB sensitivity accuracy	-	-	20	ms
Mode-	Change Time	T _{mc}	±0.5dB sensitivity accuracy	-	-	20	ms
DC	Output			-	0	-	%FS

3.5 Microphone Interface Specifications

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Logic Input High	V _{IH}		0.65×Vdd	-	Vdd+0.3	V
Logic Input Low	V _{IL}		-0.3	-	0.35×Vdd	V
Logic Output High	V _{OH}		Vdd-0.45	-	-	V
Logic Output Low	V _{OL}		-	-	0.45	V
Clock Duty Cycle			40	-	60	%

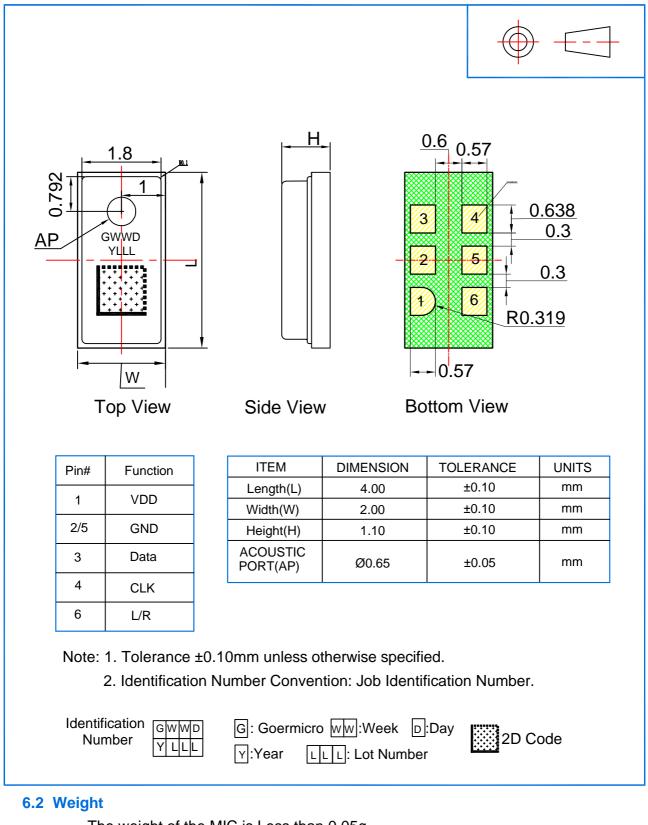

Note 1. $dBFS = 20x\log (A/B)$ where A is the level of the signal, B is the level that corrsponds to Full-scale level.

Note 2. The current consumption depends on the applied Clock Frequency and the load on the DATA output.



Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Clock Rising Time	T _R	RL=1MΩ,CL=12pF	-	-	15	ns
Clock Falling Time	Τ _F	RL=1MΩ, CL=12pF	-	-	15	ns
Data into Hi Z time	T _{DZ}	RL=1MΩ,CL=12pF	0	-	20	ns
DataValid time	T _{DV}	RL=1MΩ,CL=12pF	24	36	48	ns
Clock Jitter		Period jitter in RMS			0.5	ns
Clock Duty Cycle			40	-	60	%
Clock Frequency			350	2400	4800	KHz

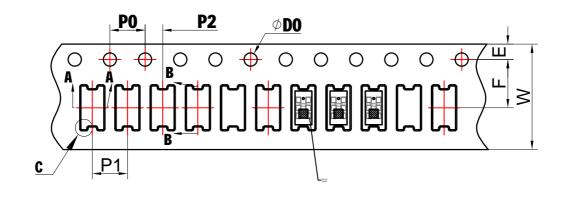
4 Measurement Circuit



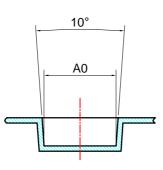
5 Test Setup Drawing

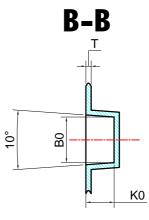
6 Mechanical Characteristics

6.1 Appearance Drawing (Unit: mm)

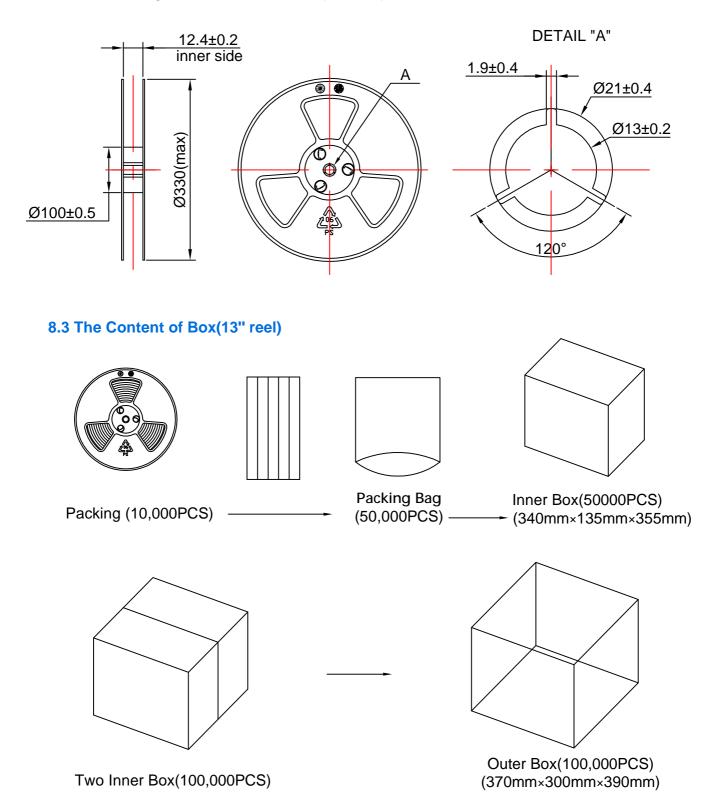

The weight of the MIC is Less than 0.05g.

7 Reliability Test

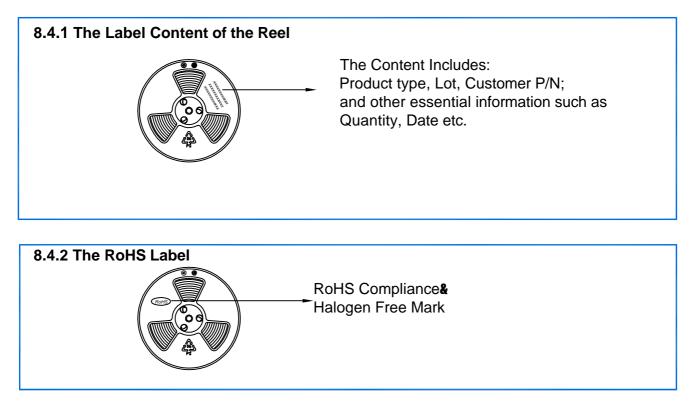

7.1 Vibration Test	To be no interference in operation after vibrations, 4 cycles, from 20 to 2,000Hz in each direction(X,Y,Z), 48 minutes, using peak acceleration of 20g, sensitivity should vary within ±3dBFS from initial sensitivity(IEC 60068-2-6:2007). (The measurement to be done after 2 hours of condition at 15°C-35°C, R.H. 25%~75%)
7.2 Drop Test	To be no interference in operation after dropped to 1.0cm steel plate 12 times from 1.5 meter height in state of JIG,JIG weight of 100g, sensitivity should vary within ±3dBFS from initial sensitivity(IEC60068-2-31:2008). (The measurement to be done after 2 hours of condition at 15°C-35°C, R.H. 25%~75%)
7.3 Temperature Test	 a) After exposure at +125°C for 200 hours, sensitivity should vary within ±3dBFS from initial sensitivity(IEC 60068-2-1:2007). (The measurement to be done after 2 hours of condition at 15°C-35°C, R.H. 25%~75%) b) After exposure at -40°C for 200 hours, sensitivity should vary within ±3dBFS from initial sensitivity(IEC 60068-2-1:2007). (The measurement to be done after 2 hours of condition at 15°C-35°C, R.H. 25%~75%)
7.4 Humidity Test	After exposure at +85°C and 85% relative humidity for 200 hours, sensitivity should vary within ±3dBFS from initial sensitivity(IEC 60068-2-67:2019). (The measurement to be done after 2 hours of condition at 15°C-35°C, R.H. 25%~75%)
7.5 Mechanical Shock Test	Then subject samples to three one-half sine shock pulses (3000 g for 0.3 milliseconds) in each direction (for six axes in total) along each of the three mutually perpendicular axes for a total of 18 shocks, sensitivity should vary within ±3dBFS from initial sensitivity (IEC60068-2-27:2008). (The measurement to be done after 2 hours of condition at 15°C-35°C, R.H. 25%~75%)
7.6 Thermal Shock Test	After exposure at -40 $^{\circ}$ C for 30 minutes, at +125 $^{\circ}$ C for 30 minutes (change time 20 seconds) 32 cycles, sensitivity should vary within ±3dBFS from initial sensitivity(IEC 60068-2-14:2009). (The measurement to be done after 2 hours of condition at 15 $^{\circ}$ C-35 $^{\circ}$ C, R.H. 25% \sim 75%)
7.7 Reflow Test	Adopt the reflow curve of item 12.3, after three reflows, sensitivity should vary within ±2dBFS from initial sensitivity(Refer to customer's request). (The measurement to be done after 2 hours of condition at 15°C-35°C, R.H. 25%~75%)
7.8 Electrostatic Discharge Test	Under C=150pF, R=330ohm. Air discharge to case with±8kV and contact discharge to I/O terminals with±2kV , 10 times, Grounding. Sensitivity should vary within ±3dBFS from initial sensitivity (IEC61000-4-2:2008).


8 Package

8.1 Tape Specification


The Dimensions as Follows:

ITEM	W	E	F	ØDO	P2
DIM(mm)	12.00±0.30	1.75±0.10	5,50±0,05	1,50 ^{+0.10}	2.00±0.10
ITEM	PO	10P0	P1	AO	BO
DIM(mm)	4.00±0.10	40.00±0.20	4.00±0.10	2.60±0.05	4.10±0.05
ITEM	КО	т			
DIM(mm)	1.35±0.10	0.3±0.05			

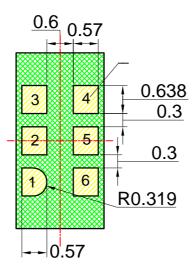

8.2 Reel Dimension

- 7" reel for sample stage
- 13" reel will be provided for the mass production stage

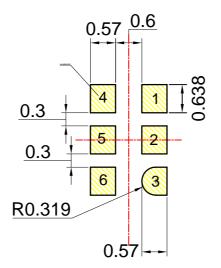
The following is 13" reel dimensions (unit:mm)

8.4 Packing Explain

9 Storage and Transportation


- 9.1 Keep MEMS MIC in warehouse with less than 75% humidity and without sudden temperature change, acid air, any other harmful air or strong magnetic field. Recommend storage period no more than 1 year and floor life(out of bag) at factory no more than 4 weeks.
- 9.2 The MEMS MIC with normal pack can be transported by ordinary conveyances. Please protect products against moist, shock, sunburn and pressure during transportation.
- 9.3 Storage Temperature Range: -40°C ~+70°C
- 9.4 Operating Temperature Range: -40°C ~+100°C

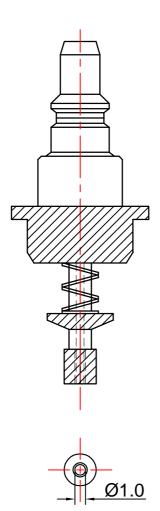
Note1: MSL(moisture sensitivity level) Class 1(IPC/JEDEC-J-STD-020 Revision C)


Note2: Static sensitive device

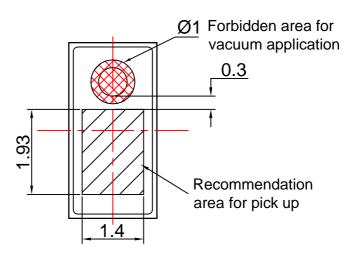
10 Land Pattern Recommendation

10.1 The Pattern of MIC Pad(Unit:mm)

10.2 Recommended Soldering Surface Land Pattern (Unit:mm)

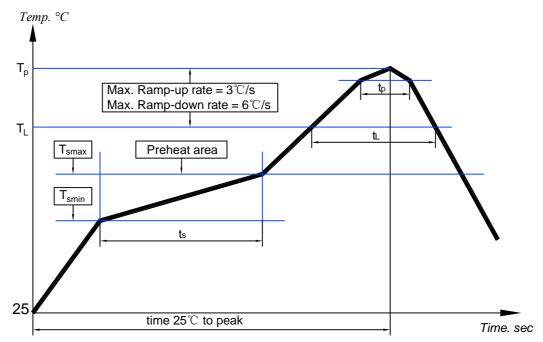


11 Soldering Recommendation


11.1 Soldering Machine Condition

Temperature Control	8 zones	
Heater Type	Hot Air	
Solder Type	Lead-free	

11.2 The Drawing and Dimension of Nozzle



Inside Diameter: 1.0mm;

Please don't vacuum over the acoustic port directly. Please don't blow the acoustic port directly.

11.3 Reflow Profile

Key Features of The Profile:

Average Ramp-up rate(T_{smax} to T_p)	3℃/s max.
Preheat : Temperature Min(T _{smin}) Temperature Max(T _{smax}) Time(T _{smin} to T _{smax})(t _s)	150℃ 200℃ 60~180s
Time maintained above : Tempreature(T _L) Time(t _L)	217℃ 60~150s
Peak Temperature(T _p)	260 ℃
Time within 5 $^\circ \!\!\!\!^{\rm C}$ of actual Peak Temperature(t_p) :	30~40s
Ramp-down rate(T _p to T _{smax})	6℃/s max
Time 25 $^\circ\!\!\!\!\!^\circ\!\!\!^\circ\!\!\!^\circ$ to Peak Temperature	8min max

When MEMS MIC is soldered on PCB, the reflow profile is set according to solder paste and the thickness of PCB etc.

12 Cautions When Using MEMS MIC

12.1 Board Wash Restrictions

It is very important not to wash this silicon microphone, otherwise this could damage the microphone.

12.2 Sound Hole Protection

It is very important not to operate vacuum and air blow into sound hole(without any covering over sound holes), otherwise this could damage the microphone. And it is necessary to be careful about foreign substances into sound hole inside silicon microphone.

12.3 Wire width Adaption

It is needed to adjust the dumping resistance according to the wire length and wire tod,etc. when using.

It is also necessary to insert dumping resistance in the Data line located adjacent to the microphone according to circumstances.

12.4 Ultrasonic Restrictions

It is very important not to use ultrasonic process. otherwise this could damage the microphone.

13 Output Inspection Standard

Output inspection standard is executed according to <<ISO2859-1:1999>>.