

Display Features	
Display Size	$4.2^{\prime \prime}$
Resolution	400×300
Orientation	Landscape
Appearance	Black, White
Logic Voltage	3.3 V
Interface	SPI
Touchscreen	N / A
Module Size	$91.00 \times 77.00 \times 1.25 \mathrm{~mm}$
Operating Temperature	$0^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$
Pinout	$24-$ Way FFC
Pitch	0.5 mm

* - For full design functionality, please use this specification in conjunction with the SSD1619A specification.(Provided Separately)

Display Accessories	
Part Number	Description

General Description

MDE0420A400300BW is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 4.2 " active area contains 400×300 pixels, and has 1 -bit B/W full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

Features

$\bullet 400 \times 300$ pixels display

- White reflectance above 35%
- Contrast ratio above 10:1
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Internal temperature sensor
- 10-byte OTP space for module identification
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor/ built-in temperature sensor

Application

Electronic Shelf Label System

Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	4.2	Inch	
Display Resolution	$400(\mathrm{H}) \times 300(\mathrm{~V})$	Pixel	Dpi:119
Active Area	$84.8(\mathrm{H}) \times 63.6(\mathrm{~V})$	mm	
Pixel Pitch	0.212×0.212	mm	
Pixel Configuration	Square		
Outline Dimension	$91.00(\mathrm{H}) \times 77.00(\mathrm{~V}) \times 1.25(\mathrm{D})$	mm	
Weight	15 ± 0.2	g	

Mechanical Draving of EPD module

Input/Output Terminals

Pin \#	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins NC	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins	Keep Open
5	VSH2	Positive Source driving voltage	
6	TSCL	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I2C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 6-5
9	BUSY	Busy state output pin	Note 6-4
10	RES \#	Reset	Note 6-3
11	D/C \#	Data /Command control pin	Note 6-2
12	CS \#	Chip Select input pin	Note 6-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	
16	VCI	Power Supply pin for the chip	540
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	Positive Source driving voltage	
21	VGH	Power Supply pin for Positive Gate driving voltage and VSH	
22	VSL	Negative Source driving voltage	
23	VGL	Power Supply pin for Negative Gate driving voltage, VCOM and VSL	
24	VCOM	VCOM driving voltage	

Note 6-1: This pin (CS\#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS\# is pulled LOW.
Note 6-2: This pin (D/C\#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulle set is active low.
Note 6-4: This pin (BUSY) is Busy state output pin. When Busy is High the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor

Note 6-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

MCU Interface

1. MCU Interface selection

The SSD1619A can support 3-wire/4-wire serial peripheral. In the SSD1619A, the MCU interface is pin selectable by BS1 shown in Table7-1.
Note
(1) L is connected to VSS
(2) H is connected to VDDIO

Table 7-1 : Interface pins assignment under different MCU interface

MCU Interface	Pin Name					
	BS1	RES\#	CS\#	D/C\#	SCL	SDA
4-wire serial peripheral interface (SPI)	Connect to VSS	Required	Required	Required	SCL	SDA
3-wire serial peripheral interface (SPI) - 9 bits SPI	Connect to VDDIO	Required	Required	Connect to VSS	SCL	SDA

2. MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C\# and CS\#. The control pins status in 4-wire SPI in writing command/data is shown in Table 7-2 and the write procedure 4-wire SPI is shown in Table 7-2

Table 7-2 : Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C\# pin	CS\# pin
Write command	\uparrow	Command bit	L	L
Write data	\uparrow	Data bit	H	L

Note:

(1) L is connected to VSS and H is connected to VDDIO
(2) \uparrow stands for rising edge of signal
(3) SDA(Write Mode) is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0. The level of D/C\# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C\# pin.

Figure 7-2 : Write procedure in 4-wire SPI mode

D/C\#

SCL

Read Mode)

Figure 7-2 : Read procedure in 4-wire SPI mode

3. MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS\#. The operation is similar to 4 -wire SPI while D/C\# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table7-3.
In the write operation, a 9-bit data will be shifted into the shift register on each clock rising edge. The bit shifting sequence is $\mathrm{D} / \mathrm{C} \#$ bit, D 7 bit, D 6 bit to D 0 bit. The first bit is $\mathrm{D} / \mathrm{C} \#$ bit which determines the following byte is command or write data. When $\mathrm{D} / \mathrm{C} \#$ bit is 0 , the following byte is command. When $\mathrm{D} / \mathrm{C} \#$ bit is 1 , the following byte is data. Table $7-3$ shows the write procedure in 3 -wire SPI

Table 7-3 : Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/C\# pin	CS\# pin
Write command	\uparrow	Command bit	Tie LOW	L
Write data	\uparrow	Data bit	Tie LOW	L

Note:
(1) L is connected to VSS and H is connected to VDDIO
(2) \uparrow stands for rising edge of signal

Figure 7-3 : Write procedure in 3-wire SPI

In the read operation (Register $0 \times 1 \mathrm{~B}, 0 \times 27,0 \times 2 \mathrm{D}, 0 \times 2 \mathrm{E}, 0 \times 2 \mathrm{~F}, 0 \times 35$), SDA data are transferred in the unit of 9 bits. After CS\# pull low, the first byte is command byte, the $\mathrm{D} / \mathrm{C} \#$ bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with $\mathrm{D} / \mathrm{C} \#$ bit is 1 . After $\mathrm{D} / \mathrm{C} \#$ bit sending from MCU, an 8 -bit data will be shifted out on each clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure $7-4$ shows the read procedure in 3-wire SPI.

COMMAND TABLE

R/W\#	D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	41	0	1	0	0	0	0	1	0	Read RAM Option	Read RAM Option
0	1	-	0	0	0	0	0	0	0	A0		$\begin{aligned} & \mathrm{A}[0]=0[\mathrm{POR}] \\ & 0: \text { Read RAM corresponding to } 24 \mathrm{~h} \\ & 1: \text { Read RAM corresponding to } 26 \mathrm{~h} \end{aligned}$
0	0	44	0	1	0	0	0	1	0	0	Set RAM X address Start / End position	Specify the start/end positions of the window address in the X direction by an address unit$\begin{aligned} & \mathrm{A}[4: 0]=00 \mathrm{~h} \\ & \mathrm{~B}[4: 0]=31 \mathrm{~h} \end{aligned}$
0	1	-	0	0	0	A4	A3	A2	A1	A0		
0	1	-	0	0	0	B4	B3	B2	B1	B0		
0	0	45	0	1	0	0	0	1	0	1	Set Ram Yaddress Start / End position	Specify the start/end positions of the window address in the Y direction by an address unit$\begin{aligned} & \mathrm{A}[7: 0]=12 \mathrm{Bh} \\ & \mathrm{~B}[7: 0]=0000 \mathrm{~h} \end{aligned}$
0	1	-	A7	A6	A5	A4	A3	A2	A1	A0		
0	1		0	0	0	0	0	0	0	A8		
0	1	-	B7	B6	B5	B4	B3	B2	B1	B0		
0	1		0	0	0	0	0	0	0	B8		
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address counter	Make initial settings for the RAM X address in the address counter $(\mathrm{AC}) \mathrm{A}[4: 0]=00 \mathrm{~h}$
0	1	-	0	0	0	A4	A3	A2	A1	A0		
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address counter	Make initial settings for the RAM Y address in the address counter (AC) $\mathrm{A}[8: 0]=12 \mathrm{Bh}$
0	1	-	A7	A6	A5	A4	A3	A2	A1	A0		
			0	0	0	0	0	0	0	A8		
0	0	74	0	1	1	1	0	1	0	0	Set Analog Block control	$\mathrm{A}[7: 0]=54 \mathrm{~h}$
0	1		A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}		
0	0	7E	0	1	1	1	1	1	1	0	Set Digital Block control	$\mathrm{A}[7: 0]=3 \mathrm{Bh}$
0	1		A_{7}	A_{6}	A_{5}		A_{3}	A_{2}	A_{1}	A_{0}		

Reference Circuit

Figure. 9-1

Figure. 9-2

Absolute Maximum Rating

Table 10-1 : Maximum Ratings

Symbol	Parameter	Rating	Unit
VCI	Logic supply voltage	-0.5 to +6.0	V
TOPR	Operation temperature range	0 to 50	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-25 to 60	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

The following specifications apply for: $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{VCI}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{OPR}}=25^{\circ} \mathrm{C}$.
Table 11-1: DC Characteristics

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
VCI	VCI operation voltage	-	2.2	3.3	3.7	V
VIH	High level input voltage	Digital input pins	0.8 VDDIO	-	-	V
VIL	Low level input voltage	Digital input pins	-		0.2 VDDIO	V
VOH	High level output voltage	IOH $=-100 \mathrm{uA}$	0.9 VDDIO	-	-	V
VOL	Low level output voltage	IOL $=100 \mathrm{uA}$	-		0.1 VDDIO	V
Iupdate	Module operating current	-	-	7	-	mA
Isleep	Deep sleep mode	VCI=3.3V	-	0.73	-	uA

- The Typical power consumption is measured using associated $25^{\circ} \mathrm{C}$ waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 11-1)
- The listed electrical/optical characteristics are only guaranteed under the controller \& waveform provided by Midas .
- Vcom value will be OTP before in factory or present on the label sticker.

Note 11-1
The Typical power consumption

AC Characteristics

The following specifications apply for: VDDIO - VSS $=2.2 \mathrm{~V}$ to 3.7 V , $\mathrm{TOPR}=25^{\circ} \mathrm{C}$
Write mode

Symbol	Parameter	Min	Typ	Max
Unit				
fSCL	SCL frequency (Write Mode)			20
MCSSU	Time CS\# has to be low before the first rising edge of SCLK	20		
tCSHLD	Time CS\# has to remain low after the last falling edge of SCLK	ns		
tCSHIGH	Time CS\# has to remain high between two transfers	20		
tSCLHIGH	Part of the clock period where SCL has to remain high	ns		
tSCLLOW	Part of the clock period where SCL has to remain low	25		
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	25		
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	10		ns

Read mode

Symbol	Parameter	Min	Typ	Max
Unit				
fSCL	SCL frequency (Read Mode)			2.5
tCSSU	Time CS\# has to be low before the first rising edge of SCLK	MHz		
tCSHLD	Time CS\# has to remain low after the last falling edge of SCLK	50		
tCSHIGH	Time CS\# has to remain high between two transfers	250		
tSCLHIGH	Part of the clock period where SCL has to remain high	180		
tSCLLOW	Part of the clock period where SCL has to remain low	180	ns	
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50	
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	ns		

Note: All timings are based on 20% to 80% of VDDIO-VSS
Figure 12-2: SPI timing diagram

13. Power Consumption

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	$25^{\circ} \mathrm{C}$	25	-	mAs	-
Deep sleep mode	-	$25^{\circ} \mathrm{C}$	0.73	-	uA	-

Typical OperatingSequence

1. Normal Operation Flow

Sequence	Action by	Command	Action Description	Remark
1	User	-	Power on (VCI supply);	-
2	User	-	HW Reset	-
	IC	-	After HW reset, the IC will be ready for command input	-
	User	C 12	Command: SW Reset	--
	IC	-	After SW reset, the IC will have Registers load with POR value VCOM register loaded with OTP value IC enter idle mode	BUSY $=\mathrm{H}$
	User	-	Wait until BUSY = L	-
3	-	-	Send initial code to driver including setting of	-
	User	$\begin{aligned} & \hline \text { C } 74 \\ & \text { D } 54 \end{aligned}$	Command: Set Analog Block Control	-
	User	$\begin{aligned} & \text { C 7E } \\ & \text { D 3B } \end{aligned}$	Command: Set Digital Block Control	-
	User	C 0C	Command: Set Softstart setting	-
	User	C 2B	Command: ACVCOM setting	
	User	C 01	Command: Driver Output Control (MUX, Source gate scanning direction)	-
	User	C 3A	Command: Set dummy line period	-
	User	C 3B	Command: Set Gate line width	-
	User	C 3C	Command: Border waveform control	-
4	-	-	Data operations for Black White	-
	User	C 11	Command: Data Entry mode setting	-
	User	C 44	Command: RAM X address start /end position	-
	User	C 45	Command: RAM Y address start /end position	-
	User	C 4E	Command: RAM X address counter	-
	User	C 4F	Command: RAM Y address counter	-
	User	C 24	Command: write BW RAM	-
	-	-	Ram Content for Display	-
5	-	-	Data operations for RED	-
	User	C 11	Command: Data Entry mode setting	-
	User	C 44	Command: RAM X address start/end position	-
	User	C 45	Command: RAM Y address start /end position	-
	User	C 4E	Command: RAM X address counter	-
	User	C 4F	Command: RAM Y address counter	-
	User	C 26	Command: write RED RAM	-
			Ram Content for Display	-
6	User	C 22	Command: Display Update Control 2	BUSY=H
	User	C 20	Command: Master Activation	
	IC	-	Booster and regulators turn on	

	IC	-	Load LUT register with corresponding waveform setting stored in OTP)	
	IC	-	Send output waveform according RAM content and LUT.	
	IC	-	Booster and Regulators turn off	
	IC	-	Back to idle mode	-
	User	-	Wait until BUSY $=$ L	-
7	User	-	IC power off;	

Optical characteristics

1. Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

SYMBOL	PARAMETER	CONDITIO NS	MIN	TYPE	MAX	UNIT	Note
R	Reflectance	White	30	35	-	$\%$	Note $15-1$
Gn	2Grey Level	-	-	DS+(WS-DS) $\times \mathrm{n}(\mathrm{m}-1)$	-	L^{*}	-
CR	Contrast Ratio	indoor	-	10	-	-	-
Panel's life	-	$0^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$		5years or 1000000 times	-	-	Note 15-2

WS: White state, DS : Dark state
m: 2
Note 15-1: Luminance meter : Eye - One Pro Spectrophotometer
Note 15-2: We guarantee display quality from $0^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}$ generally, If operation ambient temperature from $0^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$, will Offer special waveform by Midas.

2. Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd):

$$
\mathrm{CR}=\mathrm{Rl} / \mathrm{Rd}
$$

3. Reflection Ratio

The reflection ratio is expressed as:
$R=$ Reflectance Factor ${ }_{\text {white board }} \quad x\left(L_{\text {center }} / L_{\text {white board }}\right)$
$\mathrm{L}_{\text {center }}$ is the luminance measured at center in a white area ($\mathrm{R}=\mathrm{G}=\mathrm{B}=1$). $\mathrm{L}_{\text {white board }}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

Abstract

\section*{WARNING}

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.
IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.
Mounting Precautions
(1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to
the module.
(2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD.
Transparent protective plate should have sufficient strength in order to resist external force.
(3) You should adopt radiation structure to satisfy the temperature specification.
(4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
(5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
(7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Product specification
The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

| Product Environmental certification |
| :--- | :--- |
| ROHS |

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

Reliability test
\(\left.\begin{array}{|c|c|c|c|c|}\hline \& TEST \& CONDITION \& METHOD \& REMARK

\hline 1 \& High-Temperature Operation \& \begin{array}{c}\mathrm{T}=50^{\circ} \mathrm{C}, \mathrm{RH}=30 \% \mathrm{RH}, For

240 \mathrm{Hr}\end{array} \& IEC 60 068-2-2Bb\end{array}\right]\)| |
| :--- |
| 2 |

Actual EMC level to be measured on customer application.
Note1: The protective film must be removed before temperature test.
Note2: Stay white pattern for storage and non-operation test.

PartA/PartB specification

Point and line standard

Shipment Inspection Standard						
Equipment: Electrical test fixture, Point gauge						
Outline dimension	$\begin{aligned} & 91(\mathrm{H}) \times 77(\mathrm{~V}) \times \\ & 1.25(\mathrm{D}) \end{aligned}$	Unit: mm	Part-A	Active area	Part-B	Border area
Environment	Temperature	Humidity	Illuminance	Distance	Time	Angle
	$19^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$	$55 \% \pm 5 \% \mathrm{RH}$	$800 \sim 1300$ Lux	300 mm	35 Sec	
Defet type	Inspection method	Standard		Part-A		Part-B
Spot	Electric Display	$\mathrm{D} \leqslant 0.25 \mathrm{~mm}$		Ignore		Ignore
		$0.25 \mathrm{~mm}<\mathrm{D} \leqslant 0.4 \mathrm{~mm}$		$\mathrm{N} \leqslant 4$		Ignore
		$0.40 \mathrm{~mm}<\mathrm{D} \leqslant 0.5 \mathrm{~mm}$		$\mathrm{N} \leqslant 1$		Ignore
		D $>0.5 \mathrm{~mm}$		Not Allow		Ignore
Display unwork	Electric Display	Not Allow		Not Allow		Ignore
Display error	Electric Display	Not Allow		Not Allow		Ignore
Scratch or line defect(include dirt)	Visual/Film card	$\mathrm{L} \leqslant 2 \mathrm{~mm}, \mathrm{~W} \leqslant 0.2 \mathrm{~mm}$		Ignore		Ignore
		$\begin{gathered} 2.0 \mathrm{~mm}<\mathrm{L} \leqslant 8.0 \mathrm{~mm}, \quad 0.2<\mathrm{W} \leqslant \\ 0.5 \mathrm{~mm}, \end{gathered}$		$\mathrm{N} \leqslant 2$		Ignore
		$\mathrm{L}>8.0 \mathrm{~mm}, \mathrm{~W}>0.5 \mathrm{~mm}$		Not Allow		Ignore
PS Bubble	Visual/Film card	$\mathrm{D} \leqslant 0.25 \mathrm{~mm}$		Ignore		Ignore
		$0.25 \mathrm{~mm} \leqslant \mathrm{D} \leqslant 0.40 \mathrm{~mm}$		$\mathrm{N} \leqslant 4$		Ignore
		D $>0.40 \mathrm{~mm}$		Not Allow		Ignore
Side Fragment	Visual/Film card	$\begin{gathered} \mathrm{X} \leqslant 6 \mathrm{~mm}, \quad \mathrm{Y} \leqslant 0.5 \mathrm{~mm}, \text { Do not affect the electrode circuit } \\ \text {, Ignore } \end{gathered}$				
				1		
Remark	1.Cannot be defect \& failure cause by appearance defect;					
	2. Cannot be larger size cause by appearance defect;					
	L=long $\mathrm{W}=$ wide $\mathrm{D}=$ point size $\mathrm{N}=$ Defects NO					

$\mathrm{L}=\mathrm{L1}+\mathrm{L} \mathrm{L}$

Spot Defect

L=long $\quad W=$ wide $D=p o i n t ~ s i z e ~$

design

- \quad a

