

SPECIFICATIONS					
Model Rated Torque Damping Direction Max Rotation Speed Max Cycle Rate FRT-C2-301-G1 $(30 \pm 8.0) \times 10^{-3} \mathrm{Nm}$ $(300 \pm 80 \mathrm{gfcm})$ Both directions 50 RPM 10 cycles/ min.					

Operating Temperature	Weight	Body \& Cap Material	Rotating Shaft Material	Gear Material	Oil Type
$0 \sim 50^{\circ} \mathrm{C}$	3.5 g	Polycarbonate	Polyacetal	Polyacetal	Silicone Oil

Note 1) Rated torque measured at a rotation speed of 20 rpm at $23^{\circ} \mathrm{C}$
Note 2) Gear model number has G1 at the end
Note 3) Torque can be customized by changing the oil viscosity

- There are dampers that generate torque in both directions and one-way torque in the clockwise direction or counter clockwise direction when the rotating axle is viewed from the top

GEAR SPECIFICATIONS

Model	Type	Tooth Profile	Module	Pressure Angle	Number of Teeth	Pitch Circle Diameter	Weight (damper+gear)
G1	Shifted Spur Gear	Involute	0.8	20°	11	$\varnothing 8.8$	$3.5 \mathrm{~g}(3.2 \mathrm{~g}+0.3 \mathrm{~g})$

DAMPING CHARACTERISTICS

Speed characteristics: A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph above, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.

Temperature characteristics: A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph above, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.

