IntelliMAX"' 28 V, Over-Voltage, Over-Current Protection Load Switch with Adjustable Current-Limit Control

FPF2495B

Description

The FPF2495B advanced load-management switch targets applications requiring a highly integrated solution. It disconnects loads powered from the DC power rail ($<6 \mathrm{~V}$) with stringent off-state current targets and high load capacitances ($<100 \mu \mathrm{~F}$). The FPF2495B consists of a slew-rate controlled low-impedance MOSFET switch ($100 \mathrm{~m} \Omega$ maximum) and integrated analog features. The slew-rate controlled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on power rails. FPF2495B has over-voltage protection and over-temperature protection.

The FPF2495B has a Reverse-Current Blocking (RCB) function that obstructs unwanted reverse current from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$ during OFF states. The exceptionally low off-state current drain $(<2 \mu \mathrm{~A}$ maximum) facilitates compliance with standby power requirements. The input voltage range operates from 2.5 V to $5.5 \mathrm{~V}_{\mathrm{DC}}$ to support a wide range of applications in consumer, optical, medical, storage, portable, and industrial-device power management. Switch control is managed by a logic input (active HIGH) capable of interfacing directly with low-voltage control signal / General-Purpose Input / Output (GPIO) without an external pull-down resistor.

The device is packaged in advanced, fully "green" compliant, $1.22 \mathrm{~mm} \times 1.22 \mathrm{~mm}$, Wafer-Level Chip-Scale Package (WLCSP).

Features

- V_{IN} : $2.5 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- 28 V Absolute Ratings at $\mathrm{V}_{\text {OUT }}$
- Current Capability: 2.8 A
- Adjustable Current Limit: 0.05 A ~ 2.5 A (Typ.)
- 0.1 A~2.5 A with 10% Accuracy
- < 0.1 A with 15% Accuracy
- R_{ON} : Typ. $70 \mathrm{~m} \Omega \&$ Max. $100 \mathrm{~m} \Omega$ at $5 \mathrm{~V}_{\mathrm{IN}}$ and $1 \mathrm{~A} \mathrm{I}_{\text {OUT }}$
- Output OVP: Min. $=5.6 \mathrm{~V}$, Typ. $=5.8 \mathrm{~V}$, Max. $=6 \mathrm{~V}$
- No Output Discharge During Off State
- Open-Drain OCP on FLAGB
- Thermal Shutdown
- Under-Voltage Lockout (UVLO)
- Reverse-Current Blocking (RCB) during OFF
- Logic CMOS IO Meets JESD76 Standard for GPIO Interface and Related Power Supply Requirements
- ESD Protected:
- Human Body Model: >2 kV
- Charged Device Model: $>2.5 \mathrm{kV}$
- IEC 61000-4-2 Air Discharge: >15 kV
- IEC 61000-4-2 Contact Discharge: $>8 \mathrm{kV}$

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

WLCSP9 1.22x1.22x0.581 CASE 567SU

MARKING DIAGRAM

\&.\&2\&Z

TX = ON Semiconductor Logo
= Specific Device Code
= Lot Code
= Numeric Date Code
= Assembly Plant Code

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

Applications

- Smart Phones, Tablet PCs
- Storage, DSLR, and Portable Devices

ORDERING INFORMATION

Part Number	Operating Temperature Range	Package	Packing Method	Top Mark
FPF2495BUCX	-40 to $85^{\circ} \mathrm{C}$	9-Ball, WLCSP, 3x3 Array, 0.4 mm Pitch, Back Side Lamination	Tape \& Reel	TX

Application Diagram

1. C_{IN} and $\mathrm{C}_{\mathrm{OUT}}$ capacitors recommended for improvement of device stability.

Figure 1. Typical Application

Functional Block Diagram

Figure 2. Functional Block Diagram

Pin Configurations

Figure 3. Pin Assignments (Top View)

Figure 4. Pin Assignments (Bottom View)

PIN DESCRIPTION

Pin \#	Name	Description		
A3, B3	V $_{\text {OUT }}$	Switch Output		
A1, B1	V IN	Supply Input: Input to the power switch		
A2	GND	Ground (true device ground)		
B2				
C3	ON	ON/OFF Control Input: Active HIGH - GPIO compatible	Logic HIGH	Switch Enable
		OC $_{\text {FLAGB }}$	Fault Output: Active LOW, open-drain output that indicates an input over current. External pull-up resistor to VCC is required.	
C1	I SET	Current Limit Set Input: A resistor from ISET to ground sets the current limit for the switch.		

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameters		Min.	Max.	Unit
$\mathrm{V}_{\text {PIN }}$	$\mathrm{V}_{\text {OUT }}$ to GND, $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$		-0.3	28.0	V
	ON, $\mathrm{V}_{\text {IN }}$, FLAGB, $\mathrm{I}_{\text {SET }}$ to GND		-0.3	6.0	
Isw	Maximum Continuous Switch Current (Note 1)			2.8	A
$t_{\text {PD }}$	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.0	W
T_{J}	Operating Junction Temperature		-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Junction Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance, Junction-to-Ambient (1-inch Square Pad of 2 oz . Copper)			$\begin{gathered} 95 \\ (\text { Note 2) } \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
				$\begin{gathered} 110 \\ (\text { Note 3) } \end{gathered}$	
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	2.0		kV
		Charged Device Model, JESD22-C101	2.5		
	IEC61000-4-2 System Level	Air Discharge ($\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {ON }}, \mathrm{V}_{\text {OUT }}$ to GND)	15.0		
		Contact Discharge ($\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {ON, }}, \mathrm{V}_{\text {OUT }}$ to GND)	8.0		

[^0]2. Measured using 2S2P JEDEC std. PCB.
3. Measured using 2S2P JEDEC PCB cold plate method.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameters	Min.	Max.	Unit
$\mathrm{V}_{\mathbb{I N}}$	Supply Voltage	2.5	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS

Unless otherwise noted; $\mathrm{V}_{\mathrm{IN}}=2.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; typical values are at $\mathrm{V}_{I N}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameters	Condition	Min.	Typ.	Max.	Unit

BASIC OPERATION

$\mathrm{V}_{\text {IN }}$	Input Voltage		2.5		5.5	V
$\mathrm{I}_{\text {Q(OFF) }}$	Off Supply Current	$\mathrm{V}_{\text {ON }}=$ GND, $\mathrm{V}_{\text {OUT }}=$ Open		1	2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SD (OFF) }}$	Shutdown Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=\mathrm{GND}$		0.1	4.0	$\mu \mathrm{A}$
I_{Q}	Quiescent Current	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$		65	100	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	On Resistance	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}$		70	100	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~A}$		75	105	
$\mathrm{R}_{\text {ON }}$	On Resistance ${ }^{(6)}$	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=1.5 \mathrm{~A}$		70		$\mathrm{m} \Omega$
V_{IH}	ON Input Logic HIGH Voltage	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 5.5 V	1.15			V
V_{IL}	ON Input Logic LOW Voltage	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 5.5 V			0.65	V
$\mathrm{V}_{\text {IL_FLAG }}$	FLAGB Output Logic LOW Voltage	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$		0.1	0.2	V
		$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$		0.15	0.30	
$\mathrm{I}_{\text {FLAGB_LK }}$	FLAGB Output HIGH Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, Switch On			1	$\mu \mathrm{A}$
IoN	On Input Leakage	$\mathrm{V}_{\text {ON }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {IN }}$			1.0	$\mu \mathrm{A}$
RON_PD	Pull-Down Resistance at ON Pin	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.5 \sim 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=\mathrm{HIGH}, \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		14		M Ω

OVER-VOLTAGE PROTECTION

V $\mathrm{OV}_{\text {_ }}$ TRIP	Output OVP Lockout	$V_{\text {Out }}$ Rising Threshold	5.50	5.80	6.00	V
		V ${ }_{\text {Out }}$ Falling Threshold		5.50		
OUT $_{\text {HYS }}$	Output OVP Hysteresis	$V_{\text {Out }}$ Falling Threshold		0.3		V
tovp	OVP Response Time(6)	$\text { IOUT }=0.5 \mathrm{~A}, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$ VOUT from 5.5 V to 6.0 V	1		$4^{(6)}$	$\mu \mathrm{s}$

OVER-CURRENT PROTECTION

ILIM	Current Limit	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=20000 \Omega,$ $V_{\text {OUT }}=1.68$ to 5 V with 15% Accuracy (Note 4)	42	50	58	mA
		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=2100 \Omega,$ $V_{\text {OUT }}=1.68$ to 5 V with 10% Accuracy (Note 4)	450	500	550	
		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\text {SET }}=1070 \Omega,$ $\mathrm{V}_{\text {OUT }}=1.68$ to 5 V with 10% Accuracy (Note 4)	900	1000	1100	
$\mathrm{V}_{\text {UVLO }}$	Under-Voltage Lockout	$\mathrm{V}_{\text {IN }}$ Increasing		2.4		V
		$\mathrm{V}_{\text {IN }}$ Decreasing		2.2		
V UVLO_HYS	UVLO Hysteresis			200		mV
$\mathrm{I}_{\mathrm{RCB}}$	RCB Current	$\mathrm{V}_{\text {ON }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V}$,		7		$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{HOCP}}$	Hard Over-Current Response Time	Moderate Over-Current Condition, $\mathrm{I}_{\text {OUT }} \geq \mathrm{I}_{\text {IIM }}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		6		$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS (continued)
Unless otherwise noted; $\mathrm{V}_{\mathrm{IN}}=2.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; typical values are at $\mathrm{V}_{I N}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameters	Condition	Min.	Typ.	Max.	Unit
OVER-CURRENT PROTECTION						
tocp	Over-Current Response Time	Moderate Over-Current Condition, $I_{\text {OUT }} \geq I_{\text {LIM }} V_{\text {OUT }} \leq \mathrm{V}_{\text {IN }}$		7		$\mu \mathrm{s}$
toc_flag	Over-Current Flag Response Time	When Over-Current Occurs to Flag Pulling LOW		8		ms
TSD	Thermal Shutdown	Shutdown Threshold		150		${ }^{\circ} \mathrm{C}$
		Return from Shutdown		130		
		Hysteresis		20		

DYNAMIC CHARACTERISTICS

$\mathrm{t}_{\text {DON }}$	Turn-On Delay (Note 5, 6)	$\begin{aligned} & V_{I N}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=2040 \Omega \end{aligned}$	0.67		ms
t_{R}	$V_{\text {OUT }}$ Rise Time (Note 5, 6)		0.69		ms
ton	Turn-On Time (Note 5, 7)		1.36		ms
tooff	Turn-Off Delay (Note 6, 5)		0.01		ms
t_{F}	$V_{\text {Out }}$ Fall Time (Note 6, 5)		0.22		ms
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time (Note 8, 5)		0.23		ms
$\mathrm{t}_{\text {DON }}$	Turn-On Delay (Note 6, 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3.8 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=634 \Omega \end{aligned}$	0.65	0.78	ms
t_{R}	$V_{\text {OUT }}$ Rise Time (Note 6, 9)		0.65	0.82	ms
t_{ON}	Turn-On Time (Note 7, 9)		1.3	1.6	ms
tooff	Turn-Off Delay (Note 6, 9)		4	10	$\mu \mathrm{s}$
t_{F}	VOUT Fall Time (Note 6, 9)		76	120	$\mu \mathrm{s}$
tofF	Turn-Off Time (Note 8, 9)		80	130	$\mu \mathrm{S}$

4. Characterization based on 1% tolerance resistor.
5. This parameter is guaranteed by design and characterization; not production tested.
6. $t_{\text {DON }} / t_{\text {DOFF }} / t_{R} / t_{F}$ are defined in Figure 5 below.
7. $\mathrm{t}_{\mathrm{ON}}=\mathrm{t}_{\mathrm{R}}+\mathrm{t}_{\mathrm{DON}}$.
8. $\mathrm{t}_{\mathrm{OFF}}=\mathrm{t}_{\mathrm{F}}+\mathrm{t}_{\mathrm{DOFF}}$.
9. This parameter is guaranteed by design.

TIMING DIAGRAM

where:

$\mathrm{t}_{\text {DON }}=$ Delay On Time $\mathrm{t}_{\mathrm{R}}=\mathrm{V}_{\text {OUT }}$ Rise Time ton = Turn-On Time $\mathrm{t}_{\text {DOFF }}=$ Delay Off Time $\mathrm{t}_{\mathrm{F}}=\mathrm{V}_{\text {OUT }}$ Fall Time toff $=$ Turn Off Time

Figure 5. Timing Diagram

OPERATION AND APPLICATION DESCRIPTION

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into discharge load capacitor; a capacitor must be placed in between the $\mathrm{V}_{\text {IN }}$ and GND pins. A high-value capacitor on $\mathrm{C}_{\text {IN }}$ can be used to reduce the voltage drop in high-current applications.

Output Capacitor

An output capacitor should be placed between the $\mathrm{V}_{\text {OUT }}$ and GND pins. This capacitor prevents parasitic board inductance from forcing VOUT below GND when the switch is on. This capacitor also prevents reverse inrush current from creating a voltage spike that could damage the device in the case of a V OUT short.

Fault Reporting

Upon the detection of an over-current, OC_FLAGB signal the fault by activating LOW.

Current Limiting

The current limit ensures that the current through the switch does not exceed the maximum set value, while not limiting the minimum value. The current at which the part's limit is adjustable through the selection of the external resistor connected to the ISET pin. Information for selecting the resistor is found in the section below. The device acts as a constant-current source when the load draws more than the maximum value set by the device until thermal shutdown occurs. The device recovers if the die temperature drops below the threshold temperature.

Under-Voltage Lockout (UVLO)

The under-voltage lockout turns the switch off if the input voltage drops below the lockout threshold. With the ON pin active, the input voltage rising above the UVLO threshold releases the lockout and enables the switch.

Reverse-Current Blocking

The reverse-current blocking feature protects the input source against current flow from output to input when the load switch is off.

Thermal Shutdown

The thermal shutdown protects the die from internally or externally generated excessive temperature. During an over-temperature condition, the switch is turned off. The switch automatically turns on again if the temperature of the die drops below the threshold temperature.

Setting Current Limit

The current limit is set with an external resistor connected between the ISET and GND pins. The resistor is selected
using Table 1. Resistor tolerance of 1% or less is recommended.

Table 1. CURRENT LIMIT SETTINGS BY RSET (Note10)

$\mathbf{R}_{\text {SET }} \boldsymbol{\Omega}$	Min. Current Limit (mA)	Typ. Current Limit (mA)	Max. Current Limit (mA)
420	2250	2500	2750
469	2025	2250	2475
528	1800	2000	2200
604	1570	1750	1920
680	1350	1500	1650
866	1125	1250	1375
1070	900	1000	1100
1200	810	900	990
1330	720	800	880
1500	630	700	770
1740	540	600	660
2100	450	500	550
2320	405	450	495
2550	360	400	440
2940	315	350	385
3400	270	300	330
4020	225	250	275
4990	180	200	220
6490	135	150	165
9530	90	100	110
20000	42	50	58

10. Table values based on 1% tolerance resistor.
11. For 50 mA setting, tolerance is $\pm 15 \%$ with 1%.

If current limit is not used it is OK for the ISET pin to be connected with GND, but the maximum current must be less than the maximum current capability of 2.8 A .

BOARD LAYOUT

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance may have on normal and short-circuit operation. Using wide traces for VIN, VOUT, GND helps minimize parasitic electrical effects along with minimizing the case-to-ambient thermal impedance.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 1. ton Response

Figure 3. OC_FLAGB Response Time (Toggle RLOAD from High to Low Resistance)

Figure 2. OVP Response (Increase V OUT to OVP Trip Point)

Figure 4. toff Response

Figure 5. tocp Response Time

FPF2495B

PRODUCT-SPECIFIC DIMENSIONS

Parts	D	E	\mathbf{X}	\mathbf{Y}
FPF2495BUCX	$1220 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$1220 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$210 \mu \mathrm{~m}$	$210 \mu \mathrm{~m}$

WLCSP9 1.22x1.22x0.581

CASE 567SU
ISSUE A
DATE 22 APR 2020

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DATUM C APPLIES TO THE SPHERICAL CROWN OF THE SOLDER BALLS

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	0.543	0.581	0.619
A1	0.183	0.203	0.223
A2	0.338	0.353	0.368
A3	0.022	0.025	0.028
b	0.240	0.260	0.280
D	1.19	1.22	1.25
E	1.19	1.22	1.25
e	0.40 BSC		
x	0.195	0.210	0.225
y	0.195	0.210	0.225

BOTTOM VIEW

A1

RECOMMENDED MOUNTING FOOTPRINT*
(NSMD PAD TYPE)

* For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON16618G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP9 1.22x1.22x0.581 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 1. Maximum Junction Temperature $=85^{\circ} \mathrm{C}$.
