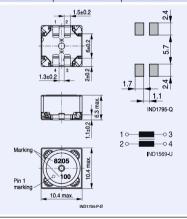


Sample Kit 2021

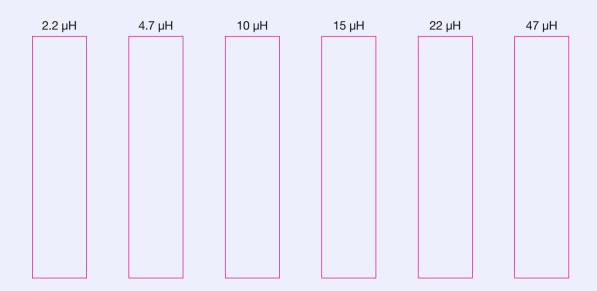
SMT Power Inductors

B82464D6*M000 Dual Inductors

www.tdk-electronics.tdk.com


L _{ind} ±20%	μΗ	2.2	4.7	10	15	22	47
I _R	Α	6.17	5.08	3.71	3.09	2.66	1.7
I _{sat. typ}	Α	13.85	9.9	6.15	5.2	4.35	2.95
R _{DC. typ}	mΩ	18	27	52	76	105	238
K_{typ}	%	95	97	99	99	99	99
Ordering code	B82464D6	222M000	472M000	103M000	153M000	223M000	473M000

Features


- Special winding technology for tight coupling of the two windings (coupling factor K = 95% to 99%)
- · Magnetically shielded
- · Winding welded to terminals
- Base plate construction for high mechanical robustness
- Temperature range up to +150 °C
- Qualification to AEC-Q200

Applications

- DC/DC converter, especially for SEPIC topology
- Buck converter with auxililary output
- Common mode choke
- 1:1 transformer

Inductance is per winding. When leads are connected in parallel, inductance is the same value. When leads are connected in series, inductance is four times the value. $R_{\rm Dc}$ is for each winding. When leads are connected in parallel, $R_{\rm Dc} = R_1 \times R_2 / R_1 + R_2$. When leads are connected in series, $R_{\rm DC} = R_1 \times R_2 / R_1 + R_2$. When leads are connected in series, $R_{\rm DC} = R_1 \times R_2$. $R_{\rm ac}$ is the current flowing through one winding. When leads are connected in parallel, $R_{\rm bc}$ is the same. When leads are connected in series, $R_{\rm bc}$ is half the value. $R_{\rm bc}$ is the total current through both windings. $R_{\rm bc}$ is can be calculated like this: $R_{\rm bc}$ is $R_{\rm bc}$ is the total current through both windings. $R_{\rm bc}$ is can be calculated like this: $R_{\rm bc}$ is $R_{\rm bc}$ is $R_{\rm bc}$ is the same.

Important information: It is incumbent on the customer to check and decide whether a product is suitable for use in a particular application. Our products are described in detail in our data sheets. Our Important notes and the product-specific Cautions and warnings must be observed. All relevant information is available through our sales offices.