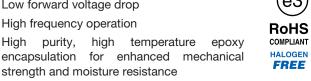


Vishay Semiconductors

High Performance Schottky Rectifier, 2 x 5 A

TO-262


PRODUCT SUMMARY				
Package	D ² PAK, TO-262			
I _{F(AV)}	2 x 5 A			
V _R	150 V			
V _F at I _F	0.93 V			
I _{RM}	7 mA at 125 °C			
T _J max.	175 °C			
Diode variation	Common cathode			
E _{AS}	5 mJ			

FEATURES

- 175 °C T_J operation
- · Center tap configuration
- · Low forward voltage drop
- High frequency operation

• High purity, high temperature

strength and moisture resistance

- · Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

This center tap Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL CHARACTERISTICS VALUES UNITS								
I _{F(AV)}	Rectangular waveform	10	A					
V _{RRM}		150	V					
I _{FSM}	t _p = 5 μs sine	620	A					
V _F	5 A_{pk} , T_J = 125 °C (per leg)	0.73	V					
TJ	Range	-55 to +175	°C					

VOLTAGE RATINGS						
PARAMETER	SYMBOL	VS-10CTQ150SPbF VS-10CTQ150-1PbF	UNITS			
Maximum DC reverse voltage	V _R	150	V			
Maximum working peak reverse voltage	V _{RWM}	150	V			

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST COND	ITIONS	VALUES	UNITS		
Maximum average per leg		50% duty cycle at T = 155 °C	raatangular wayafarm	5	Δ		
forward current, see fig. 5 per device	IF(AV)	50 % duty cycle at T_{C} = 155 °C, rectangular waveform		10	A		
Maximum peak one cycle non-repetitive		5 μs sine or 3 μs rect. pulse Following any rated load I _{FSM} 10 ms sine or 6 ms rect. pulse Following any rated load	620				
surge current per leg, see fig. 7	I _{FSM}			115	A		
Non-repetitive avalanche energy per leg	Non-repetitive avalanche energy per leg E_{AS} $T_J = 25 \text{ °C}, I_{AS} = 1 \text{ A}, L = 10 \text{ mH}$		5	mJ			
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero Frequency limited by T _J maximu		1	А		

Revision: 20-May-14

Document Number: 94116

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

1

Γ

Vishay Semiconductors

ELECTRICAL	SPECIFICATIONS
------------	----------------

SYMBOL	TEST CO	TEST CONDITIONS					
	5 A	T _ 25 °C	0.93	V			
V (1)	10 A	1j=25 0	1.10				
VFM (*)	5 A	T _ 105 °C	0.73	v			
	10 A	$I_{\rm J} = 125 {}^{\circ}{\rm C}$	0.86				
1 (1)	T _J = 25 °C		0.05				
IRM (")	T _J = 125 °C	$v_{\rm R}$ = Raled $v_{\rm R}$	7	mA			
V _{F(TO)}			0.468	V			
r _t	$I_{\rm J} = I_{\rm J}$ maximum		28	mΩ			
CT	V _R = 5 V _{DC} (test signal range 100 kHz to 1 MHz), 25 °C		200	pF			
LS	Measured lead to lead 5 mm from package body		8.0	nH			
dV/dt	Rated V _R		10 000	V/µs			
	SYMBOL V _{FM} ⁽¹⁾ I _{RM} ⁽¹⁾ V _{F(TO)} r _t C _T L _S	$\begin{tabular}{ c c c c c } \hline SYMBOL & TEST CO \\ \hline & 5 A \\ \hline & 10 A \\ \hline & 5 A \\ \hline & 10 A \\ \hline & 5 A \\ \hline & 10 A \\ \hline & & T_J = 25 \ ^{\circ}C \\ \hline & T_J = 125 \ ^{\circ}C \\ \hline & T_J = 125 \ ^{\circ}C \\ \hline & V_{F(TO)} \\ \hline & & T_J = T_J \ maximum \\ \hline & & C_T & V_R = 5 \ V_{DC} \ (test \ signal \ range \\ \hline & L_S & Measured \ lead \ to \ lead \ 5 \ maximum \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline SYMBOL & TEST CONDITIONS \\ \hline & & & \\ \hline V_{FM}{}^{(1)} & \hline & & \\ \hline & & & \\ \hline \hline \\$	$\begin{tabular}{ c c c c c } \hline SYMBOL & TEST CONDITIONS & VALUES \\ \hline SYMBOL & TEST CONDITIONS & VALUES \\ \hline & & & & & & & & & & & & & & & & & &$			

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range		T _J , T _{Stg}		-55 to +175	°C	
Maximum thermal resistance, junction to case per leg		D	DC operation	3.50		
Maximum thermal resistance, junction to case per package		– R _{thJC}	Do operation	1.75	°C/W	
Typical thermal resistance, case to heatsink (only for TO-220)		R _{thCS}	Mounting surface, smooth and greased	0.50		
Approvimate weight				2	g	
Approximate weight				0.07	oz.	
Mounting torque minimum maximum				6 (5)	kgf · cm	
				12 (10)	(lbf · in)	
Marking davias			Case style D ² PAK	10CTQ1	50S	
Warking device	Marking device		Case style TO-262	10CTQ1	50-1	

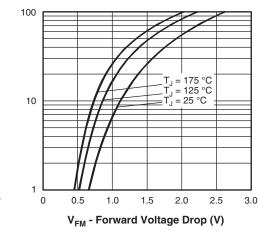
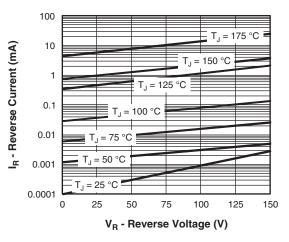
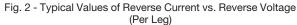




Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

Revision: 20-May-14

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-10CTQ150SPbF, VS-10CTQ150-1PbF

Vishay Semiconductors

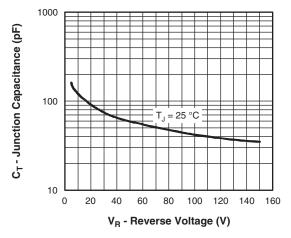


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

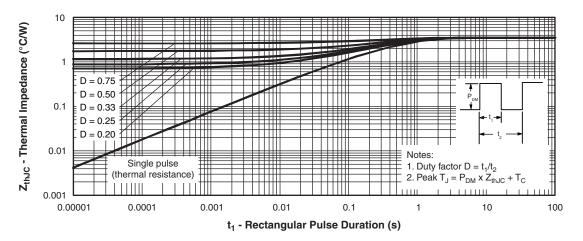


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

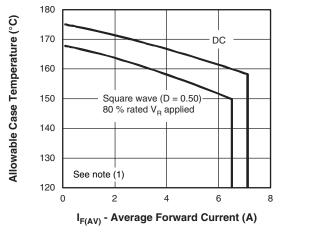


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

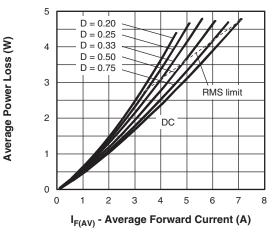


Fig. 6 - Forward Power Loss Characteristics (Per Leg)

Revision: 20-May-14

3

Document Number: 94116

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-10CTQ150SPbF, VS-10CTQ150-1PbF

Vishay Semiconductors

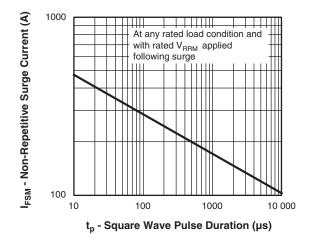


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

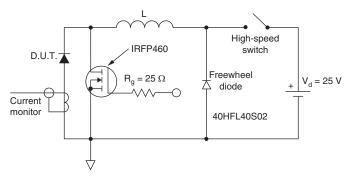


Fig. 8 - Unclamped Inductive Test Circuit

Note

 $^{(1)}$ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC};$ Pd = Forward power loss = $I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6); Pd_{REV} = Inverse power loss = $V_{R1} \times I_R (1 - D); I_R$ at $V_{R1} = 10 \text{ V}$

 Revision: 20-May-14
 Document Number: 94116

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

150

S

Q

1 - Vishay Semiconductors product

С

10

- Current rating (10 A)

Т

- Circuit configuration: C = common cathode
- **4** T = TO-220
 - Schottky "Q" series
 - Voltage rating (150 = 150 V)
 - • S = D²PAK
 - -1 = TO-262
 - None = tube (50 pieces)
 - TRL = tape and reel (left oriented for D²PAK only)
 - TRR = tape and reel (right oriented for D²PAK only)
 - PbF = lead (Pb)-free

LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95014		
Part marking information	www.vishay.com/doc?95008		
Packaging information	www.vishay.com/doc?95032		

Vishay Semiconductors

PbF

TRL

Device code

VS-

2

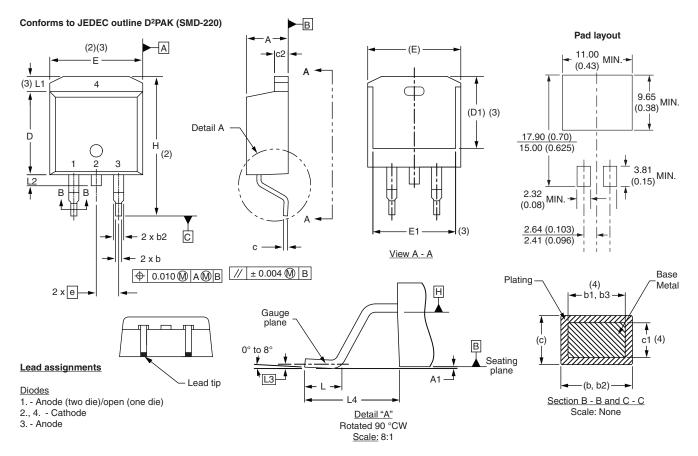
3

5

6

7

8


9

_

ORDERING INFORMATION TABLE

Vishay Semiconductors

D²PAK, TO-262

DIMENSIONS - D²PAK in millimeters and inches

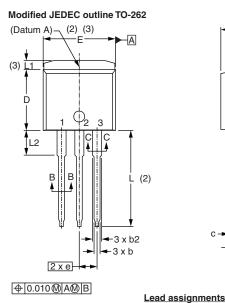
SHA

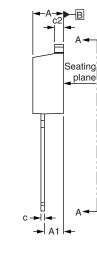
SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STIVIDUL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190	
A1	0.00	0.254	0.000	0.010	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2

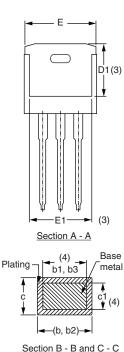
- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- ⁽³⁾ Thermal pad contour optional within dimension E, L1, D1 and E1
- ⁽⁴⁾ Dimension b1 and c1 apply to base metal only
- ⁽⁵⁾ Datum A and B to be determined at datum plane H
- ⁽⁶⁾ Controlling dimension: inch

SYMBOL	MILLIM	IETERS	INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NUTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100 BSC		
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

(7) Outline conforms to JEDEC outline TO-263AB


Outline Dimensions


Vishay Semiconductors


D²PAK, TO-262

DIMENSIONS - TO-262 in millimeters and inches

Section B - B and C - C

(6) Outline conform to JEDEC TO-262 except A1 (maximum), b

(minimum) and D1 (minimum) where dimensions derived the

Lead tip Scale: None MILLIMETERS INCHES SYMBOL NOTES MIN. MAX. MIN. MAX. 4.06 4.83 0.160 0.190 А A1 2.03 3.02 0.080 0.119 b 0.51 0.99 0.020 0.039 0.51 0.89 0.020 0.035 4 b1 h2 1.14 1.78 0.045 0.070 b3 1.14 1.73 0.045 0.068 4 0.38 0.74 0.015 0.029 С 0.38 0.58 0.015 0.023 4 c1 1.14 0.045 0.065 c2 1.65 D 8.51 9.65 0.335 0.380 2 0.270 D1 6.86 8.00 0.315 3 Е 9.65 10.67 0.380 0.420 2, 3 E1 7.90 8.80 0.311 0.346 3 е 2.54 BSC 0.100 BSC L 13.46 14.10 0.530 0.555 L1 1.65 0.065 _ 3 L2 3.56 3.71 0.140 0.146

1. - Anode (two die)/open (one die)

Diodes

3. - Anode

2., 4. - Cathode

Notes

- ⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994
- ⁽²⁾ Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- ⁽³⁾ Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only

⁽⁵⁾ Controlling dimension: inches

actual package outline

www.vishay.com

For technical questions within your region, please contact one of the following: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com Document Number: 95014 Revision: 31-Mar-09

2

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.