

March 11, 2013

Subject: PCN#01A-13 Notification of Changes to the iCE40 LP/HX Family Data Sheet

Dear Lattice Customer,

Lattice is providing this notification of changes to the iCE40[™] LP/HX Family Data Sheet.

Summary of the Changes

- Merged iCE40LP and iCE40HX product datasheets
- Added in depth architecture section
- Updated most performance specifications from typical to minimum or maximum
- Updated junction temperature basis
- Added commonly requested items such as:
 - o Block performance
 - Power supply ramp rates
 - o Maximum I/O frequency
 - Start-up and programming currents
 - Pin description and pin table section
- PLL out frequency changed from 533MHz to 275MHz
- Updated internal oscillator frequency
- Removed LVCMOS1.5 I/O
- Updated typical static I_{cc}

These changes are reflected in the iCE40 LP/HX Family Data Sheet released in March 2013 (DS1040 Version 02.1, released in March 2013).

Affected Products

The Ordering Part Numbers (OPNs) affected by this PCN are listed in Exhibit "A" (also available in an Excel spreadsheet <u>here</u>). This PCN also affects any custom devices (i.e. factory programmed, special test, tape and reel, non-standard speed grade and package, etc.), which are derived from any of the devices listed in the table.

Datasheet Specifications

The revised iCE40 LP/HX Family Data Sheet (<u>DS1040</u> Version 02.1, released in March 2013) reflects these changes and available on Lattice website.

PCN Timing

These datasheet changes are effective immediately and retroactively.

Response

No customer response is required. If customers have questions about the datasheet changes described above, they should contact their local field support for further assistance.

Lattice PCNs are available on the Lattice PCN web page. Please sign up to receive e-mail PCN alerts by registering here. If you already have a Lattice web account and wish to receive PCN alerts, you can do so by logging into your account and making edits to your subscription options.

Contact

If you have any questions or require additional information, please contact pcn@latticesemi.com.

Sincerely,

Lattice Semiconductor PCN Administration

Lattice Semiconductor Home Page: http://w w w.latticesemi.com Applications & Literature Hotline: 1-800-LATTICE
Copyright 2012 Lattice Semiconductor Corporation. Lattice Semiconductor, L(stylized) Lattice Semiconductor Corporation, Lattice (design), iCE65 are either registered trademarks of tattice Semiconductor Corporation in the United States and/or other countries. Other product names used in this publications are for identification purposes only and may be the trademarks of their respective companies.

Exhibit A – Affected Devices

Device	Ordering Part Number	Package
	iCE40LP1K-CB121	121-csBGA
	iCE40LP1K-CM121	121-ucBGA
	iCE40LP1K-CM36	36-ucBGA (Tray Carrier)
	iCE40LP1K-CM36TR	36-ucBGA (Tape & Reel Carrier)
iCE40LP1K	iCE40LP1K-CM49	49-ucBGA (Tray Carrier)
	iCE40LP1K-CM49TR	49-ucBGA (Tape & Reel Carrier)
	iCE40LP1K-CM81	81-ucBGA (Tray Carrier)
	iCE40LP1K-CM81TR	81-ucBGA (Tape & Reel Carrier)
	iCE40LP1K-CB81	81-csBGA
	iCE40LP1K-QN84	84-QFN
	iCE40LP4K-CM121	121-ucBGA
iCE40LP4K	iCE40LP4K-CM225	225-ucBGA
	iCE40LP4K-CM81	81-ucBGA (Tray Carrier)
	iCE40LP4K-CM81TR	81-ucBGA (Tape & Reel Carrier)
iCE40LP8K	iCE40LP8K-CM121	121-ucBGA
	iCE40LP8K-CM225	225-ucBGA
	iCE40HX1K-VQ100	100-VQFP
iCE40HX1K	iCE40HX1K-CB132	132-csBGA
	iCE40HX1K-TQ144	144-TQFP
iCE40HX4K	iCE40HX4K-CB132	132-csBGA
	iCE40HX4K-TQ144	144-TQFP
	iCE40HX8K-CB132	132-csBGA
iCE40HX8K	iCE40HX8K-CM225	225-ucBGA
	iCE40HX8K-CT256	256-caBGA

Note: This PCN also affects any custom devices (i.e. factory programmed, special test, tape and reel, non-standard speed grade and package, etc.), which are derived from any of the devices listed above.

Applications & Literature Hotline: 1-800-LATTICE

Copyright 2013 Lattice Semiconductor Corporation. Lattice Semiconductor, L(stylized) Lattice Semiconductor Corporation, Lattice (design), iCE40 are either registered trademarks or trademarks of fattice Semiconductor Corporation in the United States and/or other countries. Other product names used in this publications are for identification purposes only and may be the trademarks of their respective companies.

iCE40[™] LP/HX Family Data Sheet

DS1040 Version 02.1, March 2013

iCE40 LP/HX Family Data Sheet Introduction

March 2013

Features

- Flexible Logic Architecture
 - Four devices with 384 to 7,680 LUT4s and 21 to 206 I/Os
- Ultra Low Power Devices
 - Advanced 40 nm low power process
 - As low as 25 μW standby power
 - Programmable low swing differential I/Os
- Embedded and Distributed Memory
 - Up to 128 Kbits sysMEM[™] Embedded Block RAM
- Pre-Engineered Source Synchronous I/O
 - DDR registers in I/O cells
- High Performance, Flexible I/O Buffer
 - Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8
 - LVDS25E, subLVDS
 - Schmitt trigger inputs, to 200 mV typical hysteresis
 - Programmable pull-up mode

Table 1-1. iCE40 Family Selection Guide

■ Flexible On-Chip Clocking

- Eight low-skew global clock resources
- Up to two analog PLLs per device

Flexible Device Configuration

- SRAM is configured through:
 - Standard SPI Interface
 - Internal Nonvolatile Configuration Memory (NVCM)

Data Sheet DS1040

- Broad Range of Package Options
 - QFN, VQFP, TQFP, ucBGA, caBGA, and csBGA package options
 - Small footprint package options
 As small as 2.5x2.5mm
 - Advanced halogen-free packaging

Part Numb	er	LP384	LP1K	LP4K	LP8K	HX1K	HX4K	HX8K
Logic Cells (LUT + Flip	-Flop)	384	1,280	3,520	7,680	1,280	3,520	7,680
RAM4K Memory Block	S	0	16	20	32	16	20	32
RAM4K RAM bits		0	64K	80K	128K	64K	80K	128K
Phase-Locked Loops (I	PLLs)	0	1 ¹	2 ²	2	1 ¹	2	2
Maximum Programmat	ole I/O Pins	63	95	167	178	95	95	206
Maximum Differential Ir	nput Pairs	8	12	20	23	11	12	26
Package	Code		Pr	ogrammable	e I/O: Max In	puts (LVDS	25)	
32 QFN (5 x 5mm, 0.5mm)	SG32	21(4)						
36 ucBGA (2.5 x 2.5mm, 0.4mm)	CM36	25(3)	25(3) ¹					
49 ucBGA (3 x 3mm, 0.4mm)	CM49	37(6)	35(5)					
81 ucBGA (4 x 4mm, 0.4mm)	CM81	55(3)	63(8)	63(9) ²				
81 csBGA (5 x 5mm, 0.5mm)	CB81		62(9) ¹					
84 QFN (7 x 7mm, 0.5mm)	QN84		67(7) ¹					

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

		LP384	LP1K	LP4K	LP8K	HX1K	HX4K	HX8K
Package	Code		Programmable I/O: Max Inputs (LVDS25)					
100 VQFP (14 x 14mm, 0.5mm)	VQ100					72(9) ¹		
121 ucBGA (5 x 5mm, 0.4mm)	CM121		95 (12)	93 (13)	93 (13)			
121 csBGA (6 x 6mm, 0.5mm)	CB121		92 (12)					
132 csBGA (8 x 8mm, 0.5mm)	CB132					95(11)	95(12)	95(12)
144 TQFP (20 x 20mm, 0.5mm)	TQ144					96(12)	107(14)	
225 ucBGA (7 x 7mm, 0.4mm)	CM225			167 (20)	178 (23)			178(23)
256-ball caBGA (14 x 14mm, 0.8mm)	CT256							206(26)

Table 1-1. iCE40 Family Selection Guide (Cont.)

1. No PLL available on the 36 ucBGA, 81 csBGA, 84 QFN and 100 VQFP packages.

2. Only one PLL available on the 81 ucBGA package.

Introduction

The iCE40 family of ultra-low power, non-volatile FPGAs has four devices with densities ranging from 384 to 7680 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic, these devices feature Embedded Block RAM (EBR), Non-volatile Configuration Memory (NVCM) and Phase Locked Loops (PLLs). These features allow the devices to be used in low-cost, high-volume consumer and system applications.

The iCE40 devices are fabricated on a 40 nm CMOS low power process. The device architecture has several features such as programmable low-swing differential I/Os and the ability to turn off on-chip PLLs dynamically. These features help manage static and dynamic power consumption, resulting in low static power for all members of the family. The iCE40 devices are available in two versions – ultra low power (LP) and high performance (HX) devices.

The iCE40 FPGAs are available in a broad range of advanced halogen-free packages ranging from the space saving 2.5x2.5 mm micro chip-scale BGA to the PCB-friendly 20x20 mm TQFP. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

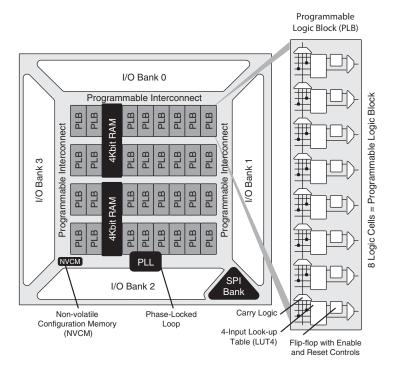
The iCE40 devices offer enhanced I/O features such as pull-up resistors. Pull-up features are controllable on a "per-pin" basis.

The iCE40 devices also provide flexible, reliable and secure configuration from on-chip NVCM. These devices can also configure themselves from external SPI Flash or be configured by an external master such as a CPU.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the iCE40 family of devices. Popular logic synthesis tools provide synthesis library support for iCE40. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the iCE40 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules, including a number of reference designs, licensed free of charge, optimized for the iCE40 FPGA family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.

iCE40 LP/HX Family Data Sheet Architecture


March 2013

Data Sheet DS1040

Architecture Overview

The iCE40 family architecture contains an array of Programmable Logic Blocks (PLB), sysCLOCK[™] PLLs, Nonvolatile Programmable Configuration Memory (NVCM) and blocks of sysMEM[™] Embedded Block RAM (EBR) surrounded by Programmable I/O (PIO). Figure 2-1 shows the block diagram of the iCE40-1K device.

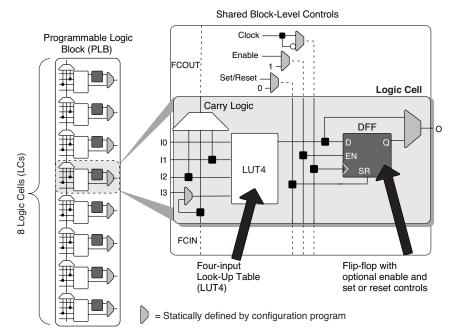
Figure 2-1. iCE40-1K Device, Top View

The logic blocks, Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each row has either logic blocks or EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the iCE40 family, there are up to four independent sysIO banks. Note on some packages V_{CCIO} banks are tied together. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large 4 Kbit, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO.

The iCE40 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a SPI port that supports programming and configuration of the device. The iCE40 includes on-chip, Nonvolatile Configuration Memory (NVCM).


^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PLB Blocks

The core of the iCE40 device consists of Programmable Logic Blocks (PLB) which can be programmed to perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. Each LC contains one LUT and one register.

Figure 2-2. PLB Block Diagram

Logic Cells

Each Logic Cell includes three primary logic elements shown in Figure 2-2.

- A four-input Look-Up Table (LUT4) builds any combinational logic function, of any complexity, requiring up to four inputs. Similarly, the LUT4 element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple LUT4s to create wider logic functions.
- A 'D'-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions. Each DFF also connects to a global reset signal that is automatically asserted immediately following device configuration.
- Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtracters, comparators, binary counters and some wide, cascaded logic functions.

Function	Туре	Signal Names	Description
Input	Data signal	10, 11, 12, 13	Inputs to LUT4
Input	Control signal	Enable	Clock enable shared by all LCs in the PLB
Input	Control signal	SR ¹	Asynchronous or synchronous local set/reset shared by all LCs in the PLB.
Input	Control signal	Clock	Clock one of the eight Global Buffers, or from the general-purpose interconnects fabric shared by all LCs in the PLB
Input	Inter-PLB signal	FCIN	Fast carry in
Output	Data signals	0	LUT4 output or register bypass signals
Output	Inter-PFU signal	FCO	Fast carry out

Table 2-1. Logic Cell Signal Descriptions

1. If SR is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration or by the Global Reset signal.

Modes of Operation

Each LC has up to two potential modes of operation: Logic or ROM.

<u>Logic Mode</u>: In this mode, the LCs in each PLB are configured as 4-input combinatorial look-up tables. A LUT4 can have 16 possible input combinations. Any four-input logic functions can be generated by programming this lookup table.

<u>ROM Mode</u>: ROM mode uses the LUT logic. Preloading is accomplished through the programming interface during PLB configuration.

Routing

There are many resources provided in the iCE40 devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PLB connections are made with three different types of routing resources: x1 (spans two PLBs), x4 (spans five PLBs) and x12 (spans thirteen PLBs). The x1, x4 and x12 connections provide fast and efficient connections in the horizontal and vertical directions.

The design tool take the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

Each iCE40 device has eight global inputs, two pins on each side of the device. These can be used as clock, reset or enable signals. The dedicated global pins are identified as GBIN[7:0] and the global buffers are identified as GBUF[7:0]. These eight inputs may be used as general purpose I/O if they are not used to drive the clock nets. Global buffer GBUF7 in I/O Bank 3 also provides an optional direct LVDS25 or subLVDS differential clock input.

Table 2-2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally connect to all clock inputs. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global buffers optionally drive the Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-enable input.

Global Buffer	LUT Inputs	Clock	Clock Enable	Reset
GBUF0		\checkmark	✓	
GBUF1		\checkmark		\checkmark
GBUF2		\checkmark	✓	
GBUF3	Yes, any 4 of 8	\checkmark		\checkmark
GBUF4	GBUF Inputs	\checkmark	✓	
GBUF5		\checkmark		\checkmark
GBUF6		\checkmark	✓	
GBUF7		\checkmark		\checkmark

Table 2-2. Global Buffer (GBUF) Connections to Programmable Logic Blocks

The maximum frequency for the global buffers are shown in the iCE40 External Switching Characteristics tables later in this document.

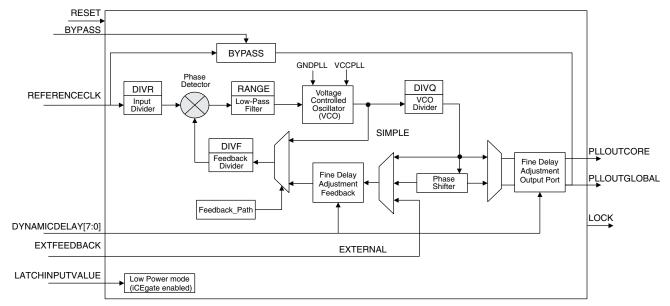
Global Hi-Z Control

The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance state.

Global Reset Control

The global reset control signal connects to all PLB and PIO flip-flops on the iCE40 device. The global reset signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application. The PIO flip-flops are always reset during configuration, although the output flip-flop can be inverted before leaving the iCE40 device.

sysCLOCK Phase Locked Loops (PLLs)


The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 devices have one or more sys-CLOCK PLLs. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 6. The PLLOUT outputs can all be used to drive the iCE40 global clock network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3.

The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the t_{LOCK} parameter has been satisfied.

For more details on the PLL, see TN1251, iCE40 sysCLOCK PLL Design and Usage Guide.

Figure 2-3. PLL Diagram

Table 2-3 provides signal descriptions of the PLL block.

Table 2-3. PLL Signal Descriptions

Signal Name	Direction	Description
REFERENCECLK	Input	Input reference clock
BYPASS	Input	When FEEDBACK_PATH is set to SIMPLE, the BYPASS control selects which clock signal connects to the PLLOUT output.
DTFASS	mput	0 = PLL generated signal 1 = REFERENCECLK
EXTFEEDBACK	Input	External feedback input to PLL. Enabled when the FEEDBACK_PATH attribute is set to EXTERNAL.
DYNAMICDELAY[3:0]	Input	Fine delay adjustment control inputs. Enabled when DELAY_ADJUSTMENT_MODE is set to DYNAMIC.
LATCHINPUTVALUE	Input	When enabled, forces the PLL into low-power mode; PLL output is held static at the last input clock value. Set ENABLE ICEGATE_PORTA and PORTB to '1' to enable.
PLLOUTGLOBAL	Output	Output from the Phase-Locked Loop (PLL). Drives a global clock network on the FPGA. The port has optimal connections to global clock buffers GBUF4 and GBUF5.
PLLOUTCORE	Output	Output clock generated by the PLL, drives regular FPGA routing. The frequency gener- ated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.
LOCK	Output	When High, indicates that the PLL output is phase aligned or locked to the input reference clock.
RESET	Input	Active low reset.

sysMEM Embedded Block RAM Memory

Each iCE40 device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each 4 Kbit in size. This memory can be used for a wide variety of purposes including data buffering, PROM for the soft processor and FIFO.

sysMEM Memory Block

The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories with programmable logic resources. Each block can be used in a variety of depths and widths as shown in Table 2-4.

Block RAM Configuration	Block RAM Configuration and Size	WADDR Port Size (Bits)	WDATA Port Size (Bits)	RADDR Port Size (Bits)	RDATA Port Size (Bits)	MASK Port Size (Bits)
SB_RAM256x16 SB_RAM256x16NR SB_RAM256x16NW SB_RAM256x16NRNW	256x16 (4K)	8 [7:0]	16 [15:0]	8 [7:0]	16 [15:0]	16 [15:0]
SB_RAM512x8 SB_RAM512x8NR SB_RAM512x8NW SB_RAM512x8NRNW	512x8 (4K)	9 [8:0]	8 [7:0]	9 [8:0]	8 [7:0]	No Mask Port
SB_RAM1024x4 SB_RAM1024x4NR SB_RAM1024x4NW SB_RAM1024x4NRNW	1024x4 (4K)	10 [9:0]	4 [3:0]	10 [9:0]	4 [3:0]	No Mask Port
SB_RAM2048x2 SB_RAM2048x2NR SB_RAM2048x2NW SB_RAM2048x2NRNW	2048x2 (4K)	11 [10:0]	2 [1:0]	11 [10:0]	2 [1:0]	No Mask Port

Table 2-4. sysMEM Block Configurations¹

1. For iCE40 EBR primitives with a negative-edged Read or Write clock, the base primitive name is appended with a 'N' and a 'R' or 'W' depending on the clock that is affected.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Note the sysMEM Embedded Block RAM Memory address 0 cannot be initialized.

Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks.

RAM4k Block

Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array.

Figure 2-4. sysMEM Memory Primitives

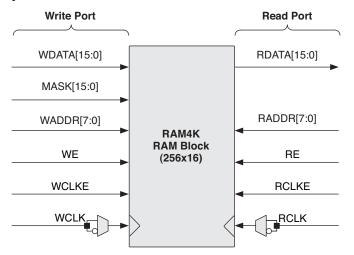
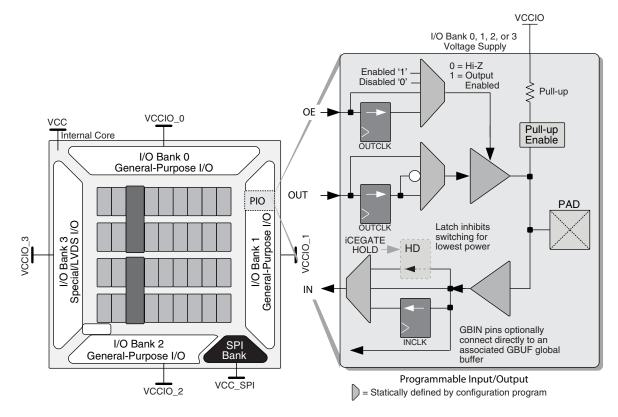


Table 2-5. EBR Signal Descriptions

Signal Name	Direction	Description
WDATA[15:0]	Input	Write Data input.
MASK[15:0]	Input	Masks write operations for individual data bit-lines. 0 = write bit; 1 = don't write bit
WADDR[7:0]	Input	Write Address input. Selects one of 256 possible RAM locations.
WE	Input	Write Enable input.
WCLKE	Input	Write Clock Enable input.
WCLK	Input	Write Clock input. Default rising-edge, but with falling-edge option.
RDATA[15:0]	Output	Read Data output.
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible RAM locations.
RE	Input	Read Enable input.
RCLKE	Input	Read Clock Enable input.
RCLK	Input	Read Clock input. Default rising-edge, but with falling-edge option.

For further information on the sysMEM EBR block, please refer to TN1250, <u>Memory Usage Guide for iCE40 De-vices</u>.

syslO


Buffer Banks

iCE40 devices have up to four I/O banks with independent Vccio rails with an additional configuration bank V_{CC_SPI} for the SPI I/Os.

Programmable I/O (PIO)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. The PIOs are placed on all four sides of the device.

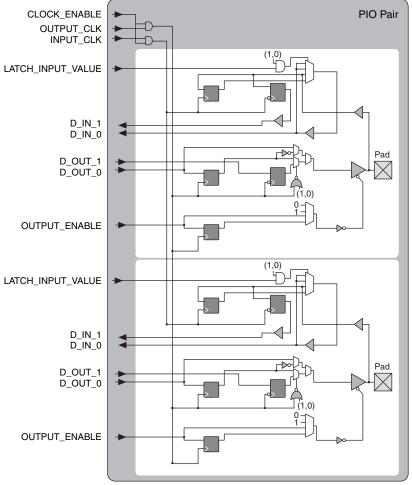
Figure 2-5. I/O Bank and Programmable I/O Cell

The PIO contains three blocks: an input register block, output register block iCEgate[™] and tri-state register block. To save power, the optional iCEgate latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

Pin Name	I/O Type	Description
OUTPUT_CLK	Input	Output register clock
CLOCK_ENABLE	Input	Output register clock enable
INPUT_CLK	Input	Input register clock
OUTPUT_ENABLE	Input	Output enable
D_OUT_0/1	Input	Output data from the core
D_IN_0/1	Output	Input data to the core
LATCH_INPUT_VALUE	Input	Latches/holds the Input Value

Table 2-6. PIO Signal List

Input Register Block


The input register blocks for the PIOs on all edges contain registers that can be used to condition high-speed interface signals before they are passed to the device core. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock signal, creating two data streams.

Output Register Block

The output register block registers signals from the core of the device before they are passed to the sysIO buffers. In Generic DDR mode, two registers are used to capture the data on the positive and negative edge of the system clock and then muxed creating one data stream.

Figure 2-6 shows the input/output register block for the PIOs.

Figure 2-6. iCE I/O Register Block Diagram

) = Statically defined by configuration program.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS and LVDS25.

Each bank is capable of supporting multiple I/O standards. In the iCE40 devices, single-ended LVCMOS buffers, differential LVDS25E output buffers and Bank 3 additionally support differential LVDS25 input buffers. Each sysIO bank has its own dedicated power supply.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SP1} have reached the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins will maintain the pre-configuration state until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached levels, at which time the I/Os will take on the software user-configured settings only after a proper download/configuration. Unused IOs are automatically blocked and the pullup termination is disabled.

Supported Standards

The iCE40 sysIO buffer supports both single-ended and Bank 3 supports differential input standards. The singleended standard supported is LVCMOS. The buffer supports the LVCMOS 1.8, 2.5, and 3.3V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none).

Table 2-7 and Table 2-8 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 devices.

Input Standard	V _{CCIO} (Typical)						
input Standard	3.3V	2.5V	1.8V				
Single-Ended Interfaces							
LVCMOS33	\checkmark						
LVCMOS25		✓					
LVCMOS18			✓				
Differential Interfaces							
LVDS25 ¹		✓					
subLVDS ¹			\checkmark				

Table 2-7. Supported Input Standards

1. Bank 3 only.

Table 2-8. Supported Output Standards

Output Standard	V _{CCIO} (Typical)
Single-Ended Interfaces	
LVCMOS33	3.3
LVCMOS25	2.5
LVCMOS18	1.8
Differential Interfaces	
LVDS25E ¹	2.5
subLVDSE ¹	1.8

1. These interfaces can be emulated with external resistors in all devices.

Non-Volatile Configuration Memory

All iCE40 devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device.

For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration Usage Guide.

Power On Reset

iCE40 devices have power-on reset circuitry to monitor V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} (controls configuration) voltage levels. It then triggers download from the on-chip NVCM or external Flash memory after reaching the power-up levels specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. Before and during configuration, the I/Os are held in tri-state. I/Os are released to user functionality once the device has finished configuration.

Programming and Configuration

This section describes the programming and configuration of the iCE40 family.

Device Programming

The NVCM memory can be programmed through the SPI port.

Device Configuration

There are various ways to configure the Configuration RAM (CRAM) including:

- 1. Internal NVCM Download
- 2. From a SPI Flash (Master SPI mode)
- 3. System microprocessor to drive a Serial Slave SPI port (SSPI mode)

The image to configure CRAM can be selected by the user on power up (Cold Boot) or once powered up (Warm Boot).

For more details on programming and configuration, see TN1248, <u>iCE40 Programming and Configuration Usage</u> <u>Guide</u>.

Power Saving Options

iCE40 devices are available in two options for maximum flexibility: LP and HX devices. The LP devices have ultra low static and dynamic power consumption. HX devices are designed to provide high performance. Both the LP and the HX devices operate at 1.2V V_{CC} .

iCE40 devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic power requirements of their applications. While these features are available in both device types, these features are mainly intended for use with iCE40 LP devices to manage power consumption.

Table 2-9. iCE40 Power Saving Features Description

Device Subsystem	Feature Description
	When LATCHINPUTVALUE is enabled, forces the PLL into low-power mode; PLL output held static at last input clock value.
	To save power, the optional iCEgate latch can selectively freeze the state of individual, non-regis- tered inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control.

iCE40 LP/HX Family Data Sheet DC and Switching Characteristics

March 2013

Data Sheet DS1040

ICEAN D/HY

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V _{CC}	0.5 to 1.42V
Output Supply Voltage V _{CCIO} , V _{CC_SPI}	0.5 to 3.60V
NVCM Supply Voltage V _{PP_2V5}	0.5 to 3.60V
PLL Supply Voltage V _{CCPLL}	0.5 to 1.30V
I/O Tri-state Voltage Applied.	0.5 to 3.60V
Dedicated Input Voltage Applied	0.5 to 3.60V
Storage Temperature (Ambient)	65°C to 150°C
Junction Temperature (T _J)	55°C to 125°C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice <u>Thermal Management</u> document is required.

3. All voltages referenced to GND.

Recommended Operating Conditions¹

Symbol	Paran	Parameter		Max.	Units
V _{CC} ¹	Core Supply Voltage		1.14	1.26	V
		Slave SPI Configuration	1.71	3.46	V
V	V _{PP 2V5} NVCM Programming and	Master SPI Configuration	2.30	3.46	V
V _{PP_2V5}	V _{PP_2V5} NVCM Programming and Operating Supply Voltage	Configure from NVCM	2.30	3.46	V
		NVCM Programming	2.30	3.00	V
V _{PP_FAST} ⁴	Optional fast NVCM programming supply. Leave unconnected.		N/A	N/A	V
V _{CCPLL} ^{5, 6}	PLL Supply Voltage		1.14	1.26	V
V 1, 2, 3	I/O Driver Supply Voltage	V _{CCIO0-3}	1.71	3.46	V
V _{CCIO} ^{1, 2, 3}	NO Driver Supply Voltage	V _{CC_SPI}	1.71	3.46	V
t _{JIND}	Junction Temperature Industrial Operation		-40	100	°C
t _{PROG}	Junction Temperature NVCM Programming		10	30	°C

1. Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC_SPI} are both the same voltage, they must also be the same supply.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

5. No PLL available on the iCE40-LP384 device.

6. $V_{\mbox{CCPLL}}$ is tied to $V_{\mbox{CC}}$ internally in packages without PLLs pins.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Power Supply Ramp Rates^{1, 2}

Symbol	Parameter		Min.	Max.	Units
		All configuration modes. No power supply sequencing.	0.40	10	V/ms
t _{RAMP}	Power supply ramp rates for all power supplies.	Configuring from NVCM. V_{CC} and $V_{PP_{2V5}}$ to be powered 0.25ms before $V_{CC_{SPI}}$.	0.01	10	V/ms
		Configuring from MSPI. V_{CC} and V_{PP_SPI} to be powered 0.25ms before V_{PP_2V5} .	0.01	10	V/ms

1. Assumes monotonic ramp rates.

2. iCE40LP384 status is Advanced, iCE40LP4K/iCE40LP8K status is Preliminary.

Power-On-Reset Voltage Levels^{1, 2}

Symbol	Parameter		Min.	Max.	Units
		V _{CC}	0.55	0.75	V
V	Power-On-Reset ramp-up trip point (band gap based cir-	V _{CCIO_2}	0.86	1.29	V
V _{PORUP}	cuit monitoring $V_{CC},V_{CCIO_2},V_{CC_SPI}$ and V_{PP_2V5}	V _{CC_SPI}	0.86	1.29	V
		V _{PP_2V5}	0.86	1.33	V
V _{PORDN}		V _{CC}	_	0.75	V
	Power-On-Reset ramp-down trip point (band gap based circuit monitoring V_{CC}, V_{CCIO_2}, V_{CC_SPI} and V_{PP_2V5})	V _{CCIO_2}	_	1.29	V
		V _{CC_SPI}	_	1.29	V
		V _{PP_2V5}	_	1.33	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

2. iCE40LP384 status is Advanced, iCE40LP4K/iCE40LP8K status is Preliminary.

ESD Performance

Please refer to the <u>iCE40 Product Family Qualification Summary</u> for complete qualification data, including ESD performance.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL,} I_{\rm IH}^{1,3,4,5}$	Input or I/O Leakage	$0V < V_{IN} < V_{CCIO} + 0.2V$	—	_	+/-10	μΑ
C ₁	I/O Capacitance ²	V _{CCIO} = 3.3V, 2.5V, 1.8V V _{CC} = Typ., V _{IO} = 0 to V _{CCIO} + 0.2V	_	6	_	pf
C ₂	Global Input Buffer Capacitance ²	$V_{CCIO} = 3.3V, 2.5V, 1.8V$ $V_{CC} = Typ., V_{IO} = 0$ to $V_{CCIO} + 0.2V$	_	6	_	pf
V _{HYST}	Input Hysteresis	V _{CCIO} = 1.8V, 2.5V, 3.3V	—	200	—	mV
	Internet DIO Dull un	$V_{CCIO} = 1.8V, 0 = < V_{IN} < = 0.65 V_{CCIO}$	-3	_	-31	μΑ
I _{PU} ⁴	Internal PIO Pull-up Current	$V_{CCIO} = 2.5V, 0 = < V_{IN} < = 0.65 V_{CCIO}$	-8		-72	μA
		$V_{CCIO} = 3.3V, 0 = < V_{IN} < = 0.65 V_{CCIO}$	-11	_	-128	μΑ

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Internal pull-up resistors are disabled.

2. T_J 25°C, f = 1.0 MHz.

3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. Does not apply to the IOs in the SPI bank.

5. Some products are clamped to a diode when $V_{\mbox{IN}}$ is larger then $V_{\mbox{CCIO}}.$

Static Supply Current – LP Devices^{1, 2, 3, 4, 7}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
lcc		iCE40LP384	21	μA
	Care Dawar Supply	iCE40LP1K	100	μΑ
	Core Power Supply	iCE40LP4K	360	μΑ
		iCE40LP8K	360	μΑ
I _{CCPLL} ^{5, 6}	PLL Power Supply	All devices	10	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices		μΑ
I _{CCIO} , I _{CC_SPI}	Bank Power Supply ⁴ V _{CCIO} = 2.5V	All devices		μΑ

 Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

2. Frequency = 0 MHz.

3. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

4. Does not include pull-up.

- 5. No PLL available on the iCE40-LP384 device.
- 6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

7. iCE40LP384 status is Advanced, iCE40LP4K/iCE40LP8K status is Preliminary.

Static Supply Current – Preliminary – HX Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
		iCE40HX1K	267	μΑ
I _{CC}	Core Power Supply	iCE40HX4K	667	μΑ
		iCE40HX8K	1100	μΑ
I _{CCPLL} ⁵	PLL Power Supply	All devices	25	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices		μA
I _{CCIO} , I _{CC_SPI}	Bank Power Supply ⁴ V _{CCIO} = 2.5V	All devices		μΑ

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

2. Frequency = 0 MHz.

3. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

4. Does not include pull-up.

5. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

Programming NVCM Supply Current – Preliminary – LP Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁵	Units
		iCE40LP384		μA
Icc	Core Dower Supply	iCE40LP1K		μA
	Core Power Supply	iCE40LP4K		μΑ
		iCE40LP8K		μA
I _{CCPLL} ^{6, 7}	PLL Power Supply	All devices		μΑ
I _{PP_2V5}	NVCM Power Supply	All devices		μΑ
IPP_FAST ⁸	NVCM Programming Supply	All devices		μΑ
I _{CCIO} , I _{CC_SPI}	Bank Power Supply ⁵	All devices		μA

1. Assumes all inputs are held at $V_{\mbox{\scriptsize CCIO}}$ or GND and all outputs are tri-stated.

2. Typical user pattern.

3. SPI programming is at 8 MHz.

4. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

5. Per bank. V_{CCIO} = 2.5V. Does not include pull-up.

6. No PLL available on the iCE40-LP384 device.

7. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

8. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

Programming NVCM Supply Current – Preliminary – HX Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁵	Units
		iCE40HX1K		μΑ
I _{CC}	Core Power Supply	iCE40HX4K		μΑ
		iCE40HX8K		μΑ
I _{CCPLL} ⁶	PLL Power Supply	All devices		μA
I _{PP_2V5}	NVCM Power Supply	All devices		mA
I _{PP_FAST} ⁷	NVCM Programming Supply	All devices		μA
I _{CCIO,} I _{CC_SPI}	Bank Power Supply ⁵	All devices		mA

1. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.

2. Typical user pattern.

3. SPI programming is at 8 MHz.

4. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

5. Per bank. V_{CCIO} = 2.5V. Does not include pull-up.

6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

7. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

Peak Startup Supply Current – LP Devices⁴

Symbol	Parameter	Device	Max	Units
		iCE40LP384		mA
		iCE40LP1K	6.4	mA
ICCPEAK	Core Power Supply	iCE40LP4K	15.7	mA
		iCE40LP8K	15.7	mA
		iCE40LP384		mA
1,2	PLL Power Supply	iCE40LP1K	1.5	mA
I _{CCPLLPEAK} ^{1, 2}		iCE40LP4K	8.0	mA
		iCE40LP8K	8.0	mA
		iCE40LP384		mA
1	NVCM Power Supply	iCE40LP1K	7.7	mA
IPP_2V5PEAK		iCE40LP4K	4.2	mA
		iCE40LP8K	4.2	mA
		iCE40LP384		mA
1 3	NVCM Programming Supply	iCE40LP1K	8.1	mA
I _{PP_FASTPEAK} ³		iCE40LP4K	8.8	mA
		iCE40LP8K	8.8	mA
		iCE40LP384		mA
I I	Bank Power Supply	iCE40LP1K	3.3	mA
CCIOPEAK, CC_SPIPEAK		iCE40LP4K	8.2	mA
		iCE40LP8K	8.2	mA

1. No PLL available on the iCE40-LP384 device.

2. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

3. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 pack-ages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.
 iCE40LP4K/iCE40LP8K status is Preliminary.

Peak Startup Supply Current – Preliminary – HX Devices

Symbol	Parameter	Device	Max	Units
		iCE40HX1K		mA
ICCPEAK		iCE40HX4K	22.3	mA
		iCE40HX8K	22.3	mA
		iCE40HX1K		mA
		iCE40HX4K	6.4	mA
		iCE40HX8K	6.4	mA
		iCE40HX1K		mA
IPP_2V5PEAK		iCE40HX4K	4.1	mA
		iCE40HX8K	4.1	mA
		iCE40HX1K		mA
PP_FASTPEAK ²		iCE40HX4K	8.0	mA
		iCE40HX8K	8.0	mA
		iCE40HX1K		mA
ICCIOPEAK, ICC_SPIPEAK		iCE40HX4K	6.8	mA
		iCE40HX8K	6.8	mA

V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.
 V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)		
Standard	Min.	Тур.	Max.
LVCMOS 3.3	3.14	3.3	3.46
LVCMOS 2.5	2.37	2.5	2.62
LVCMOS 1.8	1.71	1.8	1.89
LVDS25E ¹	2.37	2.5	2.62
subLVDSE ¹	1.71	1.8	1.89

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

sysIO Single-Ended DC Electrical Characteristics

Input/	V _{IL}		V _{IH} ¹		V _{IH} ¹					
Output Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	V _{OH} Min. (V)	I _{OL} Max. (mA)	I _{OH} Max. (mA)		
LVCMOS 3.3	-0.3	0.8	2.0	V _{CCIO} + 0.2V	0.4	V _{CCIO} - 0.5	8	-8		
	-0.5	0.0	2.0	V CCIO + 0.2 V	0.2	V _{CCIO} - 0.2	0.1	-0.1		
LVCMOS 2.5	-0.3	0.7	1.7	V _{CCIO} + 0.2V	0.4	V _{CCIO} - 0.5	6	-6		
20010002.0	-0.5	0.7	1.7	V CCIO + 0.2 V	0.2	V _{CCIO} - 0.2	0.1	-0.1		
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	V _{CCIO} + 0.2V	0.4	V _{CCIO} - 0.4	4	-4		
	-0.3	0.33 A CCIO	0.03 A CCIO	VCCIO + 0.2 V	0.2	V _{CCIO} - 0.2	0.1	-0.1		

1. Some products are clamped to a diode when V_{IN} is larger then V_{CCIO.}

sysIO Differential Electrical Characteristics

The LVDS25E/subLVDSE differential output buffers are available on all banks but the LVDS/subLVDS input buffers are only available on Bank 3 of iCE40 devices.

LVDS25

Over Recommended Operating Conditions

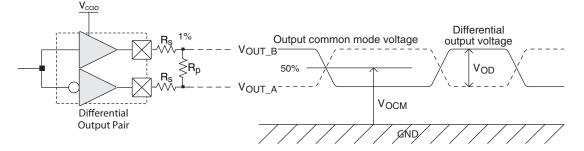
Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage	$V_{\text{CCIO}}^{1} = 2.5$	0		2.5	V
V _{THD}	Differential Input Threshold		250	350	450	mV
V _{CM}	Input Common Mode Voltage	$V_{\text{CCIO}}^{1} = 2.5$	(V _{CCIO} /2) - 0.3	$V_{CCIO}/2$	$(V_{CCIO}/2) + 0.3$	V
I _{IN}	Input Current	Power on	—		±10	μΑ

1. Typical.

subLVDS

Over Recommended Operating Conditions

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage	$V_{CCIO}^{1} = 1.8$	0		1.8	V
V _{THD}	Differential Input Threshold		100	150	200	mV
V _{CM}	Input Common Mode Voltage	$V_{\text{CCIO}}^{1} = 1.8$	(V _{CCIO} /2) - 0.25	$V_{CCIO}/2$	$(V_{CCIO}/2) + 0.25$	V
I _{IN}	Input Current	Power on	—		±10	μΑ


1. Typical.

LVDS25E Emulation

iCE40 devices can support subLVDSE outputs via emulation on all banks. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS25E standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS25E Using External Resistors

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	150	Ohms
R _P	Driver parallel resistor	140	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.30	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	6.03	mA

Over Recommended Operating Conditions

SubLVDS Emulation

The iCE40 family supports the differential subLVDS standard in Bank 3. The output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all banks of the devices. The subLVDS input standard is supported by the LVDS25 differential input buffer. The scheme shown in Figure 3-2 is one possible solution for subLVDSE output standard implementation. Use LVDS25E mode with suggested resistors for subLVDSE operation. Resistor values in Figure 3-2 are industry standard values for 1% resistors.

Figure 3-2. subLVDSE

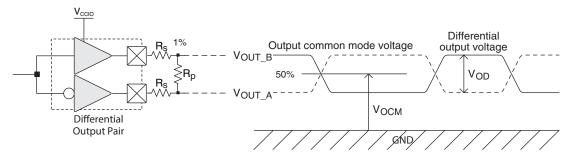


Table 3-2. subLVDSE DC Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	270	Ohms
R _P	Driver parallel resistor	120	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	0.9	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	6.03	mA

Over Recommended Operating Conditions

Typical Building Block Function Performance – LP Devices^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	11.0	ns
4:1 MUX	12.0	ns
16:1 MUX	13.0	ns

Register-to-Register Performance

Function	Timing	Units
Basic Functions		L.
16:1 MUX	190	MHz
16-bit adder	160	MHz
16-bit counter	175	MHz
64-bit counter	65	MHz
Embedded Memory Functions		E.
256x16 Pseudo-Dual Port RAM	240	MHz

1. The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Using a V_{CC} of 1.14V at Junction Temp 85C.

Typical Building Block Function Performance – HX Devices¹

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	10.0	ns
4:1 MUX	9.0	ns
16:1 MUX	9.5	ns

Register-to-Register Performance

Function	Timing	Units
Basic Functions		•
16:1 MUX	305	MHz
16-bit adder	220	MHz
16-bit counter	255	MHz
64-bit counter	105	MHz
Embedded Memory Functions		•
256x16 Pseudo-Dual Port RAM	403	MHz

1. The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Using a V_{CC} of 1.14V at Junction Temp 85C.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

Maximum sysIO Buffer Performance²

I/O Standard	Max. Speed	Units
	Inputs	
LVDS251	400	MHz
subLVDS18 ¹	400	MHz
LVCMOS33	250	MHz
LVCMOS25	250	MHz
LVCMOS18	250	MHz
	Outputs	
LVDS25E	250	MHz
subLVDS18E	155	MHz
LVCMOS33	250	MHz
LVCMOS25	250	MHz
LVCMOS18	155	MHz

1. Supported in Bank 3 only.

2. Measured with a toggling pattern

iCE40 Family Timing Adders

Over Recommended Commercial Operating Conditions - LP Devices^{1, 2, 3, 4, 5}

Buffer Type	Description	Timing	Units
Input Adjusters	I		
LVDS25	LVDS, $V_{CCIO} = 2.5V$	-0.18	nS
subLVDS	subLVDS, V _{CCIO} = 1.8V	0.82	nS
LVCMOS33	LVCMOS, V _{CCIO} = 3.3V	0.18	nS
LVCMOS25	LVCMOS, V _{CCIO} = 2.5V	0.00	nS
LVCMOS18	LVCMOS, V _{CCIO} = 1.8V	0.19	nS
Output Adjusters	· · ·		
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5V	0.00	nS
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8V	1.32	nS
LVCMOS33	LVCMOS, V _{CCIO} = 3.3V	-0.12	nS
LVCMOS25	LVCMOS, V _{CCIO} = 2.5V	0.00	nS
LVCMOS18	LVCMOS, V _{CCIO} = 1.8V	1.32	nS

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

Over Recommended Commercial Operating Conditions - HX Devices^{1, 2, 3, 4, 5}

Buffer Type	Description	Timing	Units
Input Adjusters	I		
LVDS25	LVDS, $V_{CCIO} = 2.5V$	0.13	nS
subLVDS	subLVDS, V _{CCIO} = 1.8V	1.03	nS
LVCMOS33	LVCMOS, V _{CCIO} = 3.3V	0.16	nS
LVCMOS25	LVCMOS, V _{CCIO} = 2.5V	0.00	nS
LVCMOS18	LVCMOS, V _{CCIO} = 1.8V	0.23	nS
Output Adjusters			
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5V	0.00	nS
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8V	1.76	nS
LVCMOS33	LVCMOS, V _{CCIO} = 3.3V	0.17	nS
LVCMOS25	LVCMOS, V _{CCIO} = 2.5V	0.00	nS
LVCMOS18	LVCMOS, V _{CCIO} = 1.8V	1.76	nS

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

iCE40 External Switching Characteristics – LP Devices ^{1, 2, 3, 7}

Over Recommended Operating Conditions

Parameter	Description	Device			
Parameter	Description	Device	Min.	Max.	Units
Clocks					•
Global Clocks					
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All iCE40LP devices	—		MHz
tw_GBUF	Clock Pulse Width for Global Buffer	All iCE40LP devices		—	ns
		iCE40LP384	_		ps
•	Global Buffer Clock Skew Within a Device	iCE40LP1K	_	230	ps
^T SKEW_GBUF	Global Buller Clock Skew Within a Device	iCE40LP4K	_	340	ps
		iCE40LP8K	—	340	ps
Pin-LUT-Pin Propa	agation Delay				•
t _{PD}	Best case propagation delay through one LUT-4	All iCE40LP devices	—	9.36	ns
General I/O Pin Pa	arameters (Using Global Buffer Clock withou	it PLL)		1	
		iCE40LP384	_		ps
	Data hua alkaw aaraas a hank af 10a	iCE40LP1K	—	200	ps
t _{SKEW_} IO	Data bus skew across a bank of IOs	iCE40LP4K	_	280	ps
		iCE40LP8K	_	280	ps
		iCE40LP384	_		ns
		iCE40LP1K	—	5.91	ns
t _{CO}	Clock to Output - PIO Output Register	iCE40LP4K	-	6.58	ns
		iCE40LP8K	—	6.58	ns

iCE40 External Switching Characteristics – LP Devices (Continued)^{1, 2, 3, 7}

Parameter	Description	Device			Units
Falameter	Description	Device	Min.	Max.	Units
		iCE40LP384			ns
+.	Clock to Data Setup - PIO Input Register	iCE40LP1K	-0.33	—	ns
t _{SU}	Clock to Data Setup - FIO linput negister	iCE40LP4K	-0.63		ns
		iCE40LP8K	-0.63		ns
		iCE40LP384		—	ns
+	Clock to Data Hold - PIO Input Register	iCE40LP1K	2.81		ns
t _H		iCE40LP4K	3.48		ns
		iCE40LP8K	3.48	—	ns
General I/O Pin Para	ameters (Using Global Buffer Clock with F	PLL)			
	Clock to Output - PIO Output Register	iCE40LP1K	—		ns
t _{COPLL}		iCE40LP4K	—		ns
		iCE40LP8K	—		ns
		iCE40LP1K			ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	iCE40LP4K			ns
		iCE40LP8K			ns
		iCE40LP1K		—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	iCE40LP4K		—	ns
		iCE40LP8K		—	ns

Over Recommended Operating Conditions

iCE40 External Switching Characteristics – LP Devices (Continued)^{1, 2, 3, 7}

Over Recommended Operating Conditions

Paramete	r Description	Device		-	Units	
i uraniete	Decomption	201100	Min.	Max.	enne	
Generic DDR ^{4,}	6					
Generic DDRX GDDRX1_RX.S	1 Inputs with Clock and Data Aligned at CLK.Aligned ³	Pin Using Global Pin for Clock Inp	ut –			
t _{DVA}	Input Data Valid After CLK	· ·				
t _{DVE}	Input Data Hold After CLK	All iCE40LP devices, Bank 3	,	—	UI	
f _{DATA}	DDRX1 Input Data Speed	All ICE40LF devices, Ballk 3)		Mbps	
f _{DDRX1}	DDRX1 SCLK Frequency				MHz	
Generic DDRT GDDRX1_TX.S	X1 Outputs with Clock and Data Aligned CLK.Aligned ³	at Pin Using Global Pin for Clock	input –			
t _{DIA}	Output Data Invalid After CLK Outp	ut	—		ns	
t _{DIB}	Output Data Invalid Before CLK Out	tputAll iCE40LP devices. Bank 3			ns	
f _{DATA}	DDRX1 Output Data Speed		,		Mbps	
f _{DDRX1}	DDRX1 SCLK frequency		_		MHz	
7:1 LVDS Input	ts - GDDR71_RX.SCLK.7:1 ³					
t _{DVA}	Input Data Valid After CLK				UI	
t _{DVE}	Input Data Hold After CLK				UI	
f _{DATA}	DDR71 Serial Input Data Speed	All iCE40LP devices, Bank 3	3		Mbps	
f _{DDR71}	DDR71 CLK Frequency				MHz	
f _{CLKIN}	7:1 Input Clock Frequency (SCLK)				MHz	
	uts - GDDR71_TX.SCLK.7:13		•	•	•	
t _{DVB}	Output Data Valid Before CLK Outp	out			ns	
t _{DVA}	Output Data Valid After CLK Output	t			ns	
f _{DATA}	DDR71 Serial Output Data Speed	All iCE40LP devices, Bank 3	3		Mbps	
f _{DDR71}	DDR71 CLK Frequency				MHz	
f _{CLKOUT}	7:1 Output Clock Frequency (SCLK)			MHz	

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85°C and 1.14V. Other operating conditions can be extracted from the iCECube2 software.

2. General I/O timing numbers based on LVCMOS 2.5, 0pf load.

3. These numbers are for general purpose usage. Duty cycle tolerance is +/-10%.

4. Generic DDR timing numbers based on LVDS25 inputs and LVDS25E outputs (for input, output, and clock ports).

5. Duty cycle is +/- 5% for system usage.

6. Supported on devices with a PLL.

7. iCE40LP4K/iCE40LP8K status is Preliminary.

iCE40 External Switching Characteristics – Preliminary – HX Devices ^{1, 2, 3}

Over Recommended Operating Conditions

Doromotor	Decaviation	Device	Min	Max	llmita
Parameter	Description	Device	Min.	Max.	Units
Clocks					
Primary Clocks	Francisco estar Olabal Duffar Olaak aatuurik				N 41 1-
f _{MAX_GBUF}	Frequency for Global Buffer Clock network		—		MHz
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All iCE40HX devices		—	ns
		iCE40HX1K			ps
^t SKEW_GBUF	Global Buffer Clock Skew Within a Device	iCE40HX4K		300	ps
		iCE40HX8K	—	300	ps
Pin-LUT-Pin Pro		1		•	
t _{PD}	Best case propagation delay through one LUT-4	All iCE40HX devices	—	7.30	ns
General I/O Pin I	Parameters (Using Global Buffer Clock witho	ut PLL)			
		iCE40HX1K	_		ps
t _{SKEW_IO}	Data bus skew across a bank of IOs	iCE40HX4K	—	290	ps
		iCE40HX8K	_	290	ps
t _{CO}		iCE40HX1K	—		ns
	Clock to Output - PIO Output Register	iCE40HX4K	—	5.41	ns
		iCE40HX8K	—	5.41	ns
	Clock to Data Setup - PIO Input Register	iCE40HX1K		—	ns
t _{SU}		iCE40HX4K	-0.43	—	ns
		iCE40HX8K	-0.43	—	ns
		iCE40HX1K		—	ns
t _H	Clock to Data Hold - PIO Input Register	iCE40HX4K	2.38	—	ns
		iCE40HX8K	2.38	—	ns
General I/O Pin I	Parameters (Using Global Buffer Clock with I	PLL)			1
		iCE40HX1K	_		ns
t _{COPLL}	Clock to Output - PIO Output Register	iCE40HX4K			ns
		iCE40HX8K			ns
		iCE40HX1K		—	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	iCE40HX4K		—	ns
		iCE40HX8K		—	ns
		iCE40HX1K		—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	iCE40HX4K		—	ns
		iCE40HX8K		_	ns

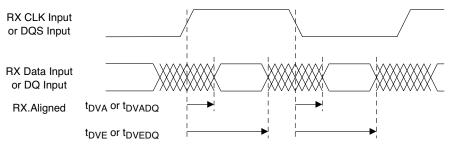
iCE40 External Switching Characteristics – Preliminary – HX Devices (Continued)^{1, 2, 3}

Parameter	Description	Device	Min.	Max.	Units
Generic DDR ^{4, 6}					
Generic DDRX1 Inp GDDRX1_RX.SCLK	uts with Clock and Data Aligned at Pin L .Aligned⁵	Ising Global Pin for Clock Inpu	t –		
t _{DVA}	Input Data Valid After CLK	_		UI	
t _{DVE}	Input Data Hold After CLK	All iCE40HX devices. Bank 3			UI
f _{DATA}	DDRX1 Input Data Speed	All ICE4011X devices, Bark 3	_		Mbps
f _{DDRX1}	DDRX1 SCLK Frequency		_		MHz
Generic DDRX1 Ou GDDRX1_TX.SCLK		Using Global Pin for Clock Inp	out –		-
t _{DIA}	Output Data Invalid After CLK Output		_		ns
t _{DIB}	Output Data Invalid Before CLK Output	All iCE40HX devices, Bank 3	—		ns
f _{DATA}	DDRX1 Output Data Speed		—		Mbps
f _{DDRX1}	DDRX1 SCLK frequency		—		MHz
7:1 LVDS Inputs - G	iDDR71_RX.SCLK.7:1 ³				
t _{DVA}	Input Data Valid After CLK				
t _{DVE}	Input Data Hold After CLK				
f _{DATA}	DDR71 Serial Input Data Speed	All iCE40HX devices, Bank 3			
f _{DDR71}	DDR71 ECLK Frequency				
f _{CLKIN}	7:1 Input Clock Frequency (SCLK)				
7:1 LVDS Outputs -	GDDR71_TX.SCLK.7:13				
t _{DVB}	Output Data Valid Before CLK Output				ns
t _{DVA}	Output Data Valid After CLK Output	1			ns
f DATA	DDR71 Serial Output Data Speed	All iCE40HX devices, Bank 3			Mbps
fDDR71	DDR71 ECLK Frequency	1			MHz
fclkout	7:1 Output Clock Frequency (SCLK)	-1 1			MHz

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85°C and 1.14V. Other operating conditions, including industrial, can be extracted from the iCECube2 software.

2. General I/O timing numbers based on LVCMOS 2.5, 0pf load.

3. These numbers are for general purpose usage. Duty cycle tolerance is +/-10%.


4. Generic DDR timing numbers based on LVDS25 inputs and LVDS25E outputs (for input, output, and clock ports).

5. Duty cycle is +/- 5% for system usage.

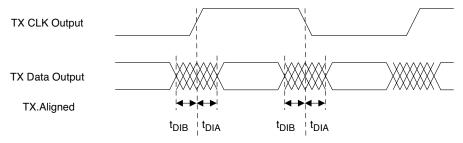

6. Supported on devices with a PLL.

Figure 3-3. Receiver RX.CLK.Aligned and MEM DDR Input Waveforms

Figure 3-4. Transmitter TX.CLK.Aligned Waveforms

sysCLOCK PLL Timing – Preliminary

Over Recommended O	perating Conditions
--------------------	---------------------

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (REFERENCECLK, EXTFEEDBACK)		10	133	MHz
fout	Output Clock Frequency (PLLOUT)		16	275	MHz
f _{VCO}	PLL VCO Frequency				MHz
f _{PFD}	Phase Detector Input Frequency		10	133	MHz
AC Characterist	tics		•		
t _{DT}	Output Clock Duty Cycle ³				%
t _{PH}	Output Phase Accuracy				%
	Output Clock Period Jitter	f _{OUT} <= 100 MHz	_		UIPP
		f _{OUT} > 100 MHz	_		UIPP
↓ 1.6		f _{OUT} <= 100 MHz	_		UIPP
t _{OPJIT} ^{1, 6}	Output Clock Cycle-to-cycle Jitter	f _{OUT} > 100 MHz	_		UIPP
	Output Clock Phase Jitter	f _{PFD} <= 100 MHz	—		UIPP
	Ouput Clock Phase Jiller	f _{PFD} > 100 MHz	—		UIPP
t _{LOCK} ^{2, 4}	PLL Lock-in Time		_		us
t _{UNLOCK}	PLL Unlock Time		_		ns
+ 5	land Ole als Davie de litter	$f_{PFD} \ge 20 \text{ MHz}$	_		ps p-p
t _{IPJIT} ⁵	Input Clock Period Jitter	f _{PFD} < 20 MHz	_		UIPP
t _{HI}	Input Clock High Time	90% to 90%		—	ns
t _{LO}	Input Clock Low Time	10% to 10%		—	ns
t _{FDTAP}	Fine Delay adjustment, per Tap		_		ms
t _{STABLE} ⁴	LATCHINPUTVALUE LOW to PLL Stable		—		ms
t _{STABLE_PW} 4	LATCHINPUTVALUE Pulse Width		—		ms
t _{RST}	RESET Pulse Width			—	ns
t _{RSTREC}	RESET Recovery Time			—	ns
t _{DYNAMIC} -SETUP	DYNAMICDELAY Setup Time			—	ns
t _{DYNAMIC-HOLD}	DYNAMICDELAY HOLD Time			—	ns
t _{DYNAMIC_WD}	DYNAMICDELAY Pulse Width			_	VCO Cycles

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after $t_{\mbox{LOCK}}$ for PLL reset and dynamic delay adjustment.

3. Using LVDS25E output buffers.

4. At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table.
 Jitter values measured with the internal oscillator operating. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

SPI Master or NVCM Configuration Time^{1, 2, 3}

Symbol	Parameter	neter Conditions		Units
		iCE40LP384 - Default		ms
		iCE40LP384 - Low frequency		ms
		iCE40LP384 - High frequency		ms
		iCE40LP/HX1K - Default	53	ms
	POR/CRESET_B to Device I/O Active	iCE40LP/HX1K - Low frequency	25	ms
		iCE40LP/HX1K - High frequency	13	ms
^t CONFIG		iCE40LP/HX4K - Default	230	ms
		iCE40LP/HX4K - Low frequency	110	ms
		iCE40LP/HX4K - High frequency	70	ms
		iCE40LP/HX8K - Default	230	ms
		iCE40LP/HX8K - Low frequency	110	ms
		iCE40LP/HX8K - High frequency	70	ms

1. Assumes sysMEM Block is initialized to an all zero pattern if they are used.

2. The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.

3. iCE40LP4K/iCE40LP8K, iCE40HX1K/iCE40HX4K/iCE40HX8K status is Preliminary.

sysCONFIG Port Timing Specifications¹

Symbol	Parameter	Conditions	Min.	Max.	Units
All Configurat	ion Modes			•	
^t CRESET_B	Minimum CRESET_B Low pulse width required to restart con- figuration, from falling edge to rising edge		200	_	ns
t _{DONE_IO}	Number of configura- tion clock cycles after CDONE goes High before the PIO pins are activated		49		Clock Cycles
Slave SPI				•	
	Minimum time from a	iCE40LP384		_	
	rising edge on CRESET_B until the	iCE40LP/HX1K	800	—	us
	first SPI write opera-	iCE40LP/HX4K	1200	—	
t _{CR_SCK}	tion, first SPI_SCK. Dur- ing this time, the iCE40 device is clearing its internal configuration memory	iCE40LP/HX8K	1200	_	us
f 2	CCLK clock frequency	Write	0	25	MHz
f _{MAX} ²		Read	5	25	MHz
t _{CCLKH}	CCLK clock pulse width high		20	—	ns
t _{CCLKL}	CCLK clock pulse width low		20	—	ns
t _{STSU}	CCLK setup time		12	_	ns
t _{STH}	CCLK hold time		12	—	ns
t _{STCO}	CCLK falling edge to valid output		13	-	ns

sysCONFIG Port Timing Specifications¹ (Continued)

Symbol	Parameter	Conditions	Min.	Max.	Units
Master SPI	- -		•		
		Default Frequency	4	11	MHz
f _{MCLK}	MCLK clock frequency	Low Frequency	16	32	MHz
		High Frequency	27	53	MHz
		iCE40LP384 - Default Frequency		—	us
		iCE40LP384 - Low Frequency		—	us
		iCE40LP384 - High Frequency		—	us
		iCE40LP/HX1K - Default Frequency	800	—	us
		iCE40LP/HX1K - Low Frequency	800	—	us
•	CRESET_B high to first MCLK edge	iCE40LP/HX1K - High Frequency	800	—	us
t _{MCLK}	CRESET_B High to hist MCLK edge	iCE40LP/HX4K - Default Frequency	1200	—	us
		iCE40LP/HX4K - Low Frequency	1200	—	us
		iCE40LP/HX4K - High Frequency	1200	—	us
		iCE40LP/HX8K - Default Frequency	1200	—	us
		iCE40LP/HX8K - Low Frequency	1200	—	us
		iCE40LP/HX8K - High Frequency	1200	_	us

1. iCE40LP4K/iCE40LP8K, iCE40HX1K/iCE40HX4K/iCE40HX8K status is Preliminary.

2. Does not apply for NVCM.

 Table 3-3. Available Oscillator Frequencies

		Frequency (MHz)		
Symbol	Oscillator Mode	Min. Max.		Description
f _{OSCD}	Default	4		Default oscillator frequency. Slow enough to safely operate with most SPI serial PROM.
f _{OSCL}	Low Frequency	16	32	Supported by most SPI serial Flash PROMs.
faran	High Frequency	27	53	Supported by some high-speed SPI serial Flash PROMs.
TOSCH Off 0 0 C		0	Oscillator turned off by default after configuration to save power.	

Switching Test Conditions

Figure 3-5 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-4.

Figure 3-5. Output Test Load, LVCMOS Standards

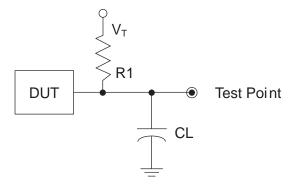


Table 3-4. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Reference	V _T
			LVCMOS 3.3 = 1.5V	—
LVCMOS settings (L -> H, H -> L)	∞	0 pF	LVCMOS 2.5 = $V_{CCIO}/2$	—
			LVCMOS 1.8 = $V_{CCIO}/2$	—
LVCMOS 3.3 (Z -> H)			1.5	V _{OL}
LVCMOS 3.3 (Z -> L)		188 0 pF	1.5	V _{OH}
Other LVCMOS (Z -> H)	188		V _{CCIO} /2	V _{OL}
Other LVCMOS (Z -> L)	100	0 pr	V _{CCIO} /2	V _{OH}
LVCMOS (H -> Z)			V _{OH} - 0.15	V _{OL}
LVCMOS (L -> Z)			V _{OL} - 0.15	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

iCE40 LP/HX Family Data Sheet Pinout Information

March 2013

Data Sheet DS1040

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
PIOx	I/O	User IO pin. x determines the Banks 0-3.
DP[Pair Number][A/B]	I/O	Differential I/O pair. Only available in I/O Bank 3. 'A' = negative input. 'B' = positive input.
NC	—	No connect
GND	_	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together.
VCC	_	VCC – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.
VCCIO_x	_	VCCIO – The power supply pins for I/O Bank x. Dedicated pins. It is rec- ommended that all VCCIOs located in the same bank are tied to the same supply.
PLL and Global Functions (Used as u	user-program	nmable I/O pins when not used for PLL or clock pins)
VCCPLLx	_	PLL VCC – Power. Dedicated pins. The PLL requires a separate power and ground that is quiet and stable to reduce the output clock jitter of the PLL.
GNDPLLx		PLL GND – Ground. Dedicated pins. The sysCLOCK PLL has the DC ground connection made on the FPGA, so the external PLL ground connection (GNDPLL) must NOT be connected to the board's ground.
GBINx		Global pads. Two per side.
Programming and Configuration		
CBSEL[0:1]	I	Optional ColdBoot configuration SELect input, if ColdBoot mode is enabled.
CRESET_B	I	Configuration Reset, active Low. Dedicated input. No internal pull-up resistor. Either actively drive externally or connect a 10 KOhm pull-up resistor to VCCIO_2.
CDONE	I/O	Configuration Done. Dedicated output. Includes a permanent weak pull- up resistor to VCCIO_2. If driving external devices with CDONE output, connect a 10 KOhm pull-up resistor to VCCIO_2.
VCC_SPI	_	SPI interface voltage supply input. Must have a valid voltage even if con- figuring from NVCM.
SPI_SCK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA in SPI and SPIm configuration modes.
SPI_SS_B	I/O	SPI Slave Select. Active Low. Includes an internal weak pull-up resistor to VCC_SPI during configuration. During configuration, the logic level sampled on this pin determines the configuration mode used by the iCE40 device. An input when sampled at the start of configuration. An input when in SPI Peripheral configuration mode (SPI_SS_B = Low). An output when in SPI Flash configuration mode.
SPI_SI	I/O	Slave SPI serial data input and master SPI serial data output

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Descriptions (Cont.)

Signal Name	I/O	Descriptions
VPP_FAST	_	Optional fast NVCM programming supply. V_{PP_FAST} , used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 pack-ages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.
VPP_2V5		VPP_2V5 NVCM programming and operating supply

Pin Information Summary

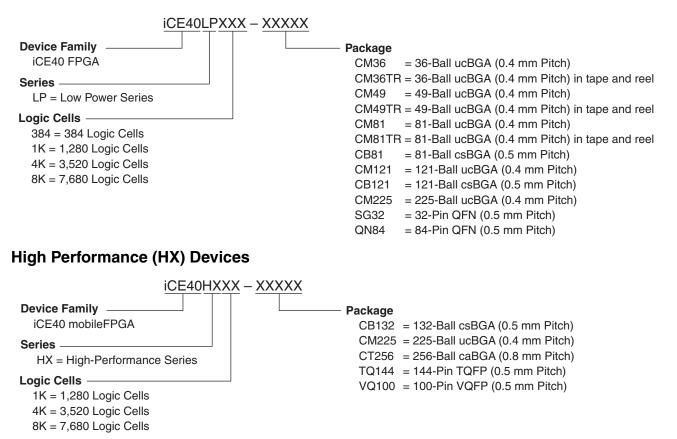
		iCE40-384LP			iCE40-1KLP						
	SG32	CM36 ²	CM49 ²	CM81	CM36 ^{1, 2}	CM49 ²	CM81	CB81	QN84	CM121	CB121
General Purpose I/O per Bank								•	•		
Bank 0	6	4	10	12	4	10	17	17	17	24	24
Bank 1	5	7	7	15	7	7	15	16	17	25	21
Bank 2	0	4	4	8	4	4	11	8	11	18	19
Bank 3	6	6	12	16	6	10	16	17	18	24	24
Configuration	4	4	4	4	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	21	25	37	55	25	35	63	62	67	95	92
Differential Inputs per Bank								•	•		
Bank 0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0
Bank 3	3	3	6	8	3	5	8	9	7	12	12
Configuration	0	0	0	0	0	0	0	0	0	0	0
Total Differential Inputs	3	3	6	8	3	5	8	9	7	12	12
Dedicated Inputs per Bank								•	•		
Bank 0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0
Bank 2	2	2	2	2	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0	0	0	0	0
Total Dedicated Inputs	2	2	2	2	2	2	2	2	2	2	2
Vccio Pins											
Bank 0	1	1	1	1	1	1	1	1	1	2	1
Bank 1	1	1	1	1	0	1	1	1	1	2	1
Bank 2	1	1	1	1	1	1	1	1	1	2	1
Bank 3	1	0	0	1	0	0	1	1	1	2	2
VCC	1	1	2	3	1	2	3	2	4	4	4
VCC_SPI	1	1	1	1	1	1	1	1	1	1	1
VPP_2V5	1	1	1	1	1	1	1	1	1	1	1
VPP_FAST ³	0	0	0	1	1	0	1	0	1	1	1
VCCPLL	0	0	0	0	0	1	1	0	0	1	1
GND	2	3	3	4	3	4	5	9	4	8	11
NC	0	0	0	10	0	0	0	0	0	0	3
Total Count of Bonded Pins	32	36	49	81	36	49	81	81	84	121	121

V_{CCIO2} and V_{CCIO1} are connected together.
 V_{CCIO2} and V_{CCIO3} are connected together.
 V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

Pin Information Summary, Continued

	iCE40-4KLP		iCE40	-8KLP	iC	CE40-1KH	IX	iCE40-	4KHX	iCE40-8KHX			
	CM81	CM121	CM225	CM121	CM225	VQ100	CB132	TQ144	CB132	TQ144	CB132	CM225	CT256
General Purpose I/O per Bank													
Bank 0	17	23	46	23	46	19	24	23	24	27	24	46	52
Bank 1	15	21	42	21	42	19	25	25	25	29	25	42	52
Bank 2	9	19	40	19	40	12	20	20	18	19	18	40	46
Bank 3	18	26	46	26	46	18	22	24	24	28	24	46	52
Configuration	4	4	4	4	4	4	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	63	93	178	93	178	72	95	96	95	107	95	178	206
Differential Inputs per Bank	•												
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 3	9	13	23	13	23	9	11	12	12	14	12	23	26
Configuration	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Differential Inputs	9	13	23	13	23	9	11	12	12	14	12	23	26
Dedicated Inputs per Bank	•			•									
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	1	0	1	0	1	1	1	1	1	1	1
Bank 2	2	2	2	2	2	2	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Dedicated Inputs	2	2	3	2	3	2	3	3	3	3	3	3	3
Vccio Pins	•	•	•	•				•					
Bank 0	1	1	3	1	3	2	2	2	2	2	2	3	4
Bank 1	1	1	3	1	3	2	2	2	2	2	2	3	4
Bank 2	1	1	3	1	3	2	2	2	2	2	2	3	4
Bank 3	1	2	4	2	4	3	3	2	3	2	3	4	4
VCC	3	4	8	4	8	4	5	4	5	4	5	8	6
VCC_SPI	1	1	1	1	1	1	1	1	1	1	1	1	1
VPP_2V5	1	1	1	1	1	1	1	1	1	1	1	1	1
VPP_FAST ¹	1	1	1	1	1	1	1	1	1	1	1	1	1
VCCPLL	1	2	2	2	2	0	1	1	2	2	2	2	2
GND	5	12	18	12	18	10	14	10	15	11	15	18	20
NC	0	0	0	0	0	0	2	19	0	6	0	0	0
Total Count of Bonded Pins	81	121	225	121	225	100	132	144	132	144	132	225	256

1. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications.


iCE40 LP/HX Family Data Sheet Ordering Information

March 2013

Data Sheet DS1040

iCE40 Part Number Description

Ultra Low Power (LP) Devices

All parts shipped in trays unless noted.

Ordering Information

iCE40 devices have top-side markings for the industrial grade, as shown below:

Industrial

Note: Markings are abbreviated for small packages.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
iCE40LP384-CM36	384	1.2V	Halogen-Free ucBGA	36	IND
iCE40LP384-CM36TR	384	1.2V	Halogen-Free ucBGA	36	IND
iCE40LP384-CM49	384	1.2V	Halogen-Free ucBGA	49	IND
iCE40LP384-CM49TR	384	1.2V	Halogen-Free ucBGA	49	IND
iCE40LP384-CM81	384	1.2V	Halogen-Free ucBGA	81	IND
iCE40LP384-CM81TR	384	1.2V	Halogen-Free ucBGA	81	IND
iCE40LP384-SG32	384	1.2V	Halogen-Free QFN	32	IND
iCE40LP1K-CM36	1280	1.2V	Halogen-Free ucBGA	36	IND
iCE40LP1K-CM36TR	1280	1.2V	Halogen-Free ucBGA	36	IND
iCE40LP1K-CM49	1280	1.2V	Halogen-Free ucBGA	49	IND
iCE40LP1K-CM49TR	1280	1.2V	Halogen-Free ucBGA	49	IND
iCE40LP1K-CM81	1280	1.2V	Halogen-Free ucBGA	81	IND
iCE40LP1K-CM81TR	1280	1.2V	Halogen-Free ucBGA	81	IND
iCE40LP1K-CB81	1280	1.2V	Halogen-Free csBGA	81	IND
iCE40LP1K-CM121	1280	1.2V	Halogen-Free ucBGA	121	IND
iCE40LP1K-CB121	1280	1.2V	Halogen-Free csBGA	121	IND
iCE40LP1K-QN84	1280	1.2V	Halogen-Free QFN	84	IND
iCE40LP4K-CM81	3520	1.2V	Halogen-Free ucBGA	81	IND
iCE40LP4K-CM81TR	3520	1.2V	Halogen-Free ucBGA	81	IND
iCE40LP4K-CM121	3520	1.2V	Halogen-Free ucBGA	121	IND
iCE40LP4K-CM225	3520	1.2V	Halogen-Free ucBGA	225	IND
iCE40LP8K-CM121	7680	1.2V	Halogen-Free ucBGA	121	IND
iCE40LP8K-CM225	7680	1.2V	Halogen-Free ucBGA	225	IND

High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
iCE40HX1K-CB132	1280	1.2V	Halogen-Free csBGA	132	IND
iCE40HX1K-VQ100	1280	1.2V	Halogen-Free VQFP	100	IND
iCE40HX1K-TQ144	1280	1.2V	Halogen-Free TQFP	144	IND
iCE40HX4K-CB132	3520	1.2V	Halogen-Free csBGA	132	IND
iCE40HX4K-TQ144	3520	1.2V	Halogen-Free TQFP	144	IND
iCE40HX8K-CB132	7680	1.2V	Halogen-Free csBGA	132	IND
iCE40HX8K-CM225	7680	1.2V	Halogen-Free ucBGA	225	IND
iCE40HX8K-CT256	7680	1.2V	Halogen-Free caBGA	256	IND

iCE40 LP/HX Family Data Sheet Supplemental Information

March 2013

Data Sheet DS1040

For Further Information

A variety of technical notes for the iCE40 family are available on the Lattice web site.

- TN1248, iCE40 Programming and Configuration
- TN1250, Memory Usage Guide for iCE40 Devices
- TN1251, iCE40 sysCLOCK PLL Design and Usage Guide
- TN1252, iCE40 Hardware Checklist
- TN1253, Using Differential I/O (LVDS, Sub-LVDS) in iCE40 Devices
- TN1074, PCB Layout Recommendations for BGA Packages
- iCE40 Pinout Files
- Thermal Management document
- Lattice design tools
- <u>IBIS</u>
- <u>Package Datasheet</u>
- <u>Schematic Symbols</u>

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

iCE40 LP/HX Family Data Sheet Revision History

March 2013

Data Sheet DS1040

Date	Version	Section	Change Summary
July 2011	01.0	_	Initial release.
July 2011	01.01	_	Added 640, 1K and 4K to Table 13 configuration times. Updated Table 1 maximum I/Os.
July 2011	01.1	—	Moved package specifications to iCE40 pinout Excel files.
			Updated Table 1 maximum I/Os.
Aug 2012	01.2	—	Updated company name.
July 2011	01.21	—	Updated Figure 3 and Figure 4 to specify iCE40.
July 2011	01.3	—	Production release.
			Updated notes on Table 3: Recommended Operating Conditions.
			Updated values in Table 4, Table 5, Table 12, Table 13 and Table 17.
July 2011	01.31	_	Updated Table 1.
	02.0	_	Merged SiliconBlue iCE40 LP and HX data sheets and updated to Lat- tice format.
			Recommended operating conditions added requirement for Master SPI.
			Updated Recommended Operating Conditions for V _{PP_2V5} .
March 2013		DC and Switching	Updated Power-On-Reset Voltage Levels and sequence requirements.
	02.1	Characteristics	Updated Static Supply Current conditions.
			Changed unit for t _{SKEW_IO} from ns to ps.
			Updated range of CCLK f _{MAX} .
		Ordering Information	Updated ordering information to include tape and reel part numbers.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.