Spec No.	CPD-365200AB-01
Date	September 5, 2022

TYPE : CO650VG65200-BT-AB
 <6.5 inch VGA transmisisive color TF'T
 with LED backlight and touch panel>

CONTENTS

1. Application
2. Construction and outline
3. Mechanical specifications
4. Absolute maximum ratings
5. Electrical characteristics
6. Optical characteristics
7. Interface signals
8. Input timing characteristics
9. Backlight characteristics
10. Design guidance for analog touch panel
11. Lot number identification
12. Warranty
13. Precautions for use
14. Reliability test data
15. Visuals specification
16. Outline drawing

KYOCERA CORPORATION

This specification is subject to change without notice.
Consult Kyocera before ordering.

Original Issue Date	Designed by: Engineering dept.		Confirmed by: QA dept.		
	Prepared	Checked	Approved	Checked	Approved
September 5, 2022	K. Komurasaki	I. Kawajiri	A. Iwasaki	Y. Aritsubo	M. Aoyama

Spec No. CPD-365200AB-01	Part No.	Page
C0650VG65200-BT-AB	-	

Warning

1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control, home appliances, etc. The module should not be used in applications where the highest level of safety and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module in such applications.
2. Customer agrees to indemnify, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs, and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

Caution

1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.
2. Please note that we may not be able to respond to new environmental regulations after receiving the final mass production order for this product.

3. Application

This document defines the specification of C0650VG65200-BT-AB. (RoHS Compliant)

2. Construction and outline

LCD
Backlight system
Polarizer
Additional circuit

Touch panel
: Transmissive color dot matrix type TFT
: LED
: Anti-Glare treatment
: Timing controller, Power supply (3.3V input) (without constant current circuit for LED Backlight)
: Analog type, Anti-Glare treatment
3. Mechanical specifications

$3-1$. LCD

Item	Specification	Unit
Outline dimensions 1)	158.0 (W) $\times 120.36(\mathrm{H}) \times 12.15(\mathrm{D})$	mm
Active area	$\begin{gathered} 132.5(\mathrm{~W}) \times 99.4(\mathrm{H}) \\ (16.5 \mathrm{~cm} / 6.5 \text { inch(Diagonal) }) \end{gathered}$	mm
Dot format	$640 \times(\mathrm{R}, \mathrm{G}, \mathrm{B})(\mathrm{W}) \times 480(\mathrm{H})$	dot
Dot pitch	$0.069(\mathrm{~W}) \times 0.207(\mathrm{H})$	mm
Base color 2)	Normally White	-
Mass	280	g

1) Projection not included. Please refer to outline for details.
2) Due to the characteristics of the LCD material, the color varies with environmental temperature
$3-2$. Touch panel

Item	Specification	Unit
Input	Radius-0.8 stylus or Finger	-
Actuation Force	$10 \sim 100$	g

4. Absolute maximum ratings

4-1. Electrical absolute maximum ratings

Item	Symbol	Min.	Max.	Unit	
Supply voltage	V_{CC}	0	5.5	V	
Input signal voltage	1)	$\mathrm{V}_{\text {IN }}$	-0.3	5.5	V
LED forward current	2) 3)	IF	-	150	mA
Supply voltage for touch panel	$\mathrm{V}_{\text {TP }}$	-	5.5	V	

1) Input signal : $\mathrm{CK}, \mathrm{R} 0 \sim \mathrm{R} 5, \mathrm{G} 0 \sim \mathrm{G} 5, \mathrm{~B} 0 \sim \mathrm{~B} 5, H_{\text {sync }}, \mathrm{V}_{\text {sync }}, \mathrm{ENAB}, \mathrm{R} / \mathrm{L}, \mathrm{U} / \mathrm{D}$
2) For each "AN-CA"
3) Do not apply reversed voltage.

4-2. Environmental absolute maximum ratings

Item	Symbol	Min.	Max.	Unit	
Operating temperature	$1)$	ToP	-20	70	${ }^{\circ} \mathrm{C}$
Storage temperature	$2)$	$\mathrm{T}_{\text {STO }}$	-20	70	${ }^{\circ} \mathrm{C}$
Operating humidity	$3)$	H $_{\text {OP }}$	10	$4)$	$\% \mathrm{RH}$
Storage humidity	$3)$	$\mathrm{H}_{\text {STO }}$	10	$4)$	$\% \mathrm{RH}$
Vibration	-	$5)$	$5)$	-	
Shock		-	$6)$	$6)$	-

1) Operating temperature means a temperature which operation shall be guaranteed. Since display performance is evaluated at $25^{\circ} \mathrm{C}$, another temperature range should be confirmed.
2) Temp. $=-20^{\circ} \mathrm{C}<48 \mathrm{~h}$, Temp. $=70^{\circ} \mathrm{C}<168 \mathrm{~h}$

Store LCD at normal temperature/humidity. Keep them free from vibration and shock.
An LCD that is kept at a low or a high temperature for a long time can be defective due to other conditions, even if the low or high temperature satisfies the standard.
(Please refer to "Precautions for Use" for details.)
3) Non-condensing
4) Temp. $\leqq 40^{\circ} \mathrm{C}, 85 \%$ RH Max.

Temp. $>40^{\circ} \mathrm{C}$, Absolute humidity shall be less than 85% RH at $40^{\circ} \mathrm{C}$.
5)

Frequency	$10 \sim 55 \mathrm{~Hz}$	Acceleration value$\left(0.3 \sim 9 \mathrm{~m} / \mathrm{s}^{2}\right)$
Vibration width	0.15 mm	
Interval	$10-55-10 \mathrm{~Hz} \quad 1$ minute	

2 hours in each direction X, Y, Z (6 hours total)
EIAJ ED-2531
6) Acceleration: $490 \mathrm{~m} / \mathrm{s}^{2}$, Pulse width: 11 ms 3 times in each direction $\pm \mathrm{X}, \pm \mathrm{Y}, \pm \mathrm{Z}$
EIAJ ED-2531

5. Electrical characteristics

5-1. LCD

Temp. $=25^{\circ} \mathrm{C}$

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Supply voltage	1)	V_{CC}	-	3.0	3.3	3.6
Current consumption	I_{CC}	$2)$	-	120	160	mA
Permissive input ripple voltage	V_{RP}	-	-	-	100	$\mathrm{mVp}-\mathrm{p}$
Input signal voltage	V_{IL}	"Low" level	-	-	0.8	V
	$\mathrm{~V}_{\mathrm{IH}}$	"High" level	2.7	-	3.0	V

1) VCC-dip conditions:

When $2.7 \mathrm{~V} \leq \mathrm{VCC}<3.0 \mathrm{~V}, \mathrm{td} \leq 10 \mathrm{~ms}$
When VCC $<2.7 \mathrm{~V}$
VCC-dip conditions should also follow the power and signals sequence.

2) Display pattern:

$$
\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{Temp} .=25^{\circ} \mathrm{C}
$$

(dot)

5-2. Touch panel

Item	Specification
Supply voltage for touch panel	5 V
Terminal resistance	$\mathrm{xL} \sim \mathrm{xR}: 300 \Omega \sim 1,000 \Omega$
	$\mathrm{yU} \sim \mathrm{yL}: 100 \Omega \sim 500 \Omega$
Linearity	less than $\pm 1.5 \%$ (when calibrated with 4 points)
Insulation resistance	$10 \mathrm{M} \Omega$ or more at DC25V

6. Optical characteristics

Measuring spot $=\phi 6.0 \mathrm{~mm}$, Temp. $=25^{\circ} \mathrm{C}$							
Item		Symbol	Condition	Min.	Typ.	Max.	Unit
Response time	Rise	τ_{r}	$\theta=\phi=0^{\circ}$	-	15	-	ms
	Down	$\tau_{\text {d }}$	$\theta=\phi=0^{\circ}$	-	16	-	ms
Viewing angle range View direction : 6 o'clock (Gray inversion)		θ UPPER	CR >10	-	50	-	deg.
		θ Lower		-	70	-	
		$\phi_{\text {LeFt }}$		-	80	-	deg.
		ϕ Right		-	80	-	
Contrast ratio		CR	$\theta=\phi=0^{\circ}$	400	800	-	-
Brightness		L	$\mathrm{IF}=35 \mathrm{~mA} /$ Line	560	800	-	$\mathrm{cd} / \mathrm{m}^{2}$
Chromaticity coordinates	Red	x	$\theta=\phi=0^{\circ}$	0.555	0.605	0.655	
		y		0.300	0.350	0.400	
	Green	x	$\theta=\phi=0^{\circ}$	0.275	0.325	0.375	
		y		0.515	0.565	0.615	
	Blue	x	$\theta=\phi=0^{\circ}$	0.100	0.150	0.200	
		y		0.080	0.130	0.180	
	White	x	$\theta=\phi=0^{\circ}$	0.260	0.310	0.360)	
		y		0.285	0.335	0.385	

$6-1$. Definition of contrast ratio

$$
\mathrm{CR}(\text { Contrast ratio })=\frac{\text { Brightness with all pixels }}{\text { Brightness with all pixels "White" }} \text { "Black" }
$$

6-2. Definition of response time

6-3. Definition of viewing angle

θ direction

ϕ direction

6-4. Brightness measuring point

1) Rating is defined as the white brightness at center of display screen.
2) Measured 5 minutes after the LED is powered on. (Ambient temp. $=25^{\circ} \mathrm{C}$)
7. Interface signals

7-1. LCD

No.	Symbol	
1	GND	
2	DCLK	Clock signal for sampling catch data signal
3	HD	Horizontal sync signal
4	VD	Vertical sync signal
5	GND	
6	R0	Red data signal(LSB)
7	R1	Red data signal
8	R2	Red data signal
9	R3	Red data signal
10	R4	Red data signal
11	R5	Red data signal(MSB)
12	GND	
13	G0	Green data signal(LSB)
14	G1	Green data signal
15	G2	Green data signal
16	G3	Green data signal
17	G4	Green data signal
18	G5	Green data signal(MSB)
19	GND	
20	B0	Blue data signal(LSB)
21	B1	Blue data signal
22	B2	Blue data signal
23	B3	Blue data signal
24	B4	Blue data signal
25	B5	Blue data signal(MSB)
26	GND	
27	DENA	Data enable signal(to settle the viewing area)
28	VCC	Power Supply (DC 3.3V)
29	VCC	Power Supply (DC 3.3V)
30	TEST	This pin should be open. Test signal output for only internal test use.
31	REV	Reverse scan control. L $=$ Normal, H = Reverse
12		

*) The shielding case is connected with GND

LCD connector	$:$ DF9B-31P-1V(32) (HIROSE)
Matching connector	$:$ DF9B-31S-1V (HIROSE)

Normal scan

Reverse scan

7-2. LED
CN2

No.	Symbol	Description
1	ANODE-1(RED)	LED Anode Terminal
2	ANODE-2(RED)	LED Anode Terminal
3	NC	Non Connection
4	NC	Non Connection
5	CATHODE-1(BLACK)	LED Cathode Terminal
6	CATHODE-2(BLACK)	LED Cathode Terminal

LCD side connector : SHLP-06V-S-B
(JST)
Recommended matching connector
: SM06B-SHLS-TF(LF)(SN) (JST)
CN3

No.	Symbol	Description
1	ANODE-3(RED)	LED Anode Terminal
2	ANODE-4(RED)	LED Anode Terminal
3	NC	Non Connection
4	NC	Non Connection
5	CATHODE-3(BLACK)	LED Cathode Terminal
6	CATHODE-4(BLACK)	LED Cathode Terminal

LCD side connector : SHLP-06V-S-B
(JST)
Recommended matching connector
: SM06B-SHLS-TF(LF)(SN) (JST)

7-3. Touch panel

No.	Symbol	Description
1	xL	x -Left terminal
2	yL	y -Lower terminal
3	xR	x -Right terminal
4	yU	y -Upper terminal

Touch panel side connector : 1 mm pitch

8. Input timing characteristics

8-1. Timing characteristics

Item		Symbol	Min.	Typ.	Max.	Unit
DCLK	Frequency	fCLK	23.3	25.0	30.0	MHz
	Period	$\mathrm{t}_{\text {CLK }}$	33.3	40.0	42.9	ns
	Low Width	twCL	12	-	-	ns
	High Width	twCH	12	-	-	ns
$\begin{gathered} \text { DATA } \\ (\mathrm{R}, \mathrm{G}, \mathrm{~B}, \mathrm{DENA}) \end{gathered}$	Set up time	$t_{\text {DS }}$	8	-	-	ns
	Hold time	t_{DH}	16	-	-	ns
DENA	Horizontal display area	tha	640	640	640	$\mathrm{t}_{\text {CLK }}$
	Horizontal blanking time	thbe +thFP	120	154	640	tclk
	Horizontal period	th	760	794	1280	tclk
	Vertical display area	tva	480	480	480	th
	Vertical blanking time	tvBP + tvFP	30	45	80	th_{H}
	Vertical period	tv	510	525	560	th
Display frame rate		fR_{R}	55	60	70	Hz

[Note]

1) DATA is latched at fall edge of DCLK in this timing specification.
2) DENA (Data Enable) should always be positive polarity as shown in the timing specification.
3) Accepted only 640 data and 480 lines.
4) REV should be stable during operation.

8-2. Timing chart
a. Pixel timing chart
DCLK
DATA(R,G,B), DENA

b. Horizontal timing chart

c. Vertical timing chart

8-3. Power and signals sequence

t 1	$\leq 10 \mathrm{~ms}$	$200 \mathrm{~ms}<\mathrm{t} 6$
$150 \mathrm{~ms} \leq \mathrm{t} 2$	$\leq 190 \mathrm{~ms}$	$0 \leq \mathrm{t} 7$
t 3	$\leq 50 \mathrm{~ms}$	
t 4	$\leq 50 \mathrm{~ms}$	

$500 \mathrm{~ms} \leq \mathrm{t} 5$

8-4. Input data signals and display position on the screen

8-5. Color data assignment

[Note]

1) Definition of gray scale

Color (n) --- n indicates gray scale level.
Higher n means brighter level.
2) Data 1: High, 0: Low
9. Backlight characteristics

Item	Symbol	Min.	Typ.	Max.	Unit	Note	
Forward current	1)	IF	-	35	-	mA	$\mathrm{Ta}=-20 \sim 70^{\circ} \mathrm{C}$
Forward voltage	1)	VF	-	24.0	27.2	V	$\mathrm{IF}=35 \mathrm{~mA}, \mathrm{Ta}=-20^{\circ} \mathrm{C}$
			-	22.4	25.6	V	$\mathrm{IF}=35 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
		-	21.5	24.7	V	$\mathrm{IF}=35 \mathrm{~mA}, \mathrm{Ta}=70^{\circ} \mathrm{C}$	
Operating life time	2), 3)	T	-	70,000	-	h	$\mathrm{IF}=35 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

1) For each "AN-CA"
2) When brightness decrease 50% of minimum brightness.
3) Life time is estimated data. (Condition : $\mathrm{IF}=35 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ in chamber).
4) An input current below 8.0 mA may reduce the brightness uniformity of the LED backlight.

This is because the amount of light from each LED chip is different. Therefore, please evaluate carefully before finalizing the input current.

1O. Design guidance for analog touch panel

10-1. Electrical (In customer's design, please remember the following considerations.)

1) Do not use the current regulated circuit.
2) Keep the current limit with top and bottom layer.
(Please refer to "Electrical absolute maximum ratings" for details.)
3) Analog touch panel cannot sense two points touching separately.
4) A contact resistance is appeared at the touch point between top and bottom layer. After this resistance has stable read of the touch panel position data.
5) Because noise of inverter or peripheral circuits may interfere signal of touch panel itself it is necessary to design carefully in advance to avoid these noise problem.

10-2. Software

1) Do the "User Calibration".
2) "User Calibration" may be needed with long term using. Include "User Calibration" menu in your software.
3) When drawing a line with a stylus, there may be a slight discontinuity when the stylus passes over a spacer-dot. If necessary, please provide a compensation feature within your software.

10-3. Mounting on display and housing bezel

1) Do not use an adhesive tape to bond it on the front of touch panel and hang it to the housing bezel.
2) Never expand the touch panel top layer (PET-film) like a balloon by internal air pressure. The life of the touch panel will be extremely short.
3) If a dew will be on the heat-sealed area or exposed traces at the end of a flexible tail, the migration of silver can occur. This will cause sometimes a short circuit.
4) Must maintain a gap between inside of bezel and touch panel to avoid malfunction or electrode damage of touch panel.

11. Lot number identification

The production lot of module is specified as follows.

12. Warranty

12-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

12-2. Production warranty

Kyocera warrants the LCDs for a period of 12 months from the ship date. Kyocera shall, by mutual agreement, replace or re-work defective LCDs that are shown to be Kyocera's responsibility.

Spec No.	Part No.	Page
CPD-365200AB-01	C0650VG65200-BT-AB	15

13. Precautions for use

13-1. Installation of the LCD

1) The LCD shall be installed so that there is no pressure on the LSI chips.
2) The LCD shall be installed flat, without twisting or bending.
3) Please design the housing window so that its edges are between the active area and the effective area of the LCD screen.

13-2. Static electricity

1) Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required.
2) Workers should use body grounding. Operator should wear ground straps.

13-3. LCD operation

1) The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.
2) Please select the best display pattern based on your evaluation because flicker, lines or nonuniformity or unevenness can be visible depending on display patterns.

13-4. Storage

1) The LCD shall be stored within the temperature and humidity limits specified. Store in a dark area, and protect the LCD from direct sunlight or fluorescent light.
2) Always store the LCD so that it is free from external pressure onto it.

13-5. Usage

1) DO NOT store in a high humidity environment for extended periods. Polarizer degradation bubbles, and/or peeling off of the polarizer may result.
2) Do not push or rub the touch panel's surface with hard to sharp objects such as knives, or the touch panel may be scratched.
3) When the touch panel is dirty, gently wipe the surface with a soft cloth, sometimes moistened by mild detergent or alcohol. If a hazardous chemical is dropped on the touch panel by mistake, wipe it off right away to prevent human contact.
4) Touch panel edges are sharp. Handle the touch panel with enough care to prevent cuts.
5) Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizer.
6) Do not disassemble LCD because it will result in damage.
7) This Kyocera LCD has been specifically designed for use in general electronic devices, but not for use in a special environment such as usage in an active gas. Hence, when the LCD is supposed to be used in a special environment, evaluate the LCD thoroughly beforehand and do not expose the LCD to chemicals such as an active gas.
8) Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend using screen saver etc. in cases where a solid-base image pattern must be used.
9) Liquid crystal may leak when the LCD is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body; rinse it off right away with water and soap.

Spec No.	Part No.	Page
CPD-365200AB-01	C0650VG65200-BT-AB	16

14. Reliability test data

Test item	Test condition	Test time	Judgement	
High temp. atmosphere	$70^{\circ} \mathrm{C}$	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
Low temp. atmosphere	$-20^{\circ} \mathrm{C}$	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. humidity atmosphere	$40^{\circ} \mathrm{C} 90 \% \mathrm{RH}$	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
Temp. cycle	$\begin{array}{rl} \hline-20^{\circ} \mathrm{C} & 0.5 \mathrm{~h} \\ \text { R.T. } & 0.5 \mathrm{~h} \\ 70^{\circ} \mathrm{C} & 0.5 \mathrm{~h} \\ \hline \end{array}$	10cycles	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. operation	$70^{\circ} \mathrm{C}$	500h	Display function Display quality Current consumption	: No defect : No defect : No defect

1) Each test item uses a test LCD only once. The tested LCD is not used in any other tests.
2) The LCD is tested in circumstances in which there is no condensation.
3) The reliability test is not an out-going inspection.
4) The result of the reliability test is for your reference purpose only. The reliability test is conducted only to examine the LCD's capability.

Spec No.	Part No.	Page
CPD-365200AB-01	C0650VG65200-BT-AB	17

15. Visuals specification
1) Note

2) Standard

Inspection item	Judgement standard				
Scratch, Foreign particle (Touch panel portion)	Item	Width(mm)	Length(mm)		Acceptable number
	Scratch	$\mathrm{W}<0.03$	$\mathrm{L} \leqq 10$		Neglected
		$0.03<\mathrm{W}<0.05$	$\mathrm{L} \leqq 10$		Distance from any other scratch object $>20 \mathrm{~mm}$: Neglected $<20 \mathrm{~mm}$: 1 pc
		$0.03<\mathrm{W}<0.05$	L > 10		0
		$0.05<\mathrm{W}$			0
	Foreign particle (line like)	W <0.025	$\mathrm{L} \leqq 2.5$		Neglected
		$0.025<\mathrm{W}<0.035$			Distance from any other scratch object $>20 \mathrm{~mm}$: Neglected $<20 \mathrm{~mm}$: Less than 2pcs
		$0.035<\mathrm{W}<0.05$	$\mathrm{L} \leqq 1.5$		Less than 2pcs
		$0.05<\mathrm{W}$	$\mathrm{L}<5$		0
	Foreign particle (circle like)	$\mathrm{d} \leqq 0.15$			Neglected
		$0.15<\mathrm{d}<0.25$			Distance from any other scratch object $>20 \mathrm{~mm}$: Neglected $<20 \mathrm{~mm}$: Less than 2pcs
		$0.25<\mathrm{d}$			0
	Above are applied to the visible area. Unless there are foreign particle and damage affected seriously to the electrical performance out of the active area, we approve of this product.				
Glass crack (Touch panel portion)					
	Item	Size (mm)			Acceptable number
	Corner crack		X	$\leqq 3$	Neglected
			Y	$\leqq 3$	
			Z	<t	
	Crack in other area than in corner		X	<4	Neglected
			Y	<2	
			Z	$<\mathrm{t}$	
	Progressive crack				0 pcs

	Spec No. Part N CPD-365200AB-01 C0650	$\begin{array}{r} \text { Page } \\ 20 \end{array}$
Fish eye on film, Dent on film and Air bubble	Size (mm) Acceptable num $\mathrm{d} \leqq 0.2$ Neglected $0.2<\mathrm{d} \leqq 0.4$ Less than 5p $0.4<\mathrm{d} \leqq 0.5$ Less than 2 p $\mathrm{d}>0.5$ 0	
Newton's ring	Visual inspection shall be done at a distance of 0.3 m between eyes and a product with an angles of $60^{\circ} \pm 10^{\circ}$ to the surface of the product under a ceiling fluorescent light (40W, natural color). 1. Regular A) When Newton ring dimension is more than $1 / 3$ of sample dimension; it is regarded as a defect. B) When Newton ring dimension that is less than $1 / 3$ of sample dimension and is not affect font effect and line distortion under a ceiling fluorescent light, it is acceptable. 2. Irregular A) Newton ring dimension is more than $1 / 2$ without lighting; it is regarded as a defect. B) As long as Newton ring affects font effect and line distortion under a ceiling fluorescent light, it is regarded as a defect. C) When Newton ring dimension is less than $1 / 2$ of sample dimension and is not affect font effect and line distortion under a ceiling fluorescent light, it is acceptable.	
Miss matching of film and plastic board.	All round of film is inside of plastic board.	

