
Basic Character LCD Hookup Guide

Introduction
Printing data to a serial terminal is a great way to see data from a microcontroller. But, what if you want to make
your project mobile and see sensor values away from your computer? Liquid crystal displays (LCDs) are a great
way to output a string of words or sensor data to a display for visual feedback. In this tutorial, we'll learn about
LCDs and how to print a string of words to a basic character LCD and create custom characters.

Required Materials

To follow along with this tutorial, you will need the following materials. You may not need everything though
depending on what you have. Add it to your cart, read through the guide, and adjust the cart as necessary.

Basic 16x2 Character LCD - White on Black 5V
 LCD-00709

https://www.sparkfun.com/
https://learn.sparkfun.com/tutorials/terminal-basics/
https://www.sparkfun.com/products/709
https://www.sparkfun.com/products/709
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/709

While not necessary, we'll be using a breadboard holder to hold the circuit together.

SparkFun RedBoard - Programmed with
Arduino
 DEV-13975

Breadboard - Self-Adhesive (White)
 PRT-12002

Break Away Headers - Straight
 PRT-00116

Basic 16x2 Character LCD - White on Black 5V
 LCD-00709

SparkFun USB Mini-B Cable - 6 Foot
 CAB-11301

Jumper Wires Standard 7" M/M - 30 AWG (30
Pack)
 PRT-11026

https://www.sparkfun.com/products/13975
https://www.sparkfun.com/products/13975
https://www.sparkfun.com/products/12002
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/116
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/116
https://www.sparkfun.com/products/709
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/709
https://www.sparkfun.com/products/11301
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11301
https://www.sparkfun.com/products/11026
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11026

Looking for More LCDs? There are a variety of other basic character LCDs with different colors. Here are a
few other monochrome character LCDs available in the catalog. Just make sure to check the datasheet since
the pinout for the backlight is slightly different for the RGB LCD.

Depending on your LCD's specifications, the input voltage may be 3.3V or 5V. For the LCDs listed below, the input
voltage for the LCD must be 3.3V. The logic levels will be the same as the input voltage.

⚡ Warning! When connecting to 3.3V basic character LCDs, make sure to connect the input to 3.3V.

Arduino and Breadboard Holder
 DEV-11235

SparkFun Mini Screwdriver
 TOL-09146

Basic 16x2 Character LCD - Black on Green
5V
 LCD-00255

Basic 16x2 Character LCD - RGB Backlight
5V
 LCD-10862

Basic 16x2 Character LCD - Black on Green
3.3V

Basic 16x2 Character LCD - White on Black
3.3V

https://www.sparkfun.com/categories/148
https://learn.sparkfun.com/tutorials/basic-character-lcd-hookup-guide#rgb-backlight
https://www.sparkfun.com/products/11235
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11235
https://www.sparkfun.com/products/9146
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9146
https://www.sparkfun.com/products/255
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/255
https://www.sparkfun.com/products/10862
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/10862
https://www.sparkfun.com/products/9053
https://www.sparkfun.com/products/9053
https://www.sparkfun.com/products/9052
https://www.sparkfun.com/products/9052

If you are using a 3.3V LCD and a 5V Arduino (or a 5V LCD and a 3.3V Arduino), you will need a logic level
converter between the two boards. You'd have to use two logic level converters (like the four channel
bidirectional logic level converter) to convert 6x pins at a minimum if you were using a 3.3V basic character
display.

 LCD-09053 LCD-09052

Basic 16x2 Character LCD - Red on Black
3.3V
 LCD-09051

SparkFun Logic Level Converter - Bi-
Directional
 BOB-12009

SparkFun Voltage-Level Translator Breakout -
TXB0104
 BOB-11771

SparkFun Level Translator Breakout -
PCA9306
 BOB-11955
 3 Retired

https://learn.sparkfun.com/tutorials/basic-character-lcd-hookup-guide#3_3V
https://learn.sparkfun.com/static/bubbles/
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9051
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9051
https://www.sparkfun.com/products/12009
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12009
https://www.sparkfun.com/products/11771
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11771
https://www.sparkfun.com/products/retired/11955
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/retired/11955

Tools

You will need a soldering iron, solder, and general soldering accessories.

Suggested Reading

If you aren’t familiar with the following concepts, we recommend checking out these tutorials before continuing.

Soldering Iron - 60W (Adjustable Temperature)
 TOL-14456

Solder Lead Free - 15-gram Tube
 TOL-09163

Binary
Binary is the numeral system of electronics and
programming...so it must be important to learn. But,
what is binary? How does it translate to other numeral
systems like decimal?

What is an Arduino?
What is this 'Arduino' thing anyway? This tutorials dives
into what an Arduino is and along with Arduino projects
and widgets.

Installing Arduino IDE
A step-by-step guide to installing and testing the
Arduino software on Windows, Mac, and Linux.

Logic Levels
Learn the difference between 3.3V and 5V devices and
logic levels.

https://www.sparkfun.com/categories/49
https://www.sparkfun.com/products/14456
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14456
https://www.sparkfun.com/products/9163
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9163
https://learn.sparkfun.com/tutorials/binary
https://learn.sparkfun.com/tutorials/what-is-an-arduino
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/logic-levels

How Does an LCD Work?
LCD stands for Liquid Crystal Display. These displays contain a grid of liquid crystal dots, or pixels held
between layers of glass etched with transparent electrodes. Liquid crystal molecules are normally twisted, but
straighten out when electricity is applied to them. This affects the way light passes through the dot, allowing it to
appear either darkened or clear. A HD44780 controller chip built into the display (it's underneath the black blob on
the back) receives commands from your a microcontroller, and turns the pixels on and off to form various letters,
numbers and symbols. The controller datasheet has a diagram of all the characters stored in the chip. This display
also has an LED for backlighting, which is powered usually through a basic character LCD pins 15 and 16.

If you look closely at the characters on the LCD, you will notice that they are actually made up of lots of little
squares. These little squares are called pixels. The size of displays is often represented in pixels. Pixels make up
a character space, which is the number of pixels in which a character can exist.

Here is a capital letter B as created in pixels. The character space in this example is 6 pixels x 8 pixels.

For more information on the history of LCDs and how they work, check out this video below.

Hardware Overview

Note: Depending on how the LCD was manufactured, you may have a green or red PCB. Throughout this
tutorial, you will see both colors but the overall functionality will be the same for a basic character LCD!

Adventures in Science: How LCD WorksAdventures in Science: How LCD Works

https://en.wikipedia.org/wiki/Liquid-crystal_display
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/Pixels_Character_Liquid_Crystal_Display_LCD.jpg
https://www.youtube.com/watch?v=VbdhbyiHX-s

LCD w/ Green PCB LCD w/ Red PCB

A basic character LCD has 16 pins (with the exception of an RGB LCD which has 18 pins), and it is polarized. The
pins are numbered from left to right, 1 through 16. The LCD utilizes an extremely common parallel interface LCD
driver chip from Hitachi called the HD44780. Thankfully, the Arduino community has developed a library to handle
a great deal of the software-to-hardware interface. Below is a list of each of the pins on the LCD.

Click on image for a closer view.

Input Voltage and Logic Levels

For the scope of this tutorial, we are going to be connecting a 5V Arduino to the 5V basic character LCD.
Depending on your LCD's specifications, the input voltage may be 3.3V or 5V. The logic levels will be the same as
the input voltage. Just make sure to match the voltages for the microcontroller and LCD.

Hardware Assembly
LCDs usually come without a microcontroller to control the display. To connect, you will need a strip of header
pins, a potentiometer to adjust the contrast of the display, breadboard, and wires. Depending on the LCD, you
may need a current limiting resistor to to limit the current to the LED backlight. You will need to solder the header
pins of your choice to the display in order to plug it into your breadboard. If you have not soldered before, we
recommend looking at our soldering tutorial.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/09761-Character_LCD_Green_PCB.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/00709-01_Character_LCD_Red_PCB.jpg
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/Character_LCD_Pinout.png
https://learn.sparkfun.com/tutorials/logic-levels
https://learn.sparkfun.com/tutorials/resistors/example-applications#current-limiting
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering

While you can use any standard 16x2 alphanumeric LCD, the white on black display supplied with the kit looks
übercool. The photographs in this guide are of a standard black on green display so yours may look different. The
"16x2" refers to the display having two rows of sixteen characters each — other displays are available which are
8x1 or 20x4.

Soldering Tips

It is pretty straightforward to solder the header pins to the LCD module. Make sure to keep the soldering iron in
contact with the joints for no more than about three seconds. There small risk of the damaging the existing
components on the board with excess heat. You also need to be careful to keep the soldering iron away from the
already soldered components on the board — you're probably not yet ready to do surface mount soldering repair.

Insert Headers to the LCD

Before soldering, perform a "test fit" of parts. A test fit gives you a chance to double check if you've got the parts
you need and ensures that they fit together. For this connection, break a row of 16x1 male headers and insert the
header pins into the holes on the LCD module as shown in the image below. If you are using an RGB LED, you will
need a row of 18x1 male headers.

Ensure that you don't have one pin too many or too few in your header strip. Also make sure the black plastic strip
of the header is positioned on the underside of the printed circuit board (PCB) so that you have plenty of pin length
below the PCB to plug into your breadboard or a socket. The longest part of the pins should be below the PCB.
The pin header provides connections that carry the data signals for controlling what the display... displays. They
also carry power to the small microcontroller behind the black blob on the module and to the LED backlight if your
display has one.

Soldering Male Headers

If you've done a test fit then your header should be in place. Ensure the header is aligned as parallel as possible to
the edge of the board. Then solder the far left or right pin into place as shown in the image below.

How to Solder: Through-Hole Soldering
SEPTEMBER 19, 2013
This tutorial covers everything you need to know about through-hole soldering.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/Character_LCD_Header_Test_Fit.jpg
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering

Because there's not a lot of room it is easiest to feed the solder from behind pin while the soldering iron tip is
between the pins, resting on the PCB pad with the side of iron against the side of pin you're soldering. The reason
we start with just one pin is because it makes it easier to obtain the correct alignment and fix any mistakes.

If the alignment of the header isn't quite right, carefully reheat the solder joint and move the header slightly. Don't
move the header when the solder joint is still in it's liquid state however, or you'll end up with a poor joint.

Once you're happy with the alignment of the header you can solder another pin into place — we recommend
soldering the pin at the opposite end of the header to the first pin you soldered. The reason for this is that once the
two end pins are in place, the alignment won't change.

Double check the alignment is still okay and if it's not quite right you can reheat the joint and carefully move the
pin. After you've confirmed the alignment, you can solder the remaining pins into place.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/Character_LCD_Header_First_Pin_Tacked_Soldered.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/Character_LCD_Header_Second_Pin_Tacked_Soldered.jpg

Ensure that the solder covers the plated through hole's pad and pins as shown in the image below for the best
connection.

And now the soldering is complete!

Completed LCD

Your display module should now look like the image below. One additional detail to note is that the pin header is
usually at the "top" of the display — so keep that in mind if you plan to mount it anywhere. Remember to always
test the display out before mounting to a project.

Now it is time to connect your LCD to a microcontroller! For the scope of this tutorial, we'll use an Arduino.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/Character_LCD_Header_Pins_Soldered.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/Character_LCD_Header_Pins_Soldered_Close_Up.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/Character_LCD_Header_Pins_Soldered.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/Character_LCD_Header_Pins_Soldered_Top_View.jpg

Hardware Hookup
The basic character displays use a parallel interface, which can be either 4 bits or 8 bits wide. We'll use 4 bits,
since it requires fewer wires. It will take a total of 8 wires to connect the display to your a microcontroller:

two for Vcc and ground
two to load the data
four for data

You will also need to connect a potentiometer to the display. This is necessary to set the contrast of the display for
best visibility. See the following diagram for details.

Note: Depending on the manufacturer, some LCDs may not come with a current limiting resistor for the
backlight. You may need to add an additional current limiting resistor to control the backlight pin(s) from an
Arduino's I/O pin. For more options controlling the backlight, you can connect the LED to any PWM pin.
Depending on your microcontroller specifications, you may want to use a transistor to source enough current
to an LED from an I/O pin.

RGB Backlight

Resistor 330 Ohm 1/4 Watt PTH - 20 pack
(Thick Leads)
 PRT-14490

Transistor - NPN, 60V 200mA (2N3904)
 COM-00521

https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/SIK_Circuit_4A.png
https://learn.sparkfun.com/tutorials/transistors/all#applications-i-switches
https://www.sparkfun.com/products/14490
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14490
https://www.sparkfun.com/products/521
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/521

Note: If you are using the 5V basic 16x2 character LCD w/ RGB backlight, the LED's pins are slightly
different. Pin 15 is for the LED's common cathode pin and it should be connected to the GND pin.
Additionally, the LCD-10862 requires a current limiting resistor for each color. The diagram below shows a
general 330Ω resistor in series.

Arduino Examples: LiquidCrystal Library

Note: The library has been tested on an ATmega328P-based Arduino using Arduino IDE v1.8.9. Otherwise,
make sure you are using the latest stable version of the Arduino IDE on your desktop. If this is your first time
using Arduino, please review our tutorial on installing the Arduino IDE. If you've never connected an FTDI
device to your computer before, you may need to install drivers for the USB-to-serial converter. Check out our
How to Install FTDI Drivers tutorial for help with the installation.

Normally, you would need to read the HD44780 controller chip's extensive datasheet to determine how to control
this display. Fortunately, the Arduino IDE comes with a built-in library called LiquidCrystal, which does all the hard
work for you. We'll look at one of the ten examples provided from Arduino.

Note: A library is a prebuilt collection of software functions that you can easily include in your code.

Open the Arduino IDE, and load the example program: File > Examples > LiquidCrystal > HelloWorld.

https://www.sparkfun.com/products/10862
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/RGB_Backlight-Basic_16x2_Character_LCD_Arduino-Fritzing_bb_2.jpg
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/how-to-install-ftdi-drivers
http://arduino.cc/en/Reference/LiquidCrystal

Once open, you will need to adjust the pin connections based on your circuit. In this case, we'll need to adjust the
pin definitions based on our circuit that we connected earlier. Head to the line where the pins are defined.

const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

Then adjust the pin definitions based on your connections.

const int rs = 13, en = 12, d4 = 11, d5 = 10, d6 = 9, d7 = 8;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

You can also copy and paste the code below. Just make sure to select the correct board (in this case the Arduino/
Genuino Uno) and the COM port that the Arduino enumerated on. Then upload the code to your Arduino.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/LCD_Arduino_Examples.jpg

/*LCD-Hello_world.ino

 Modified By: Ho Yun "Bobby" Chan
 SparkFun Electronics
 Date: 5/22/2019
 License: This code is public domain.

 Demonstrates the use a 16x2 LCD display. The LiquidCrystal
 library works with all LCD displays that are compatible with the
 Hitachi HD44780 driver. There are many of them out there, and you
 can usually tell them by the 16-pin interface.

 This sketch prints "Hello World!" to the LCD
 and shows the time since the Arduino was turned on.

 Hardware Hookup:

 lCD VSS pin to GND
 LCD VCC pin to 5V
 10kΩ Potentiometer to LCD VO pin (pin 3)
 LCD RS pin to digital pin 13
 LCD R/W pin to GND
 LCD Enable pin to digital pin 12
 .
 .
 .
 LCD D4 pin to digital pin 11
 LCD D5 pin to digital pin 10
 LCD D6 pin to digital pin 9
 LCD D7 pin to digital pin 8
 LCD-Backlight - Anode to 10KΩ resistor to +5V (optional depending on your LCD)
 LCD Backlight - K to GND

 Library originally added 18 Apr 2008
 by David A. Mellis
 library modified 5 Jul 2009
 by Limor Fried (http://www.ladyada.net)
 example added 9 Jul 2009
 by Tom Igoe
 modified 22 Nov 2010
 by Tom Igoe
 modified 7 Nov 2016
 by Arturo Guadalupi

 http://www.arduino.cc/en/Tutorial/LiquidCrystalHelloWorld=

https://learn.sparkfun.com/tutorials/basic-character-lcd-hookup-guide

*/

// include the library code:
#include <LiquidCrystal.h>

//initialize the library by associating any needed LCD interface pin
//with the arduino pin number it is connected to
const int rs = 13, en = 12, d4 = 11, d5 = 10, d6 = 9, d7 = 8;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

void setup() {
 //set up the LCD's number of columns and rows:
 lcd.begin(16, 2);
 //Print a message to the LCD.
 lcd.print("Hello, world!");
}

void loop() {
 //set the cursor to column 0, line 1
 //(note: line 1 is the second row, since counting begins with 0):
 lcd.setCursor(0, 1);
 // print the number of seconds since reset:
 lcd.print(millis() / 1000);
}

After uploading it to your board, a " hello, world! " should appear on the display. The LCD will also display the
time in seconds since the Arduino was reset. You should see something similar to the image below. Depending on
how you wrote the code, the letter h might be upper or lower case.

If you see " hello, world! ", congratulations! Take a look at the example sketch, and try modifying it to display
" hello, your name! " or any other text you'd like. Also, take a look at the other example LiquidCrystal sketches,
and the documentation on the Arduino.cc website to see how to write sketches to take advantage of the display.
Just make sure to adjust the pin definitions based on how you wired the LCD to your Arduino.

Custom User-Defined Graphics
If you need to make custom characters, there are a few online tools to generate a user-defined graphics. Check
out the link below to create your own custom graphic or use any characters made in the pattern library.

HD44780 LCD USER-DEFINED GRAPHICS

For simplicity, we'll just use one of the patterns already generated in the library. Let's create an empty heart. First,
you'll need to select your character size. The display that we are using in this example is an 8x5 character space.
You'll need to select "Character size: 5 by 8" from the drop down menu so that there is 8 rows and 5 columns of
pixels.

https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/SIK_Project4_Circuit4A_Action.jpg
https://www.quinapalus.com/hd44780udg.html

Then scroll down the webpage and click on the empty heart listed under the Pattern library. You will be presented
with values representing the custom character in decimal, hex, and binary.

We'll use the binary representation of the empty heart. Each value between the comma represents a slice of the
custom character space starting from the top of your character space. A pixel is cleared when the value is 0 and
darkened when the value is 1.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/LCD_Character_Space_Size.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/Pre-Defined_Pattern_LCD_Custom_Character.jpg

%0,%0,%1010,%10101,%10001,%1010,%100,%0

You will need to copy the values and format it in your code. Since we are using an Arduino to control the basic
character display, we'll place the values within an array. We'll name this array emptyHeart[] . To make it easier to
read and ensure that the pixel is turned off, we will fill in the most significant bits with 0's to the left of the values so
that each slice from the custom character space has a size of 1x5. After formating the values, your array should
look like the code below in Arduino.

byte emptyHeart[8] = {
 B00000,
 B00000,
 B01010,
 B10101,
 B10001,
 B01010,
 B00100,
 B00000
};

Congratulations! You have just created a custom character! Repeat the steps for up to 8x custom characters as
necessary.

Example Code

Now that we have created a custom user-defined graphic, let's display it on a screen with a message. The
example code below loads three custom characters and displays them on the LCD with a message. Copy the code
and paste in the Arduino IDE. Select your board (in this case the Arduino/ Genuino Uno) and COM port. Then
upload the code to your Arduino.

/*LCD-CustomChar.ino

 By: Ho Yun "Bobby" Chan
 SparkFun Electronics
 Date: May 16th, 2019
 License: This code is public domain.

 Description: Demonstrates the use a 16x2 LCD display
 with custom user-defined graphic based on the example
 used in the Arduino.cc's Reference Library: createChar().
 A message will display with an empty and full heart!

 Hardware Hookup:

 lCD VSS pin to GND
 LCD VCC pin to 5V
 10kΩ Potentiometer to LCD VO pin (pin 3)
 LCD RS pin to digital pin 13
 LCD R/W pin to GND
 LCD Enable pin to digital pin 12
 .
 .
 .
 LCD D4 pin to digital pin 11
 LCD D5 pin to digital pin 10
 LCD D6 pin to digital pin 9
 LCD D7 pin to digital pin 8
 LCD-Backlight - Anode to 10KΩ resistor to +5V (optional depending on your LCD)
 LCD Backlight - K to GND

 For more information about using the creatChar() function,
 make sure to check out the Arduino.cc reference and associated tutorial:

 https://www.arduino.cc/en/Reference/LiquidCrystalCreateChar
 https://learn.sparkfun.com/tutorials/basic-character-lcd-hookup-guide
*/

//Include the library code:
#include <LiquidCrystal.h>

// initialize the library by associating any needed LCD interface pin
// with the arduino pin number it is connected to
const int rs = 13, en = 12, d4 = 11, d5 = 10, d6 = 9, d7 = 8;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

//Load custom charcter into CGRAM
//Note: Up to 8 characters can be saved

byte smiley[8] = {
 B00000,
 B10001,
 B00000,
 B00000,

 B10001,
 B01110,
 B00000,
};

byte emptyHeart[8] = {
 B00000,
 B00000,
 B01010,
 B10101,
 B10001,
 B01010,
 B00100,
 B00000
};

byte fullHeart[8] = {
 B00000,
 B00000,
 B01010,
 B11111,
 B11111,
 B01110,
 B00100,
 B00000,
};

void setup() {
 //Load a custom character (glyph) for use on the LCD
 lcd.createChar(0, smiley);
 lcd.createChar(1, emptyHeart);
 lcd.createChar(2, fullHeart);

 //Set up the LCD's number of columns and rows:
 lcd.begin(16, 2);

 //Clear the display
 lcd.clear();
}

void loop() {
 //Set the cursor to the 0,0 position (top left corner)
 lcd.setCursor(0, 0);

 //Display a message with the custom characters
 lcd.print("I ");
 lcd.write(byte(1)); //display custom character related associated with num 1
 lcd.print(" SparkFun! ");
 lcd.write(byte(0)); //display custom character related associated with num 0
 delay(1000);

 //Set the cursor to the 0,0 position (top left corner)
 lcd.setCursor(2, 0);

 lcd.write(byte(2)); //display custom character related associated with num 1
 delay(1000);
}

After uploading, a message will display with an empty and full heart!

RGB LED Backlight Control
Previous examples connect the white LED backlight to power. The following example is specifically for those using
an LCD with a RGB LED backlight. The only difference between the connection is the LED's backlight on pins 15-
18.

Copy and paste the code below. Just make sure to select the correct board (in this case the Arduino/ Genuino
Uno) and the COM port that the Arduino enumerated on. Then upload the code to your Arduino.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/Basic_Character_LCD_Tutorial.gif
https://learn.sparkfun.com/tutorials/basic-character-lcd-hookup-guide#rgb-backlight

/* LCD-RGB_Hello World.ino

 By: Ho Yun "Bobby" Chan
 SparkFun Electronics
 Date: 5/22/2019
 License: This code is public domain.

 Modified example code of Arduino.cc's Hello World.
 https://www.arduino.cc/en/Tutorial/HelloWorld

 Demonstrates the use a 16x2 LCD display with a common cathode
 RGB LED backlight. The LiquidCrystal library works with all
 LCD displays that are compatible with the Hitachi HD44780 driver.
 There are many of them out there, and you can usually tell them
 by the 16-pin/18-pin interface.

 This sketch prints "Hello world!" to the LCD,
 shows the time since the Arduino was last reset, and
 controls the RGB backlight. The backlight displays
 the primary, secondary, and tertiary colors.

 Hardware Hookup:
 LCD VSS pin to GND
 LCD VCC pin to 5V
 10kΩ Potentiometer to LCD VO pin (pin 3)
 LCD RS pin to digital pin 13
 LCD R/W pin to GND
 LCD Enable pin to digital pin 12
 .
 .
 .
 .
 LCD D4 pin to digital pin 11
 LCD D5 pin to digital pin 10
 LCD D6 pin to digital pin 9
 LCD D7 pin to digital pin 8
 LCD Backlight - K (Common Cathode) to GND
 LCD Backlight - Anode-RED to 330Ω to PWM pin 6
 LCD Backlight - Anode-GREEN to 330Ω to PWM pin 5
 LCD Backlight - Anode-BLUE to 330Ω to PWM pin 3

 Note: You may need to adjust the current limiting resistor
 and PWM value for the LED depending on the voltage used.
 Depending on the mixed color, this may result in a lower
 brightness.

 https://learn.sparkfun.com/tutorials/basic-character-lcd-hookup-guide

*/

//Include the library code:
#include <LiquidCrystal.h>

//LED Backlight
int ledR = 6;//hardware PWM
int ledG = 5;//hardware PWM
int ledB = 3; //hardware PWM
int redIntensity = 255; //value to adjust since red can be brighter than the other colors depend
ing on the resistor value used

//Initialize the library by associating any
//needed LCD interface pin with the Arduino pin
//number it is connected to
const int rs = 13, en = 12, d4 = 11, d5 = 10, d6 = 9, d7 = 8;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

void setup() {
 //Set up the LCD's number of columns and rows:
 lcd.begin(16, 2);

 //Clear the display
 lcd.clear();

 //Test Colors
 sequenceTest();

 lcd.setCursor(0, 0);
 //Print a message to the LCD.
 lcd.print("Hello, world!");
 //Turn on backlight for red
 redON();
 lcd.setCursor(0, 1);
 lcd.print("Red");
 delay(1500);
 lcd.setCursor(0, 1);
 lcd.print(" ");

}

void loop() {
 // set the cursor to column 0, line 1
 // (note: line 1 is the second row, since counting begins with 0):
 lcd.setCursor(0, 1);
 // print the number of seconds since reset:
 lcd.print(millis() / 1000);
}

void allOFF() {
 analogWrite(ledR, 0);
 analogWrite(ledG, 0);
 analogWrite(ledB, 0);
}

void allON() {
 analogWrite(ledR, redIntensity);
 analogWrite(ledG, 255);
 analogWrite(ledB, 255);

}

void redON() {
 analogWrite(ledR, redIntensity);
 analogWrite(ledG, 0);
 analogWrite(ledB, 0);
}

void roseON() {
 analogWrite(ledR, redIntensity);
 analogWrite(ledG, 0);
 analogWrite(ledB, 128);
}

void magentaON() {
 analogWrite(ledR, redIntensity);
 analogWrite(ledG, 0);
 analogWrite(ledB, 255);
}

void violetON() {
 analogWrite(ledR, 128);
 analogWrite(ledG, 0);
 analogWrite(ledB, 255);
}

void blueON() {
 analogWrite(ledR, 0);
 analogWrite(ledG, 0);
 analogWrite(ledB, 255);
}

void azureON() {
 analogWrite(ledR, 0);
 analogWrite(ledG, 128);
 analogWrite(ledB, 255);
}

void cyanON() {
 analogWrite(ledR, 0);
 analogWrite(ledG, 255);
 analogWrite(ledB, 255);
}

void springgreenON() {
 analogWrite(ledR, 0);
 analogWrite(ledG, 255);
 analogWrite(ledB, 128);
}

void greenON() {
 analogWrite(ledR, 0);
 analogWrite(ledG, 255);
 analogWrite(ledB, 0);

}

void chartreuseON() {
 analogWrite(ledR, 128);
 analogWrite(ledG, 255);
 analogWrite(ledB, 0);
}

void yellowON() {
 analogWrite(ledR, redIntensity);
 analogWrite(ledG, 255);
 analogWrite(ledB, 0);
}

void orangeON() {
 analogWrite(ledR, redIntensity);
 analogWrite(ledG, 51);
 analogWrite(ledB, 0);
}

void sequenceTest() {

 lcd.setCursor(0, 0);
 lcd.print("Backlight Color");

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Red");
 redON();//good
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Rose");
 roseON();
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Magenta");
 magentaON();//good
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Violet");
 violetON();
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position

 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Blue");
 blueON();//good
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Azure");
 azureON();//good
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Cyan");
 cyanON();//good
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Spring Green");
 springgreenON();//good
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Green");
 greenON();//good
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Chartreuse");
 chartreuseON();
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Yellow");
 yellowON();//good
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("Orange");
 orangeON();//good
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("White");
 allON();
 delay(1500);

 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print(" ");//clear 2nd row
 lcd.setCursor(0, 1); //set the cursor to the second row, 1st position
 lcd.print("LEDs Off");
 allOFF();
 delay(1500);

 lcd.setCursor(0, 0); //set the cursor to the second row, 1st position
 lcd.clear(); //Clear the display
}

After uploading, you will notice the same " Hello, world! " and time since the Arduino was last reset in the first
example. The only difference is that the current color of the backlight will be printed as it cycles through each of
the primary, secondary, and tertiary colors. You should see something similar to the image below.

Troubleshooting and FAQ

The Screen is Blank or Flickering

If no message appears, the contrast may need to be adjusted. To do this, turn the potentiometer until " hello,
world! " until you can view characters on the screen. Adjust the contrast by twisting the potentiometer. If it’s
incorrectly adjusted, you won’t be able to read the text clearly. Also, check the potentiometer and make sure it's
connected correctly. If you still don't see anything, double-check your wiring to ensure that the wires are fully
connected. Also, check your solder joints to ensure that there is a sufficient connection.

Not Working At All

Double check the circuit's wiring. There are a lot of wires in this circuit, and it's easy to mix up one or two.

Rectangles in First Row and Random Characters

If you see 16x rectangles (like “█”) or random characters on the first row, it may be due to the jumper wires being
loose on the breadboard. This is normal and can happen with other LCDs wired in parallel with a microcontroller.
Make sure that the wires are fully inserted into the breadboard, then try pressing the reset button and adjusting the
contrast using the potentiometer. Also, make sure that the defined pins match your current setup.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/10862-Character_LCD_RGB_LED_Backlight_Action_new.jpg
https://learn.sparkfun.com/tutorials/sparkfun-troubleshooting-tips#bad-solder-joints

A display that needs the contrast adjusted. Note the white rectangles.

Still Not Working?

Jumper wires unfortunately can go "bad" from getting bent too much. The copper wire inside can break, leaving an
open connection in your circuit. If you are certain that your circuit is wired correctly and that your code is error-free
and uploaded but you are still encountering issues, try replacing one or more of the jumper wires for the
component that is not working. You may need to rework the solder joints for a secure connection.

Can I Connect a Basic Character LCD to the ESP8266 Thing Development Board?

Yes. However, the ESP8266 Thing Dev is 3.3V. You'd have to use two logic level converters (like the four channel
bidirectional logic level converter) to convert 6x pins at a minimum if you were using a 5V basic character display.
That's a lot of wires. Make sure to avoid using pin D0, D16, Tx, and Rx. There are issues displaying characters
using those pins since they are tied to other functions such as the reset or deep sleep. The pin definitions can be
defined as the following.

const int rs = 2, en = 14, d4 = 5, d5 = 4, d6 = 13, d7 = 12;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

The hookup should look similar to the following diagrams.

https://cdn.sparkfun.com/assets/learn_tutorials/6/3/6/Contrast.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/ESP8266_Thing_Parallel_5V_LCD_Fritzing_bb.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/5/ESP8266-Thing_Parallel_3_3V_LCD_Fritzing_bb.jpg

Resources and Going Further
Now that you've successfully got your basic character LCD up and running, it's time to incorporate it into your own
project! For more information, check out the resources below:

Schematic (JPG) - Old application circuit in a schematic view for a 16x2 basic character LCD.
Datasheets

Basic LCD Datasheet (PDF)
Extended LCD Datasheet (PDF)
HD44780 (PDF)

OLD SIK Guide LCD Example (PDF) - Old SIK example for Arduino with insert.
Custom Character Generator (ZIP)
Online Custom Character Generator
mBed Example Code
AVR Example Code
Arduino Reference Library: LiquidCrystal

Need some inspiration for your next project? Check out some of these related tutorials to use the display in
javascript, create your own game using custom characters, or display sensor data on your screen.

Instead of using a parallel interface, you can also try using a serial connection to reduce the amount of wires.

Experiment Guide for the Johnny-Five Inventor's
Kit
Use the Tessel 2 and the Johnny Five Inventors kit to
explore the world of JavaScript enabled hardware
through 14 awesome experiments!

Endless Runner Game
We make a simple side-scrolling endless runner game
using parts from the SparkFun Inventor's Kit v4.0.

SparkFun Inventor's Kit Experiment Guide - v4.0
The SparkFun Inventor's Kit (SIK) Experiment Guide
contains all of the information needed to build all five
projects, encompassing 16 circuits, in the latest version
of the kit, v4.0a.

https://www.sparkfun.com/tutorial/LCD_add-on/schematic.jpg
http://www.sparkfun.com/datasheets/LCD/ADM1602K-NSW-FBS-3.3v.pdf
http://www.sparkfun.com/datasheets/LCD/GDM1602K-Extended.pdf
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf
https://www.sparkfun.com/tutorial/AIK/LCDD-01-SPAR-guide.pdf
http://cdn.sparkfun.com/datasheets/LCD/Monochrome/HD44780CCGV1001.zip
https://www.quinapalus.com/hd44780udg.html
https://os.mbed.com/cookbook/Text-LCD
http://www.peterfleury.epizy.com/avr-lcd44780.html
http://arduino.cc/en/Reference/LiquidCrystal
https://learn.sparkfun.com/tutorials/experiment-guide-for-the-johnny-five-inventors-kit
https://learn.sparkfun.com/tutorials/endless-runner-game
https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-experiment-guide---v40
https://learn.sparkfun.com/tutorials/pic-based-serial-enabled-character-lcd-hookup-guide
https://learn.sparkfun.com/tutorials/avr-based-serial-enabled-lcds-hookup-guide

Or check out this activity if you are an educator.

PIC-Based Serial Enabled Character LCD
Hookup Guide
The PIC-based serial enabled character LCD backpack
is a simple and cost effective solution for interfacing to
character Liquid Crystal Displays (LCDs) based on the
HD44780 controller. The backpack simplifies the
number of wires needed and allows your project to
display all kinds of text and numbers.

AVR-Based Serial Enabled LCDs Hookup Guide
The AVR-based Qwiic Serial Enabled LCDs are a
simple and cost effective solution to include in your
project. These screens are based on the HD44780
controller, and include ATmega328P with an Arduino
compatible bootloader. They accept control commands
via Serial, SPI and I2C (via PTH headers or Qwiic
connector). In this tutorial, we will show examples of a
simple setup and go through each communication
option.

SIK LCD Tutorial Activity
JULY 23, 2016

SIK LCD Tutorial simplifies the wiring and usage of the
parallel LCD module that is included in the SIK.

https://learn.sparkfun.com/tutorials/pic-based-serial-enabled-character-lcd-hookup-guide
https://learn.sparkfun.com/tutorials/avr-based-serial-enabled-lcds-hookup-guide
https://learn.sparkfun.com/resources/115

