

# **Industrial SD 3.0 Specification**

(FxPrem II Series, pSLC)

Version 1.2

Address: 28 Genting Lane, #09-03/04/05 Platinum 28, Singapore 349585

Tel: +65-6493 5035 Fax: +65-6493 5037

Website: <a href="http://www.flexxon.com">http://www.flexxon.com</a>
Email: <a href="mailto:flexxon@flexxon.com">flexxon@flexxon.com</a>

ALL RIGHTS ARE STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSLATED TO ANY OTHER FORMS WITHOUT PERMISSION FROM FLEXXON.



# **Table of Contents**

| 1.    | General Description                                          | 1  |
|-------|--------------------------------------------------------------|----|
| 1.1.  | Introduction                                                 | 1  |
| 1.2.  | Product Overview                                             | 1  |
| 1.3.  | Pseudo SLC                                                   | 3  |
| 2.    | Product Specifications                                       | 4  |
| 2.1.  | Performance                                                  | 4  |
| 2.2.  | Power                                                        | 4  |
| 2.3.  | MTBF                                                         | 5  |
| 2.4.  | Data Retention.                                              | 5  |
|       | Environmental Specifications                                 |    |
| 3.    | Electrical Specifications  DC Characteristics                | 6  |
| 4.    | Electrical Specifications                                    | 7  |
| 4.1.  | DC Characteristics                                           | 7  |
| 4.1.1 |                                                              |    |
| 4.1.2 | 6                                                            | 8  |
| 4.1.3 | . Power Up Time of Host                                      | 9  |
| 4.1.4 | . Power Up Time of Card                                      | 10 |
| 4.2.  | AC Characteristic                                            | 10 |
| 4.2.1 | . SD Interface Timing (Default)                              | 11 |
| 4.2.2 | . SD Interface Timing (High-Speed Mode)                      | 12 |
| 4.2.3 | . SD Interface timing (SDR12, SDR25, SDR50 and SDR104 Modes) | 13 |
| 4.2.4 | SD Interface Timing (DDR50 Modes)                            | 15 |
| 5.    | Pad Assignment                                               | 17 |
| 5.1.  | Pad Assignment and Descriptions                              | 17 |
| 6.    | Registers                                                    | 18 |
| 7.    | Physical Dimension                                           | 19 |
| 8.    | Ordering Information                                         | 20 |



### 1. GENERAL DESCRIPTION

#### 1.1. Introduction

FLEXXON industrial FxPrem II Series SD 3.0 card is data crypto solution which provides high data transfer rate, high random IOPS, Power Loss Protection, and read/program disturb management etc. It is designed for high performance, good reliability and wide compatibility. It's well adapted for industrial/medical applications.

#### 1.2. Product Overview

- Flash
  - pSLC
- Capacity
  - 2GB up to 128GB
- Support SD system specification version 3.0
- **❖** Support SD SPI mode
- **❖** Support Data Crypto
- ❖ Support CPRM (Content Protection for Recordable Media) of SD Card
- **❖** Card removal during read operation will never harm the content
- Password Protection of cards (optional)
- **❖** Write Protect feature using mechanical switch
- Built-in write protection features (permanent and temporary)
- Support Adaptive Wear Leveling
- Management of Power Loss Protection
- Read disturbance management
- Temperature Range
  - Operation (Gold) : -25°C ~ 85°C
  - Operation (Diamond) : -40°C ~ 85°C
  - Storage: -40°C ~ 85°C
- RoHS Compliant
- **❖** SMART Function



#### Bus Speed Mode

#### Non-UHS mode

- > Default speed mode: 3.3V signaling, frequency up to 25MHz, up to 12.5MB/sec
- ➤ High speed mode: 3.3V signaling, frequency up to 50MHz, up to 25MB/sec

#### UHS-I mode

- > SDR12: SDR up to 25MHz, 1.8V signaling
- SDR25: SDR up to 50MHz, 1.8V signaling
- SDR50: 1.8V signaling, frequency up to 100MHz, up to 50 MB/sec
- SDR104: 1.8V signaling, frequency up to 208MHz, up to 104 MB/sec
- DDR50: 1.8V signaling, frequency up to 50MHz, sampled on both clock edges, up to 50 MB/sec



### 1.3. Pseudo SLC

Pseudo SLC can be considered as an extended version of the MLC. While MLC contains both fast and slow pages, pseudo SLC only applies fast pages for programming. The concept of pseudo SLC is demonstrated in the two tables below. The first and second bits of a memory cell represent a fast and slow page respectively, as shown in the left table. Since only fast pages are programmed when applying pseudo SLC, the bits highlighted in red are used, as shown in the right table. Accordingly, because only fast pages are programmed, pseudo SLC provides better performance and endurance than MLC. Moreover, pseudo SLC performs similarly to the SLC, yet pSLC more cost effective.

| MLC                        | Flash                      |          | Pseu                       | do SLC                     |
|----------------------------|----------------------------|----------|----------------------------|----------------------------|
| 1 <sup>st</sup> bit (fast) | 2 <sup>nd</sup> bit (slow) |          | 1 <sup>st</sup> bit (fast) | 2 <sup>nd</sup> bit (slow) |
| 1                          | 1                          |          | 1                          | 1                          |
| 1                          | 0                          | <b>→</b> | 1                          | 0                          |
| 0                          | 1                          |          | 0                          | 1                          |
| 0                          | 0                          |          | 0                          | 0                          |



# 2. PRODUCT SPECIFICATIONS

### 2.1. Performance

Table 2-1 Performance of SD (FxPrem II)

| Consitu  | Sequential  |              |  |  |  |  |
|----------|-------------|--------------|--|--|--|--|
| Capacity | Read (MB/s) | Write (MB/s) |  |  |  |  |
| 2GB      | 95          | 50           |  |  |  |  |
| 4GB      | 4GB 95 50   |              |  |  |  |  |
| 8GB      | 95          | 50           |  |  |  |  |
| 16GB     | 95          | 78           |  |  |  |  |
| 32GB     | 95          | 78           |  |  |  |  |
| 64GB     | 95          | 78           |  |  |  |  |
| 128GB    | 95          | 78           |  |  |  |  |

#### **NOTES:**

- 1. The performance is obtained from TestMetrix Test (@500MB).
- 2. Samples are made of MLC NAND Flash.
- 3. Performance may vary from flash configuration and platform.

#### **2.2. Power**

Table 2-2 Power Consumption of SD (FxPrem II)

| Capacity | Read (mA) | Write (mA) | Standby<br>(uA) |
|----------|-----------|------------|-----------------|
| 2GB      | 130       | 100        | 250             |
| 4GB      | 130       | 100        | 250             |
| 8GB      | 130       | 100        | 250             |
| 16GB     | 135       | 125        | 300             |
| 32GB     | 140       | 125        | 350             |
| 64GB     | 64GB 155  |            | 480             |
| 128GB    | 155       | 155        | 500             |

#### **NOTES:**

1. Power consumption may differ from flash configuration and platform.



## 2.3. MTBF

MTBF, an acronym for Mean Time Between Failures, is a measure of a device's reliability. Its value represents the average time between a repair and the next failure. The higher the MTBF value, the higher the reliability of the device. The predicted result of FLEXXON's FxPrem II Series SD is more than 3,000,000 hours.

#### 2.4. Data Retention

- 10 years if > 90% life remaining (@25C)
- 1 year if < 10% life remaining (@25C)



# 3. ENVIRONMENTAL SPECIFICATIONS

| Test Items            | Test Conditions                                     |  |  |  |
|-----------------------|-----------------------------------------------------|--|--|--|
| Storage Temperature   | -40°C ~ 85°C                                        |  |  |  |
| Operating Tomporature | Gold Grade: -25°C ~ 85°C                            |  |  |  |
| Operating Temperature | Diamond Grade: -40°C~ 85°C                          |  |  |  |
| Storage Humidity      | Gold Grade: 40°C, 95% RH                            |  |  |  |
| Storage numbers       | Diamond Grade: 55°C, 95% RH                         |  |  |  |
| Operating Humidity    | Gold Grade: 40°C, 95% RH                            |  |  |  |
| Operating numbers     | Diamond Grade: 55°C, 95% RH                         |  |  |  |
| Shock                 | 1500G, Half Sin Pulse Duration 0.5ms                |  |  |  |
| Vibration             | 80Hz ~ 2000Hz/20G, 20Hz ~ 80Hz/1.52mm, 3 axis/30min |  |  |  |
| Drop                  | 150cm free fall, 6 face of each unit                |  |  |  |
| Bending               | ≥ 10N, Hold 1 min/5 times                           |  |  |  |
| Torque                | 0.1N-m or +/-2.5 deg, Hold 30 seconds/5 times       |  |  |  |
| Salt Spray            | Concentration: 3% NaCl, Temperature: 35°C, 24hours  |  |  |  |
|                       | Water temperature: 25°C                             |  |  |  |
| Waterproof            | Water depth: The lowest point of unit is locating   |  |  |  |
| waterproof            | 1000mm below surface.                               |  |  |  |
|                       | Storage for 30 mins                                 |  |  |  |
| Switch Cycle          | 0.4~0.5 N, 1,000 times                              |  |  |  |
| Durability            | 10,000 times                                        |  |  |  |
| ESD                   | Contact: +/- 4KV each item 25 times                 |  |  |  |
| LJU                   | Air: +/- 8KV 10 times                               |  |  |  |



# 4. ELECTRICAL SPECIFICATIONS

## **4.1. DC Characteristics**

## 4.1.1. Bus Operation Conditions for 3.3V Signaling

Table 4-1 Threshold Level for High Voltage Range

| Parameter           | Symbol          | Min.                  | Max                   | Unit | Condition                                 |
|---------------------|-----------------|-----------------------|-----------------------|------|-------------------------------------------|
| Supply Voltage      | $V_{DD}$        | 2.7                   | 3.6                   | ٧    |                                           |
| Output High Voltage | V <sub>OH</sub> | 0.75*V <sub>DD</sub>  |                       | V    | I <sub>OH</sub> =-2mA V <sub>DD</sub> Min |
| Output Low Voltage  | V <sub>OL</sub> |                       | 0.125*V <sub>DD</sub> | V    | I <sub>OL</sub> =2mA V <sub>DD</sub> Min  |
| Input High Voltage  | V <sub>IH</sub> | 0.625*V <sub>DD</sub> | V <sub>DD</sub> +0.3  | V    |                                           |
| Input Low Voltage   | V <sub>IL</sub> | V <sub>SS</sub> -0.3  | 0.25*V <sub>DD</sub>  | V    |                                           |
| Power Up Time       |                 |                       | 250                   | ms   | From 0V to V <sub>DD</sub> min            |

| Parameter           | Symbol          | Min.                 | Max  | Unit | Condition                    |  |
|---------------------|-----------------|----------------------|------|------|------------------------------|--|
| Supply Voltage      | $V_{DD}$        | 2.7                  | 3.6  | V    |                              |  |
| Regulator Voltage   | $V_{DDIO}$      | 1.7                  | 1.95 | V    | Generated by V <sub>DD</sub> |  |
| Output High Voltage | V <sub>OH</sub> | 1.4                  | -    | V    | I <sub>OH</sub> =-2mA        |  |
| Output Low Voltage  | V <sub>OL</sub> | -)                   | 0.45 | V    | I <sub>OL</sub> =2mA         |  |
| Input High Voltage  | V <sub>IH</sub> | 1.27                 | 2.00 | V    |                              |  |
| Input Low Voltage   | V <sub>IL</sub> | V <sub>ss</sub> -0.3 | 0.58 | V    |                              |  |


| Parameter             | Symbol | Min | Max. | Unit | Remarks         |
|-----------------------|--------|-----|------|------|-----------------|
| Input Leakage Current |        | -2  | 2    | uA   | DAT3 pull-up is |
|                       |        |     |      |      | disconnected.   |

**Table 4-2 Peak Voltage and Leakage Current** 

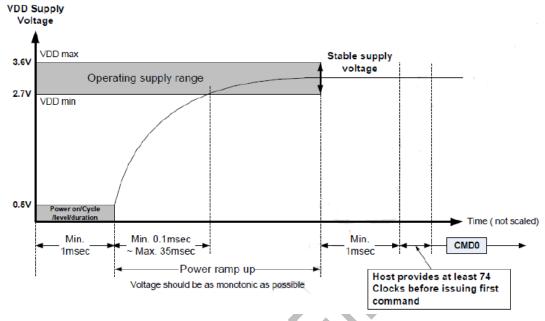
| Parameter Symbol          |  | Min  | Max.                 | Unit | Remarks |  |  |
|---------------------------|--|------|----------------------|------|---------|--|--|
| Peak voltage on all lines |  | -0.3 | V <sub>DD</sub> +0.3 | V    |         |  |  |
| All Inputs                |  |      |                      |      |         |  |  |
| Input Leakage Current     |  | -10  | 10                   | uA   |         |  |  |
| All Outputs               |  |      |                      |      |         |  |  |
| Output Leakage Current    |  | -10  | 10                   | uA   |         |  |  |



# 4.1.2. Bus Signal Line Load



### **Bus Operation Conditions – Signal Line's Load**


Total Bus Capacitance =  $C_{HOST} + C_{BUS} + N C_{CARD}$ 

| Parameter                             | symbol            | Min | Max             | Unit | Remark                                    |
|---------------------------------------|-------------------|-----|-----------------|------|-------------------------------------------|
| Pull-up resistance                    | R <sub>CMD</sub>  | 10  | 100             | kΩ   | to prevent bus floating                   |
|                                       | R <sub>DAT</sub>  |     |                 |      |                                           |
| Total bus capacitance for each signal | C∟                |     | 40              | pF   | 1 card                                    |
| line                                  |                   | -17 |                 |      | C <sub>HOST</sub> +C <sub>BUS</sub> shall |
|                                       |                   |     |                 |      | not exceed 30 pF                          |
| Card Capacitance for each signal pin  | C <sub>CARD</sub> |     | 10 <sup>1</sup> | pF   |                                           |
| Maximum signal line inductance        |                   |     | 16              | nH   |                                           |
| Pull-up resistance inside card (pin1) | R <sub>DAT3</sub> | 10  | 90              | kΩ   | May be used for card                      |
|                                       |                   |     |                 |      | detection                                 |
| Capacity Connected to Power Line      | C <sub>C</sub>    |     | 5               | uF   | To prevent inrush current                 |



#### 4.1.3. Power Up Time of Host

Host needs to keep power line level less than 0.5V and more than 1ms before power ramp up.



#### **Power On or Power Cycle**

Followings are requirements for Power on and Power cycle to assure a reliable SD Card hard reset.

- (1) Voltage level shall be below 0.5V
- (2) Duration shall be at least 1ms.

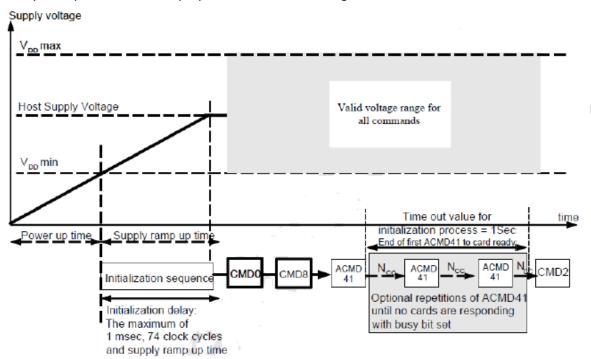
#### **Power Supply Ramp Up**

The power ramp up time is defined from 0.5V threshold level up to the operating supply voltage which is stable between VDD (min.) and VDD (max.) and host can supply SDCLK.

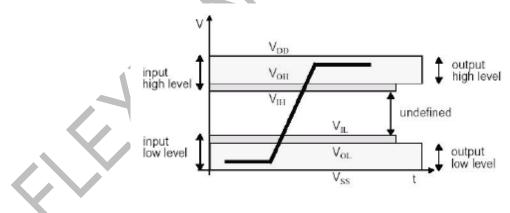
Followings are recommendation of Power ramp up:

- (1) Voltage of power ramp up should be monotonic as much as possible.
- (2) The minimum ramp up time should be 0.1ms.
- (3) The maximum ramp up time should be 35ms for 2.7-3.6V power supply.
- (4) Host shall wait until VDD is stable.
- (5) After 1ms VDD stable time, host provides at least 74 clocks before issuing the first command.

#### **Power Down and Power Cycle**

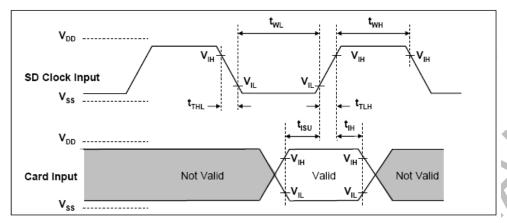

- When the host shuts down the power, the card VDD shall be lowered to less than 0.5Volt for a minimum period of 1ms. During power down, DAT, CMD, and CLK should be disconnected or driven to logical 0 by the host to avoid a situation that the operating current is drawn through the signal lines.
- If the host needs to change the operating voltage, a power cycle is required. Power cycle means the power is turned off and supplied again. Power cycle is also needed for accessing cards that are already in *Inactive State*. To create a power cycle the host shall follow the power down description before power up the card (i.e. the card VDD shall be once lowered to less than 0.5Volt for a minimum period of 1ms).



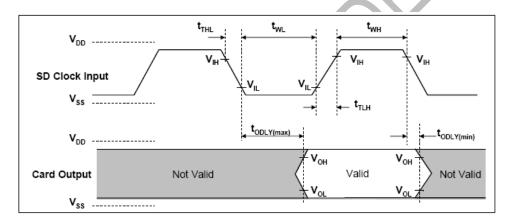

### 4.1.4. Power Up Time of Card

A device shall be ready to accept the first command within 1ms from detecting VDD min.

Device may use up to 74 clocks for preparation before receiving the first command.




### 4.2. AC Characteristic





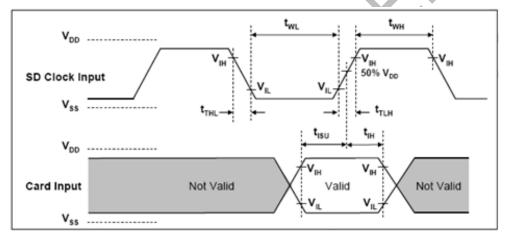

# 4.2.1.SD Interface Timing (Default)



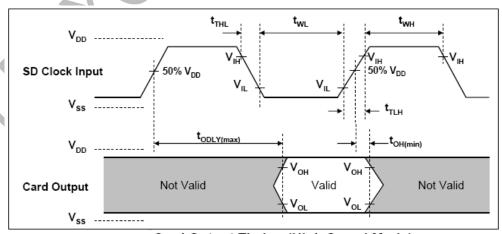
Card Input Timing (Default Speed Card)



Card Output Timing (Default Speed Mode)


| Parameter                                                                             | Symbol           | Min                   | Max | Unit   | Remark                    |  |  |  |
|---------------------------------------------------------------------------------------|------------------|-----------------------|-----|--------|---------------------------|--|--|--|
| Clock CLK (All values are referred to min(V <sub>IH</sub> ) and max(V <sub>IL</sub> ) |                  |                       |     |        |                           |  |  |  |
| Clock frequency Data                                                                  | $f_{PP}$         | 0                     | 25  | MHz    | C <sub>card</sub> ≤ 10 pF |  |  |  |
| Transfer Mode                                                                         |                  |                       | 23  | 141112 | (1 card)                  |  |  |  |
| Clock frequency                                                                       | f <sub>OD</sub>  | 0 <sub>(1)</sub> /100 | 400 | KHz    | C <sub>card</sub> ≤ 10 pF |  |  |  |
| Identification Mode                                                                   | IOD              | 0(1)/ 100             | 400 | KIIZ   | (1 card)                  |  |  |  |
| Clock low time                                                                        | <b>+</b>         | 10                    |     | nc     | C <sub>card</sub> ≤ 10 pF |  |  |  |
| Clock low time                                                                        | t <sub>WL</sub>  | 10                    |     | ns     | (1 card)                  |  |  |  |
| Clock high time                                                                       | <b>+</b>         | 10                    |     | nc     | C <sub>card</sub> ≤ 10 pF |  |  |  |
| Clock High time                                                                       | twн              | 10                    |     | ns     | (1 card)                  |  |  |  |
| Clock rise time                                                                       | +                |                       | 10  | nc     | C <sub>card</sub> ≤ 10 pF |  |  |  |
| Clock rise time                                                                       | t <sub>TLH</sub> |                       | 10  | ns     | (1 card)                  |  |  |  |
| Clock fall time                                                                       | +                |                       | 10  |        | C <sub>card</sub> ≤ 10 pF |  |  |  |
| Clock fall time                                                                       | t <sub>THL</sub> |                       | 10  | ns     | (1 card)                  |  |  |  |




| Inputs CMD, DAT (referenced to CLK)            |                                      |   |    |    |                                       |  |  |
|------------------------------------------------|--------------------------------------|---|----|----|---------------------------------------|--|--|
| Input set-up time                              | t <sub>ISU</sub>                     | 5 |    | ns | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |
| Input hold time                                | t <sub>IH</sub>                      | 5 |    | ns | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |
| Ou                                             | Outputs CMD, DAT (referenced to CLK) |   |    |    |                                       |  |  |
| Output Delay time during<br>Data Transfer Mode | t <sub>ODLY</sub>                    | 0 | 14 | ns | C <sub>L</sub> ≤ 40 pF<br>(1 card)    |  |  |
| Output Delay time during Identification Mode   | t <sub>ODLY</sub>                    | 0 | 50 | ns | C <sub>L</sub> ≤ 40 pF<br>(1 card)    |  |  |

<sup>(1)</sup> OHz means to stop the clock. The given minimum frequency range is for cases where continues clock is required.

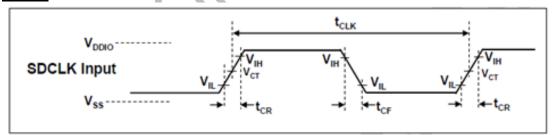
### 4.2.2.SD Interface Timing (High-Speed Mode)



Card Input Timing (High Speed Card)



Card Output Timing (High Speed Mode)



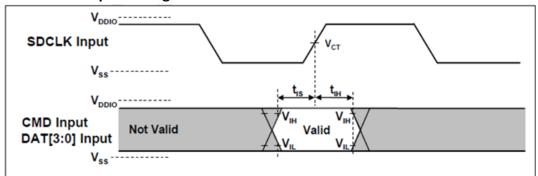

| Parameter                                                                 | Symbol            | Min          | Max        | Unit | Remark                                |  |  |
|---------------------------------------------------------------------------|-------------------|--------------|------------|------|---------------------------------------|--|--|
| Clock CLK (All values are referred to min( $V_{IH}$ ) and max( $V_{IL}$ ) |                   |              |            |      |                                       |  |  |
| Clock frequency Data Transfer Mode                                        | $f_{PP}$          | 0            | 50         | MHz  | $C_{card} \le 10 \text{ pF}$ (1 card) |  |  |
| Clock low time                                                            | t <sub>WL</sub>   | 7            |            | ns   | $C_{card} \le 10 \text{ pF}$ (1 card) |  |  |
| Clock high time                                                           | t <sub>wн</sub>   | 7            |            | ns   | $C_{card} \le 10 \text{ pF}$ (1 card) |  |  |
| Clock rise time                                                           | t <sub>TLH</sub>  |              | 3          | ns   | $C_{card} \le 10 \text{ pF}$ (1 card) |  |  |
| Clock fall time                                                           | t <sub>THL</sub>  |              | 3          | ns   | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |
| Inpu                                                                      | its CMD, DAT      | (referenced  | d to CLK)  |      |                                       |  |  |
| Input set-up time                                                         | t <sub>ISU</sub>  | 6            |            | ns   | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |
| Input hold time                                                           | t <sub>IH</sub>   | 2            |            | ns   | $C_{card} \le 10 pF$ (1 card)         |  |  |
| Outp                                                                      | uts CMD, DA       | T (reference | ed to CLK) |      |                                       |  |  |
| Output Delay time during Data<br>Transfer Mode                            | t <sub>ODLY</sub> |              | 14         | ns   | C <sub>L</sub> ≤ 40 pF<br>(1 card)    |  |  |
| Output Hold time T <sub>OH</sub>                                          |                   | 2.5          |            | ns   | C <sub>L</sub> ≤ 15 pF<br>(1 card)    |  |  |
| Total System capacitance of each line <sup>1</sup>                        | CL                | 11-1         | 40         | pF   | CL ≤ 15 pF<br>(1 card)                |  |  |

<sup>(1)</sup> In order to satisfy severe timing, the host shall drive only one card.

# 4.2.3.SD Interface timing (SDR12, SDR25, SDR50 and SDR104 Modes)

### **Input:**

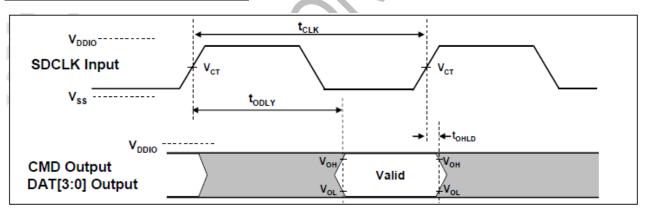



**Clock Signal Timing** 

| Symbol                            | Min  | Max                   | Unit | Remark                                                                                                                                                                                                      |
|-----------------------------------|------|-----------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t <sub>CLK</sub>                  | 4.80 | ı                     | ns   | 208MHz (Max.), Between rising edge, V <sub>CT</sub> = 0.975V                                                                                                                                                |
| t <sub>CR</sub> , t <sub>CF</sub> | -    | 0.2* t <sub>CLK</sub> | ns   | $t_{CR},t_{CF}$ < 0.96ns (max.) at 208MHz, $C_{CARD}$ =10pF $t_{CR},t_{CF}$ < 2.00ns (max.) at 100MHz, $C_{CARD}$ =10pF The absolute maximum value of $t_{CR},t_{CF}$ is 10ns regardless of clock frequency |
| Clock Duty                        | 30   | 70                    | %    |                                                                                                                                                                                                             |

**Clock Signal Timing** 




#### SDR50 and SDR104 Input Timing:

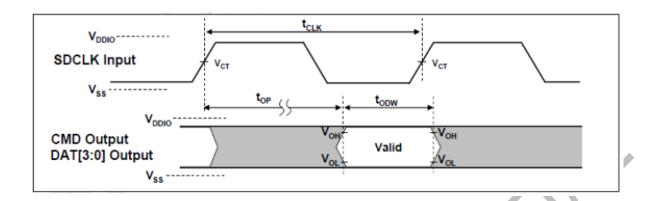


**Card Input Timing** 

| Symbol          | Min  | Max | Unit | SDR104 Mode                        |
|-----------------|------|-----|------|------------------------------------|
| t <sub>IS</sub> | 1.40 | -   | ns   | $C_{CARD} = 10pF, V_{CT} = 0.975V$ |
| t <sub>IH</sub> | 0.80 | -   | ns   | $C_{CARD} = 5pF, V_{CT} = 0.975V$  |
| Symbol          | Min  | Max | Unit | SDR50 Mode                         |
| t <sub>IS</sub> | 3.00 | -   | ns   | $C_{CARD} = 10pF, V_{CT} = 0.975V$ |
| t <sub>IH</sub> | 0.80 | -   | ns   | $C_{CARD} = 5pF, V_{CT} = 0.975V$  |

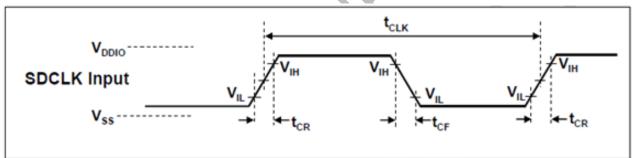
### Output (SDR12, SDR25, SDR50):




**Output Timing of Fixed Data Window** 

|   | Symbol            | Min | Max | Unit | Remark                                                                          |
|---|-------------------|-----|-----|------|---------------------------------------------------------------------------------|
|   | t <sub>ODLY</sub> | -   | 7.5 | ns   | t <sub>CLK</sub> >=10.0ns, C <sub>L</sub> =30pF, using driver Type B, for SDR50 |
| Γ | t <sub>ODLY</sub> | -   | 14  | ns   | $t_{CLK}$ >=20.0ns, $C_L$ =40pF, using driver Type B, for SDR25 and             |
|   |                   |     |     |      | SDR12,                                                                          |
|   | Тон               | 1.5 | ı   | ns   | Hold time at the t <sub>ODLY</sub> (min.), C <sub>L</sub> =15pF                 |

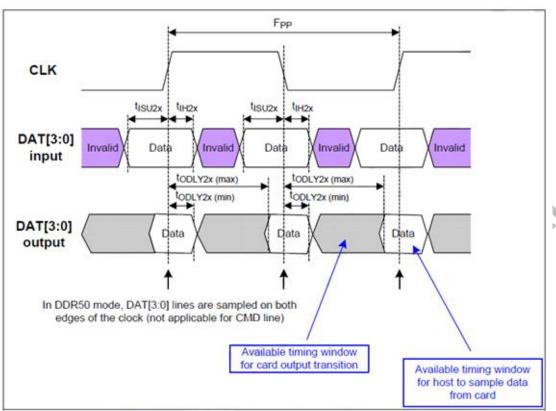
Output Timing of Fixed Data Window




## Output (SDR104 Mode):



| Symbol            | Min  | Max   | Unit | Remark                                                |
|-------------------|------|-------|------|-------------------------------------------------------|
| t <sub>OP</sub>   | 0    | 2     | UI   | Card Output Phase                                     |
| $	riangle t_{OP}$ | -350 | +1550 | ps   | Delay variable due to temperature change after tuning |
| t <sub>odw</sub>  | 0.60 | -     | UI   | t <sub>ODW</sub> = 2.88ns at 208MHz                   |


# 4.2.4.SD Interface Timing (DDR50 Modes)



# **Clock Signal Timing**

| Symbol                            | Min | Max                   | Unit | Remark                                                         |
|-----------------------------------|-----|-----------------------|------|----------------------------------------------------------------|
| t <sub>CLK</sub>                  | 4.8 |                       | ns   | 50MHz (Max.), Between rising edge                              |
| t <sub>CR</sub> , t <sub>CF</sub> | \   | 0.2* t <sub>CLK</sub> | ns   | $t_{CR}$ , $t_{CF}$ < 4.00ns (max.) at 50MHz, $C_{CARD}$ =10pF |
| Clock Duty                        | 45  | 55                    | %    |                                                                |





Timing Diagram DAT Inputs/Outputs Referenced to CLK in DDR50 Mode

**Bus Timings – Parameters Values (DDR50 Mode)** 

| Parameter                                                | Symbol                                    | Min     | Max            | Unit          | Remark                                |  |  |  |
|----------------------------------------------------------|-------------------------------------------|---------|----------------|---------------|---------------------------------------|--|--|--|
| In                                                       | Input CMD (referenced to CLK rising edge) |         |                |               |                                       |  |  |  |
| Input set-up time                                        | tısu                                      | 6       | -              | ns            | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |  |
| Input hold time                                          | t <sub>ін</sub>                           | 0.8     | -              | ns            | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |  |
| Ou                                                       | itput CMD (ref                            | erenced | d to CLK risir | ng edge)      |                                       |  |  |  |
| Output Delay time<br>during Data Transfer<br>Mode        | todly                                     |         | 13.7           | ns            | C <sub>L</sub> ≤ 30 pF<br>(1 card)    |  |  |  |
| Output Hold time                                         | Тон                                       | 1.5     | -              | ns            | C <sub>L</sub> ≥ 15 pF<br>(1 card)    |  |  |  |
| Inputs (                                                 | DAT (reference                            | d to CL | Krising and    | falling edges | s)                                    |  |  |  |
| Input set-up time                                        | t <sub>ISU2x</sub>                        | 3       | -              | ns            | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |  |
| Input hold time                                          | t <sub>IH2x</sub>                         | 0.8     | -              | ns            | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |  |
| Outputs DAT (referenced to CLK rising and falling edges) |                                           |         |                |               |                                       |  |  |  |
| Output Delay time<br>during Data Transfer<br>Mode        | t <sub>ODLY2x</sub>                       | -       | 7.0            | ns            | C <sub>L</sub> ≤ 25 pF<br>(1 card)    |  |  |  |
| Output Hold time                                         | T <sub>OH2x</sub>                         | 1.5     | -              | ns            | C <sub>L</sub> ≥ 15 pF<br>(1 card)    |  |  |  |



### **5. PAD ASSIGNMENT**

### **5.1. Pad Assignment and Descriptions**

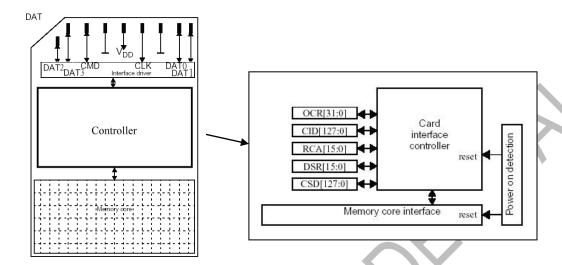


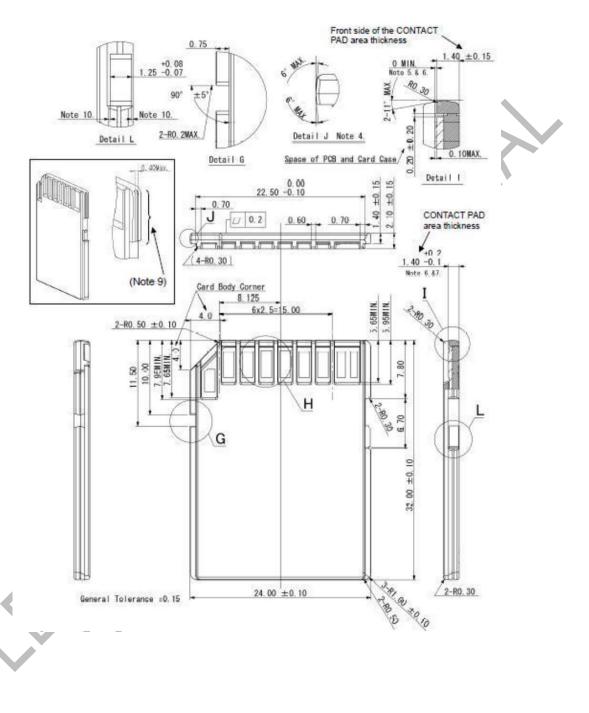

Table 5-1 SD Memory Card Pad Assignment

| Pin |                      | SD                  | Mode                  |      |                | SPI Mode               |
|-----|----------------------|---------------------|-----------------------|------|----------------|------------------------|
|     | Name                 | Type <sup>1</sup>   | Description           | Name | Туре           | Description            |
| 1   | CD/DAT3 <sup>2</sup> | I/O/PP <sup>3</sup> | Card Detect/          | CS   | l <sup>3</sup> | Chip Select (net true) |
|     |                      |                     | Data Line[bit3]       |      |                |                        |
| 2   | CMD                  | PP                  | Command/Response      | DI   | _              | Data In                |
| 3   | $V_{SS1}$            | S                   | Supply voltage ground | VSS  | S              | Supply voltage ground  |
| 4   | $V_{DD}$             | S                   | Supply voltage        | VDD  | S              | Supply voltage         |
| 5   | CLK                  | _                   | Clock                 | SCLK | Ι              | Clock                  |
| 6   | $V_{SS2}$            | S                   | Supply voltage ground | VSS2 | S              | Supply voltage ground  |
| 7   | DAT0                 | I/O/PP              | Data Line[bit0]       | DO   | O/PP           | Data Out               |
| 8   | DAT1                 | I/O/PP              | Data Line[bit1]       | RSV  |                |                        |
| 9   | DAT2                 | I/O/PP              | Data Line[bit2]       | RSV  |                |                        |

- (1) S: power supply, I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers.
- (2) The extended DAT lines (DAT1-DAT3) are input on power up. They start to operate as DAT lines after SET\_BUS\_WIDTH command. The Host shall keep its own DAT1-DAT3 lines in input mode as well while they are not used. It is defined so in order to keep compatibility to MultiMedia Cards.
- (3) At power up, this line has a 50KOhm pull up enabled in the card. This resistor serves two functions: Card detection and Mode Selection. For Mode Selection, the host can drive the line high or let it be pulled high to select SD mode. If the host wants to select SPI mode, it should drive the line low. For Card detection, the host detects that the line is pulled high. This pull-up should be disconnected by the user during regular data transfer with SET\_CLR\_CARD\_DETECT (ACMD42) command.

  SET\_CLR\_CARD\_DETECT (ACMD42) command.




# 6. REGISTERS

| Name | Width  | Description                                                            |  |  |  |
|------|--------|------------------------------------------------------------------------|--|--|--|
| CID  | 128bit | Card identification number; card individual number for identification. |  |  |  |
| RCA  | 16bit  | Relative card address; local system address of a card, dynamically     |  |  |  |
| KCA  | 10010  | suggested by the card and approved by the host during initialization.  |  |  |  |
| DSR  | 16bit  | Driver Stage Register; to configure the card's output drivers.         |  |  |  |
| CSD  | 128bit | Card Specific Data; Information about the card operation conditions.   |  |  |  |
| SCR  | 64bit  | SD Configuration Register; Information about the SD Memory Card's      |  |  |  |
| SCR  | 04011  | Special Features capabilities                                          |  |  |  |
| OCR  | 32bit  | Operation conditions register.                                         |  |  |  |
| SSR  | 512bit | SD Status; Information about the card proprietary features.            |  |  |  |
| OCR  | 32bit  | Card Status; Information about the card status.                        |  |  |  |



# 7. PHYSICAL DIMENSION

Dimension: 15mm (L) x 11mm (W) x 1mm (H)





# 8. ORDERING INFORMATION

| Capacity | Part Number (Gold) | Part Number (Diamond) |
|----------|--------------------|-----------------------|
| 2GB      | FDMS002GPG-N200    | FDMS002GPE-N200       |
| 4GB      | FDMS004GPG-N200    | FDMS004GPE-N200       |
| 8GB      | FDMS008GPG-N200    | FDMS008GPE-N200       |
| 16GB     | FDMS016GPG-N200    | FDMS016GPE-N200       |
| 32GB     | FDMS032GPG-N200    | FDMS032GPE-N200       |
| 64GB     | FDMS064GPG-N200    | FDMS064GPE-N200       |
| 128GB    | FDMS128GPG-N200    | FDMS128GPE-N200       |



# **Revision History**

| Revision | Release Date | Description                                           |
|----------|--------------|-------------------------------------------------------|
| 1.0      | 2017/07      | First Release                                         |
| 1.1      | 2020/10      | Update Template                                       |
| 1.2      | 2021/04      | Update Product Specification and ordering information |