

Switching Diode

Qualified per MIL-PRF-19500/116

DESCRIPTION

This 1N4148UB switching/signal diode features ceramic bodied construction for military grade products per MIL-PRF-19500/116. This small low capacitance diode, with very fast switching speeds, is featured in a surface mount UB package with various polarities available. Microsemi also offers a variety of other switching/signal diodes.

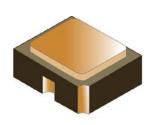
Important: For the latest information, visit our website http://www.microsemi.com.

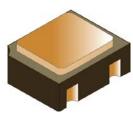
FEATURES

- Surface mount equivalent of popular JEDEC registered 1N4148 number.
- Very low capacitance.
- Very fast switching speeds with minimal reverse recovery times.
- Unidirectional as well as doubler, common anode and common cathode polarities are available.
- JAN, JANTX, and JANTXV qualification is available per MIL-PRF-19500/116. (See <u>part nomenclature</u> for all available options.)
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- High frequency data lines.
- Low-profile ceramic surface mount package (see package illustration).
- RS-232 & RS-422 interface networks.
- Ethernet 10 Base T.
- LAN.
- Computers.


MAXIMUM RATINGS @ 25 °C


Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T _J & T _{STG}	-65 to +200	°C
Thermal Resistance Junction-to-Ambient ⁽¹⁾	R _{ƏJA}	325	°C/W
Thermal Resistance Junction-to-Solder Pad ⁽¹⁾	R _{ØJSP}	120	°C/W
Maximum Breakdown Voltage	V _(BR)	100	V
Working Peak Reverse Voltage	V _{RWM}	75	V
Average Rectified Current @ $T_A = 75 {}^{\circ}C^{(2)}$	lo	200	mA
Non-Repetitive Sinusoidal Surge Current (tp = 8.3 ms)	I _{FSM}	2	A (pk)

NOTES: 1. See <u>Figure 2</u> for thermal impedance curves.

2. See Figure 1 for derating.

<u>Qualified Levels</u>: JAN, JANTX, and JANTXV

UB Package

Also available in:

UBC package (Ceramic Lid surface mount)

UB2 package (2-Pin surface mount) 1N4148UB2

DO-35 package (axial-leaded) 1N4148-1

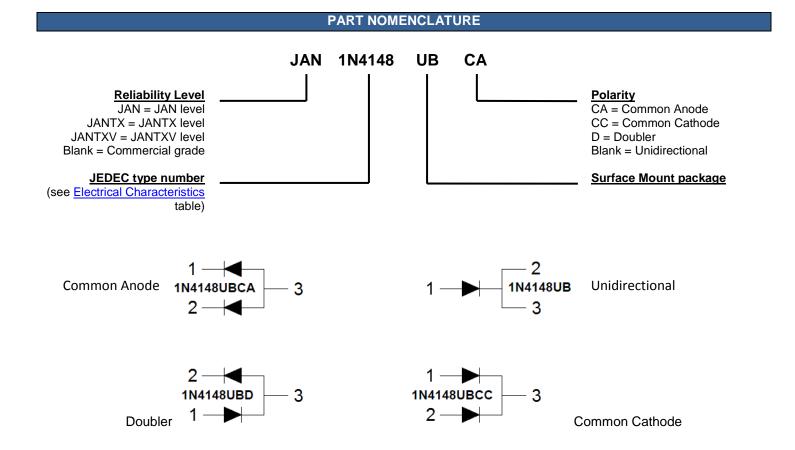
DO-213AA package (MELF surface mount)

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

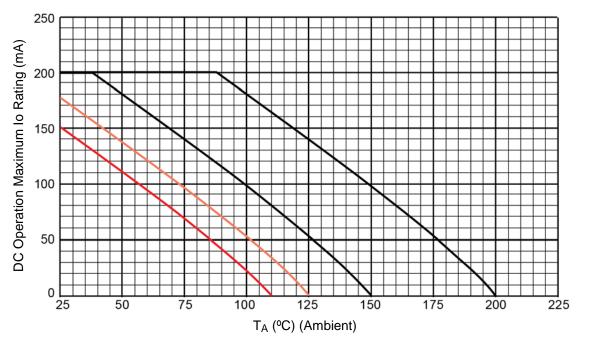

Website:

www.microsemi.com

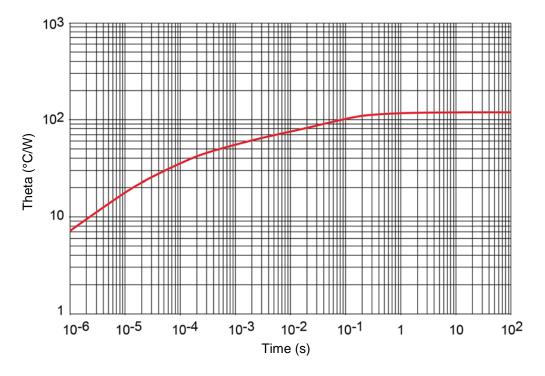
MECHANICAL and PACKAGING

- CASE: Ceramic.
- TERMINALS: Gold plating over nickel under plate.
- MARKING: Part number, date code, manufacturer's ID.
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: < 0.04 Grams.
- See <u>Package Dimensions</u> on last page.

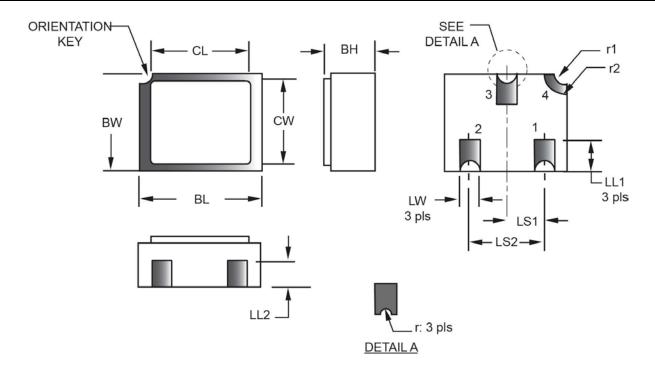
SYMBOLS & DEFINITIONS											
Symbol	Symbol Definition										
I _R	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.										
Ι _Ο	Average Rectified Forward Current: The output current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.										
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.										
V _F	Forward Voltage: The forward voltage the device will exhibit at a specified current (typically shown as maximum value).										
V _R	Reverse Voltage: The reverse voltage dc value, no alternating component.										
V _{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range excluding all transient voltages (ref JESD282-B). Also sometimes known as PIV.										



ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise noted										
FORWARD VOLTAGE V _{F1} @ I _F =10mA	FORWARD VOLTAGE V _{F2} @ I _F =100mA	REVERSE RECOVERY TIME t _{rr} (Note 1)	FORWARD RECOVERY TIME t _{fr} (Note 2)	REVERSE CURRENT I _{R1} @ 20 V	REVERSE CURRENT I _{R2} @ 75 V	REVERSE CURRENT I _{R3} @ 20 V T _A =150°C	REVERSE CURRENT I _{R4} @ 75 V T _A =150°C	CAPACI- TANCE C (Note 3)	CAPACI- TANCE C (Note 4)	
v	v	ns	ns	nA	μΑ	μA	μA	pF	pF	
0.8	1.2	5	20	25	0.5	35	75	4.0	2.8	


NOTE 1: $I_F = I_R = 10 \text{ mA}, R_L = 100 \text{ Ohms} \pm 5 \%.$ **NOTE 2:** $I_F = 50 \text{ mA}.$ NOTE 3: $V_R = 0$ V, f = 1 MHz, $V_{SIG} = 50$ mV (pk to pk). NOTE 4: $V_R = 1.5$ V, f = 1 MHz, $V_{SIG} = 50$ mV (pk to pk).

GRAPHS



PACKAGE DIMENSIONS

		Dimer	nsions				Dimensions				
Symbol	inch		millimeters		Note	Symbol	inch		millimeters		Note
	Min	Max	Min	Max			Min	Max	Min	Max	
BH	.046	.056	1.17	1.42		LS1	.035	.039	0.89	0.99	
BL	.115	.128	2.92	3.25		LS2	.071	.079	1.80	2.01	
BW	.085	.108	2.16	2.74		LW	.016	.024	0.41	0.61	
CL		.128		3.25		r		.008		0.20	
CW		.108		2.74		r1		.012		0.31	
LL1	.022	.038	0.56	0.97		r2		.022		.056	
LL2	.017	.035	0.43	0.89							

NOTES:

1. Dimensions are in inches. Millimeters are given for general information only.

2. Ceramic package only.

3. Hatched areas on package denote metallized areas.

4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.

5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.